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Abstract. We construct a generator system of the annihilator of a generalized

Verma module of a classical reductive Lie algebra induced from a character of
a parabolic subalgebra as an analogue of the minimal polynomial of a matrix.
In a classical limit it gives a generator system of the defining ideal of any
semisimple co-adjoint orbit of the Lie algebra. We also give some applications

to integral geometry.

1. Introduction

In [O3] generalized Capelli operators are defined in the universal enveloping al-
gebra of GL(n, C) and it is shown that they characterize the differential equations
satisfied by the functions in degenerate principal series representations of GL(n, R).
The operators are used to formulate boundary value problems for various bound-
aries of the symmetric space GL(n, R)/O(n) and to construct generalized hyperge-
ometric equations related to Radon transformations on Grassmannian manifolds.
In [O4] using these operators we construct a generator system of the annihilator
of the generalized Verma module for gl(n, C) induced from any character of any
parabolic subalgebra.

In this paper the generator system is constructed for the classical Lie algebra g.
Here g equals gl(n, C), o(2n, C), o(2n+1, C) or sp(n, C). In the case of gl(n, C) the
generator system in [O4] is an analogue of minors and elementary divisors. The
generator system here is an analogue of the minimal polynomial of a matrix and
different from the one constructed in [O4]. For the generator system of the center
of the universal enveloping algebra the former corresponds to Capelli identity in
[C1] and [C2] and the latter to the trace of the power of a matrix with components
in the Lie algebra which is presented by [Ge].

In §2 we define a matrix F with components in g or the universal enveloping
algebra U(g) associated to a finite dimensional representation of a Lie algebra g and
define a minimal polynomial of F with respect to a g-module (cf. Definition 2.4).

In §3 we calculate the Harish-Chandra homomorphism of certain polynomials
of F . It is a little complicated but elementary. A complete answer is given in
Theorem 4.19 when g is gl(n, C). Owing to this calculation, in §4 we introduce
some polynomials of F and study their action on the generalized Verma module.

Then we construct a two-sided ideal of U(g) generated by the components q(F )ij

for the minimal polynomial q(x) of F and prove Theorem 4.4, which is the main
result in this paper. It says (cf. Remark 4.5 ii)) that the ideal describes the gap
between the generalized Verma module and the usual Verma module (cf. (5.1)
and (5.7)) if at least the infinitesimal character of the Verma module is regular
(resp. strongly regular) in the case when g equals gl(n, C), o(2n + 1, C) or sp(n, C)
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(resp. o(2n, C)). The main motivation to write this paper is to construct a two-sided
ideal with this property originated in the problem in [O1].

It follows from this theorem that the ideal equals the annihilator of the gener-
alized Verma module of the scalar type for the classical Lie algebra if at least the
infinitesimal character is (strongly) regular (cf. Corollary 4.6).

We will use the homogenized universal enveloping algebra U ε(g) introduced in
[O4] so that we can compare the generator system of a co-adjoint orbit in the dual of
g. As a classical limit we get the generator system of any semisimple co-adjoint orbit
for a classical Lie algebra, which is described in Theorem 4.11 (cf. Remark 4.12).

In §5 we show some applications of our two-sided ideals to integral transforma-
tions of sections of a line bundle over a generalized flag manifold. For example,
Theorem 5.1 is a typical application, which shows that the system of differential
equations defined by our two-sided ideal characterizes the image of the Poisson
transform of the functions on any boundary of the Riemannian symmetric space of
the non-compact type.

In §6 we discuss the infinitesimal character which is excluded in the results in §4
and present some problems.

In the subsequent paper [OO] we will give a simple explicit formula of minimal
polynomials of generalized Verma modules of the scalar type for any reductive Lie
algebra and study the same problem as in this paper.

In order to explain our idea, suppose G = GL(2n, C) and put A =
(

λIn 0
B µIn

)
∈

g = Lie(G). Here λ, µ ∈ C and B ∈ M(n, C) is a generic element. Note that A is

conjugate to λIn ⊕ µIn if λ 6= µ and to
(

λ 0
1 λ

)
⊕ · · · ⊕

(
λ 0
1 λ

)
otherwise. We

will identify g and its dual g∗ by the symmetric bilinear form 〈X,Y 〉 = TraceXY .
Let IΘ(⊂ S(g)) be the defining ideal of the closure V̄Θ of the conjugacy class
VΘ =

∑
g∈G Ad(g)A with Ad(g)X = gXg−1.

Note that IΘ = I0
Θ by denoting


Iε
Θ =

∩
g∈G

Ad(g)Jε
Θ,

Jε
Θ =

∑
X1, X2, X3∈M(n,C)

U ε(g)
( (

X1 0
X3 X2

)
− λTrace X1 − µTrace X2

)
.

Here U ε(g) is the quotient of the tensor algebra of g by the two-sided ideal generated
by elements of the form X ⊗ Y − Y ⊗ X − ε[X,Y ]. Then U0(g) is the symmetric
algebra S(g) of g and U1(g) is the universal enveloping algebra of g. We call a
generalization of Iε

Θ a quantization of I0
Θ and the quantization I1

Θ is nothing but
the annihilator of the generalized Verma module U(g)/J1

Θ.
Since rank(X − λI2n) ≤ n and rank(X − µI2n) ≤ n for X ∈ V̄Θ, the (n + 1)-

minors (∈ S(g)) of ((Eij) − λI2n) and ((Eij) − µI2n) are in IΘ. On the contrary,
they generate IΘ if λ 6= µ. The quantizations of the minors are generalized Capelli
operators studied by [O3].

If λ = µ, the derivatives of (n + 1)-minors of ((Eij) − xI2n) at x = λ are
also in IΘ and in general the generators are described by using the elementary
divisors. In [O4], we define their quantizations, namely, we explicitly construct
the corresponding generators for any generalized Verma module of the scalar type
for gl(n, C) using generalized Capelli operators and quantized elementary divisors.
Moreover in [O4] we determine the condition that the annihilator determines the
gap between the generalized Verma module and the usual Verma module. In the
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example here, the equality

(1.1) Jε
Θ = Iε

Θ +
∑
i>j

U ε(g)Eij +
n∑

i=1

U ε(g)(Eii − λ) +
2n∑

i=n+1

U ε(g)(Eii − µ)

holds if and only if λ − µ /∈ {ε, 2ε, . . . , (n − 1)ε}. When ε = 1, this condition is
satisfied if U(g)/Jε

Θ has a regular infinitesimal character, which is equivalent to the
condition that λ−µ /∈ {1, 2, . . . .2n−1}. If (1.1) holds, the quantized generators are
considered to be the differential equations which characterize the representations of
the group G related to the generalized Verma module. Hence they are important
and the motivation of our study in this note is this fact.

Now since (x− λ)(x− µ) is the minimal polynomial of A, all the components of
((Eij)−λI2n)((Eij)−µI2n) are in J0

Θ. They generate I0
Θ together with

∑2n
i=1 Eii −

nλ − nµ if λ 6= µ. We can quantize this minimal polynomial and the quantized
minimal polynomial in this example equals qε(x) = (x−λ)(x−µ−nε). We can show
that the 4n2 components of the matrix qε((Eij)) ∈ M(2n,U ε(g)) and the element∑2n

i=1 Eii − nλ − nµ generate Iε
Θ if λ − µ /∈ {ε, 2ε, . . . , (n − 1)ε}. When we identify

U(g) with the ring of left invariant holomorphic differential operators on GL(n, C),
we have q1((Eij)) = (tX∂−λ)(tX∂−µ−n) with the matrices X = (xij) ∈ GL(n, C)
and ∂ = ( ∂

∂xij
).

The main topic in this paper is to construct the elements in U(g) which kills the
generalized Verma module of the scalar type for the classical Lie algebra by using
the quantized minimal polynomial.

The author expresses his sincere gratitude to Mittag-Leffler Institute. The result
in this paper for g = gl(n, C) was obtained when the author was invited there from
September until November in 1995 and it is reported in [O2].

2. Minimal Polynomials

For a module A and positive integers N and N ′, we denote by M(N,N ′,A) the
set of matrices of size N ×N ′ with components in A. If N = N ′, we simply denote
it by M(N, A) and then M(N, A) is naturally an associative algebra if so is A.

We use the standard notation gln, on and spn for classical Lie algebras over C.
For a Lie algebra g we denote by U(g) and S(g) the universal enveloping algebra and
the symmetric algebra of g, respectively. For a non-negative integer k let S(g)(k) be
the subspace of S(g) formed by elements of degree at most k. If we fix a Poincare-
Birkhoff-Witt base of U(g), we can identify U(g) and S(g) as vector spaces and we
denote by U(g)(k) the subspace of U(g) corresponding to S(g)(k).

The Lie algebra glN is identified with M(N, C) ' End(CN ) by [X,Y ] = XY −
Y X. Let Eij =

(
δµiδνj

)
1≤µ≤N
1≤ν≤N

∈ M(N, C) be the standard matrix units. Note

that the symmetric bilinear form

(2.1) 〈X,Y 〉 = TraceXY for X,Y ∈ glN

on glN is non-degenerate and satisfies

〈Eij , Eµν〉 = δiνδjµ,

X =
∑
i,j

〈X,Eji〉Eij ,

〈Ad(g)X, Ad(g)Y 〉 = 〈X,Y 〉 for X, Y ∈ glN and g ∈ GL(N, C).

Lemma 2.1. Let g be a Lie algebra over C and let (π, CN ) be a representation of
g. We denote by U(π(g)) the subalgebra of the universal enveloping algebra U(glN )
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of glN generated by π(g). Let p be a linear map of glN to U(π(g)) satisfying

(2.2) p([X,Y ]) = [X, p(Y )] for X ∈ π(g) and Y ∈ glN ,

that is, p ∈ Homπ(g)(glN , U(π(g))).
Fix f(x) ∈ C[x] and put

(2.3)


F =

(
p(Eij)

)
1≤i≤N
1≤j≤N

∈ M
(
N,U(π(g))

)
,(

Qij

)
1≤i≤N
1≤j≤N

= f(F ) ∈ M
(
N,U(π(g))

)
.

Then

(2.4)
(
p
(
Ad(g)Eij

))
1≤i≤N
1≤j≤N

= tg F tg−1 for g ∈ GL(n, C)

and

(2.5) [X,Qij ] =
N∑

ν=1

XνiQνj −
N∑

ν=1

XjνQiν

=
N∑

ν=1

〈X,Qiν〉Qνj −
N∑

ν=1

Qiν〈X,Qνj〉 for X =
(
Xij

)
1≤i≤N
1≤j≤N

∈ π(g)

with Xij ∈ C.

Proof. Put g =
(
gij

)
and g−1 =

(
g′ij

)
. Then(

Ad(g)Eij

)
1≤i≤N
1≤j≤N

=
(∑

µ, ν

gµig
′
jνEµν

)
1≤i≤N
1≤j≤N

= tg F tg−1.

Fix X ∈ π(g). Since

[X,Eij ] = [
∑
µ,ν

XµνEµν , Eij ] =
N∑

µ=1

XµiEµj −
N∑

ν=1

XjνEiν ,

we have (2.5) for f(x) = x by (2.2).

Suppose
(
Q1

ij

)
and

(
Q2

ij

)
∈ M

(
N,U(π(g))

)
satisfy (2.5). Put Q3

ij =
N∑

k=1

Q1
ikQ2

kj

in U(π(g)). Then

[X,Q3
ij ] =

N∑
k=1

[X,Q1
ik]Q2

kj +
N∑

k=1

Q1
ik[X,Q2

kj ]

=
N∑

k=1

(
N∑

µ=1

XµiQ
1
µkQ2

kj −
N∑

ν=1

XkνQ1
iνQ2

kj

)

+
N∑

k=1

(
N∑

µ=1

Q1
ikXµkQ2

µj −
N∑

ν=1

Q1
ikXjνQ2

kν

)

=
N∑

µ=1

XµiQ
3
µj −

N∑
ν=1

XjνQ3
iν

and therefore the elements
(
Qij

)
of M

(
N,U(π(g))

)
satisfying (2.5) form a subal-

gebra of M
(
N,U(π(g))

)
. ¤

Definition 2.2. If the symmetric bilinear form (2.1) is non-degenerate on π(g), the
orthogonal projection of glN onto π(g) satisfies the assumption for p in Lemma 2.1,
which we call the canonical projection of glN to π(g).
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Remark 2.3. Suppose that g is reductive. Let G be a connected and simply con-
nected Lie group with the Lie algebra g and let GU be a maximal compact subgroup
of G. Assume that the finite dimensional representation (π, V ) in Lemma 2.1 can
be lifted to the representation of GU . Let g = n̄ ⊕ a ⊕ n be a triangular decompo-
sition of g such that exp a ∩ GU is a maximal torus of GU . Let Σ(a) and Σ(a)+ be
the sets of the roots for the pair (g, a) and (n, a), respectively, and let Ψ(a) denote
the fundamental system of Σ(a)+. We fix a Hermitian inner product on V so that
π is a unitary representation of GU . Moreover let {v1, . . . , vN} be an orthonormal
basis of V such that vj is a weight vector of a weight $j with respect to the Cartan
subalgebra a. We may assume that $i − $j ∈ Σ(a)+ means i > j. Hence $1 is
the lowest weight and $N is the highest weight of the representation π. Under this
basis we identify π(X) =

(
π(X)ij

)
∈ M(N, C) ' End(CN ) ' glN for X ∈ g by

π(X)vj =
∑N

i=1 π(X)ijvi. Note that π(a) ⊂ aN , π(n) ⊂ nN and π(n̄) ⊂ n̄N by
denoting

(2.6) aN =
N∑

j=1

CEii, nN =
∑

1≤j<i≤N

CEij and n̄N =
∑

1≤i<j≤N

CEij .

Since π(X) is skew Hermitian for the element X in the Lie algebra gU of GU and
Cπ(gU ) = π(g), we have tπ(g) = π(g). Hence the symmetric bilinear form (2.1) is
non-degenerate on π(g) and there exists the canonical projection of glN to π(g).

Definition 2.4 (Characteristic polynomials and minimal polynomials). Given a Lie
algebra g, a faithful finite dimensional representation (π, CN ) and a g-homomorphism
p of End(CN ) ' glN to U(g). Here we identify g as a subalgebra of glN through
π. Let U(g) and Z(g) be the universal enveloping algebra of g and the center of
U(g), respectively. For F =

(
p(Eij)

)
∈ M(N,U(g)). we say qF (x) ∈ U(g)G[x] is

the characteristic polynomial of F if it is a non-zero polynomial of x satisfying

qF (F ) = 0

with the minimal degree.
Suppose moreover a g-module M is given. Then we call qF,M (x) ∈ C[x] is the

minimal polynomial of F with respect to M if it is the monic polynomial with the
minimal degree which satisfies

qF,M (F )M = 0.

If p is the canonical projection in Definition 2.2, we sometimes denote Fπ, qπ

and qπ,M in place of F , qF and qF,M , respectively.

Remark 2.5. i) After the results in this paper was obtained, the author was in-
formed that [Go2] studied the characteristic polynomial of Fπ for the irreducible
representation π of the reductive Lie algebra.

ii) If g is reductive, the characteristic polynomial is uniquely determined by (π, p)
up to a constant multiple of the element of Z(g) since Z(g) is an integral domain.

iii) If g is reductive and M has an infinitesimal character χ, that is, χ is an
algebra homomorphism of Z(g) to C with (D − χ(D))M = 0 for D ∈ Z(g), then
χ(qF (x)) ∈ C[x]qF,M (x).

iv) The characteristic polynomial and minimal polynomial of a matrix in the
linear algebra can be regarded as a classical limit of our definition. See the proof
of Proposition 4.16.

Theorem 2.6. Let g be a reductive Lie algebra and let F be a matrix of U(g)
defined from a representation of π under Definition 2.4.
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i) There exists the characteristic polynomial qF (x) whose degree is not larger
than

∑
$ mπ($)2. Here $ runs through the weights of π and mπ($) denotes the

multiplicity of the generalized weight $ in π.
ii) The minimal polynomial qF,M (x) exists if a g-module M has a finite length

or an infinitesimal character. Its degree is not larger than that of the characteristic
polynomial qF (x) if M has an infinitesimal character.

Proof. Let Ẑ(g) denote the quotient field of Z(g) and put Û(g) = Ẑ(g) ⊗Z(g)

U(g). Owing to [Ko] it is known that U(g) = Λ(H(g)) ⊗ Z(g), where H(g) is the
space of g-harmonic polynomials of S(g) and Λ is the map of the symmetrization
of S(g) onto U(g). It is also known that H(g) '

∑
τ∈ĝf

mτ (0)τ as a representation
space of g by denoting ĝf the equivalence classes of the finite dimensional irreducible
representations of g.

Hence the dimension of the g-homomorphisms of π ⊗ π∗ to Û(g) over the field
Ẑ(g) is not larger than

∑
τ∈ĝf

[π ⊗ π∗, τ ]mτ (0). Here [π ⊗ π∗, τ ] is the multiplicity
of τ appeared in [π ⊗ π∗] in the sense of the Grothendieck group. Moreover it is
clear that

∑
τ∈ĝf

[π ⊗ π∗, τ ]mτ (0) = mπ⊗π∗(0) =
∑

$ mπ($)2. On the other hand
Lemma 2.1 says that the space Vk =

∑
i,j CF k

ij is naturally a subrepresentation of
the representation of g which is realized in M(N, C) and belongs to π⊗π∗ and that
the map Tk : Eij 7→ F k

ij defines a g-homomorphism of M(N, C) to U(g). Hence
T1, . . . , Tm are linearly dependent over Ẑ(g) if m >

∑
$ mπ($)2. Thus we have

proved the existence of the characteristic polynomial with the required degree.
For the existence of the minimal polynomial it is sufficient to prove the existence

of a non-zero polynomial f(x) with f(F )M = 0. Considering the irreducible sub-
quotients of M in Definition 2.4, we may assume M has an infinitesimal character
λ. Let qF (x) be the characteristic polynomial. We can choose µ ∈ a∗ so that
ω̄(qF (x))(λ + µt) ∈ C[x, t] is not zero. We can find a non-negative integer k such
that f(x, t) = t−kω̄(qF (x)) ∈ C[x, t] and f(x, 0) is not zero. Here ω̄ is the Harish-
Chandra homomorphism defined by (4.10). Put Iλ =

∑
Z∈Z(g) U(g)

(
Z− ω̄(Z)(λ)

)
.

We define h(t) ∈ M(N,H(g)⊗C[t]) so that f(F, t)−Λ(h(t)) ∈ M(N, Iλ+µt). Since
dF (F )(λ + µt) ∈ M(N, Iλ+µt), h(t) = 0 for t 6= 0 and hence h = 0 and therefore
f(F, 0)

(
U(g)/Iλ

)
= 0. Hence f(F, 0)M = 0 because Ann(M) ⊃ Iλ. ¤

Hereafter in this note we assume

(2.7)


π is injective,
p(glN ) ⊂ g,

p(X) = CX for X ∈ g

in Lemma 2.1 with a suitable non-zero constant C. Then we have the following.

Remark 2.7. i) Since π is faithful, g is identified with the Lie subalgebra π(g) of
glN and U(π(g)) is identified with the universal enveloping algebra U(g) of g. We
note that the existence of p with (2.7) is equivalent to the existence of a g-invariant
subspace of glN complementary to g.

ii) Fix g ∈ GL(N, C). If we replace (π, CN ) by (πg, CN ) with πg(X) = Ad(g)π(X)
for X ∈ g in Lemma 2.1,

(
Fij

)
∈ M(N, g) naturally changes into tg−1

(
Fij

)
tg

and therefore the corresponding characteristic polynomial and minimal polynomial
does not depend on the realization of the representation π. In fact, the map pg

of U(g) to π(g) is naturally defined by πg(X) = Ad(g)(p(Ad(g)−1X)) and hence
pg(E) = Ad(g)(p(Ad(g−1)E) = Ad(g)

(
p(tg−1E tg)

)
) = πg

(
tg−1

(
Fij

)
tg

)
.

iii) Suppose g is semisimple. Then the existence of p is clear because any finite
dimensional representation of g satisfies the assumption in Remark 2.3.
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iv) Let σ be an involutive automorphism of glN . Put

g = {X ∈ glN ; σ(X) = X}.
Let π be the inclusion map of g ⊂ glN . Since q = {X ∈ glN ; σ(X) = −X} is g-
stable, we may put p(X) = X+σ(X)

2 in Lemma 2.1, which is the canonical projection
with respect to the bilinear form of glN .

v) For a positive integer k and complex numbers λ1, . . . , λk, the vector space
spanned by the N2 components of the matrix (p(E) − λ1IN ) · · · (p(E) − λkIN ) is
ad(g)-invariant. Moreover the trace of the matrix is a central element of U(g),
which is clear from Lemma 2.1 and studied by [Ge] and [Go1] etc.

3. Projection to the Cartan subalgebra

Now we consider the natural realization of classical simple Lie algebras. Denoting

Ĩn =
(
δi,n+1−j

)
1≤i≤n
1≤j≤n

=

 1
. . .

1

 and J̃n =
(

Ĩn

−Ĩn

)
,

we naturally identify

(3.1)
on = {X ∈ gln; σon(X) = X} with σon(X) = −Ĩn

tXĨn,

spn = {X ∈ gl2n; σspn
(X) = X} with σspn

(X) = −J̃n
tXJ̃n.

Definition 3.1. Let g = gln or o2n or o2n+1 or spn and put N = n or 2n or 2n+1
or 2n, respectively, so that g is a subalgebra of glN . Put

(3.2) ī = N + 1 − i

for any integer i and define

(3.3) εi =


0 if g = gln,

1 if g = oN ,

1 if g = spn and i ≤ n,

−1 if g = spn and i > n.

Then the involutions σg of glN defining g with g = oN and spn satisfy

σg(Eij) = −εiεjEj̄ī.

We moreover define

(3.4) F =
(
Fij

)
1≤i≤N
1≤j≤N

=
(
Eij − εiεjEj̄ī

)
1≤i≤N
1≤j≤N

.

This definition of F means C = 2 in (2.7) if g = oN or spn. We will denote Fi

in place of Fii for simplicity. Then g =
∑

i,j CFij and

(3.5) [X,Fij ] =
N∑

ν=1

(
XνiFνj − XjνFiν

)
for X =

(
Xij

)
∈ g ⊂ M(N, C)

by Lemma 2.1.
Use the notation (2.6) and define a = g ∩ aN , n = g ∩ nN and n̄ = g ∩ n̄N . Then

(3.6) g = n̄ ⊕ a ⊕ n

is a triangular decomposition of g.

Definition 3.2. For a positive integer k and complex numbers λ1, . . . , λk put

F k(λ1, . . . , λk) = (F − λ1IN ) · · · (F − λkIN )

and define an element F̄ k(λ1, . . . , λk) in M(N,U(a)) by

(3.7) F k(λ1, . . . , λk) ≡ F̄ k(λ1, . . . , λk) mod M(N, n̄U(g) + U(g)n)
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In this section we will study the image F̄ k(λ1, . . . , λk) of F k(λ1, . . . , λk) under
the Harish-Chandra homomorphism with respect to (3.6). First we note that if

(3.8) Fij ∈


n̄ if i < j,

a if i = j,

n if i > j,

we have
(3.9)

F k
ij(λ1, . . . , λk) ≡

j∑
µ=1

F k−1
iµ (λ1, . . . , λk−1)(Fµj − λkδµj) mod U(g)n

= F k−1
ij (λ1, . . . , λk−1)(Fj − λk)

+
j−1∑
µ=1

(
FµjF

k−1
iµ (λ1, . . . , λk−1) − [Fµj , F

k−1
iµ (λ1, . . . , λk−1)]

)

= F k−1
ij (λ1, . . . , λk−1)(Fj − λk) +

j−1∑
µ=1

(
FµjF

k−1
iµ (λ1, . . . , λk−1)

−
i−1∑
ν=1

〈Fµj , Eiν〉F k−1
νµ (λ1, . . . , λk−1) +

N∑
ν=µ+1

〈Fµj , Eνµ〉F k−1
iν (λ1, . . . , λk−1)

)
by Lemma 2.1.

The following is clear by the induction on k.

Remark 3.3. i) The highest homogeneous part of F̄ k(λ1, . . . , λk) with the degree k
is given by

F̄ k(λ1, . . . , λk) ≡
(
δijF

k
ii

)
1≤i≤N
1≤j≤N

mod M(N,U(a)(k−1)).

ii) If g = gln or o2n+1 or spn and π is the natural representation of g, it is clear
that Trace F k

π for k = 1, 2, . . . , n or k = 2, 4, . . . , 2n or 2, 4, . . . , 2n, respectively,
generate Z(g) as an algebra. In particular for any D ∈ Z(g) there uniquely exists a
polynomial f(x) with Trace f(F ) = D. In the case when g = o2n we use both the
natural representation π and the half-spin representation π′ of g and then TraceF k

π

for k = 2, 4, . . . , 2(n − 1) and Trace Fn
π′ generate Z(g).

iii) The Killing form of g is a positive constant multiple of the restriction of the
bilinear form (2.1) to g if g is simple.

Hereafter suppose that g = gln or o2n or o2n+1 or spn and that F is given by
(3.4). Then (3.4) means

〈Fµj , Eiν〉 = δijδµν − εµεjδµ̄iδj̄ν and 〈Fµj , Eµν〉 = δjν − εµεjδµ̄νδj̄µ

and therefore it follows from (3.9) that

(3.10)

F k
ij(λ1, . . . , λk) ≡ F k−1

ij (λ1, . . . , λk−1)(Fj − λk + j − 1)

+
j−1∑
µ=1

(
FµjF

k−1
iµ (λ1, . . . , λk−1)

− δijF
k−1
µµ (λ1, . . . , λk−1) + εµεjδµīF

k−1
j̄ī

(λ1, . . . , λk−1)

− εµεjδµj̄F
k−1
ij (λ1, . . . , λk−1)

)
mod U(g)n.
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Since [U(g)n, U(a)] ⊂ U(g)n and since Fij ∈ n and Fj̄ī ∈ n for i > j, the equation
(3.10) shows F k

ij(λ1, . . . , λk) ≡ 0 mod U(g)n for i > j by the induction on k.
Similarly we have F k

µν(λ1, . . . , λk) ∈ n̄U(g) if i < j. Hence by denoting

(3.11)

ωi =

{
0 if i ≤ n,

εi if i > n,

ω′
j =

{
0 if j ≤ n or j̄ ≥ j,

εj if j > n and j̄ < j,

we have

F k
ii(λ1, . . . , λk)(3.12)

≡ F k−1
ii (λ1, . . . , λk−1)(Fi − λk + i − 1 − ωi) + ωiF

k−1
ī̄i

(λ1, . . . , λk−1)

−
i−1∑
µ=1

F k−1
µµ (λ1, . . . , λk−1) mod U(g)n,

F k
ii+1(λ1, . . . , λk)(3.13)

≡ F k−1
ii+1(λ1, . . . , λk−1)(Fi+1 − λk + i − ω′

i+1) + ωiF
k−1
ī−1ī

(λ1, . . . , λk−1)

+ Fii+1F
k−1
ii (λ1, . . . , λk−1) mod U(g)n.

Now we give the main result in this section:

Proposition 3.4. Suppose that g = gln or o2n or o2n+1 or spn and that F is given
by (3.4). Let Θ = {n1 < n2 < · · · < nL = n} be a sequence of positive integers.
Put n′

ν = nν − nν−1 for ν = 1, . . . , L with n0 = 0 and fix a positive number k. Let
µ1, . . . , µk be complex numbers. Put n0 = 0 and nν = n for ν > L and define

ιΘ(ν) = p if np−1 < ν ≤ np,

J̃(µ)i = U(g)n +
i∑

ν=1

U(g)(Fν − µιΘ(ν) + nιΘ(ν)−1).

If g = gln, we put H(Θ, µ1, . . . , µL) = FL(µ1, . . . , µL).
If g = spn or o2n, we put

H(Θ, µ1, . . . , µL) = F 2L(µ1, . . . , µL,

− µ1 − n′
1 + 2n + δ, . . . ,−µL − n′

L + 2n + δ).

If g = o2n+1, we put

H(Θ, µ1, . . . , µL) = F 2L+1(µ1, . . . , µL, n,

− µ1 − n′
1 + 2n, . . . ,−µL − n′

L−1 + 2n).

Moreover we define

H̃(Θ, µ1, . . . , µL−1) = F 2L−1(µ1, . . . , µL−1, nL−1,

− µ1 − n′
1 + 2n + δ, . . . ,−µL−1 − n′

L−1 + 2n + δ).

Here

(3.14) δ =


1 if g = spn,

0 if g = o2n+1 or gln,

−1 if g = o2n.

i) The off-diagonal elements of F k(µ1, . . . , µk) satisfy

F k
ij(µ1, . . . , µk) ≡ 0 mod U(g)n if i > j,
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F k
ij(µ1, . . . , µk) ≡ 0 mod n̄U(g) if i < j.

ii) If i ≤ n, then

F k
ii(µ1, . . . , µk)

≡

{
0 mod J̃(µ)i if i ≤ nk,∏k
ν=1(µk+1 − µν − n′

ν) mod J̃(µ)i if nk < i ≤ nk+1.

iii) If i < n, then

F k
ii+1(µ1, . . . , µk)

≡
(`−1∏

ν=1

(µ` − µν − n′
ν − n`−1 + i)

k∏
ν=`+1

(µ` − µν − n`−1 + i)
)
Fii+1

mod J̃(µ)i if n`−1 < i < n` and k ≥ `.

iv) Suppose g = o2n or o2n+1 or spn. Then

Hii(Θ, µ1, . . . , µL) ≡ 0 mod J̃(µ)n for i = 1, . . . , N.

In particular, if µL = nL−1, then

H̃ii(Θ, µ1, . . . , µL−1) ≡ 0 mod J̃(µ)n for i = 1, . . . , N

and

H̃nn+1(Θ, µ1, . . . , µL−1)

≡ (−1)L−1
(L−1∏

ν=1

(µν + n′
ν − n)(µν + n′

ν − n − δ)
)
Fnn+1

mod U(g)J̃(µ)n.

Proof. Put F k
ij(µ) = F k

ij(µ1, . . . , µk) for simplicity. If i < n, it follows from
(3.12) that

F k
i+1i+1(µ)−F k

ii(µ) ≡ F k−1
i+1i+1(µ)(Fi+1−µk +i)−F k−1

ii (µ)(Fi−µk +i) mod U(g)n

and therefore by the induction on k we have

(3.15) F k
ii(µ) ≡ F k

i+1i+1(µ) mod U(g)n + U(g)(Fi+1 − Fi).

Here we note that Fν+1 − Fν ∈ J̃(µ)n`
if n`−1 < ν < n`. Hence we have

F k
ii(µ) + J̃(µ)n`

= F k
n`n`

(µ) + J̃(µ)n`
for n`−1 < i ≤ n` and 1 ≤ ` ≤ L.

Put sν = nν −nν−1 and introduce polynomials f(k, `) of (µ1, . . . , µL, s1, . . . , sL)
with ` ≤ L so that

(3.16) F k
n`n`

(µ1, . . . , µk) ≡ f(k, `) mod J̃(µ)n`
.

Similarly for i with n`−1 < i < n`, we put t = µ` −n`−1 + i and define polynomials
g(k, `) of (t, µ1, . . . , µL, s1, . . . , sL) so that

(3.17) F k
ii+1(µ1, . . . , µk) ≡ g(k, `)Eii+1 mod J̃(µ)i.

Then we have

(3.18)

f(k, `) =

1 if k = 0,

f(k − 1, `)(µ` − µk) −
`−1∑
ν=1

sνf(k − 1, ν) if k ≥ 1,

g(k, `) =

{
1 if k = 1,

g(k − 1, `)(t − µk) + f(k − 1, `) if k > 1.
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We will first prove f(k, `) = 0 if k ≥ ` by the induction on `. Putting ` = 1
in (3.18), we have f(k, 1) = f(k − 1, 1)(µ1 − µk) and f(1, 1) = 0 and therefore
f(k, 1) = 0 for k ≥ 1. Then if k ≥ `+1, we have f(k, `+1) = f(k−1, `+1)(µ`+1−
µk) −

∑`
ν=1 sνf(k − 1, ν) = f(k − 1, ` + 1)(µ`+1 − µk) by the hypothesis of the

induction. Hence we have f(k, ` + 1) = 0 for k ≥ ` + 1 by the induction on k.
Putting µ` = µ`−1 + s`−1 in (3.18), we have f(k, `) − f(k, ` − 1) = f(k − 1, `) −

f(k − 1, `) = · · · = 0 and therefore f(` − 1, `)|µ`=µ`−1+s`−1 = 0. Hence there exist
polynomials h(`) with f(` − 1, `) = h(`)(µ` − µ`−1 − s`−1). Then (3.18) shows

h(`)(µ` − µ`−1 − s`−1) = f(` − 2, `)(µ` − µ`−1) − s`−1f(` − 2, ` − 1).

It follows from (3.18) that f(k, `) is a polynomial of degree at most 1 with respect to
s`−1 because f(k, ν) does not contain s`−1 for ν < `. Hence h(`) = f(`−2, `)|s`−1=0.
Moreover by putting s`−1 = 0 in (3.18), it is clear that f(` − 2, `)|s`−1=0 does not
contain µ`−1. Hence h(`) = f(` − 2, ` − 1)|µ`−1 7→µ`

and we get

(3.19) f(` − 1, `) =
`−1∏
ν=1

(µ` − µν − sν)

by the induction on `. Thus we have ii).
Now we put

(3.20) f(` − 1, `) =
`−1∑
ν=0

c(ν, `)(µ` − µν+1)(µ` − µν+2) · · · (µ` − µ`−1)

with homogeneous polynomials c(ν, `) of (µ1, . . . , µ`−1, s1, . . . , s`−1) with degree ν.
Here c(ν, `) does not contain µ`. Then by the induction on k = ` − 1, ` − 2, . . . , 0,
(3.18) shows

(3.21)

f(k, `) =
k∑

ν=0

c(ν, `)(µ` − µν+1)(µ` − µν+2) · · · (µ` − µk),

−
`−1∑
ν=1

sνf(k − 1, ν) = c(k, `)

because
∑`−1

ν=1 sνf(k − 1, ν) does not contain µ`. We will show

g(`, `) =
`−1∑
k=0

(t − µ`)(t − µ`−1) · · · (t − µk+2)f(k, `)(3.22)

=
`−1∏
ν=1

(t − µν − sν).(3.23)

Note that (3.22) is a direct consequence of (3.18). Denoting

gk(`) =
`−1∑
ν=0

c(ν, `)(µ` − µν+1) · · · (µ` − µk−1)(µ` − µk)(t − µk+1) · · · (t − µ`−1)

for k = 0, . . . , ` − 1, we have

gk−1(`) − gk(`)

=
k−1∑
ν=0

c(ν, `)(µ` − µν+1) · · · (µ` − µk−1)(t − µ`)(t − µk+1) · · · (t − µ`−1)

= (t − µ`)(t − µ`−1) · · · (t − µk+1)f(k − 1, `)
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from (3.21) and therefore (3.22) shows

g(`, `) = g`−1(`) +
`−1∑
k=1

(gk−1(`) − gk(`)) = g0(`) = f(` − 1, `)|µ` 7→t,

which implies (3.23). Since f(k, `) = 0 for k ≥ `, (3.18) shows

(3.24) g(k, `) =
`−1∏
ν=1

(t − µν − sν)
k∏

ν=`+1

(t − µν) if k ≥ `,

from which iii) follows.
In general we have proved the following lemma.

Lemma 3.5. The functions f(k, `) and g(k, `) of µ1, µ2, . . . , s1, s2, . . . and t which
are recursively defined by (3.18) satisfy (3.19), (3.24) and f(k, `) = 0 for k ≥ ` ≥ 1.

Now suppose g = spn or o2n. Then

(3.25) F k
n+1n+1(µ) ≡ F k−1

n+1n+1(µ)(Fn+1 − µk) +
n∑

ν=1

(F k−1
n+1n+1(µ) − Fn−1

νν (µ))

+ δ(F k−1
n+1n+1(µ) − F k−1

nn (µ)) ≡ 0 mod U(g)n.

Hence

(3.26)

F k
n+1n+1(µ) − F k

nn(µ)

≡ F k−1
n+1n+1(µ)(Fn+1 − µk + n + δ) − F k−1

nn (µ)(Fn − µk + n + δ)

≡ 0 mod U(g)n + U(g)(Fn+1 − Fn)

by the induction on k and
(3.27)

F k
n+1n+1(µ) ≡ 0 mod

n∑
ν=1

U(g)F k−1
νν (µ) + U(g)n + U(g)(Fn+1 − µk + n + δ).

Since Fn+1 = −Fn, we have from (3.25)

FL
n+1n+1(µ1, . . . , µL−1, nL−1) ≡ 0 mod J̃(µ)nL−1 +

n∑
ν=nL−1+1

U(g)Fν

in the case µL = nL−1 and from (3.27) with −(µL − nL−1) − µL+1 + n + δ = 0

FL+1
n+1n+1(µ1, . . . , µL,−µL + nL−1 + n + δ) ≡ 0 mod J̃(µ)n.

Suppose i < n. Then

F k
ī̄i(µ) ≡ F k−1

ī̄i
(µ)(Fī − µk) +

ī−1∑
ν=1

(
F k−1

ī̄i
(µ) − F k−1

νν (µ)
)

+ δ(F k−1
ī̄i

(µ) − F k−1
ii (µ))

mod U(g)n

and therefore
(3.28)

F k
ī+1ī+1(µ) − F k

ī̄i(µ) ≡ F k−1
ī+1ī+1

(µ)(Fī+1 − µk + ī + δ) − F k−1
ī̄i

(µ)(Fī − µk + ī + δ)

+ δ(F k−1
i−1i−1(µ) − F k−1

ii (µ)) mod U(g)

≡ 0 mod U(g)n + U(g)(Fi − Fi−1) + U(g)(F i−1 − Fī),

F k
n̄pn̄p

(µ) ≡ 0 mod
n̄p−1∑
ν=1

U(g)F k−1
νν (µ) + U(g)n + U(g)(Fn̄p − µk + n̄p − 1 + δ).
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Note that Fn̄p −µk + n̄p −1+ δ = (Fn̄p +µp −np−1)−µk −µp +np−1−np +2n+ δ.
Since Fν̄ = −Fν , we have

(3.29) F k
ī+1ī+1(µ) ≡ F k

ī̄i(µ) mod J̃(µ)n for n̄p ≤ ī < n̄p−1

and hence by the induction on p = L,L − 1, . . . , 1, we have

(3.30) F 2L+1−p
n̄pn̄p

(µ1, . . . , µL,−µL + nL−1 − nL + 2n + δ,

. . . ,−µp + np−1 − np + 2n + δ) ≡ 0 mod J̃(µ)n

and if µL = nL−1, then

(3.31) F 2L−p
n̄pn̄p

(µ1, . . . , µL−1, nL−1, µL−1 + nL−2 − nL−1 + 2n + δ,

. . . ,−µp + np−1 − np + 2n + δ) ≡ 0 mod J̃(µ)n.

Suppose µL = nL−1 and g = spn. Then from (3.13) we have
(3.32)

F k
nn+1(µ) ≡ F k−1

nn+1(µ)(Fn+1n+1 − µk + n + δ) + Fnn+1F
k−1
nn (µ) mod U(g)n

≡ FL
nn+1(µ)

k∏
ν=L+1

(−µν + n + δ) mod J̃(µ)n if k ≥ L.

It follows from Lemma 3.5 with t = n + 1 that

H̄nn+1(Θ, µ) ≡ Fnn+1

L−1∏
ν=1

(−µν + nν−1 − nν + n + δ)
L−1∏
ν=1

(µν − nν−1 + nν − n)

mod J̃(µ)n.

Thus we have proved iv).
Lastly suppose g = o2n+1. Note that Fn+1 = 0 and Fn+2 = −Fn. Then

F k
n+1n+1(µ) ≡ F k−1

n+1n+1(Fn+1 − µk) +
n∑

ν=1

(
F k−1

n+1n+1(µ) − F k−1
νν (µ)

)
mod U(g)n

≡ 0 mod
n∑

ν=1

U(g)F k−1
νν (µ) + U(g)(−µk + n),

F k
n+2n+2(µ) ≡ F k−1

n+2n+2(Fn+2 − µk) +
n+1∑
ν=1

(
F k−1

n+2n+2(µ) − F k−1
νν (µ)

)
−

(
F k−1

n+2n+2(µ) − F k−1
nn (µ)

)
mod U(g)n

≡ 0 mod
n+1∑
ν=1

U(g)F k−1
νν (µ) + U(g)(−Fn − µk + n)

and

FL+1
n+1n+1(µ1, . . . , µL, n) ≡ 0 mod J̃(µ)n,

FL+2
n+2n+2(µ1, . . . , µL, n,−µL + nL−1 + n) ≡ 0 mod J̃(µ)n,

Since

F k
n+1n+1(µ) − F k

nn(µ) ≡ F k−1
n+1n+1(Fn+1 − µk + n) − F k−1

nn (Fn − µk + n)

mod U(g)n

F k
n+2n+2(µ) − F k

n+1n+1(µ) ≡ F k−1
n+2n+2(Fn+2 − µk + n) − F k−1

n+1n+1(Fn+1 − µk + n)

− (F k−1
n+1n+1(µ) − F k−1

nn (µ)) mod U(g)n,
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we have

F k
n+2n+2(µ) ≡ F k

n+1n+1(µ) ≡ F k
nn(µ) mod U(g)n + U(g)Fn

and

FL
n+1n+1(µ) ≡ FL

n+2n+2(µ) ≡ 0 mod J̃(µ)n if µL = nL−1.

Note that (3.28) is valid if ī < n. But since Fn̄p − µk + n̄p − 1 + δ = −µk − (Fnp −
µp + np−1) − µp + np−1 − np + 2n, we have

F 2L+2−p
n̄pn̄p

(µ1, . . . , µL, n,−µL + nL−1 − nL + 2n, . . . ,−µp + np−1 − np + 2n) ≡ 0

mod J̃(µ)n

for p = L,L−1, . . . , 1. Similarly we have (3.31) with δ = 0 if µL = nL−1. Moreover
(3.32) is valid with δ = 0 and we have iv) as in the case of g = spn. ¤

4. Generalized Verma modules

In this section we define by (4.14) a two-sided ideal of U ε(g) associated to every
generalized Verma module of the scalar type for the classical Lie algebra g. We have
Theorem 4.4 which shows that the ideal describes the gap between the generalized
Verma module and the usual Verma module and then Corollary 4.6 says that the
ideal equals the annihilator of the generalized Verma module. In the classical limit,
an explicit generator system of every semisimple co-adjoint orbit of g is given in
Theorem 4.11.

The ideal is constructed from a polynomial of a matrix with elements in g and
the polynomial is proved to be a minimal polynomial in a certain sense (cf. Propo-
sition 4.16 and 4.18). Lastly in this section Theorem 4.19 gives a description of
the image of the Harish-Chandra homomorphism of any polynomial function of the
matrix (Eij) ∈ M(n, g).

Retain the notation in the previous section. Let Θ = {(0 <)n1 < n2 < · · · <
nL(= n)} be the sequence of strictly increasing positive integers ending at n. Put

HΘ =
L∑

k=1

nk∑
i=1

Fi and HΘ̄ =
L−1∑
k=1

nk∑
i=1

Fi.

Recall that Fi = Fii, F =
(
Fij

)
∈ M(N, g), n =

∑
i>j CFij , a =

∑
i CFi, n̄ =∑

i<j CFij and g = n ⊕ a ⊕ n̄. Note that Fij = Eij in the case g = gln and
Fij = Eij + σg(Eij) in the case g = o2n+1, spn or o2n. Here σg is the involution of
glN to define g in (3.1) so that g is the subalgebra of glN fixed by σg. Let G be
the analytic subgroup of GL(N, C) with the Lie algebra g. Namely G = GL(n, C),
O(2n + 1, C), Sp(n, C) or O(2n, C).

Define

(4.1)


mΘ = {X ∈ g; ad(HΘ)X = 0},
nΘ = {X ∈ n; 〈X, mΘ〉 = 0}, n̄Θ = {X ∈ n̄; 〈X, mΘ〉 = 0},
pΘ = mΘ + nΘ.

We similarly define mΘ̄, nΘ̄, n̄Θ̄ and pΘ̄ replacing Θ by Θ̄ in the above definition.
Then n = n{1,2,...,n}, n̄ = n̄{1,2,...,n}, a = a{1,2,...,n} and pΘ and pΘ̄ are parabolic
subalgebras of g containing the Borel subalgebra b = n + a.
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Let {e1, . . . , en} be the dual bases of {F1, . . . , Fn}. Then the fundamental system
Ψ(a) for the pair (n, a) is

(4.2) Ψ(a) =


{e2 − e1, e3 − e2, . . . , en − en−1} if g = gln,

{e2 − e1, e3 − e2, . . . , en − en−1,−en} if g = o2n+1,

{e2 − e1, e3 − e2, . . . , en − en−1,−2en} if g = spn,

{e2 − e1, e3 − e2, . . . , en − en−1,−en − en−1} if g = o2n.

We put αj = ej+1 − ej for j = 1, . . . , n− 1 and αn = −en or −2en or −en − en−1 if
g = o2n+1 or spn or o2n, respectively. Then the fundamental system for (mΘ ∩ n, a)
is Ψ(a) \ {αn1 , . . . , αnL−1} and that for (mΘ̄ ∩ n, a) is

Ψ(a) \ {αn1 , . . . , αnL−1 , αn} if g = o2n+1 or spn,

Ψ(a) \ {αn1 , . . . , αnL−1} if g = o2n and nL−1 6= n − 1,

Ψ(a) \ {αn1 , . . . , αnL−1 , αn} if g = o2n and nL−1 = n − 1.

Then the Dynkin diagram of g is as follows:

(4.3)

gln

α1 α2 αn−2 αn−1

◦——◦— · · ·—◦——◦ o2n+1

α1 α2 αn−1 αn

◦——◦— · · ·—◦=⇒◦

spn

α1 α2 αn−1 αn

◦——◦— · · ·—◦⇐=◦
o2n

α1 α2 αn−2 αn−1

◦——◦— · · ·—◦——◦

◦
αn

Fix λ = (λ1, . . . , λL) ∈ CL and define a character λΘ of pΘ

(4.4) λΘ(X +
n∑

i=1

CiFi) =
n∑

i=1

CiλιΘ(i) for X ∈ nΘ + [mΘ,mΘ].

We similarly define a character λΘ̄ of pΘ̄ if λL = 0.
We introduce the homogenized universal enveloping algebra

(4.5) U ε(g) =

( ∞∑
k=0

⊗kg

)
/〈X ⊗ Y − Y ⊗ X − ε[X,Y ]; X, Y ∈ g〉.

of g as in [O4]. Here ε is a central element of U ε(g). Let U ε(g)(m) be the image of∑m
k=0 ⊗kg in U ε(g) and let Zε(g) be the subalgebra of G-invariants of U ε(g). Fix

generators ∆1, . . . ,∆n of Zε(g) so that

(4.6)


∆j ∈ U ε(g)(j) (1 ≤ j ≤ n) if g = gln,

∆j ∈ U ε(g)(2j) (1 ≤ j ≤ n) if g = o2n+1 or spn,

∆j ∈ U ε(g)(2j) (1 ≤ j < n), ∆n ∈ U ε(g)(n) if g = o2n.

If g = o2n, we assume that ∆n changes into −∆n by the outer automorphism of
o2n which maps (F1, . . . , Fn−1, Fn) to (F1, . . . , Fn−1,−Fn). Moreover put

(4.7)


Jε

Θ(λ) =
∑

X∈pΘ

U ε(g)(X − λΘ(X)), M ε
Θ(λ) = U ε(g)/Jε

Θ(λ),

Jε
Θ̄
(λ) =

∑
X∈pΘ̄

U ε(g)(X − λΘ̄(X)), M ε
Θ̄
(λ) = U ε(g)/Jε

Θ̄
(λ),

Jε(λΘ) =
∑

X∈b

U ε(g)(X − λΘ(X)), M ε(λΘ) = U ε(g)/Jε(λΘ).

For a U ε(g)-module M the annihilator of M is denoted by Ann(M) and put
AnnG(M) =

∩
g∈G Ad(g)Ann(M). Note that AnnG(M) = Ann(M) if ε 6= 0.
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When ε = 1, U ε(g) is the universal enveloping algebra U(g) of g and we will some-
times omit the superfix ε for Jε

Θ(λ) and M ε
Θ(λ) etc. Then MΘ(λ) and MΘ̄(λ) are

generalized Verma modules which are quotients of the Verma module M(λΘ).

Remark 4.1. i) Suppose g = o2n. Then we have not considered the parabolic
subalgebra p such that the fundamental system for (mp, a) contains αn−1 and does
not contains αn. But this is reduced to the case when it contains αn and does not
contains αn−1 by the outer automorphism of o2n.

ii) Considering the above remark, the parabolic subalgebra p containing the
Borel subalgebra b corresponds to pΘ or pΘ̄ and therefore we will sometimes use
the notation mp, np, n̄p, λp, Jε

p(λ), M ε
p(λ) and M ε(λp) for mΘ′ , nΘ′ , n̄Θ′ , λΘ, Lε

Θ′(λ),
M ε

Θ′(λ) and M ε(λΘ), respectively, by this correspondence. Note that Θ′ = Θ̄ means
λn = 0.

Let ρ ∈ a∗ with ρ(H) = 1
2 Trace(ad(H))|n for H ∈ a. Then with δ in (3.14)

ρ =



n∑
ν=1

(
ν − n+1

2

)
eν if g = gln,

n∑
ν=1

(
ν − n − 1

2

)
eν =

n∑
ν=1

(
ν − n − δ+1

2

)
eν if g = o2n+1,

n∑
ν=1

(
ν − n − 1)eν =

n∑
ν=1

(
ν − n − δ+1

2

)
eν if g = spn,

n∑
ν=1

(
ν − n

)
eν =

n∑
ν=1

(
ν − n − δ+1

2

)
eν if g = o2n.

(4.8)

We define λ̄ = (λ̄1, . . . , λ̄n) ∈ Cn by

(4.9) λΘ|a + ερ = λ̄1e1 + λ̄2e2 + · · · + λ̄nen.

For P ∈ U ε(g) let ω(P ) and ω̄(P ) denotes the elements of S(a) ' U ε(a) with

(4.10)
P − ω(P ) ∈ n̄U ε(g) + U ε(g)n,

ω̄(P )(µ + ερ) = ω(P )(µ) for ∀µ ∈ a∗.

Then ω̄ induces the Harish-Chandra isomorphism

(4.11) ω̄ : Zε(g) →̃ S(a)W .

Here W is the Weyl group for the pair (g, a) and S(a)W denotes the totality of
W -invariants in S(a).

Definition 4.2. Retain the above notation and define polynomials

(4.12)



qε
Θ(gln;x, λ) =

L∏
j=1

(x − λj − nj−1ε),

qε
Θ(o2n+1;x, λ) = (x − nε)

L∏
j=1

(x − λj − nj−1ε)(x + λj + (nj − 2n)ε),

qε
Θ(spn;x, λ) =

L∏
j=1

(x − λj − nj−1ε)(x + λj + (nj − 2n − 1)ε),

qε
Θ(o2n;x, λ) =

L∏
j=1

(x − λj − nj−1ε)(x + λj + (nj − 2n + 1)ε)

and if g = spn or o2n+1 or o2n,

(4.13) qε
Θ̄(g;x, λ) = (x − nL−1ε)

L−1∏
j=1

(x − λj − nj−1ε)(x + λj + (nj − 2n − δ)ε)
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with the δ given by (3.3). Furthermore define two-sided ideals of U ε(g)

(4.14)


Iε
Θ(λ) =

N∑
i=1

N∑
j=1

U ε(g)qε
Θ(g;F, λ)ij +

∑
j∈J

U ε(g)
(
∆j − ω(∆j)(λΘ)

)
,

Iε
Θ̄
(λ) =

N∑
i=1

N∑
j=1

U ε(g)qε
Θ̄
(g;F, λ)ij +

∑
j∈J̄

U ε(g)
(
∆j − ω(∆j)(λΘ)

)
with

(4.15)


J = {1, 2, . . . , L − 1} if g = gln,

J = {1, 2, . . . , L}, J̄ = {1, 2, . . . , L − 1} if g = o2n+1,

J = J̄ = {1, 2, . . . , L − 1} if g = spn,

J = J̄ = {1, 2, . . . , L − 1} ∪ {n} if g = o2n.

Remark 4.3. i) Let p(x) and q(x) be monic polynomials with q(x) ∈ C[x]p(x). Then

N∑
i=1

p(F )ii ∈ Zε(g),

N∑
i=1

p(F )ii −
N∑

i=1

F deg p
i ∈ n̄U ε(g) + U ε(g)n + U ε(g)(deg p−1),

q(F )ij ∈
∑

1≤µ≤N
1≤ν≤N

U ε(g)p(F )µν .

Hence it is clear

(4.16) Iε
Θ′(λ) ⊃

∑
D∈Zε(g)

U ε(g)(D − ω(D)(λΘ)) for Θ′ = Θ and Θ̄.

Note that it is known that the right hand side of the above equals AnnG(M ε(λΘ)).
ii) Iε

Θ(λ) and Iε
Θ̄
(λ) are homogeneous ideals with respect to (g, λ, ε).

Now we give the main theorem in this paper:

Theorem 4.4. i) Let g = gln, o2n+1, spn or o2n. Then

(4.17)


Iε
Θ(λ) ⊂ Ann

(
M ε

Θ(λ)
)
,

qε
Θ(g;F, λ)ii+1 ≡ rε

i (g; Θ, λ)Fii+1 mod Jε(λΘ) if nk−1 < i < nk,

Jε
Θ(λ) = Iε

Θ(λ) + Jε(λΘ) if rε(g; Θ, λ) 6= 0.

Here

rε
i (gln; Θ, λ) =

k−1∏
ν=1

(
λk − λν − (nν − i)ε

) L∏
ν=k+1

(
λk − λν − (nν−1 − i)ε

)
=

k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1),

rε
i (spn; Θ, λ) = rε

i (o2n; Θ, λ)

= rε
i (gln; Θ, λ)

L∏
ν=1

(
λk + λν + (nν − 2n − δ + i)ε

)
=

k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1)
L∏

ν=1

(λ̄i+1 + λ̄nν ),

rε
i (o2n+1; Θ, λ) = rε

i (gln; Θ, λ)
(
λk − (n − i)ε

) L∏
ν=1

(
λk + λν + (nν − 2n + i)ε

)
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=
1
2
(λ̄i + λ̄i+1)

k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1)
L∏

ν=1

(λ̄i+1 + λ̄nν )

if nk−1 < i < nk and then

(4.18) rε(g; Θ, λ) =
L∏

k=1

∏
nk−1<i<nk

rε
i (g; Θ, λ).

ii) Suppose λL = 0. If g = spn or o2n+1 or o2n, then
(4.19)

Iε
Θ̄
(λ) ⊂ Ann

(
M ε

Θ̄
(λ)

)
,

qε
Θ̄
(g;F, λ)ii+1 ≡ rε

i (g; Θ̄, λ)Fii+1 mod Jε(λΘ) if ιΘ(i) = ιΘ(i + 1),
qε
Θ̄
(g;F, λ)nn+1 ≡ r̄ε(g; Θ̄, λ)Fnn+1 mod Jε(λΘ) if g 6= o2n,

Jε
Θ̄
(λ) = Iε

Θ̄
(λ) + Jε(λΘ) if rε(g; Θ̄, λ) 6= 0

with denoting

rε
i (g; Θ̄, λ) =

k−1∏
ν=1

(
λk − λν − (nν − i)ε

) L∏
ν=k+1

(
λk − λν − (nν−1 − i)ε

)
·

L−1∏
ν=1

(λk + λν + (nν − 2n − δ + i)ε)

=
k−1∏
ν=1

(λ̄i − λ̄nν )
L∏

ν=k+1

(λ̄i+1 − λ̄nν−1+1)
L−1∏
ν=1

(λ̄i+1 + λ̄nν )

if nk−1 < i < nk,

r̄ε
o(g; Θ̄, λ) = (−1)L−1

L−1∏
ν=1

(
λν + (nν − n)ε

)(
λν + (nν − n − δ)ε

)

=


(−1)L−1

L−1∏
ν=1

λ̄nν (λ̄nν − λ̄n) if g = spn,

(−1)L−1
L−1∏
ν=1

(λ̄nν
− λ̄n)2 if g = o2n+1,

and

(4.20)

rε(o2n; Θ̄, λ) =
L∏

k=1

∏
nk−1<i<nk

rε
i (g; Θ̄, λ),

rε(g; Θ̄, λ) = rε(o2n; Θ̄, λ)r̄ε
o(g; Θ̄, λ) if g = spn or o2n+1.

Proof. Define the parameters µν in Proposition 3.4 by

µν = λν + nν−1 for 1 ≤ ν ≤ L,

µν+L = −λν − nν + 2n + δ = −µν − n′
ν + 2n + δ for 1 ≤ ν ≤ L,

µ2L+1 = −n.

Then in the proposition H(Θ, µ1, . . . , µL) =
∏L′

ν=1(F − µν) with L′ = L, 2L, 2L or
2L + 1 if g = gln, spn, o2n or o2n+1, respectively. Moreover H̃(Θ, µ1, . . . , µL−1) =∏2L−1

ν=1 (F − µν) with λL = 0. Note that if ` ≤ L,

µ` − µν − n′
ν − n`−1 + i = λ` + i − λν − nν ,

µ` − µν − n`−1 + i = λ` + i − λν − nν−1,

µ` − µν+L − n`−1 + i = λ` + i + λν + n′
ν − 2n − δ,

µ` − µ2L+1 − n`−1 + i = λ` + i + n.
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For Θ′ = Θ or Θ̄ Proposition 3.4 and the isomorphism U(g) ' U ε(g) show that

qε
Θ′(g;F, λ)ij ≡ 0 mod n̄U ε(g) + Jε(λΘ′),

which assures Iε
Θ′(λ) ⊂ Ann

(
M ε

Θ′(λ)
)

(cf. [O4, Lemma 2.11 and Remark 2.12])
because M ε

Θ′(λ) is irreducible g-module for generic (λ, ε) and
∑

Cqε
Θ′(g;F, λ)ij is

g-invariant.
Suppose g = o2n. Since Iε

Θ̄
+ Jε(λΘ) is stable under the outer automorphism

which maps αn−1 to αn, Iε
Θ̄

+ Jε(λΘ) 3 Fii+1 if and only if Iε
Θ̄

+ Jε(λΘ) 3 Fii+2.
Hence other statements of the theorem are direct consequences of Proposition 3.4.

Note that the functions in the theorem should be homogeneous with respect to
(x, g, λ, ε). ¤

Any zero of rε(g; Θ′, λ) in the above theorem corresponds to the hypersurface
defined by a root in Σ(g) except for the term λ̄i+1 + λ̄nν with i = nν − 1 and ν = k
in the case when g = o2n. Hence we have the following remark.

Remark 4.5. i) Suppose g = gln. Considering the weights with respect to a, we
have (

Iε
Θ(λ) + Jε(λΘ)

)
∩ CEii+1 =

(
qε
Θ(g;F, λ)ii+1 + Jε(λΘ)

)
∩ CEii+1

as in the argument in [O4, §3]. Hence Jε
Θ(λ) = Iε

Θ(λ) + Jε(λΘ) if and only if
rε(g; Θ, λ) 6= 0.
ii) If the infinitesimal character of M ε(λΘ) is regular (resp. strongly regular) in the
case when g = gln, o2n+1 or spn (resp. o2n), then rε(g; Θ, λ) 6= 0 and rε(g; Θ̄, λ) 6= 0.

Here we defined that the infinitesimal character µ is strongly regular if it is not
fixed by any non-trivial element of the group of automorphisms of the root system.
Note that the group is generated by the reflections with respect to the simple roots
and the automorphisms of the Dynkin diagram.
iii) Suppose g = o2n. Then rε(g; Θ̄, λ) 6= 0 if

(4.21)
〈λΘ|a + ερ, α〉 6= 0 for α ∈ Σ(a),

〈λΘ|a + ερ, 2αj + · · · + 2αn−2 + αn−1 + αn〉 6= 0 for j = 2, . . . , n − 1

under the notation in (4.3).

It is proved by [BG] and [Jo] that for µ ∈ a∗ the map

(4.22) {I; I are the two-sided ideals of U(g) with I ⊃ Ann
(
M(µ)

)
}

3 I 7→ I + J(µ) ∈ {J ; J are the left ideals of U(g) with J ⊃ J(µ)}
is injective if µ + ρ is dominant

(4.23) 2
〈µ + ρ, α〉
〈α, α〉

/∈ {−1,−2, . . .} for any root α for the pair (n, a).

Under the notation (4.9) with µ = λΘ|a and ε = 1 the condition (4.23) is equal to

(4.24)


λ̄i − λ̄j /∈ {1, 2, . . .} (1 ≤ i < j ≤ n) if g = gln,

λ̄i ± λ̄j /∈ {1, 2, . . .} (1 ≤ i < j ≤ n) if g = o2n,

λ̄i ± λ̄j , λ̄k /∈ {1, 2, . . .} (1 ≤ i < j ≤ n, 1 ≤ k ≤ n) if g = spn,

λ̄i ± λ̄j , 2λ̄k /∈ {1, 2, . . .} (1 ≤ i < j ≤ n, 1 ≤ k ≤ n) if g = o2n+1.

Note that

(4.25) λ̄i − λ̄i+1 = −1 if nk−1 < i < nk and 1 ≤ k ≤ L.

Corollary 4.6. i) If λΘ|a + ρ is dominant and r1(g; Θ′, λ) 6= 0, then

(4.26) Ann
(
MΘ′(λ)) = I1

Θ′(λ)

for Θ′ = Θ or Θ̄.
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ii) Suppose the infinitesimal character MΘ′(λ) is regular (resp. strongly regular)
in the case when g = o2n with Θ′ = Θ̄ or g = gln or g = o2n+1 or g = spn

(resp. g = o2n with Θ′ = Θ). Then (4.26) holds.

Proof. i) Since JΘ′(λ) = IΘ′(λ) + J(λΘ′) ⊂ Ann
(
MΘ′(λ)

)
+ J(λΘ′) ⊂ JΘ′(λ) by

Theorem 4.4, we have (4.26) by the injectivity of (4.22).
ii) Let Ψ(mΘ, a) denote the fundamental system for (mΘ, a). Here Ψ(mΘ, a) ⊂

Ψ(a). Fix w ∈ W satisfying wΨ(mΘ, a) ⊂ Ψ(a). Define w.Θ′ and w.λ so that
mw.Θ′ = Ad(w)mΘ′ and w.λ = wλ̄ ∈ Cn. Then [Ja, Corollary 15.27] says

(4.27) Ann
(
MΘ′(λ)

)
= Ann

(
Mw.Θ′(w.λ)

)
.

For example, Ann
(
M{k,n}(λ1, λ2)

)
= Ann

(
M{n−k,n}(λ2 + k, λ1 − n + k)

)
. Here we

note that qΘ′(g;x, λ) does not change under this transformation.
Case g = gln. By a permutation of the L blocks

{
{nk−1 + 1, . . . , nk} ; k =

1, . . . , L
}
, we may assume <λ̄n0+1 ≤ <λ̄n1+1 ≤ · · · ≤ <λ̄nL−1+1. Here <c denotes

the real part of c for c ∈ C. Since MΘ(λ) has a regular infinitesimal character,
(4.24) and (4.25) assure that λΘ|a + ρ is dominant and r1(g; Θ, λ) 6= 0. Hence we
have ii) from i).

Case g = spn or o2n+1. First suppose Θ′ = Θ. We may assume <λ̄n0+1 ≤
<λ̄n1+1 ≤ · · · ≤ <λ̄nL−1+1 ≤ 0. Since MΘ(λ) has a regular infinitesimal character,
λΘ|a+ρ is dominant and we have ii). Here we note that if λ̄nk+1 < 0 and λ̄nk+1 > 0,
then λ̄nk+1 /∈ 2Z because λ̄i + λ̄i+1 6= 0 if nk < i < nk+1.

Next suppose Θ′ = Θ̄. Then we may assume <λ̄n0+1 ≤ <λ̄n1+1 ≤ · · · ≤
<λ̄nL−2+1 ≤ 0 and λ̄nL

= − δ+1
2 (cf. (3.14)). Hence we similarly have ii).

Case g = o2n. The map en 7→ −en corresponds to an outer automorphism of
o2n which does not change b. Combining the corresponding automorphism of the
universal enveloping algebra with the above argument, we may have the same as-
sumption on λ̄ as in the previous case. Thus we similarly have ii). ¤

Remark 4.7. Suppose g = gln.
i) In [O4] another generator system of AnnG

(
M ε

Θ(λ)
)

is given for every (Θ, ε, λ).
It is interesting to express them by the generators constructed in this note, which
is done by [Sa] when pΘ is a maximal parabolic subalgebra. In the case of the
minimal parabolic subalgebra, that is, in the case of the central elements of U(g), it
is studied by [I1], [I2] and [Um]. In general, it may be considered as a generalization
of Newton’s formula for symmetric polynomials.

ii) Put Θ = {k, n} with 1 ≤ k < n and fix λ = (λ1, λ2) ∈ C2. Then

λ is regular ⇔ λ1 − λ2 /∈
{
1, 2, . . . , n − 1

}
,

λ is dominant ⇔ λ1 − λ2 /∈
{
2, 3, 4, . . .

}
,

JΘ(λ) = IΘ(λ) + J(λΘ) ⇔ λ1 − λ2 /∈
{
1, 2, . . . , max{k, n − k} − 1

}
,

JΘ(λ) = Ann
(
MΘ(λ)

)
+ J(λΘ) ⇔ λ1 − λ2 /∈

{
1, 2, . . . , min{k, n − k, n

2 − 1}
}
.

Here the last equivalence follows from [O4, Theorem 3.1] and the one before last is
clear from Remark 4.5 i).

Remark 4.8. Considering the m-th exterior product of the natural representa-
tion of gln, we may put p(E) =

(
EIJ

)
#I=#J=m

∈ M
((

n
m

)
, U(g)

)
in Lemma 2.1,

where I = {i1, . . . , im}, J = {j1, . . . , jm} with 1 ≤ i1 < · · · < im ≤ n and
1 ≤ j1 < · · · < jm ≤ n and EIJ = det

(
Eiµjν + (µ − m)εδiµjν

)
1≤µ≤m
1≤ν≤m

. Here

det
(
Aij

)
=

∑
σ∈Sn

Aσ(1)1 · · ·Aσ(n)n. The study of f(p(E)) for polynomials f(x)
may be interesting because it may be a quantization of the ideals of the rank vari-
eties (cf. [ES]) defined by the condition rank f(A) = m for A ∈ M(n, C).
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Remark 4.9. For g = on or spn we may expect an explicit generator system for
AnnG(M ε

p(λ)) which are of the same type given by [O4] for gln. It should be a
quantization of determinants and Pfaffians (and elementary divisors for the singular
case). The quantization of Pfaffians for on is studied by [I2], [IU] and [Od] etc. It
is shown by [Od] that it gives Ann(Mp(λ)) for the expected p.

Remark 4.10. We have considered
∑

i,j Cf(p(E))ij for the construction of a two-
sided ideal of U(g) with a required property. We may pick up a g-invariant sub-
space V of

∑
i,j Cf(p(E))ij to get a refined result. Moreover for a certain prob-

lem (cf. [O1]) related to a symmetric pair (g, k) it is useful to study k-invariant
subspaces of

∑
i,j Cf(p(E))ij which should have required zeros under the map of

Harish-Chandra homomorphism for the pair. This will be discussed in another
paper [OSh].

In the case when ε = 0 we have the following.

Theorem 4.11. Let λ ∈ a and suppose that the centralizer of λ in g equals mΘ′

with Θ′ = Θ or Θ̄. If g = o2n, we moreover assume λi 6= 0 for i = 1, . . . , n. Then

I0
Θ′(λ) = {f ∈ S(g); f |Ad(G)λ = 0}.

Proof. It is clear from Theorem 4.4 that the element of I0
Θ′(λ) vanishes on λ

and therefore I0
Θ′(λ) vanishes on Ad(G)λ because I0

Θ′(λ) is G-stable.
We will prove that the dimension of the space

∑N
i=1

∑N
j=1 Cdq0

Θ′(g;F, λ)ij |λ is
not smaller than dim mΘ′ . This is shown by the direct calculation and it is almost
the same in any case and therefore we give it in the case when g = spn and Θ′ = Θ̄.

Put Θ = {n1, . . . , nL} and λ = (λ1, . . . , λL). Note that λL = 0 and q0
Θ̄
(spn;x, λ) =

x
∏

1≤ν<L(x − λν)(x + λν). If nk−1 ≤ i < nk and nk−1 ≤ j < nk and k < L, we
have

dq0
Θ̄(spn;F, λ)ij |λΘ = 2λ2

k

∏
1≤ν<L, ν 6=k

(λk − λν)(λk + λν)dFij .

If nL−1 ≤ i < 2n − nL−1 and nL−1 ≤ 2n − nL−1, then

dq0
Θ̄(spn;F, λ)ij |λΘ =

∏
1≤ν<L

(−λν)(λν)dFij .

The assumption of the proposition implies λk 6= 0, λν 6= 0 and λ2
k 6= λ2

ν in the
above and therefore we get the required result.

Put V = {X ∈ g; f(X) = 0 (∀f ∈ IΘ′(λ))}. Since [λ, g] = nΘ + n̄Θ, the tangent
space of Ad(G)λ at λ is isomorphic nΘ + n̄Θ. Since Ad(G)λ ⊂ V , it follows from the
above calculation of the dimension that Ad(G)λ and V are equal in a neighborhood
of λ. In particular, V is non-singular at λ.

Let X ∈ g with f(X) = 0 for all f ∈ I0
Θ′(λ). We will show X ∈ Ad(G)λ, which

completes the proof of the theorem. Let X = Xs+Xn be the Jordan decomposition
of X. Here Xs is semisimple and Xn is nilpotent. By the action of the element of
Ad(G), we may assume Xs ∈ a and Xn ∈ n. Then it is clear that f(Xs + tXn) = 0
for all f ∈ I0

Θ′(λ) and t ∈ C. Moreover it is also clear that Xs is a transformation
of λΘ under a suitable element of the Weyl group of the root system for the pair
(g, a) and therefore we may assume Xs = λ. Since the tangent space of V and λ
is isomorphic to nΘ + n̄Θ, we have Xn ∈ nΘ. Hence Xn = 0 because [Xs, Xn] = 0.
and therefore X ∈ Ad(G)λ. ¤

Remark 4.12. Theorem 4.11 shows that we have constructed a generator system of
the defining ideal of the adjoint orbit of any semisimple element of any classical Lie
algebra. In fact, for any λ ∈ a in the orbit the centralizer of λ in g is mΘ or mΘ̄ or
g with a suitable Θ.
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On the other hand [O4] constructed a generator system of the ideal corresponding
to the closure of an arbitrary conjugacy class of gln, which is of a different type
from the one given here.

We will generalize the Cayley-Hamilton theorem in the linear algebra. Put

d̄g(x) =



n∏
i=1

(
x − Fi − n−1

2 ε
)

if g = gln,

n∏
i=1

(
x − Fi − nε

)(
x + Fi − nε

)
if g = spn,

n∏
i=1

(
x − Fi − (n − 1)ε

)(
x + Fi − (n − 1)ε

)
if g = o2n,

(x − nε)
n∏

i=1

(
x − Fi − (n − 1

2 )ε
)(

x + Fi − (n − 1
2 )ε

)
if g = o2n+1.

Here we note that if Θ = {1, 2, . . . , n}, then nj = j, λi + ni−1ε = λ̄i + (n + δ−1
2 )ε

and λi + (ni − 2n − δ)ε = λ̄i − (n + δ−1
2 )ε. Since d̄g(x) ∈ S(a)W [x], there exists

dg(x) ∈ Zε(g)[x] with

(4.28) ω̄(dg(x)) = d̄g(x),

which is equivalent to dg(x) ≡ d̄g(x)(µ) mod Jε(µ−ερ). Then Theorem 4.4 assures
dg(F ) ≡ d̄g(F )(µ) ≡ 0 mod Jε(µ − ερ). Hence ω̄(dg(F ))(µ) = 0 for any µ ∈ a∗

and therefore ω̄(dg(F )) = 0, which assures dg(F ) = 0 because
∑

i,j Cdg(F )ij is
g-invariant (cf. [O4, Lemma 2.12]). Thus we have the following corollary.

Corollary 4.13 (The Cayley-Hamilton theorem for the natural representation of
the classical Lie algebra g).

dg(F ) = 0.

Remark 4.14. This result for gln and on is given by [Um] and [I2], respectively. A
much general result is given by [Go2] (cf. [OO]).

Remark 4.15. Suppose g = gln. Then it follows from [O3] that

dg(x) = det
(
x − Fij − (i − n)εδij

)
1≤i≤n
1≤j≤n

.

In [O4] we define another generator system of AnnG(M ε
Θ

(
λ)

)
for any (Θ, λ, ε) by

using “elementary divisors” in place of the “minimal polynomial” qε
Θ(gln;x, λ).

Proposition 4.16. Suppose g = gln and let π be its natural representation. Then
the characteristic polynomial of F =

(
Eij

)
in U ε(g) equals dε

g(x) and the minimal
polynomial of (F,M ε

Θ(λ)) equals qε
Θ(g;x, λ).

Proof. Suppose ε = 0 and identify the dual space g∗ of g with g by the bilinear
form (2.1). Put J0

Θ(λ)⊥ = {X ∈ g∗; 〈X,Y 〉 = 0 (∀Y ∈ J0
Θ(λ))}. Then the condition

q(F )M0
Θ(λ) = 0 for a polynomial q(x) is equivalent to q(F )(J0

Θ(λ)⊥) = 0, which
also equivalent to q(AΘ(λ)) = 0 for a generic element AΘ,λ of J0

Θ(λ)⊥ because the
closure of

∪
g∈GL(n,C) gAΘ,λg−1 equals

∪
g∈GL(n,C) g(J0

Θ(λ)⊥)g−1 (cf. [O4, §2]). In
fact

AΘ,λ =


λ1In′

1 0A21 λ2In′
2

A31 A32 λ3In′
3

...
...

...
. . .

AL1 AL2 AL3 · · · λLIn′
L


with generic Aij ∈ M(n′

i, n
′
j , C). Hence our minimal polynomial is the same as that

of AΘ,λ in the linear algebra and the claim in the lemma for the minimal polynomial
is clear.
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We may assume ε = 1. Let p(x) be the minimal polynomial of (F,MΘ(λ))
with a fixed λ. Define a homogeneous and monic polynomial p(x, ε) of (x, ε) with
p(x) = p(x, 1). Then p(x, ε)M ε

Θ(ελ) = 0 for ε ∈ C. If follows from the result in the
case ε = 0 that the degree of p(x) should not be smaller than that of qΘ(g;x, λ).
Hence qΘ(g;x, λ) is the minimal polynomial for M ε

Θ(λ).
Since the degree of the minimal polynomial qΘ(g;x, λ) for Θ = {1, 2, . . . , n} is

n, the degree of the characteristic polynomial is not smaller than n. Hence dg(x)
is the characteristic polynomial. ¤
Definition 4.17. The non-zero element q(x, λ, ε) ∈ C[x, λ, ε] ' S(aΘ′)[x, ε] is called
the global minimal polynomial of (F,Mp(λ)) if q(x, λ, ε) satisfies q(F, λ, ε)Mp(λ) = 0
for any (λ, ε) in the parameter space a∗Θ′ × C and any other non-zero polynomial
whose degree with respect to x is smaller than that of q(x, λ, ε) does not satisfies
this.

Proposition 4.18. The polynomials qε
Θ′(g;x, λ) in Definition 4.2 are the global

minimal polynomials of (F,MΘ′(λ)) for Θ′ = Θ and Θ̄.

Proof. Let q(x, λ, ε) be a global minimal polynomial of (F,MΘ′(λ)). We may
assume q(x, λ, 0) is not zero by dividing by εk with an integer k if necessary. Put
ε = 0 and consider the generic λ. Since q(〈F, λ〉, λ, 0) = 0, the minimality of the
degree is clear. Here 〈F, λ〉 =

(
λ(Fi)δij

)
1≤i≤N
1≤j≤N

is a diagonal matrix in M(N, C). ¤

Let f(x) be any polynomial in C[x]. We will give a characterization of the image
ω̄(f(F )) under the Harish-Chandra homomorphism ω̄ defined by (4.10) in the case
of the natural representation of g = gln.

Theorem 4.19. Put f(x) =
∏m

i=1(x − λi). For sets A and B we denote by
Map(A, B) the totality of the maps of A to B. For τ ∈ Map

(
{1, . . . , n}, {1, . . . ,m}

)
we put Iτ (λ) =

n∑
j=1

C[a, λ, ε]
(
Ejj − λτ(j)−

(
mτ (j) − n − 1

2
)
ε
)
,

mτ (j) = #
{
ν ∈ {1, . . . , j − 1}; τ(ν) = τ(j)

}
for j = 1, . . . , n.

Then for F =
(
Eij

)
1≤i≤n
1≤j≤n

∈ M(n, gln) we have

(4.29)
n∑

j=1

C[a, λ, ε]ω̄(f(F ))jj =
∩

τ∈Map({1,...,n},{1,...,m})

Iτ (λ).

Moreover ω̄(f(F )ij) = 0 if i 6= j and the polynomial ω̄(f(F ))jj) is the unique
homogeneous element in C[a, λ, ε] belonging to the right hand side of (4.29) such
that ω̄(f(F )jj)|λ=ε=0 = Em

jj .

Proof. First note that ω̄(f(F )ij)|ε=0 = δij

∏m
ν=1(Ejj −λν) and ω̄(f(F )jj) are of

homogeneous of degree m with respect to (a, λ, ε).
We have already proved that ω̄(f(F )ij) = 0 if i 6= j and ω̄(f(F )jj) ≡ Fm

jj

mod U ε(a)(m−1)[λ]. Hence for any fixed λ and ε, the system of the equations

(4.30) ω̄(f(F )11) = · · · = ω̄(f(F )nn) = 0 for (E11, . . . , Enn) ∈ Cn

is in the complete intersection and has mn roots counting their multiplicities. Hence
to prove (4.29) it is sufficient to show that

(4.31)
(
λτ(1) +

(
mτ (1) − n − 1

2
)
ε, . . . , λτ(n) +

(
mτ (n) − n − 1

2
)
ε
)

is a root for any τ ∈ Map
(
{1, . . . , n}, {1, . . . ,m}

)
and a generic (λ, ε) ∈ Cm+1.
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Fix any σ ∈ Map
(
{1, . . . , n}, {1, . . . ,m}

)
which satisfies σ(i) ≤ σ(j) if 1 ≤ i <

j ≤ n. Define Θ = {n1, . . . , nL} so that 0 = n0 < n1 < · · · < nL = n and that
the condition σ(i) = σ(nk) is equals to nk−1 < i ≤ nk for k = 1, . . . , L. Put
µ = (λσ(n1) + n0ε, . . . , λσ(nL) + nL−1ε). Then Theorem 4.4 shows that f(F )ij

is in Ann(M/Jε
Θ(µ)). Here we note that µΘ + ερ =

∑n
j=1

(
λσ(j) + (mσ(j) +

n−1
2 )ε

)
ej . On the other hand, [O4, Theorem 2.12] determines the common zeros of

ω̄
(
Ann(M/Jε

Θ(µ))
)

for ε 6= 0. Namely they are (4.31) with τ in{
τ ∈ Map

(
{1, . . . , n}, {1, . . . ,m}

)
; #{ν; τ(ν) = σ(j)} = nj−nj−1 for j = 1, . . . , L

}
.

For any τ we have the above σ so that τ is in this set and we have the theorem. ¤

5. Integral transforms on generalized flag manifolds

Let g be a complex reductive Lie algebra and p be a parabolic subalgebra con-
taining a Borel subalgebra b. For a holomorphic character λ of p we define left
ideals

(5.1)

{
Jp(λ) =

∑
X∈p

(
X − λ(X)

)
,

Jb(λ) =
∑

X∈b

(
X − λ(X)

)
of the universal enveloping algebra U(g) of g. Let Ip(λ) be the two-sided ideal of
U(g) which satisfies

(5.2) Ip(λ) ⊂ Jp(λ).

Let G be a connected real semisimple Lie group and let P be a parabolic subgroup of
P such that the complexifications of Lie(G) and Lie(P ) equal g and p, respectively.
Let Lλ be a line bundle over G/P such that the local section of Lλ is killed by
Jp(λ). Then the image of any g-equivalent map of the space of sections of Lλ over
an open subset of G/P is killed by Ip(λ). Here the element of Ip(λ) is identified with
a left invariant differential operator but it may be identified with a right invariant
differential operator through the anti-automorphism of U(g) (X 7→ −X, XY 7→
(−Y )(−X) for X, Y ∈ g) because Ip(λ) is a two-sided ideal. If the g-equivariant
map is an integral transform to the space of functions on a homogeneous space X
of G or sections of a vector bundle over X, it is a natural question how the system
of differential equations induced from Ip(λ) characterizes the image.

The same problem may be considered when Lλ is the holomorphic line bundle
over the complexification of G/P .

5.1. Penrose transformations. Let GC be a reductive complex Lie group with
the Lie algebra g. Let G be a real from of GC and let PC be a parabolic subalgebra
of GC with the Lie algebra p and let V be a G-orbit in GC/PC. Suppose Oλ is a
holomorphic line bundle over GC/PC which is killed by Jp(λ). Here the element of
Jp(λ) is identified with a right invariant holomorphic differential operators on GC.
Then the image of any G-equivariant map

(5.3) T : H∗
V (GC/PC,Oλ) → E

is killed by Ip(λ). This is obvious because Ip(λ) is a two-sided ideal. Here E is
usually a space of sections of a certain line (or vector) bundle over a homogeneous
space of G. In this case Ip(λ) is identified with a system of holomorphic differential
equations and we may identify the element of Ip(λ) as a left invariant differential
operator on G through the anti-automorphism of the universal enveloping algebra
or a right invariant differential operator on G.
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5.2. Poisson transformations. Let G be a connected semisimple Lie group with
finite center, let K be a maximal compact subgroup of G and let P be a parabolic
subalgebra of G with the Langlands decomposition P = MAN and let Po be
a minimal parabolic subgroup with the Langlands decomposition Po = MoAoNo

satisfying Mo ⊂ M , Ao ⊃ A, No ⊃ N and Po ⊂ P . Let λ be an element of the
complexification a∗ of the dual of the Lie algebra of A and put

B(G/P,Lλ) = {f ∈ B(G); f(xman) = aλf(x) (∀m ∈ M, ∀a ∈ A, ∀n ∈ N)}
which is the space of hyperfunction sections of spherical degenerate principal series.
Let p be a complexification of the Lie algebra of P . The Poisson transformation of
the space B(G/P,Lλ) is defined by

(5.4) Pλ : B(G/P,Lλ) → B(G/K), f 7→ (Pλf)(x) =
∫

K

f(xk)dk

with the normalized Haar measure dk on K. Let D(G/K) be the ring of invariant
differential operator of G and let χλ be the algebra homomorphism of D(G/K) to
C so that the image of Pλ is in the solution space A(G/K,Mλ) of the system

(5.5) Mλ : Du = χλ(D)u (∀D ∈ D(G/K))

for u ∈ A(G/K). Here A(G/K) denotes the space of real analytic functions on
G/K.

Note that B(G/P,Lλ) is the subspace of the space of hyperfunction sections of
spherical principal series

B(G/Po, Lλ) = {f ∈ B(G); f(xman) = aλf(x) (∀m ∈ Mo, ∀a ∈ Ao, ∀n ∈ No)}.
Here λ is extended to the complexification a∗o of the dual of the Lie algebra a0 of
Ao so that it takes the value 0 on Lie(M) ∩ Lie(Ao).

Theorem 5.1. Suppose that the Poisson transform

(5.6) Pλ
o : B(G/Po, Lλ) → A(G/K,Mλ), f 7→ (Pλ

o f)(x) =
∫

K

f(xk)dk

for the boundary G/Po of G/K is bijective. Assume the condition

(5.7) Jp(λ) = Ip(λ) + Jb(λ)

for a two-sided ideal Ip(λ) of U(g). Then the Poisson transform Pλ for the boundary
G/P is a G-isomorphism onto the simultaneous solution space of the system Mλ

and the system defined by Ip(λ).

Proof. Since B(G/P,Lλ) is a subspace of B(G/Po, Lλ) and Pλ is a G-equivariant
map, the image of Pλ

o satisfies the systems Mλ and Ip(λ).
Suppose the function u ∈ A(G/K,Mλ) satisfies Ip(λ). Since the function

(Pλ
o )−1u ∈ B(G/Po, Lλ) also satisfies Ip(λ), the condition (5.7) assures (Pλ

o )−1u ∈
B(G/P,Lλ) because we may assume C ⊗R Lie(Po) ⊃ b. ¤

Remark 5.2. i) The above theorem with its proof is based on the idea given by [O3]
which explains it in the case when G = GL(n, R).

ii) The bijectivity of Pλ
o is equivalent to the condition e(λ+ρ) 6= 0 by [K–]. This

condition is introduced by [He] for the injectivity of Pλ
o . Here

(5.8) e(λ) =
∏

α∈Σ+
o

{
Γ

(
〈λ, α〉
2〈α, α〉

+
mα

4
+

1
2

)
Γ

(
〈λ, α〉
2〈α, α〉

+
mα

4
+

m2α

2

)}
,

Σ+ is the set of the positive roots for the pair (g, a0) so that Lie(N) corresponds
to Σ+. Moreover Σ+

o = {α ∈ Σ+; 1
2α /∈ Σ+}, mα is the multiplicity of the root

α ∈ Σ+ and ρ = 1
2

∑
α∈Σ+ mαα.



26 TOSHIO OSHIMA

iii) Suppose G is simple and of the classical type and suppose the condition
e(λ + ρ) 6= 0. Let Ip(λ) be the system given by (4.14). Then if moreover the
infinitesimal character of B(G/P,Lλ) is regular (or strongly regular in the case
when Lie(G) equals o2n or its real form), Pλ is G-isomorphic to the solution space
of the system of differential equations Ip(λ) on G/K since Theorem 4.4 assures (5.7).
This is because the natural map of Z(g) to D(G/K) is surjective and therefore it
follows from Remark 4.3 i) that Mλ is contained in Ip(λ). Here the function on
G/K is identified with the right K-invariant function on G. Note that all the
assumptions are valid when λ = 0.

iv) Let po be the complexification of the Lie algebra of Po and put Jpo(λ) =∑
X∈po

(X − λ(X)). Then we may replace the assumption (5.7) by

(5.9) Jp(λ) = Ip(λ) + Jpo(λ)

in Theorem 5.1, which is clear from its proof. Suppose that Ip(λ) is the system given
by (4.14). Then under the notation in Theorem 4.4, (5.9) is valid if rε

i (g; Θ′, λ) 6= 0
for i /∈ Θ and moreover if r̄ε(g; Θ′, λ) 6= 0 for g = o2n+1 and spn in the case Θ′ = Θ̄.

v) Owing to [K–] the abstract existence of the system of differential equations
characterizing the image of Pλ is clear (cf. [OSh]) but a certain existence theorem
of the system in the case λ = 0 is given by [Jn]. A more precise study for this
problem including the relation to the Hua equations will be discussed in [OSh].

5.3. Intertwining operators. Retain the notation in §5.2. Let λ̃ and µ̃ be char-
acters of P and P0, respectively. Put

(5.10) B(G/Q, Lτ ) = {f ∈ B(G); f(xq) = τ(q)−1f(x) (∀q ∈ Q)}

for (Q, τ) = (P, λ̃), (P0, λ̃) and (P0, µ̃). Let j be a Cartan subalgebra of Lie(G)
containing a and let λ be an element of the complexification of the dual of j. Assume
(5.7) and λ̃(eH) = e−λ(H) for H ∈ j. If there exists a G-equivariant bijective map

T λ̃
µ̃ : B(G/P0, Lλ̃) ∼→ B(G/P0, Lµ̃),

T λ̃
µ̃ (B(G/P,Lλ̃)) is identical with the space of solutions of the system of differential

equations on B(G/P0, Lµ̃) defined by Ip(λ).

5.4. Radon transformations. Let G be a connected real semisimple Lie group
and let P1 and P2 be maximal parabolic subgroups of G. If there exists a G-
equivariant map R : B(G/P1, Lλ1) → B(G/P2, Lλ2) for certain characters λj of Pj

under the notation (5.10), the image of R satisfies the system Ip(λ). Here p and λ
correspond to P1 and λ1, respectively.

5.5. Hypergeometric functions. Some special cases of Radon or Penrose trans-
formations and their relations to Aomoto-Gelfand hypergeometric functions are
discussed in [O3], [Se] and [Ta].

6. Closure of ideals

Now we will consider the non-regular λ which are excluded in Theorem 4.4. We
begin with a general consideration.

Definition 6.1. Let M be a C∞-manifold and let U be an open subset of C`.
We denote by D′(M) the space of distributions on M . Suppose that meromorphic
functions f1(λ), . . . , fn(λ) of U with values in D′(M) are given. Moreover suppose
there exists a non-zero holomorphic function r(λ) on U such that f1, . . . , fn are
holomorphic on Ur = {λ ∈ U ; r(λ) 6= 0} and dimVλ = m for any λ ∈ Ur. For
λ ∈ U we define

V̄µ = {f(0); f is a holomorphic function on {t ∈ C; |t| < 1} valued in D′(M)
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and there exists a holomorphic curve c : {t ∈ C; |t| < 1} → U such that

c(t) ∈ Ur and f(t) ∈ Vc(t) for 0 < |t| ¿ 1 and c(0) = µ}.

We call V̄µ the closure of the holomorphic family of the spaces Vλ (λ ∈ Ur) at
µ. It follows from [OS, Proposition 2.21] that dim V̄µ ≥ m. We define that a
point µ ∈ U \ Ur is a removable (resp. un-removable) singular point if dimVµ = m
(resp. dimVµ > m). Note that V̄λ = Vλ if λ ∈ Ur, which follows from the last
statement in Lemma 6.3 by replacing µ and Ur by λ (∈ Ur) and Ur \ {λ}.

Example 6.2. The origin λ = (λ1, λ2) = 0 is a removable singular point of Vλ =
C(x+λ1)+C(λ2x+λ1y+λ2

1) and an un-removable singular point of Vλ = C(λ1x+
λ2y).

Lemma 6.3. i) If µ is a removable singular point of the spaces Vλ, then there exist
a neighborhood Uµ of µ and holomorphic functions h1(λ), . . . , hm(λ) on Uµ valued
in D′(M) such that they are linearly independent for any λ ∈ Uµ and they span Vλ

for any λ ∈ Uµ ∩Ur. On the other hand, the existence of hj(λ) (j = 1, . . . ,m) with
these property implies that µ is a removable singular point.

ii) If U is convex and there is no un-removable singular point in U , we may
choose Uµ = U in i).

Proof. i) Suppose dim V̄µ = m. We may assume f1(λ), . . . , fm(λ) are linearly
independent for a generic point λ in Ur. Fix a curve c to U with c(0) = µ and
c(t) ∈ Ur for 0 < |t| ¿ 1. Then [OS, Proposition 2.21] assures the existence of
holomorphic functions vi(t) (1 ≤ i ≤ m) on {t ∈ C; |t| < 1} valued in D′(M) and a
holomorphic curve c : {t ∈ C; |t| < 1} → U such that c(0) = µ, c(t) ∈ Ur and vi(t) ∈
Vc(t) for 0 < |t| ¿ 1 and v1(t), . . . , vm(t) are linearly independent for any t. Then
the set {v1(0), . . . , vm(0)} is a basis of Vµ. Fix test functions φ1, . . . , φm so that
〈vi(0), φj〉 = δij and put cij(λ) = 〈fi(λ), φj〉. If 0 < |t| ¿ 1, then vi(t), . . . , vm(t)
span Vc(t) =

∑m
i=1 Cfi(c(t)) and therefore fi(c(t)) =

∑m
j=1 cij(c(t))vj(t), which

means det
(
cij(λ)

)
is not identically zero. Let

(
dij(λ)

)
be the inverse of

(
cij(λ)

)
and define hi(λ) =

∑m
j=1 dij(λ)fj(λ) so that 〈hi(c(t)), φj〉 = δij for 0 < |t| ¿ 1.

Suppose hk(λ) has a pole at λ = µ. Then there exists a test function φ such that
〈hk(λ), φ〉 has a pole at µ. Then it follows from Weierstrass’ preparation theorem
that there exists a curve c(t) as above and moreover 〈hk(c(t)), φ〉 has a pole at
the origin. Choose a positive integer ` so that the function h̃(t) = t`hk(c(t)) is
holomorphically extends to t = 0 and h̃(0) 6= 0. Since 〈h̃(t), φj〉 = t`δkj , 〈h̃(0), φj〉 =
0 for j = 1, . . . ,m, which contradicts to the facts 〈vi(0), φj〉 = δij because 0 6=
h̃(0) ∈ Vµ =

∑m
i=1 Cvi(0) by definition.

Thus we have proved that hi(λ) are holomorphic functions on λ in a neighbor-
hood of Uµ of µ. Since 〈hi(λ), φj〉 = δij , they are the required functions. In fact,
fi(λ) =

∑m
j=1〈fi(λ), φj〉hj(λ) for generic λ and therefore Vλ ⊂

∑m
j=1 Chj(λ) for

λ ∈ Uµ ∩ Ur.
Now suppose the existence of h1, . . . , hm and consider the function f to define V̄µ

in Definition 6.1. Then under the above notation, f(t) =
∑m

j=1〈f(t), φj〉hj(c(t)) for
0 < |t| ¿ 1 and therefore f(0) =

∑m
j=1〈f(0), φj〉hj(c(0)), which means dimVµ = m.

ii) The claim in i) reduces the global existence of hi to the second problem of
Cousin and it is solved for the convex open domain by Oka’s principle. ¤

Remark 6.4. i) Replacing “meromorphic” and “holomorphic” by “rational” and
“regular”, respectively, we have also Lemma 6.3 in the algebraic sense.

ii) When M is a finite set in Lemma 6.3, D′(M) is a finite dimensional vector
space V over C and fi(λ) are the elements of V with a meromorphic parameter λ.
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Definition 6.5. Fix a base {X1, . . . , Xm} of g. Let

(6.1) qν(λ, ε) =
∑

α1≥0,...,αm≥0

qν,α(λ, ε)Xα1
1 · · ·Xαm

m

be elements of U ε(g) for (λ, ε) ∈ Cr+1 and ν = 1, . . . , k. Here qν,α are polynomial
functions of (λ, ε) and qν,α = 0 if α1 + · · ·+αm is sufficiently large. Let I(λ, ε) is the
left ideal of U ε(g) generated by qν for ν = 1, . . . , k. Put dj = maxλ,ε dim I(λ, ε) ∩
U ε(g)(j) for j = 1, 2, . . .. Then we can find

pj,µ(λ, ε) =
∑

α1≥0,..., αm≥0

pj,µ,α(λ, ε)Xα1
1 · · ·Xαm

m

such that pj,µ(λ, ε) ∈ I(λ, ε) ∩ U ε(g)(j) for any (λ, ε), pj,µ,α(λ, ε) are polynomial
functions and pj,1(λ, ε), . . . , pj,dj (λ, ε) are linearly independent for generic (λ, ε).
Then we denote by Ī(λ, ε)(j) the closure of the holomorphic family

∑dj

µ=1 Cpj,µ

at (λ, ε) and put Ī(λ, ε) =
∪∞

j=1 Ī(λ, ε)(j). We call Ī(λ, ε) the closure of the ideal
I(λ, ε) with respect to the parameter (λ, ε). We call a point (λ, ε) ∈ Cr+1 is an un-
removable singular point if (λ, ε) is an un-removable singular point of

∑dj

µ=1 Cpj,µ

for a certain j. Note that Ī(λ, ε) does not depend on the choice of {X1, . . . , Xm}
or pj,µ.

Let Īε
Θ′(λ) be the closure of the two-sided ideal Iε

Θ′(λ) given by (4.14) for Θ′ = Θ
or Θ̄. Then we give some problems.
Problem 1. Does there exists no un-removable singular point in the parameter
(λ, ε) of the holomorphic family Iε

Θ′(λ)?
Problem 2. Does the equality ĪΘ′(λ) = Ann(MΘ′(λ)) hold?

Remark 6.6. i) It is clear that Ī1
Θ′(λ) ⊂ Ann(MΘ′(λ)).

ii) The non-existence of the un-removable singularity in Problem 1 is equivalent
to the following conditions. We can choose {qν(λ, ε); ν = 1, . . . , k} of the form (6.1)
such that Īε

Θ′(λ) =
∑k

ν=1 U ε(g)qν(λ, ε) for any fixed (λ, ε). It is also equivalent to
the fact that the graded ring

gr
(
Īε
Θ′(λ)

)
=

∞⊕
j=1

(
Īε
Θ′(λ) ∩ U ε(g)(j)/Īε

Θ′(λ) ∩ U ε(g)(j−1)
)

does not depend on (λ, ε) because they are also equivalent to the fact that the
dimension of the vector space Īε

Θ′(λ) ∩ U ε(g)(j) does not depend on (λ, ε) and the
space is spanned by homogeneous elements with respect to (g, λ, ε).

iii) Problem 1 and Problem 2 are affirmative if g = gln because there exist
qν(λ, ε) (ν = 1, . . . , k) of the form (6.1) such that AnnG(M ε

Θ(λ)) is generated by
qν(λ, ε) (ν = 1, . . . , k) for any (λ, ε) (cf. [O4]). In this case gr

(
Iε
Θ(λ)

)
is a prime

ideal of S(g) but this is not true in general.
iv) If gr

(
I0
Θ′(λ)

)
is a prime ideal for generic λ, then Problem 1 and Problem 2

are affirmative, which is proved by the same argument as in [O4]. Note that I0
Θ′(λ)

is the defining ideal of Ad(G)λ for generic λ ∈ aΘ′ by Theorem 4.11.
v) Problem 2 is affirmative if the infinitesimal character is (strongly) regular.
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1–37.



ANNIHILATORS OF GENERALIZED VERMA MODULES 29

[ES] D. Eisenbud and D. Saltman, Rank variety of matrices, Commutative algebra, Math. Sci.
Res. Inst. Publ. 15, 173–212, Springer-Verlag, 1989.

[Ge] I. M. Gelfand, Center of the infinitesimal groups, Mat. Sb. Nov. Ser. 26(68)(1950), 103–
112; English transl. in “Collected Papers”, Vol. II, pp.22–30.

[Go1] M. D. Gould, A trace formula for semi-simple Lie algerbras, Ann. Inst. Henri Poincaré,
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