VERSAL UNFOLDING OF IRREGULAR SINGULARITIES
OF A LINEAR DIFFERENTIAL EQUATION
ON THE RIEMANN SPHERE

TOSHIO OSHIMA

ABSTRACT. For a linear differential operator P on P! with unramified irregular
singular points we examine a realization of P as a confluence of singularities
of a Fuchsian differential operator P having the same index of rigidity as P,
which we call an unfolding of P. We conjecture that this is always possible.
For example, if P is rigid, this is true and the unfolding helps us to study the
equation Pu = 0.

1. INTRODUCTION

Gauss hypergeometric function F(a, B, v;z) = > po, (CE,)Y’;E@’“ z¥ is a solution to

Gauss hypergeometric equation

(1.1) z(1—z)u”" + (v — (e + B+ 1)z)u' — afu =0,

which has regular singularities at 0, 1 and co. Here we use the notation (a)r =
(a)(a+1)---(a+k—1). Putting y = Bz and taking the limit 5 — oo, two singular

points y = (8 and oo converge to a confluent irregular singular point co. Then
Gauss hypergeometric function converges to Kummer function:

Fla,B,7%: %) = F(a)?(&)a)/o et -
flif%llﬁ(a,v;y)==k=0(iji2!yk::IXOO???a)Jﬁ t*7 1 — )oYt

And the equation (1.1) converges to Kummer equation y% +(y—- y)g—;’ —av =0.

Similarly, the confluence of three singular points of Gauss hypergeometric equation
with suitable limits of parameters gives Hermite equation.
For a given linear differential equation

(1.2) Pu=0

on P! with irregular singularities, we want to construct a Fuchsian differential equa-
tion P& = 0 with singular points as holomorphic parameters such that a confluence
of some singular points gives the original equation. Here we call P an unfolding of
P. Note that the irregular singularity is more difficult to analyze it than the reg-
ular singularity and if it is a confluent singularity, the procedure of the confluence
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helps to analyze the equation. In the case of Gauss hypergeometric family, a versal
unfolding exists, which we call versal Gauss equation. As is given in §6, it is

(1.3) (1 —tiz)(1 — tex)@” + (A1 + Ao2)@ + (A2 — tate(i+ 1))@ =0,
which has the Riemann scheme (6.1). Put ¢t; =1 and y = 2 — 1. Then (1.3) gives
Gauss hypergeometric equation or Kummer equation according to to = % or 0,

respectively. When ¢t; = t5 = 0, (1.3) gives Hermite equation.

We will assume that the irregular singularities of (1.2) are unramified (cf. §2). In
83 we define a generalized Riemann scheme, a spectral type and the index of rigidity
for the equation as in the case of Fuchsian differential equations (cf. [13, Chapter 4]).
In §4 we define a versal unfolding of the Riemann scheme attached to the spectral
type, which is a generalized Riemann scheme of a Fuchsian differential equation
having singular points as parameters and the same index of rigidity. Using the versal
addition and the middle convolution of the element of the Weyl algebra, which are
defined in [13], in §5 we examine the construction of the versal unfolding P of P
with this generalized Riemann scheme which has singular points as holomorphic
parameters such that special values of parameters give the original equation.

Since Katz [11] introduced two operations of linear differential equations, namely,
the middle convolution and the addition, the study of Fuchsian differential equa-
tions on P! has been greatly developed. For example, there are an interpretation
of these operations in Schlesinger systems by [4], an answer to additive Deligne-
Simpson problem by [3] which gives a correspondence between the spectral types
of Fuchsian equations and the roots of a Kac-Moody root system and an analysis
of the solution to the single equation Pu = 0 by [13] which constructs the uni-
versal model with a given spectral type and studies the irreducibility condition of
the equation, connection coefficients of the solutions etc. and gives many explicit
formulas when the equation is rigid.

Assume the equation Pu = 0 has no ramified irregular singularity. Then these
operations are still quite useful. They keep the index of rigidity. There are classified
into only finite types under these operations for any fixed index of rigidity (cf. [8]).
In particular, if the equation is rigid, it is constructed by successive applications of
these operations from the trivial equation and for example, the local monodromy
around an irregular singularity is explicitly calculated (cf. [14]).

This paper will give a link between the study of Fuchsian differential equations
and that of equations allowing unramified irregular singularities. The main result
in this paper was announced by the author’s invited lecture on the annual meeting
of Mathematical society of Japan held in March, 2012.

2. PRERIMINARY RESULTS

We explain the notation used in this paper. We denote by Z, Q and C the set of
integers, the sets of rational numbers and the set complex numbers, respectively.
Then we put Zso :={k €Z |k >0}, Z>o :={k€Z|k>0},Z<o:={kecZ|k<
0} etc. We denote by C[z] the ring of polynomials of one variable  with coefficients
in C, by C(z) the quotient filed of C[z], by C[z] the ring of formal power series of
x and by C((x)) the quotient field of C[x]. The ring of convergent power series at
x = ¢ is denoted by O.. Note that Clz] C Oy C C[z] C C((z)).

In this section we review on elementary results on singularities of the equation
Pu = 0. We denote by W[x] the Weyl algebra of one variable x with coefficients
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in C, which is generated by z and -L. Namely, the element of W(z] is a linear

ordinary differential operator with polynomial coefficients. We put 0 = % and

¥ = x0 for simplicity. Then [0,z] = 1 is the fundamental relation of W[x]. We
define W (z) := C(z) ® W|z] and W((z)) := C((z)) ® W|x].

The degree of a polynomial a(x) is denoted by deg, a(x) or dega(x). The order
of a linear ordinary differential operator

(2.1) P=ay(z)0"+--+ a1(x) +ap(x)

with a,, # 0is n and denoted by ord P. In this paper we study the equation Pu = 0
in the cases when P € W{z], W(zx) or W((z)).
For a function ¢(x) we put

Ad(p)P := p(x) o Pop(x)™!
if this expression has a meaning. In particular
Ad(p)o=0 —# and Ad(exp(p)) 0 =0—9(y).

Note that if u(z) satisfies Pu(z) = 0, then v(z) = p(z)u(x) satisfies Ad(p)(P)v(x) =
0. If % € C(x), Ad(p) defines an automorphism of W (z), which we call an ad-
dition.

Let P € W((z)) be

(2.2) P=0"4ap_1(x) 0"+ + ag(x) (a;(z) € C((x))).
Here
a;(x) = Z ajx’ (aj, €C, ajm; #0)

with m; € Z U {oco}. We assume that the origin is a singular point of P, namely,
there exists j satisfying m; < 0. Then the number

PrkP::max{—mj_,l’j:l,...,n—l}—le(@>0
n—j =

is called the Poincaré rank of P. We also define Prk P = Prk P for P = ¢(x)P
with ¢(z) € C((z)) \ {0}. The singularity is regular or irregular according to the
condition Prk P = 0 or Prk P > 0, respectively. Then

(23) v—(PrtkP+1)j > —(PrkP+1)n ifa;, #0 (v>my, j=0,...,n—1)

and if Prk P > 0 and n > 0, there exists (j,v) = (jo,mo) such that the equality
holds in (2.3). For r € Q> and P =) ¢;,z” ¢’ € W((x)) \ {0}, we put

wt,(P) == min{v — (r+1)j | ¢, # 0},
Z cjyl,sj (r>0),

o )(]5) — v—(r+1)j=wt,(P)
> Gusls—1e(s—j+1) (r=0).
V—(r+1)j:wtr(f:7)

Then we have easily the following lemma.
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Lemma 2.1. For P, Q € W((x)), ¢ € C(z)) \ {0}, k€ Z, A € C and r € Q>

. _[owP)s) >0,
7OPF) = 0w (P) om(P f”k)(s)—{(fm(za)(s_k) (r=0)

wir(PQ) = Wt (P) + Wt (Q),  0(r)(PQ) = o) (P) - 0(r)(Q),
o (Ad(e”7T)P)(s) = o) (P)(s = A) (> 0),
(o) (Ad(z*)P )(8)—0(0( )(s = A).
By this lemma we have the decomposition theorem (for example, see [16]).

Theorem 2.2. Let P € W((z)) with the expression (2.2). Put r = Prk P. Then

(2.4) P=(0-2"""pn(@r)) - (-2 (ar))
with suitable p € Zs and ¢;(z) € Clx] satisfying pr € Z.

Proof. We can prove the theorem by the induction on ord P. We may assume
ord P > 1.

Suppose r = 0. Then the origin is a regular singular point of P and the theorem
is well known. Let A be one of the solutions to o) (P)(s) = 0 such that Re
is mawﬂmal1 Put P = Ad(z=*)P. Then o0(P)(0) = 0 and o) (P P)(§) # 0 for

= 1,2,... and we easily obtain ¢(z) € C[z] satisfying Py = 0. Then P =
QO —0()) + g(x) with g(z) € Clz] (cf. [13, §1.4.1]). Since P(¢) = 0, we have
g=0,PrkQ =0,0ordQ = ord P—1 and P = Ad(z*)(Q) - Ad(2*)(0 — 0(¥))). Thus
we have the theorem by the induction.

Suppose r > 0. Note that the polynomial

o) (P)(s) = s" + Z Ajm, P
mj+(n—j)(r+1)=0
0<j<n—1

has a non-zero root.

If r ¢ Z, the coefficient of s"~! of this polynomial equals 0 and therefore the
polynomial has at least two different roots. Putting x = y9, Prk P in the coordinate
1y is the ¢ times of that in the coordinate x. Under the coordinate y, we may assume
Prk P is a positive integer and o(,)(P)(s) has different roots.

Suppose 7 € Zxq and o(,)(P)(s) = 0 has only one root A with multiplicity
n. Then P' = Ad(em7)(P) satisfies o@y(P') = s", which means Prk P’ < r.
Repeating this process, we may assume Prk P = 0 or Prk P ¢ Z or o(,)(P)(s) =0
has different roots.

Thus we may assume r € Zq and moreover that o(,)(P)(s) = 0 has a root A
with multiplicity m such that 1 < m < n — 1. By the transformation Ad(er%) we
have

O’(r)(P) =s" + an_1705n71 + -+ am708m (aj70 eC, Um0 75 0)
Then we have a decomposition
2" TP = QR,

(25) n—m n—m—1 m
O(r) (Q) =S + ap—1,08 + e+ am,0, O(r) (R) =5,

IThe ordering of Aj(x) given by (2.11) follows this choice of A.
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which is proved as follows. Denoting ¥, = " 119, we put
2"UTDP =97 4 ap_y ()97 + -+ ag(z),
Q="+ n-m-1(x)0} " 4+ qo(x),
R=97 + o1 (2)07 "1 4 - 4o (),

oo o0 o0
=Y aat, g(@) =Y g, ri@) = et
v=0 v=0 v=0

ajso = 0 (O SJS m — 1)7 Qim0 #07
4.0 = jrmo (0<j<n—m—1), r0=0 (0<j<m—1).

For S = Y ¢;,2"9] € W(x)) and N € Zxo, we put Sy = 3.y ¢;,@"9}. Since
wt, (RS — RnSn) > N, we inductively define {r; n, ¢/ n [0 <j<m—1,0<
j'<n—m—1} for N = 1,2,... so that wt,.(2" ™D P — QyRy) > N, which is
possible because the system

(927 + a1 00 ™" e ) (P, Nﬁ’“* et o)

(2.6) N .
+ (gn-—m—-1,N0} Lyt qo,N)V; Z CLN’LS‘

is solved for any given c; ny. In fact we can determlne TONs -+ >Tm—1,Ns O,Ns- -,
@n-m—1.~ in this order by the coefficients of ¥4 for j = 0,...,n — 1. Here cj N are
determined by Ry_1, @n—1 and Py. Thus we have the theorem by the hypothesis
of the induction. O

Remark 2.3. Retain the notation in Theorem 2.2. When r = 0, the origin is a
non-singular point or a regular singular point of P and we can choose p = 1. When
r < 0, then the origin is called an irregular singular point of P. If r < 0 and we
can choose p = 1, the origin is called an unramified irregular singular point of P.

By Theorem 2.2 we may assume

(27) 2P = (0= gu(e) -+ (0= dr(27)) (65 € (@)
We define \;(z) € (C[x%], deg \j(z) and \;j(z) so that
(2.8) Ni(2) = ¢j(av) € 2rClar] (j=1,...,n),

< P adeg, N(yP) (3 #0),
(2.9) deg \j(z) = {O 5 =0),

j—1
(2.10) A (@) = () + 3 deg(3y (@) — ().
We may assume
(2.11)
Ai(z) = Aj(z)eCandi<j = X(z)—A(x)eC (1 < Vv < j),

Ni(z) = Nj(x) €Zand i< j = \iv(z) — A\jr(z) € Z>o (i <Vi' < Vj' < 7).

We call {\1(x),...,\,(z)} the set of characteristic exponents of P at the origin.
Let

wx)=po+ ™+ Fpupa™ (0<r << Ty
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be a characteristic exponent. Here p1; € C. We define the characteristic function
e, (z) with the exponent u(x) by

ey(z) == a™Ho exp(—ul% — = ‘T,t: )
and put ¢, () := e, (%) =z exp(—”"; == tz2). Then
(04 p(@))eu(z) =0, Ad(eu(2))d =0+ pu(x), eu(x)ea(z) = euppa(z),

(0 —p(2))éu(x) =0, Ad(éu(x )19 Y — p(+
We examine the solution to Pu = 0. We may assume that the singularity is

unramified by the transformation = +— 7. Because of the decomposition (2.4) we
have only to study the equation

(2.12) (0 = ¢(z))u(z) = f(z)
for ¢ € C((z)). Let u(z) € Clx] such that

(213) B@) = 6(x) — p(2) = 3 eva” € 2Cla]

Define

o0

Jr ' é(x) Z

v=1

exp([ 27 ¢(x)dz) := exp( [z~ d(x)dx)é,(x) € Clz]eé, ().
Then we have (0 — ¢(z)) exp( [z~ ¢(x)dz) = 0.
Put .
Clz]m) == @(C[[w]] log’ x (0 <m < 0).
§=0
For a non-zero element

we define _
o(u) := ¢, 2" log’ x - €, (x)

and put o(0) = 0. Here (j,, v,) is defined by the condition that ¢;, ., # 0, ¢j,,, =0
for j > j, and ¢;, = 0 for v < v,. Note that o(ef = e@)dry — éu(x).

We want to solve (2.12) for
(2.14) f(z) € Clz](myéa(z) with o(f) = (x).

Put ¢(z) = exp([z ¢(x)dz), W(z) = d(z) tu(z) and f(z) = ¢(z)~ f(x).
Then the equation (2.12) becomes
(215)  9a() = fz) (F € Clelimer (@), o(f) = log™ z - ex_y(x)-
Putting r = deg(\ — ), we have

o(9(z" log™ @ - Ex_puyr()))
~ JCra¥log™x-éx_ () (r>0),
A—p+v)zvlogmx-ex_,(z) (r=0, \—p ¢ Z<)

for v € Z>¢. Here C is the coefficient of the top term of the polynomial A — p.
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Hence if A — pu ¢ Z<y, there exists u,(z) € Cz]log™ x - €,_xr+,(x) such that
(@) = Yum(z) € Clz](m-1)€x—ptr(z). Then we have @(x) € Clx]m)er—pir()
satisfying 94 = f by the induction on m. Here o (@) = Cz"o(f) with C e C\ {0}.

Suppose A\ — p € Z<g. Since d(log™ ' x) = (m + 1)log™ z, we have u(z) €
Clx]log™ z - éx_,.(z) @ Clog™ ™ & satisfying di(x) = f(z).

Thus we solve (2.12) as follows. If A — u ¢ Z<o,

(2.16) u(z) € Cﬂx}](z)éAJtr(x),
o(u(2) = Clog™ & - 5 1(x).

fXx—pe Zgo,
u(z) € Clx](nq1)ér(z),

(2.17) (w) Clog"z-éx(z)  (A#p),
O— =
Clog™ ' z-éx(z) (A=p)
with a non-zero constant C. Thus we have the following theorem (for example, see

[16]).

Theorem 2.4. Retain the notation (2.7)—(2.10). Then we have linearly indepen-
dent solutions ui(x),...,u,(x) to (1.2) such that

uj(z) € Clx](m,)éx, (7)), m; =#{v | AN — A, € Z<o, 1 <v < j},

o(u;) =log™ - é,(z), mj=#{v|N\=X, 1<v<j}
Proof. Put u§j)(x) =exp([z71¢;(x)dz) € (C[[ac]]é;\j (x) with U(u;j)) = ¢é5,(z). We
have u§j7u)(x) satisfying (9 — ¢j_y)u§-j7'/) = ugjﬂ'“) for v = 1,...,5. Then
Pu§0) = 0 and the theorem follows from the argument just before the theorem
(cf. (2.10), (2.12)—(2.17)). O

We have the following important theorem related to these formal solutions u;(x).

Theorem 2.5 ([9, 10]). Retain the notation above. Suppose there exists k € Z>q
such that 2%a;(x) € O, fori=0,...,n in (2.1). Then for any 6y € R, there erist
61 > 0, L > 0 and holomorphic solutions @;(x) of (1.2) such that the following
asymptotic expansion holds.

(2.18) j(x) ~uj(r) Voo, 22 —0, j=1,...,n),
(2.19) Vog.or.1, = {re?? € C |0 € [0 — 61,00 +61], 0<r < L}.

3. RIEMANN SCHEME

In this section we study the equation (1.2) with P € W[z]. Let {co,...,cp}
(C CU{oo}) be the set of singular points of the equation and let {); , | v =1,...,n}
be the set of the characteristic exponents of P at x = ¢;. Note that A;, € (C[z%}
with a certain positive integer g. We put ¢y = oo. Sometimes we allow that some of
¢;’s are not singular points of P. Here the characteristic exponents are defined when
¢; = 0 in the previous section and in general they are given under the coordinate y

(3.1) y:{x—c (¢ # ),

L (e=o0)
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for a singular point c¢. Then the table

T =cyp= 00 e T=cp
Xo.1 A1

(3.2) . . .
Ao.n Apon

is called the Riemann scheme of P (or the equation (1.2)).

Theorem 3.1 ([1, 2]). We have Fuchs-Hukuhara relation

(3:3) i n(ﬂ Zdeg i A ”)):W

for the Riemann scheme (3.2) of P € Wx].
Proof. We may assume
P =08"4bp_1(x) 0" 4+ by(z),
TP = 9" 4 ap_1 ()" + -+ ap()

with a,(z) € C(z). We examine the residue of a,_1(z) at = ¢; for 1 < j < p.
We may assume ¢; = 0 by the coordinate transformation =z +— = — ¢;. Under
the notation (2.7)-(2.10) the residue of x'a,_i(z) at @ = ¢; equals —);1(0) —

<= Xjn(0), which equals — 337", (A,:(0) — Zf;ll deg(Xj,; — Aj,v)). Since ord(9" —
" 9" —"("Tfl)x”_l 9" 1 < n—1, we have xb,_1(x) = an_1(z) + "("Tfl) and the
residue of b,_1(z) at = ¢; equals

m0 D S (400 Zdeg i)

i=1
Puttingy = 2 and 9, = yd%, we have 9 = —9, and (—1)"2" P = ¥y —a,—1 ()0 '+
et (—1)"@0(5). Hence the residue of y‘lan_l(%) aty=0 equals

zn: (M0 - z_:l deg(Moi — Ao,))-

i=1

Note that y~1a,_ 1( )=y 2b,_ 1( )— "(721371) and the sum of the residues of b,, ()

at x =c1,...,¢p equals the rebldue of y~2b,,_ 1( ) at y = 0 by Cauchy’s integral
formula. Hence we have the theorem. O

Hereafter in this paper we assume that any singularity of the equation (1.2) is a
regular singularity or an unramified irregular singularity. We define a generalized
Riemann scheme, which we denote by GRS in this paper, and a spectral type as in
the case of Fuchsian differential equations defined by [13].

Definition 3.2. Let x = ¢ be a singularity of the equation (1.2). For a polynomial
A € Clz] and a positive integer m the equation has a generalized characteristic
exponent [X](,,) if the equation has formal solutions

uy(y) = exso(y) +¥(W)extm(y) (v=0,...,m—1)
with ¢; € C[z](). Here y is given by (3.1).
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A generalized Riemann scheme, GRS in short, is the table

T =cy= 00 e T =cp
) [Ao,l]fmo,l) - (Ap.a] (m)

[)\O!nl](m(),nl) T [)\pvnp}(mp,np)
Here

n:mj,l+"'+mj,nj (]:O7ap)
are (p + 1) tuples of partitions of n. The Riemann scheme corresponding to (3.4)
is given by putting

A A

A+1 A

(35) P\](m) = . and [)\]m = :
A+m—1 A

Suppose
(36) /\jW/—/\j,y¢{0,1,...,m]’7y—1} (1§V<I//Snj,j:0,...,p).

Then we define that P has GRS (3.4) if [\j,](m,,) (v =1,...,n;) are generalized
characteristic exponents at « = ¢; for j = 0,...,p. (See the definition of GRS in
[13] when (3.6) is not valid.)

Remark 3.3. Suppose

(3.7) deg(Nju —Aju) >0 or N\j, =N ¢Z (1<v<v <nj j=0,...,p).
Then P has GRS (3.4) if and only if P has the Riemann scheme corresponding
to (3.4) and (1.2) has linearly independent solutions of the form 1 (y)éx(y) with

¥(z) € C[z], namely, they have not any logy term. Here y is given by (3.1) with
C=Cy.

Let {[Ajlomsa)s - [Njin;l(my..) } be the set of generalized exponents of P at

: jomj
the singular point ¢;. Then n = m;1 +---+m;,, be a partition of n = ord P. For
r € Z>o we define equivalence relations ~ between the elements of I, := {1,...,n}

gr
as follows. For ¢ € I,,, we put v;; € {1,...,n,} by

Myt myy, 1 <G <myg e my
and define
(3.8) il = {

7T

Vji = Vit (r=0),

deg(Aj, , (2) = Aj, (@) <7 (r=>1).

g,

Let n;, be the number of equivalence classes under ~ and let R; be the Poincaré
gr
rank of P at the singular point c¢;. Then

nj,0 =M = N1 2> 2N R, = NjR+1 = 1.

By a suitable permutation of the indices v € {1,...,n;} of m;, we may assume
i<i"<i,i~i = i~dl
g Jr
Let
N C)) (r)
(3.9) no=myy e fmy
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(0)

be the corresponding partition of n such that m;, =m;, and for v =1,...,n;,
(3.10) I = {veZsg | m\) 44 ml)_ <v<m{)+ -+ ml)

give the equivalence classes under ~. Note that {I(T |v=1,...,n;,} is a refine-

7,r
ment of {IJ(-?;H) |v=1,...,nj,41}. Then we define that the (Roy+---+R,+p+1)
tuples of partitions m = (mg-r))rz(),.,,,R (mg 3),, 1,...n;.» of n is the spectral type
§=0,...,p r_O ..... R;
of P and that of GRS (3.4). Then the number of full pe;ameters of GRS (3.4) with
p R,
the spectral type ( ;TJ)V 10 ’7}% . equals R = Z an » — 1. Here we note that
= j=07r=0

we always impose Fuchs—Hukuhara condition on GRS.

As in the case of Fuchsian differential equation, this spectral type is expressed by
()

_]V
“‘77

“ ”

The numbers are separated by indicating different
indicating different levels of the equivalence relations:

writing the numbers m
singular points and by

0),(0) (0) (R1) (R1) (0) (Rp)
my 1My 2 My n00| o ‘mo,l UMY g LT My,

Remark 3.4. Note that for any (5,7, k) € Z3with0 < j<p 1<r< R; and
1 <k < nj there exists £ € Z such that

(3.11) mgrl) NI mérg _ m&—l) T m(r 1)

The index of the rigidity of GRS (3.4) is defined by that of the tuples of the
partitions (m\")) (cf. [11, 13]):

SV

p R nj,r
(312)  idxf{Am} = idxm = idx(m{)) = 20> — Y (n2 - Z<m;fg)2).
7=07r=0 v=1
Lemma 3.5. i) The index of the rigidity satisfies
n; n;  nj
idx m = 2n? — Z(n - ij l,) ZZ Z mymj, deg (N (z) — Ajur(2)).
j=0 j=0v=1v'=1
ii) Put ordm = mj; + --- + mjy,, = n. As in the Fuchsian case (cf. [13
Definition 4.17]), Fuchs-Hukuhara relation is given by
Py
(3.13) Z Z mj A (0) = ordm — Jidxm.
j=0v=1

Proof. Since

Ng,r

”2_2 (T) =2 Z mﬁfu ﬁ': Z MM 0

v=1 1<v<v’'<nj , deg()\j,,,f)\jyl,/)ZT, v#v/

we have

=

J nj,r

idx m = 2n? z”: ( Z( ;TV)) >

j=0r v=1

Il
=)
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R;

P n; ( ) P
2 2 0
=2n“ — E (n — g ) g E My M
§=0 v=1 =0 r=1de (,\J v g )T
v, v 6{1 ,nJW}

p

p n; ny
S CED BRI 90 9 SEARANT PRV

3=0 j=0v=1v'=1

In the case of GRS (3.4), Fuchs-Hukuhara relation (3.3) says

which means

p "N PNy p p i—l1
(mj;—1)my,
DD mika(0) = =D S Y N Y myumy i deg(Ayi — Ajw)
j=01i=1 j=01i=1 7j=01i=0v=1
—1)(n—1)n
L@ )(2 )
:_idx2m+n2_(p+1)(2n—1)n+(p—l)(Qn—l)n:n_idxzm. 0

Example 3.6. Suppose that the left scheme below is the generalized Riemann
scheme of P, which may be written as the right scheme below (cf. (3.5)):

T =00 z=0 T = 00 (1) (2) z=0
[ao + a1z + asz®)a) [y _ ) laoly  laa)e a2l [ei]ge)

bo + b1z C2 bo [b1]2 [0]2 2

co+ bix Cc3 Co c3

Then the spectral type is 211|22|22, 211, which equals méo) |mél) |mé2)7 mgo) and the
Fuchs-Hukuhara relation is 2ag + bg + cg + 2¢1 + ¢2 + c3 = 6.

Here we assume that the complex numbers a;, bj, ¢, are generic under the Fuchs-
Hukuhara relation. The spectral type is kept invariant even if we replace by + b1x
and ¢y + b1z by by + bix + box? and ¢y + b1z + byx?, respectively. If ¢y + by is
replaced by cg + bax, the spectral type changes into 211]|211]22,211 and

idx(211[22]22,211) = —4 and idx(211]21122,211) = —6.

Note that (1.2) has solutions u(z) with the asymptotic behavior

w(z) ~ 27 (1 + O(x—l))e—alx—%azwz, x—au—le—alx—%azxz (z — +00),
~ .,I/,—b()e—b1$7 :L,—Coe—b1$ (.T — +OO),
~ (1+o(x))z, xtt g2 gz (x — +0).

4. UNFOLDING OF RIEMANN SCHEME

Let m be a positive integer. Consider the equation

m

(4.1) (H(m — ci)>u’ = A\u

=0
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with holomorphic parameters ¢y, . . . , ¢, which has a solution exp( f:o ﬁ)
0<i<m i

If ¢; # ¢j for 0 < i < j < m, the equation is Fuchsian and the Riemann scheme
equals

r=¢ (1=0,...,m
(4.2) i ( N ) .
Hogugm, y;ﬁi(cifcu)
The Riemann scheme of the confluence limit for Ve¢; — ¢ equals
z=c| Jzx=c¢ (1) - (m-=1) (m)
(43) {)\xm}_{ 0 0 0 xS

We say that the Riemann scheme (4.2) is an unfolding of (4.3).
Recall the versal additions for m € Z~( introduced by [13, §2.3]:

771.

r Ards
AdV(Cm o) A0y Am) .—Ad((:z:—co 0exp/ 2 a )>>

veo(s —cy

(4.4) .
— [] D R T Crero
Ad (x —¢) L<v<k, v£i (% 7

=0

(4.5) AdV?COMCm)()\m co Am)(0) =0 —

m )\k m m )\k 1
(4.6) Ak ( )

k=0 HOSvSk(x — ) ; ZZ H1<V<k: V;éz( —a)/r—c¢

kflds
AdV(1 (M, An) 1= Adexp(— ))
e " Z 0 H1<1<k(1_cis)
(4.7) . .
=Ad (H(l — Ci,]j)zkn:i €i HlSVSkzt#i(Ci*Cu) )7
i=1
m )\kl‘k_l

c1 ' em

k b
k=1 Hi:l(l —ciz)

(49) fjA - (X 2 )—

Hl (I —¢x) o1 “h— ClH1<u<k V;éz( —c)/ @ — c

Here (Ao, ..., Am), (co,--.,¢m) € C™HL. Summing up the residues of the equality
(4.6) and putting ¢y = 0, we have the identities

k

1
—0 (1<k<m),
=0 H0<u<k u;éz( — )
k
(=1)F 1
Hyzl Cy i=1 Ci 1<v<k, v#i Ci Cv

Definition 4.1 (Unfolding of generalized Riemann scheme). Let

(4.10) ANjw () = Njvo + Ajuaz + -+ X r, 2™ € Cla]
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be the generalized characteristic exponents A;, of GRS (3.4). Put

i:OO (j:’I"ZO, t070:O)7

to.0

Cior =\ o (=0, 1 <r<Ry),

to,r

cj+tir (1<j<p 0<r<Rj).
For j=0,...,pand r =0,...,R; and v = 1,...,n, ;, we choose /; ., by
(
mg

4+t mng =mjit- My,

(cf. (3.11)) and define

t)
4.11) AV)(1) § At 0<j<p 0<r<R;, 1<v<n;,).
( H0<s<k(ty, —tjs) O<j<p Osr<hy l<vsng,)

Here )\j,y,k = Aju,k OI in general, )\j’y,k may be depent on ¢, namely, 5\j,l, = S\j,,,}() +
Njwa@ + -+ Ajug, @ and Aj,, are holomorphic functions of (¢j0,...,tr,)
satisfying

(4.12) )\] vk(0) =X\, and ZZva jo(t) =n— %idx m.

j=0v=1
Then the unfolding of RS (3.4) is a generalized Riemann scheme

z=cj, (0<r<R;, 0<j<p)
[/\(T)]( (T))

(4.13) )
A

m,r](m;g{j )

of a Fuchsian differential equation with (R + --- + R, + p + 1) regular singular
points and GRS (3.4) is called the confluence of GRS (4.13) when V¢;,, — 0. We
sometimes fix t;o = 0 for j =0,...,p.

This definition implies the following theorem (cf. (3.12), (3.13)).

Theorem 4.2. The indez of rigidity and Fuchs-Hukuhara relation of GRS are kept
mwvariant by the above unfolding.

Remark 4.3. i) Let P = a1(x) 9 —ap(z) € W[z]. If a1(0) # 0, there exist m €
Z>0, Cly---sCmy ALy« - A € C such that P = ag(z) AdV 1 L)()\l, cey Am) 0.
€1 em
ii) The unfolding of GRS is essentially unique because of the following result.
The equality (4.6) gives a one-to-one correspondence between the set of holo-

morphic functions {Ag, ..., A} of ¢ = (co, ..., ¢n) and the holomorphic function
A(c, x) of ¢ valued in C(z) such that

m

Ale,x) € Z(C

r=0

for any fixed ¢ satisfying cx #ce (0 <k <l <m).
T —cp

See [12, Lemma 6.3] for a removable singularity of meromorphic parameters.
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Example 4.4. Putting to0 =t1,0 = 0, t9,1 = t1, to,2 = t2, we have an unfolding

T = 00 xr = % T = % =0
lao — 4 + bt‘f%_,]m (5 + 7%@?22)](2) [Getmle lale

bo — 3t (]2 [0](2) c2

Co — ZA C3

ty

of GRS in Example 3.6.

Definition 4.5. The spectral type m = (mS-T))Tzo,,,,,RJ = (m§f3)y:17,__,nm of GRS
5=0,.0,p r=0,...,R}
J=0,...p
(3.4) is irreducibly realizable if there exist an irreducible equation (1.2) with GRS
(3.4) for a generic value of parameters. The spectral type m is versally realizable if
there exists an irreducible Fuchsian differential equation Pu = 0 with GRS (4.13)
which has holomorphic parameters ¢; . € C in a neighborhood of 0 and (1— % idxm)
accessory parameters and moreover the confluence limit Py of P at V¢;, = 0 has
GRS (1.2) when the parameters A;, are generic. In this case P is called the versal
operator with the spectral type m, which is a generalization of the universal model
in [13, §6.4] when m is of Fuchsian type.

Conjecture. We conjecture that the following three conditions are equivalent.

1. The spectral type m is irreducibly realizable.

2. The spectral type m is versally realizable.

3. The spectral type (mgrg) of the unfolding is irreducibly realizable as a Fuchsian
differential equation.

Note that [13, §6] gives the necessary and sufficient condition for (mgru)) to be
irreducibly realizable as a Fuchsian differential equation and moreover an algorithm
to construct the Fuchsian differential operator P with a given generalized Riemann
scheme, which is implemented as a computer program in [15]. Hence the key to
solve the conjecture is to show that the operator P with GRS (4.13) has not a pole
along any hyperplane defined by t;, = t;, (v # /). Thus we can check that the
conjecture is affirmative if idx m > —2 and m is indivisible, which will be explained

in the following section as in Remark 5.7.

5. MIDDLE CONVOLUTION

Let u(z) be a solution to the equation (1.2) which has a singularity at the origin.
Then for 4 € C, the middle convolution mc,(P) of P € W{z] is characterized by
the equation mc, (P)I,(u) = 0 satisfied by the Riemann-Liouville integral

Lu(u)(z) := =—
of u(x). Assume that the coefficients a,(z) € Clz] (v = 0,...,n) of P € W]x]
given in (2.1) has no non-trivial common factor. Let N be an integer satisfying
N > dega,(x) for v=0,...,n. Put

)/Omu(t)(x—t)“_ldt

N

(5].) P = Z Cijxi 8j

n
j=0 i=0
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with ¢;; € C. Then in [13, §1.3] the middle convolution mc,(P) of P is defined by

n

N
(5.2) me, (P) =0~ " Z(Z cij OV O+ 1 — ) aﬂ') € Wizl

j=0 i=0

Here L is the maximal integer under the condition mc,(P) € Wz]. We note that
NP=x" SN e oNa = S e oN T+ 1)

For P € W(x), we put mc,(P) = mc,(¢P) with a non-zero suitable function
¢ € C(z) so that ¢P satisfies the above assumption. In this case me,(P) is defined
up to a constant multiple.

We have the following lemma which can be applied to the solution to (1.2).

Lemma 5.1. Let u(z) be a holomorphic function on the domain Vo, e, 1 given by
(2.19). Suppose

k K C
= (D e +o@h))atexp(= Y L) (Vayanr 32— 0).
v=0

j=0

Herek6Z>0,K€Z>0,c,,,C €C,mj €Z and mo >mq > --->mg > 0.
Suppose moreover Re - —mg >0 for x € Vi, 0, and Repp > 1. Then

k K
k A
= (Z{)C/uxu + o(x ))w +(mo+1) Hexp( Z me) ‘/:90,91,L > — 0)
V=

7=0

with ¢}, € C satisfying cf, = (moCo) *cp.

Proof. We may assume ¢y = 1 and 6y = 0 and the positive numbers L and 6;
are sufficiently small for the proof. For simplicity put C' = Cy, m = my, v(z) =

_ K s .
= exp(d_;_o Cjz~ " )u(z). Then limy, , ,sc-0v(z)=1.
I= / L=~ = (g — ey (1)
0
o0
= x’\“‘/ s*)‘*“e*W*W*"'(s — 1)“710(5)% (s=%)
1

Cj((@™y+1) m —1)

_c S .7 _oyae ey m -y _adu
:]}AJ’_HG ™ = ] / Cy(1+ Ca™ly + )(l‘my"i‘l) m 1
0
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Then putting

(E y+1 m _1) MM
Z_y(1+z Cx™y J)’

[ = A mADp, —n,— i ;*73] /OO e*CZ(g)M - (x, z)%
0 z

C
Here
Z(ch )z]—i-o ) (Ry22—0, 2 €V, 0,.1),
j=0 =0
|0z, 2)] < M(1+|z[) (z>7, € Vyyp,1)

with certain complex numbers ¢;;, » and M are suitable positive numbers and
Coo = ¢o- Thus we have easily the lemma (by Watson’s lemma). O

Remark 5.2. i) Since I, is defined for ;1 € C by the analytic continuation, the

assumption Re y > 1 is not necessary in Lemma 5.1. Similarly, we have

s T
A+ p)

ii) Replacing Vy, 0,z by Vg, 5, 1 = {Llze V_6,,6,,4 } in the previous lemma, we
have

ocoetfo

I, T (x> 0).

(Veo,ol,L > x — o0)

with ¢f = (moCp) ¢y if a holomorphic function on Vj 0,1, Satisfies

k
= (chx_”—l—o(x_k ) exp( ZCm J) (Vog.0,., 2 T — 00)
v=0

and Re Coz™° > 0 for x € ‘/'9'07917L.
The generalized Riemann scheme of mc,, (P) is given by the following theorem.

Theorem 5.3 ([13, Theorem 5.2], [5, Theorem 3.2]). Suppose P € W{z| has the
generalized Riemann scheme {[X;](m, ) v=1,..n; given in (3.4) and it is irre-

yeeny

ducible in W(x). We may assume Aj1 =0 for j=1,....p and p = X1 — 1. Here
some mj1 are allowed to be zero. If {/\j v} and p are generic (cf. [13, 5]) under
this assumption, mc,(P) has GRS{ (m/ )},, 1,...n; giwen by

=0,.

p B P
PR S S
=0 =0
mjy = My = 0y - d(m) (1<v<n; 0<j<p),
G0 =050 (1—p) (G=0,....p),
Ny = Njw + (—=1)%0(1 4 deg \j,) - pu 1<v<nj; 0<j<p)

and the index of rigidity and the irreducibility of P are kept under mc,.
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Remark 5.4. i) Theorem 5.3 is proved by [13] when P has only regular singulari-
ties. It is extended by [5] in the case when P has unramified irregular singularities
together with regular singularities.

ii) Note that

d(m)an—ZO n—mjl ZZZ Z mj .

J=0r=1v=1ldeg(\;,—Xj1)>r

P
=2n — (nfmjl ZZdeg G — ]1)mj7y.
7=0 j=0v=1
Hence if
R] R]
(5.3) m{? >3 "m{) (1<v<n, j=0,....p),
r=0 r=0
we have
mj1 — Z deg(Ajur — Aj1)mg . > myj, — Z deg(Ajur — Ajw)myu
and
o<22(mﬂ—zdeg o N Y
j=0v=1
p Ny p n; Ny
(0 m =203 D deg s = A mymy )
j=0 v=1 j=0v=1v'=1

J
=n-d(m)— idxm,
which implies d(m) > 0 when idxm > 0 in Theorem 5.3.

Suppose m = (mSTZ) is a realizable spectral type and let P € W/z] be the
versal operator with GRS (3.4) and (4.13). We may assume (5.3) by suitable
permutations of indices v € {1,...,n;} of m;,. Applying suitable versal additions
to P corresponding to 75\3-,1, we may assume :\j71 =0forj=1,...,panddeg 5\071 =
0 for any ¢t. Then we apply mc,, in Theorem 5.3 to P and we have mc,, (P) with the
spectral type m’ satisfying ord m’ = ord m’ — d(m). Here we note that since L in
(5.2) is determined for generic values of holomorphic parameters t; ,, corresponding
to the unfolding GRS (4.13), the integer L in (5.2) is invariant for generic values
of parameters and t;, are holomorphic parameters of mc,(P). Then mc,(P) is a
versal operator with the spectral type m’ (cf. Definition 4.1). Since mc_,omc,, = id,
the spectral type m is versally realizable if and only if so is m’. In the same way
it is proved that m is irreducibly realizable if and only if so is m’. We call this
procedure Katz’s reduction of m (cf. [11]).

We put m’ = dm according to the above procedure, namely, suitable permuta-
tions of indices, versal additions and a middle convolution. Let K be the minimal
non-negative integer such that one of the following holds

1. ord® 'm > ord@m for i = 1,..., K and 9 m = (mg’“j) is not tuples of
partitions, namely, there exists Th;rg with Th;ru) < 0.
2. ord 0 'm > ord®'m for i = 1,..., K and 8% m is a trivial tuples of parti-

tions with ord 9%m = 1.
3. ord 8% 'm < ord % m
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Dividing into these three cases, we can conclude the following in each case:

1. m is not irreducibly realizable.

2. idxm = 2 and m is versally realizable.

3. idxm < 0. We conjecture that m is versally realizable if and only if idx m # 0
or m is indivisible, namely, the greatest common divisor of {mgrg} equals 1.

Remark 5.5. In the case of Schlesinger systems the above conjecture is proved by
[6] if we replace “versally realizable” by “irreducibly realizable”.

Example 5.6. We give some examples of the above procedure. The number d(m)
is indicated upon the arrow corresponding to the procedure (cf. [13, Example 5.11]),
which equals 2% (the sum of numbers in one block) — (the sum of numbers without
an underline).

1111122022 2225 111021121 222222 (Z1)111]1 (not irreducibly realizable)

11]11)11 22732 1|1]1 (versally realizable and rigid, versal Gauss hypergeometric)

21121|2113}43 271221 11121]1113(33 ~ 21111]3111(33 2271922, 1111]1111/13

~s 11112111131 22220 gypjan1)21 222220 ra1(an 222255 111 (rigid)

1112102121 222220 11ja1ja1)a1 222229 11]11]11]11 (basic, versally realizable)
An irreducibly realizable spectral type m is called rigid if idxm = 2. Suppose
the spectral type m satisfies ord 9m > ord m. If idx m # 0 or m is indivisible, m
is called basic. Then the basic spectral type is not rigid (cf. Remark 5.4 ii)).
We show in [8] that there are only finite number of indivisible basic spectral types
with the same index of rigidity. For example, there are the following 15 indivisible
basic spectral types m with idxm = O:

Dy: 11111111 11/1111,11 11[11,11)11 11[11,11,11 11,11,11,11
Eg: 111111111 111]111,111 111,111,111

E7: 1111[1111]22 1111]1111,22 1111,1111[22 1111,1111,22

Eg: 111111]2222,33 111111]33,222 111111,222, 33

The versal operator for the spectral type 11|11|11|11 contains the operator with the
spectral type 11|11]|11, 11 as special values of parameters (cf. §6). The basic spectral
type which is not obtained as special values of parameters of a versal operator with
another spectral type is called basic confluent spectral type. Then there are 5
indivisible basic confluent spectral types with the rigidity of index 0. They are

11111111 111111111 1111111122 111111[222,33 11111133, 222.

Remark 5.7. A list of basic confluent spectral types m with idxm > —2 are given
in [8] and we can construct versal operators with these spectral types. In fact the
Fuchsian differential operator with given singular points and a GRS is given by [15]
and we can easily check its confluent limit. Hence the conjecture in this paper is
valid for m if idxm > —2 and m is indivisible. In this case the basic confluent
spectral types are confluent spectral types of basic Fuchsian spectral types. But
in general there exists a basic confluent spectral type which is not any confluent
spectral type of a basic Fuchsian spectral type as is given in [8, Remark 3.33].
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The conjecture is also formulated for Schlesinger systems. It follows from [5,
6] that the condition 3 implies the condition 1 in the conjecture for Schlesinger
systems. Note that [7] gives the versal unfolding of Schlesinger systems with basic
confluent spectral type m satisfying idx m > —2. The middle convolution of versal
unfolding of Shlesinger systems and its generalization to Knizhnik-Zamolodchikov
equations will be given in another paper.

6. EXAMPLES

As is shown in the previous section, there is one-to-one correspondence between
the rigid spectral type of the equation (1.2) with regular or unramified irregular
singularities and the rigid Fuchsian spectral type with a suitable confluence which
corresponds to the condition stated in Remark 3.4. A simple and classical example
is 11]11]11 with the following Riemann scheme and the versal Riemann scheme.

1—p and 1—p i 0 0
2 ~ A A A A A
H + )\1.’,8 + /\21: H = 711 + t1t22 ﬁ + tl(t12—t2) t2(t22—t1)

Inverting Katz’s reduction in Example 5.6, we have the versal operator

P =mc, oAdV(ﬁyé)(Xth)a

bV L
s T T tgx))
=mc, (0(1 — ty12)(1 — tax) O+ O(A (1 — tow) + Nyz))
(1= tiz) O +t1 (1 — 1)) ((1 — taz) O +tap)
+ A 04+(Ny — Nit2)(z0+1 — 1)

= (1 —t12)(1 — t22)0* + (A1 + Aow)D + fi( A2 — tata(fi + 1)),

(ML =M+ (b + )i, Ny = Ao+ Mto — (1 — ta)tofi, p' =1—p)

= mc,, (3 +

with the Riemann scheme

(6.1) : i . 2 . 2 (tita(ts —t2) #0),
_ t t
hi, A1 tlz(tt—lt;) + t22(t+2—2t11) +1

which we call versal Gauss hypergeometric operator (see [13, §2.4]). Here we have
5\1 = 5\1 +t1 +t2, 5\2 = 5\2+t2(5\1 7t1 +t2) and ‘[L: ].7,L_L

Special values of parameters corresponding to the confluence of (6.1) give

/‘_L O_ (tl # 07 t2 = 0)7
2 A1

1
r =00 x:%
,l_L 0 (tlth#O)v
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T =00 z=00 (1) (2
B - = I 0 0 (t1 =t =0).
1—ﬂ+)\1$+/\2172 1—n A1 Ao

According to (4.8), we have a solution to Pu = 0 with an integral representation

“ Y Mys W1
- ds | (t— dt.
/L exp( /0 (1—If18+ (1—t15)(1—t25)) S>( ZL’)

t1

In the same way as above we have solutions

x t s
Al(lftgu)‘i’Allu pn1—1 % pa—1
/C /C exp(—/o 0= hw) = lyu) du) (t — s) (1 — tlt) 1 (x — t) dsdt

of a versal equation Pu = 0 for the spectral type 111[111[21. Here ¢ = & or L

or oo and P = mc,, o AdV(%)()\g) omcy, ° AdV(ﬁ,%)(/\l,)\’l)a. When t; = 0,

A
(1- tlt)% = ¢!, Note that 111,111,21 is the spectral type of the equation
satisfied by the generalized hypergeometric function 3F5 (cf. [13, §13.5]).

p+1 copies of 11
—~—
The spectral type m = 11|11]---|11 corresponds to the second order operator

P which has only one unramified irregular singularity with Poincaré rank p. In this
case idxm = 6 — 2p and we have the versal operator

14 p p—1 p—3
P=1] (1 - tjx)az + (Z /\jxj‘l)aJr u()\p —(1P(e+1) ] tj)xp‘z +> rjal
=1 J=1 j=1 =0

for the spectral type m. The generalized Riemann scheme of P equals
T = 00 x:t—lj G=1,...,p)
" 0
(=1)PA PN
tl"'tpp —u-1 t; ngig;;j(ty‘*ti) +1
Here rq, ..., r,_3 are accessory parameters and P is the operator with the Riemann
scheme
T = 00 x =00 1 - (p
K = M o - 0
p—1—p+Mx+-+ AP p—1—-p X X

When p = 3, P gives the confluent equations of Huen’s equation whose spectral
types are 11]11]11]11, 11|11|11,11, 11|11,11|11 and 11|11,11,11.

A versal Jordan-Pochhammer operator P is an unfolding of the operator with
p+1 copies of 1(p—1)

the rigid spectral type 1(p —1)|1(p — 1)|---|1(p — 1), which is give in [13, §2.4],
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namely
P
P =mc, 0 AdV, () A1 Ap) D = > pi(a) 077k,
k=0
P P P
=H (1—tjz), )22)%3:1“71 H (1—t;x),
j=1 k=1 j=k+1
p+p—1 —p+p—1 _
- ( o+ (T
The equation Pu = 0 has GRS
T =00 :1::%i (i=1,...,p) = 0o
[1 - Mkp 1 ) [0]¢p-1) (1= -
)\k: ’ .
- + —1 !
Z H1<y<z cy 2 kz::l i ng;;ég_k(cfi . Cu) M (p ),LL + ; Azx

and a solution

¢ sPlds
exp z— ) dt c=< or o).
/c / H1<z< 25)>( ) ( b )

Let L be an integer satisfying 0<L<m. Puttpy; =--- =t =0 for the equation
Pu = 0. Then the point # = oo is an irregular singular point with Poincaré rank
m — L. The last example in [14] calculates the local monodromy of the space of
local solutions at this singular point. Note that [14] gives an algorithm calculating
the local monodromy of any irregular singular point of the rigid equation Pu = 0
on Py which has no ramified irregular singular point. The algorithm is implemented
n [15].
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