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ABSTRACT. We construct a generator system of the annihilator of a generalized
Verma module of a classical reductive Lie algebra induced from a character of
a parabolic subalgebra as an analogue of the minimal polynomial of a matrix.
In a classical limit it gives a generator system of the defining ideal of any
semisimple co-adjoint orbit of the Lie algebra. We also give some applications
to integral geometry.

1. INTRODUCTION

In [O3] generalized Capelli operators are defined in the universal enveloping al-
gebra of GL(n,C) and it is shown that they characterize the differential equations
satisfied by the functions in degenerate principal series representations of GL(n, R).
The operators are used to formulate boundary value problems for various bound-
aries of the symmetric space GL(n,R)/O(n) and to construct generalized hyperge-
ometric equations related to Radon transformations on Grassmannian manifolds.
In [O4] using these operators we construct a generator system of the annihilator
of the generalized Verma module for gl(n,C) induced from any character of any
parabolic subalgebra.

In this paper the generator system is constructed for the classical Lie algebra g.
Here g equals gl(n,C), 0(2n,C), 0(2n+1,C) or sp(n,C). In the case of gl(n,C) the
generator system in [O4] is an analogue of minors and elementary divisors. The
generator system here is an analogue of the minimal polynomial of a matrix and
different from the one constructed in [O4]. For the generator system of the center
of the universal enveloping algebra the former corresponds to Capelli identity in
[C1] and [C2] and the latter to the trace of the power of a matrix with components
in the Lie algebra which is presented by [Ge].

In §2 we define a matrix F with components in g or the universal enveloping
algebra U(g) associated to a finite dimensional representation of a Lie algebra g and
define a minimal polynomial of F with respect to a g-module (cf. Definition 2.4).

In §3 we calculate the Harish-Chandra homomorphism of certain polynomials
of F. It is a little complicated but elementary. A complete answer is given in
Theorem 4.19 when g is gl(n,C). Owing to this calculation, in §4 we introduce
some polynomials of F' and study their action on the generalized Verma module.

Then we construct a two-sided ideal of U(g) generated by the components g(F);;
for the minimal polynomial ¢(z) of F' and prove Theorem 4.4, which is the main
result in this paper. It says (cf. Remark 4.5 ii)) that the ideal describes the gap
between the generalized Verma module and the usual Verma module (cf. (5.1)
and (5.7)) if at least the infinitesimal character of the Verma module is regular
(resp. strongly regular) in the case when g equals gl(n,C), o(2n + 1,C) or sp(n,C)
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(resp. 0(2n, C)). The main motivation to write this paper is to construct a two-sided
ideal with this property originated in the problem in [O1].

It follows from this theorem that the ideal equals the annihilator of the gener-
alized Verma module of the scalar type for the classical Lie algebra if at least the
infinitesimal character is (strongly) regular (cf. Corollary 4.6).

We will use the homogenized universal enveloping algebra U¢(g) introduced in
[O4] so that we can compare the generator system of a co-adjoint orbit in the dual of
g. As a classical limit we get the generator system of any semisimple co-adjoint orbit
for a classical Lie algebra, which is described in Theorem 4.11 (cf. Remark 4.12).

In §5 we show some applications of our two-sided ideals to integral transforma-
tions of sections of a line bundle over a generalized flag manifold. For example,
Theorem 5.1 is a typical application, which shows that the system of differential
equations defined by our two-sided ideal characterizes the image of the Poisson
transform of the functions on any boundary of the Riemannian symmetric space of
the non-compact type.

In §6 we discuss the infinitesimal character which is excluded in the results in §4
and present some problems.

In the subsequent paper [OO] we will give a simple explicit formula of minimal
polynomials of generalized Verma modules of the scalar type for any reductive Lie
algebra and study the same problem as in this paper.

In order to explain our idea, suppose G = GL(2n,C) and put A = (/\é" ,u(; ) €
n

g = Lie(G). Here A, p € C and B € M(n,C) is a generic element. Note that A is
conjugate to I, & ul, if A # p and to (i\ ?\) oD (i\ g)\) otherwise. We
will identify g and its dual g* by the symmetric bilinear form (X, Y) = Trace XY
Let Ie(C S(g)) be the defining ideal of the closure Vg of the conjugacy class
Vo =3 ,cc Ad(9)A with Ad(g)X = gXg~ L

Note that Ig = I3 by denoting

Iy = () Ad(g)J6,
geG

X 0
Jg = Z Ue(g)(<X1 X > —/\TraceXl—u’HaceXg).
X1, Xa, X3€M(n,C) 3 72

Here U¢(g) is the quotient of the tensor algebra of g by the two-sided ideal generated
by elements of the form X @ Y — Y ® X — ¢[X,Y]. Then U%(g) is the symmetric
algebra S(g) of g and Ul(g) is the universal enveloping algebra of g. We call a
generalization of I§ a quantization of Ig and the quantization Ié is nothing but
the annihilator of the generalized Verma module U(g)/J&.

Since rank(X — Ay,) < n and rank(X — uly,) < n for X € Vg, the (n + 1)-
minors (€ S(g)) of ((Eij) — Al2,) and ((E;j) — pl2y,) are in Ig. On the contrary,
they generate Ig if A # pu. The quantizations of the minors are generalized Capelli
operators studied by [O3].

If A = p, the derivatives of (n + 1)-minors of ((E;;) — xzla,) at ¢ = X are
also in Ig and in general the generators are described by using the elementary
divisors. In [O4], we define their quantizations, namely, we explicitly construct
the corresponding generators for any generalized Verma module of the scalar type
for gl(n, C) using generalized Capelli operators and quantized elementary divisors.
Moreover in [O4] we determine the condition that the annihilator determines the
gap between the generalized Verma module and the usual Verma module. In the



ANNIHILATORS OF GENERALIZED VERMA MODULES 3

example here, the equality

n 2n

(L) Jo=To+) UAe)Ey+ ) U(@)(Ei =N+ Y Ue)(Eii—p)
i>j i=1 i=n+1

holds if and only if A — p ¢ {¢,2¢,...,(n — 1)e}. When e = 1, this condition is
satisfied if U(g)/J§ has a regular infinitesimal character, which is equivalent to the
condition that A—p ¢ {1,2,....2n—1}. If (1.1) holds, the quantized generators are
considered to be the differential equations which characterize the representations of
the group G related to the generalized Verma module. Hence they are important
and the motivation of our study in this note is this fact.

Now since (z — A)(x — ) is the minimal polynomial of A, all the components of
((Eij) — M2p)((Eij) — ulay) are in J3. They generate I3 together with Z?Zl E;; —
nA —nu if A # p. We can quantize this minimal polynomial and the quantized
minimal polynomial in this example equals ¢°(x) = (z—\)(x —p—ne). We can show
that the 4n? components of the matrix ¢°((E;;)) € M(2n,U¢(g)) and the element
21221 E;i —nA —npu generate I§ if A —p ¢ {€,2¢,...,(n—1)e}. When we identify
U(g) with the ring of left invariant holomorphic differential operators on GL(n, C),
we have ¢! ((E;;)) = (*X90—X\)(* X9—p—n) with the matrices X = (z;;) € GL(n,C)
and 0 = (8ij ).

The main topic in this paper is to construct the elements in U(g) which kills the
generalized Verma module of the scalar type for the classical Lie algebra by using
the quantized minimal polynomial.

The author expresses his sincere gratitude to Mittag-LefHler Institute. The result
in this paper for g = gl(n, C) was obtained when the author was invited there from
September until November in 1995 and it is reported in [O2].

2. MINIMAL POLYNOMIALS

For a module 2 and positive integers N and N’, we denote by M (N, N',2) the
set of matrices of size N x N’ with components in 2. If N = N’, we simply denote
it by M(N,2) and then M (N,%) is naturally an associative algebra if so is 2.

We use the standard notation gl,,, 0,, and sp,, for classical Lie algebras over C.
For a Lie algebra g we denote by U(g) and S(g) the universal enveloping algebra and
the symmetric algebra of g, respectively. For a non-negative integer k let .S (g)(k) be
the subspace of S(g) formed by elements of degree at most k. If we fix a Poincare-
Birkhoff-Witt base of U(g), we can identify U(g) and S(g) as vector spaces and we
denote by U(g)*®) the subspace of U(g) corresponding to S(g)®*).

The Lie algebra gl is identified with M (N, C) ~ End(C") by [X,Y] = XY —
YX. Let E;; = (5#1'6”]')13#31\/ € M(N,C) be the standard matrix units. Note

120N
that the symmetric bilinear form
(2.1) (X,Y) = Trace XY for X,Y €gly

on gly is non-degenerate and satisfies
<Eij7 E;UJ> = 5il/6j;u
X =) (X,Ej;i)Ej;,
,J

(Ad(g)X,Ad(9)Y) =(X,Y) for X,Y € gly and g € GL(N,C).

Lemma 2.1. Let g be a Lie algebra over C and let (m,C) be a representation of
g. We denote by U(w(g)) the subalgebra of the universal enveloping algebra U(gly)
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of gly generated by mw(g). Let p be a linear map of gly to U(w(g)) satisfying
(22) p([X, Y]) = [X,p(Y)] fO?” X e 71'(9) and'Y € g[N7

that is, p € Homy(g)(gly, U(7(g)))-
Fiz f(z) € C[z] and put

F= (p(E )) 1<i<N € M(N’ U(W(g)))’
(2.3) 1<j<N

(Qu) 1cicn = F(F) € M(N,U(r(2)).
155N
Then
(2.4) (p(Ad(g)Eij)) 1<i<N = tgFig="  for g€ GL(n,C)
1<5<N
and

(25) [X,Qy]= ZXMQW ZXWQW

N
Z X Qw Ql/] ZQZV X QI/]> fO?”X = (Xij) 1<i<N € 7"-(9)

v=1 1<GEN
with Xij eC.
Proof. Put g = (gij) and g7! = (g;J) Then

(Ad(g)E”) 1<i<N = (Z gI”gW/El“’) 1<Z<N — tgth—l,
1<5EN v <N

Fix X € m(g). Since

N N
= XuwBuw, Eij) =Y XuiBuy — > XjuEi,
8% p=1 v=1
we have (2.5) for f(z) =z by (2.2).
N
Suppose ( 3;) and ( € M(N,U(n(g))) satisfy (2.5). Put Q}; = > Q},Q%;
k=1
in U(m(g)). Then

N
(X, QLIQ%, + D QLIX, Q)]

N
Z IMQ kaJ ZX]CVQ}VQ%]>

v=1

1= 11

=
& =z

+
M=
N
Mz
2
)
Q
E

and therefore the elements Qij> of M(N,U(n(g))) satisfying (2.5) form a subal-
gebra of M (N,U(w(g))). O

Definition 2.2. If the symmetric bilinear form (2.1) is non-degenerate on m(g), the
orthogonal projection of gl onto 7(g) satisfies the assumption for p in Lemma 2.1,
which we call the canonical projection of gly to 7(g).
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Remark 2.3. Suppose that g is reductive. Let G be a connected and simply con-
nected Lie group with the Lie algebra g and let Gy be a maximal compact subgroup
of G. Assume that the finite dimensional representation (7, V') in Lemma 2.1 can
be lifted to the representation of Gyy. Let g = n @ a @ n be a triangular decompo-
sition of g such that expaN Gy is a maximal torus of Gy. Let X(a) and X(a)™ be
the sets of the roots for the pair (g,a) and (n, a), respectively, and let ¥(a) denote
the fundamental system of ¥(a)™. We fix a Hermitian inner product on V so that
7 is a unitary representation of Gy. Moreover let {vy,...,vn} be an orthonormal
basis of V' such that v; is a weight vector of a weight w; with respect to the Cartan
subalgebra a. We may assume that w; — w; € X(a)* means ¢ > j. Hence w; is
the lowest weight and wy is the highest weight of the representation 7. Under this
basis we identify 7(X) = (7(X);;) € M(N,C) ~ End(C") ~ gly for X € g by
m(X)v; = N w(X)yvi. Note that w(a) C an, 7(n) C ny and n(i) C iy by
denoting

N
(26) anN = Z(CE“, ny = Z (CE” and ﬁN = Z (CE”
j=1 1<j<i<N 1<i<j<N
Since (X)) is skew Hermitian for the element X in the Lie algebra gy of Gy and

Cr(gy) = m(g), we have ‘w(g) = m(g). Hence the symmetric bilinear form (2.1) is
non-degenerate on 7(g) and there exists the canonical projection of gly to 7(g).

Definition 2.4 (Characteristic polynomials and minimal polynomials). Given a Lie
algebra g, a faithful finite dimensional representation (7, C"V) and a g-homomorphism
p of End(CY) ~ gl to U(g). Here we identify g as a subalgebra of gl through
7. Let U(g) and Z(g) be the universal enveloping algebra of g and the center of

U(g), respectively. For F = (p(EU)) € M(N,U(g)). we say qr(z) € U(g)%[x] is
the characteristic polynomial of F' if it is a non-zero polynomial of x satisfying

qF(F) :O

with the minimal degree.

Suppose moreover a g-module M is given. Then we call gp p(z) € Clz] is the
minimal polynomial of F with respect to M if it is the monic polynomial with the
minimal degree which satisfies

qF’M(F)M =0.

If p is the canonical projection in Definition 2.2, we sometimes denote Fi, ¢r
and ¢ as in place of F, g and g s, respectively.

Remark 2.5. i) After the results in this paper was obtained, the author was in-
formed that [Go2] studied the characteristic polynomial of F; for the irreducible
representation 7 of the reductive Lie algebra.

ii) If g is reductive, the characteristic polynomial is uniquely determined by (7, p)
up to a constant multiple of the element of Z(g) since Z(g) is an integral domain.

iii) If g is reductive and M has an infinitesimal character y, that is, x is an
algebra homomorphism of Z(g) to C with (D — x(D))M = 0 for D € Z(g), then
x(qr(2)) € Clz]qpn(z).

iv) The characteristic polynomial and minimal polynomial of a matrix in the
linear algebra can be regarded as a classical limit of our definition. See the proof
of Proposition 4.16.

Theorem 2.6. Let g be a reductive Lie algebra and let F' be a matriz of U(g)
defined from a representation of m under Definition 2.4.
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i) There exists the characteristic polynomial qr(x) whose degree is not larger
than > _ mr(w)?. Here w runs through the weights of ™ and m(w) denotes the
multiplicity of the generalized weight w in m.

i) The minimal polynomial qp ar(x) exists if a g-module M has a finite length
or an infinitesimal character. Its degree is not larger than that of the characteristic
polynomial qr(x) if M has an infinitesimal character.

Proof. Let Z(g) denote the quotient field of Z(g) and put U(g) = Z(g) ®z(q)
U(g). Owing to [Ko] it is known that U(g) = A(H(g)) ® Z(g), where H(g) is the
space of g-harmonic polynomials of S(g) and A is the map of the symmetrization
of S(g) onto U(g). It is also known that H(g) ~ > ., m.(0)T as a representation
space of g by denoting gs the equivalence classes of the finite dimensional irreducible
representations of g.

Hence the dimension of the g-homomorphisms of 7 ® 7* to U(g) over the field
Z(g) is not larger than ZTE@f [r @ 7*, 7]m.(0). Here [r ® 7*, 7] is the multiplicity
of 7 appeared in [r ® 7*] in the sense of the Grothendieck group. Moreover it is
clear that 37 _cq [7 ® 7%, 7]m.(0) = mrgq- (0) = 3-_ mx(w)?. On the other hand
Lemma 2.1 says that the space Vj, = ZZ j (CFZ’; is naturally a subrepresentation of
the representation of g which is realized in M (N, C) and belongs to m @ 7* and that
the map T}, : Ei; — Fi’;- defines a g-homomorphism of M (N,C) to U(g). Hence
Ty, ..., Ty are linearly dependent over Z(g) if m > Y._ my(w)? Thus we have
proved the existence of the characteristic polynomial with the required degree.

For the existence of the minimal polynomial it is sufficient to prove the existence
of a non-zero polynomial f(x) with f(F)M = 0. Considering the irreducible sub-
quotients of M in Definition 2.4, we may assume M has an infinitesimal character
A. Let gr(z) be the characteristic polynomial. We can choose u € a* so that
@(qr(z))(A + put) € Clz,t] is not zero. We can find a non-negative integer k such
that f(z,t) = t*w0(qr(z)) € Clz,t] and f(x,0) is not zero. Here @ is the Harish-
Chandra homomorphism defined by (4.10). Put I = }° ;¢ 7, U(g) (Z-w(2)(N).
We define h(t) € M (N, H(g) ® C[t]) so that f(F,t) —A(h(t)) € M(N, Ixy,). Since
drp(F)(A+ pt) € M(N,Ixyue), h(t) = 0 for t # 0 and hence h = 0 and therefore
f(F,0)(U(g)/Ix) = 0. Hence f(F,0)M = 0 because Ann(M) D I. O

Hereafter in this note we assume

7 is injective,

(2.7) p(gly) C g,
p(X)=CX for Xeg

in Lemma 2.1 with a suitable non-zero constant C. Then we have the following.

Remark 2.7. i) Since 7 is faithful, g is identified with the Lie subalgebra 7 (g) of
gly and U(w(g)) is identified with the universal enveloping algebra U(g) of g. We
note that the existence of p with (2.7) is equivalent to the existence of a g-invariant
subspace of gl complementary to g.

ii) Fix g € GL(N, C). If we replace (m, CY) by (79, CN) with 79(X) = Ad(g)m(X)
for X € g in Lemma 2.1, (F;;) € M(N,g) naturally changes into ‘g~ (Fj;) g
and therefore the corresponding characteristic polynomial and minimal polynomial
does not depend on the realization of the representation w. In fact, the map p9
of U(g) to m(g) is naturally defined by 79(X) = Ad(g)(p(Ad(g)~'X)) and hence
p?(E) = Ad(9)(p(Ad(g~ ") E) = Ad(g) (p("9 " E'g))) = (g~ (Fi5)"g)-

iii) Suppose g is semisimple. Then the existence of p is clear because any finite
dimensional representation of g satisfies the assumption in Remark 2.3.
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iv) Let o be an involutive automorphism of gly. Put
g={X egly; o(X) =X}

Let 7 be the inclusion map of g C gly. Since q = {X € gly; o(X) = =X} is g-
_ X+o(X)

stable, we may put p(X) = =5~ in Lemma 2.1, which is the canonical projection
with respect to the bilinear form of gly.
v) For a positive integer k and complex numbers Aq,..., Ag, the vector space

spanned by the N? components of the matrix (p(E) — M In)--- (p(E) — \eIn) is
ad(g)-invariant. Moreover the trace of the matrix is a central element of Ul(g),
which is clear from Lemma 2.1 and studied by [Ge] and [Gol] etc.

3. PROJECTION TO THE CARTAN SUBALGEBRA
Now we consider the natural realization of classical simple Lie algebras. Denoting
. . - L
I, = (5i,n+1—j) 1<i<n — a and J, = < = > ’
1<5<n 1 —In
we naturally identify
o, ={X €gl,; 00, (X) =X} with o, (X) = —1,'X1,,
sp, = {X € glyy; 0sp (X) = X} with oy (X) = —J,' X J,,.

Definition 3.1. Let g = gl,, or 09, or 02,41 or sp, and put N =n or 2n or 2n+1
or 2n, respectively, so that g is a subalgebra of gl,. Put

(3.2) i=N+1-i

for any integer ¢ and define

(3.1)

0 if g=gl,,
1 if g=o
(3.3) € = Loemew _
1 if g=sp, and < mn,
-1 if g=sp, and i>n.
Then the involutions o4 of gl defining g with g = ox and sp,, satisfy
Ug(Eij) = —EiejEﬁ.
We moreover define
(3.4) F= (Fi'>1§i§N = (Eij - 6i€jE§"> 1<i<N*
1<j<N 1<j<N
This definition of F' means C = 2 in (2.7) if g = oy or sp,,. We will denote F;
in place of Fy; for simplicity. Then g = Z” CF;; and
N

(35)  [X,Fyl =) (XuiFy; — X, F,) for X = (Xi]) €gC M(N,C)
v=1
by Lemma 2.1.
Use the notation (2.6) and define a =gNay, n=gNny and n = gNny. Then
(3.6) g=ndadn

is a triangular decomposition of g.

Definition 3.2. For a positive integer k and complex numbers Aq,..., A\ put
FFO, o) = (F = MIy) - (F = M)

and define an element F*(\1,..., ;) in M(N,U(a)) by

(3.7) F*\, ..o, 0) = FF(\, .., \)  mod M(N,nU(g) + U(g)n)



8 TOSHIO OSHIMA

In this section we will study the image F*(A1,..., \x) of F¥(A\y,...,\) under
the Harish-Chandra homomorphism with respect to (3.6). First we note that if

noifi <y,
(3.8) Fjjeqa ifi=yj,
n ifi > j,
we have
(3.9)
J
Fi(A, M) =Y FE T (L A1) (Flyg — Akdpy) mod U(g)n
p=1

= F.k,’l()\l, vy A=) (B = k)

Z(F FE oo Net) — [Fugs FA 1(A1,...,Ak_1)])

j_
= FE O M) (B = M)+ 30 (BT O k)

p=1

N
Z i B FE O )+ S (B By >Fi’;—1(xl,...,Ak_1))
v=p+1

by Lemma 2.1.

The following is clear by the induction on k.

Remark 3.3. i) The highest homogeneous part of F¥(\y,...,; \;) with the degree k
is given by
F* Oy ) = (5 Fk) resen  mod M(N,U(a)*),
1<j<N

ii) If g = gl,, or 02,41 or sp,, and 7 is the natural representation of g, it is clear
that Trace F¥ for k = 1,2,...,n or k = 2,4,...,2n or 2,4,...,2n, respectively,
generate Z(g) as an algebra. In particular for any D € Z(g) there uniquely exists a
polynomial f(z) with Trace f(F) = D. In the case when g = 02,, we use both the
natural representation 7 and the half-spin representation 7’ of g and then Trace Fff
for k =2,4,...,2(n — 1) and Trace F, generate Z(g).

iii) The Killing form of g is a positive constant multiple of the restriction of the
bilinear form (2.1) to g if g is simple.

Hereafter suppose that g = gl,, or 02, or 02,41 or sp,, and that F' is given by
(3.4). Then (3.4) means
<FP«]’ E > (Sijéuy — e,uej(sﬂi(;;u and <FMJ,E > = 5]'1/ — Eﬂej(sﬂV(S;,U«
and therefore it follows from (3.9) that

FEOa, M) = FE O M) (B — A+ — 1)

+Z( FuFE Oy, Aken)

- 62’ij 1()\1, ey )\kfl) + 6M6j5MgF§%71()\1, ey )\kfl)

(3.10)

— €650 F_l(/\l,...,/\k_l)) mod U(g)n.

witij
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Since [U(g)n, U(a)] C U(g)n and since Fj; € n and Fj; € n for 4 > j, the equation
(3.10) shows FF(A1,...,Ax) = 0 mod U(g)n for i > j by the induction on k.
Similarly we have Fﬁy(Al, ..., \g) € nU(g) if ¢ < j. Hence by denoting

0 if i<n,
Wi = . .
€; if i>mn,
(3.11) ~
=30 if j<n or j>j
J € if j>n and j<j,
we have

(3.12)  FE(A,..., )
_ k-1 ; kot
= F* ()\17_“’)%71)(111._)\k_f_z—l—wi)—i—wiFﬁ (Ayeeiy A1)

i—1
=D ER O Aker) mod Ulg)n,
p=1

(3.13)  FE i (M. p)
= FiiO, M) (Figr — A+ i —wl )+ wi PPN Akm)
+ Fyi1 Fi Y (A, oo, Ak—1)  mod U(g)n.
Now we give the main result in this section:

Proposition 3.4. Suppose that g = gl,, or 02, or 02,41 orsp,, and that F is given
by (3.4). Let © = {n1 < n2 < --- < nr = n} be a sequence of positive integers.
Putnl, =n, —n,_1 forv=1,..., L with ng = 0 and fix a positive number k. Let
U1, .-t be complex numbers. Put ng =0 and n, =n for v > L and define

eW)=p if np_1 <v<ny,
J()i =U@n+ > U (@) (Fy — tiow) + Mo )-1)-
v=1

Ifg=gl,, we put H(O,p1,...,pur) = FX(uy,...,ur).
If g = sp,, or oay, we put

H(@a,ula"'a,uL) :FQL(Mlv"'7ML7
—p1—ny+2n+96,...,—pr —ny +2n+9).
If g = 0941, we put
H(@vﬂlv"'ﬂu’L) :F2L+1(/’[’17"'7ML7na
—p1—ny+2n,...,—uL —nh_q +2n).

Moreover we define

g(@nulv s 7/~LL71) = F2L_1(M17 ceeyML—-1,ML—1,

—pr—ny+2n+6,...,—pur_1 —np_, +2n+9).
Here
1 if 8= 5Py,
(3.14) 0=40 if g=o02,41 or gl,,

-1 if g=o095,.
i) The off-diagonal elements of F*(u1, ..., ux) satisfy
Fi’}(ul,...,pk)zo mod U(g)n if > j,
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Ff(p,...,m) =0 mod al(g) if i< j.
ii) If i < n, then
Fli(pa, s )
_ 0 mod J(pu); if i < ny,
B {Hﬁ_l(ﬂkﬂ —py—mnl)  mod J(u); if ng<i< g
iii) If i < n, then

k
F¢i+1(/11» cees Hk)
-1 k

= (H(M — [y — My, — Ny + 1) H (e = pw — ng—1 + i))FiiJrl
v=1 v=4+1

mod j(u)l if ng_1<i<ng and k>{.
iv) Suppose g = 0a,, 0T 09,41 o7 5p,,. Then
Hii(©,p1,...,pr) =0 mod J(u), for i=1,...,N.
In particular, if pp, = np_1, then
Efii(@,ul,...,uL_l) =0 mod j(,u)n for i=1,...,N
and

ﬂnn+l(67 /4”17 .. ),LLLfl)
L-1

(0" (T + 1l =) + 1), =10 = 8)) P

v=1

mod U(g)J (1)n-

Proof. Put FZ;-(,u) = Filz»(ul,...,,uk) for simplicity. If ¢ < n, it follows from
(3.12) that

Fi]iLliJrl(M) _Fﬁ(ﬂ) = Fi]:jl%-f—l(ﬂ)(FiJrl — pix 1) —Fﬁfl(u)(Fi —px+i) mod U(g)n
and therefore by the induction on k we have

(3.15) Fli(p) = Fi’iuﬂ(ﬂ) mod U(g)n + U(g)(Fit1 — Fi).

Here we note that F,.1 — F, € JN(,u)W if ny_1 < v < ny. Hence we have

FEu) + J()n, = FF (u) + J(1)p, for my_y <i<ny, and 1<¢<L.

NneNyg
Put s, = n, —n,—1 and introduce polynomials f(k, ) of (u1,..., 45, S1,...,5L)
with ¢ < L so that
(3.16) Ef (.o omi) = f(k,€) mod J(p)n,.

Similarly for ¢ with ny_1 < i < ng, we put t = pp —ny_1 + ¢ and define polynomials
g(k,?) of (t,p1,..., 1L, 51,...,5L) so that

(3.17) Fz‘]erl(/j'la ooy ik) = g(k, ) Eiirr mod j(ﬂ)z

Then we have

1 if k=0,
fk,0) = f(k_M)(M_Mk)_efsyf(k—Lu) if k>1,
(3.18) =t

1 if k=1,
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We will first prove f(k,£) = 0 if k& > £ by the induction on ¢. Putting ¢ = 1
in (3.18), we have f(k,1) = f(k—1,1)(u1 — pux) and f(1,1) = 0 and therefore
F(k,1) = 0for k> 1. Thenif k > £+1, we have f(k, £+1) = f(k—1,641)(ser1 —
LE) — Zi:l suf(k—1,v) = f(k — 1,0+ 1)(pes1 — px) by the hypothesis of the
induction. Hence we have f(k,£+ 1) =0 for k > £+ 1 by the induction on k.

Putting e = pe—1 + s¢—1 in (3.18), we have f(k,¢) — f(k, ¢ —1) = f(k—1,¢) —
f(k—1,0) =--- =0 and therefore f(¢ —1,¢)|,,=p, 1+s._, = 0. Hence there exist
polynomials h(¢) with f(¢ —1,€) = h(€)(pee — fre—1 — S¢—1). Then (3.18) shows

h(O) (e — pre—1 = se—1) = f(€ = 2,0)(pe — pre—1) — se—1f(€ = 2,0 —1).

It follows from (3.18) that f(k, ¢) is a polynomial of degree at most 1 with respect to
se—1 because f(k,v) does not contain sy_; for v < £. Hence h(¢) = f(£—2,£)|5,_,—o-
Moreover by putting s;—; = 0 in (3.18), it is clear that f(¢ — 2,£)|s,_,=0 does not
contain py—1. Hence h(¢) = f(£ — 2,4 —1)|u,_,1»p, and we get

-1

(3.19) fll—1,0) = H(MZ_MV_3V>

v=1

by the induction on ¢. Thus we have ii).
Now we put

-1
(3.20) FE=1,00 =" (v, 0) (e = prs1) (1 = por2) - (1o — pre—1)
v=0
with homogeneous polynomials ¢(v, £) of (p1,. .., fe—1,51,...,8¢—1) with degree v.

Here ¢(v,£) does not contain py. Then by the induction on k =¢—1,4—2,...,0,
(3.18) shows

k
Flhy ) =" (v, 0) (e = posr) (e = p2) -+ (e — px),

v=0

(3.21) -
—Zsl,f(k— 1,v) = c(k, )

because Zf;ll suf(k —1,v) does not contain pp. We will show

-1

(3.22) 90,0 = St — o)t — 1)+ (t — ) f (8, )
-

(3.23) = || (t— 1 —su).

Note that (3.22) is a direct consequence of (3.18). Denoting
-1

gk (0) = e, 0) (e = posr) -+ (e — pr—1) (e — o) (¢ = priesr) -+ (6 = pre—1)
v=0

for k=0,...,f—1, we have

gr—1(£) — gi(€)
k—1

=) W, O)(pe = 1) -+ (pe — po—1)(E = pue) (€ = proger) -+ (¢ = pe—1)
v=0

=(t—pe)(t —po—1) -+ (t = pr41) f(k = 1,0)
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from (3.21) and therefore (3.22) shows

-1

~

gl 0) = ge1(6) + > (gr-1(6) = gr(£)) = go(€) = f(£ — 1,0)| ot

g

k=1
which implies (3.23). Since f(k,¢) =0 for k > ¢, (3.18) shows
—1 k
(3.24) Ht—u,,—s H(t—uu) if k>4,
v=1 v=_0+1

from which iii) follows.
In general we have proved the following lemma.

Lemma 3.5. The functions f(k,¢) and g(k,£) of p1, 2, ..., 81, S2,... and t which
are recursively defined by (3.18) satisfy (3.19), (3.24) and f(k,¢) =0 fork > £ > 1.
Now suppose g = sp,, or 02,. Then

n

(3.25) Frlf+1n+1( ) = Frlf+11n+1(ﬂ)(Fn+1 — pig) + Z(F7]f+11n+l( ) — F;Lu_l(ﬂ))

v=1

+O(Fy s (1) = Friy ') =0 mod U(g)n.

Hence

Fr]f+1n+1( )_Fk (1)
(3.26) = va—i—lln—s—l(/”’)(Fn-l-l — A1+ 8) = Fp (1) (Fo — ik + 1+ 6)
=0 mod U(g)n+U(g)(Frnt1 — Fn)

by the induction on k and
(3.27)

FYiipga(p) =0 mod ZU VER (1) + U(g)n + U(8) (Frgy — e + 1+ 0).
Since Fj,41 = —F),, we have from (3.25)

Frni(pa,opponp1) =0 mod J(wn,_, + Y U@)F,

v=nr_1+1
in the case py, = nr—1 and from (3.27) with —(pur —np—1) —pr41 +n+06=0
Fr (g, —pr+np1+n+0) =0 mod J(u)n.
Suppose i < n. Then

Fii(n) = Fg~ () (Fi = +Z = Fy () + 0(F5 () = FigmH(w)

mod U(g)n

and therefore
(3.28)
Fh yein(0) — FEn) = AL ) (Fiay — i+ 14 0) — FE7 ()(Fy — o+ 40)
+ 5(Fk 111 (1) = Fﬁfl(u)) mod U (g)
=0 mod U(g)n+U(g)(Fi — Fi—1) + U(g)(Fi— — F}),

np—1

Ff o (n)=0 modz @) FE (1) + Ug)n + U(g)(Fn, — pur + 7 — 1+ 0).
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Note that Fi, — pp+np =149 = (Fp, + pip — Np—1) — fe — plp +1p—1 — 1 +2n4-9.
Since F; = —F,,, we have
(3.29) FF o5 (n) = FE(p) mod J(p), for m, <i<n,
and hence by the induction on p=L,L —1,...,1, we have
(3.30) F,ff,;:l Pur, .o opp, —pr +np—1 —np + 2n + 4,

=y F N1 —np+2n+6) =0 mod J(u),
and if uy = np_1, then
(3.31) Fanpp(ul, e s BL—1,ML—1, -1 F NL—2 —Np_1 + 2n + 6,

=ty + 1y 1 —np+2n40) =0 mod J(u)n.
Suppose pur, =nr—1 and g = sp,,. Then from (3.13) we have

(3.32)
F7Iz€n+1( ) = anil( )(Frgins1 — pe +n+0) + an+1FTlf7:1(u) mod U(g)n
k
=Floaw [[ (~mw+n+6) mod J(u), if k>L.
v=L+1
It follows from Lemma 3.5 with t = n + 1 that
L—1 L—-1
Hnn+1(@v ©) = Fanta H (= +ny—1 — 1y + 0 +9) H (o = Ny—1 + 1y — n)
v=1 v=

mod J(ft)y.

Thus we have proved iv).
Lastly suppose g = 02,4+1. Note that F,,;+1 =0 and Fj, 4o = —F,. Then

Frlf+1n+1( )= Fr]f+11n+1( nt1 — Hk) + Z Frlf+11n+1 Fykx;l(ﬂ)) mod U(g)n

=0 mod ZU VEE (1) + U (@) (—pn + 1),

n+1
Fr’f+2n+2(ﬂ) = Frlf;21n+2 (Ft2 — pi) + Z(F:;§n+2(ﬂ) - incu_l(ﬂ))
v=1
— (FYiania(w) = Fiy ' (1) mod U(g)n
n+1
=0 mod ZU VEEY () + U(g) (= Fp — pi + 1)
and
Ffffnﬂ(ul, .. pr,n) =0 mod j(,u)n,
Frﬁ?nﬁ(ﬂb s pip,n,—pir +np—1+n) =0 mod j(u)n,
Since
F’r’eranrl( ) - an( ) = Frlf+11n+1(Fn+1 — g +n) — Fr'fﬁl(Fn — g +n)
mod U(g)n

Ff]f+2n+2(ﬂ) - Fv]f+1n+1(ﬂ) = F:;21n+2(Fn+2 — pig +n) — Frlf—zlln—i-l(FTH—l — pg + 1)
(Frlf+11n+1( ) - Frlfn_l(lj’)) mOd U(g)n,
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we have

Fyonya (1) = Fyl i ga () = Fiiy (i) mod U(gin+ U(g)Fy
and

FnL+1n+1(H) = F7%+2n+2(:u’) =0 mod J(u)n if pr=ng 1.
Note that (3.28) is valid if i < n. But since Fr, —pp+np —1+0=—pp — (Fy, —
Up +Np—1) — fp + Np_1 — Ny + 20, we have

Fgfﬁ_p(ul,...,uun, —pr +nr_1—nr+2n,...,—pp +np_1 — Ny + Qn) =0

mod J (1),

forp=1L,L—1,...,1. Similarly we have (3.31) with 6 = 0 if u;, = ny_1. Moreover
(3.32) is valid with § = 0 and we have iv) as in the case of g = sp,,. O

4. GENERALIZED VERMA MODULES

In this section we define by (4.14) a two-sided ideal of U¢(g) associated to every
generalized Verma module of the scalar type for the classical Lie algebra g. We have
Theorem 4.4 which shows that the ideal describes the gap between the generalized
Verma module and the usual Verma module and then Corollary 4.6 says that the
ideal equals the annihilator of the generalized Verma module. In the classical limit,
an explicit generator system of every semisimple co-adjoint orbit of g is given in
Theorem 4.11.

The ideal is constructed from a polynomial of a matrix with elements in g and
the polynomial is proved to be a minimal polynomial in a certain sense (cf. Propo-
sition 4.16 and 4.18). Lastly in this section Theorem 4.19 gives a description of
the image of the Harish-Chandra homomorphism of any polynomial function of the
matrix (E;;) € M(n,g).

Retain the notation in the previous section. Let © = {(0 <)n; < ng < -+ <
nr(=n)} be the sequence of strictly increasing positive integers ending at n. Put

L ng L—1 ng
%:ZZEmd%:ZZE
k=11i=1 k=1 1=1

Recall that F; = Fj;, F = (Fl) € M(N,g), n = Zi>j (CFl'j, a = ZiCFiv n=
>i<;CFij and g = n® a®n. Note that Fj; = E;; in the case g = gl,, and
F,j = E;j + 04(E;;) in the case g = 02,41, §p,, O 02,,. Here oy is the involution of
gly to define g in (3.1) so that g is the subalgebra of gly fixed by oy4. Let G be
the analytic subgroup of GL(N,C) with the Lie algebra g. Namely G = GL(n,C),
O(2n +1,C), Sp(n,C) or O(2n,C).

Define

me = {X € g; ad(Heo)X = 0},
(4.1) ne = {X en; (X,me) =0}, o = {X €10 (X, me) =0},
P = me + ne.
We similarly define mg, ng, fig and pg replacing © by © in the above definition.

Then n = ng 5. ), B ="N{12. .0}, & = a12 . ,) and pe and pg are parabolic
subalgebras of g containing the Borel subalgebra b =n + a.
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Let {e1,...,e,} be the dual bases of {F1, ..., F,}. Then the fundamental system
U(a) for the pair (n,a) is

{ea —e1,e3—ea,...,en —€n_1} if g=gl,,,
— 61, €3 762500y - -1, ifg=o )
(42)  W(a)= {ea —e1, e3 — ez €n — €n—1,—C€n} if g = 02n 11
{ea —e1,e3—ea,...,en —en_1,—2¢e,} if g =sp,,
{ea —e1,e3—€a,...,ep —€n_1,—€n —€n_1} 1if g = 09,.
Weput aj =ejp1—ejforj=1,...,n—1and o, = —e,, or —2e,, or —e, — e, if
g = 02,41 O 5P, OF 0oy, respectively. Then the fundamental system for (mg Nn, a)
is ¥(a) \ {an,,--.,an,_, ; and that for (mg Nn,a) is
\Il(a) \{anu"'aanL,laan} lfg = 02p+1 OT Epn,
U(a)\ {anyy- - san, ,} ifg=o09, and ny,_1 #n —1,
U(a)\{an,s- -y ant ifg=o09, andnyp_1 =n—1.

Then the Dynkin diagram of g is as follows:

(€SN e%) Qp_2 Qp_1 (€3N e%) Qp—1 0n
[ o—Oo—:++—0—O0 oO—O0—:++—0—=0
at, 02n+1
(4.3) ap Qg Qp—1 0n a1 Qo Op—2 Op_1
oO—O0—: .+ —0<—0 o—O0o—:+++—0——0
5pn O2p l
Qi

Fix A = (A1,...,Az) € CL and define a character \g of pe

n n
(4.4) Xo(X +) CiF)=> Cidgu for X € no + [me, me).
i=1 i=1
We similarly define a character A\g of pg if A = 0.
We introduce the homogenized universal enveloping algebra

(4.5) Us(g) = <i®k9> J(XQY -Y®X—-€¢X,Y]; X, Y eg).
k=0

of g as in [O4]. Here € is a central element of U¢(g). Let U¢(g)™ be the image of
Yo, ®@%g in U(g) and let Z¢(g) be the subalgebra of G-invariants of U¢(g). Fix
generators Aq,..., A, of Z¢(g) so that

A eU@Y (1<) <n) it g — gl
(4.6) AjeU(g)® (1<j<n) if g = 02n41 OF 5P,
A; eU(g)?) (1<j<n), A, €U(g)™ if g=o9,.

If g = 02, we assume that A,, changes into —A,, by the outer automorphism of
02y, which maps (Fi,..., F,-1,F,) to (Fy,..., F,_1,—F,). Moreover put

J6(N) = > U(g)(X —re(X)), Mgs(A) =U(g)/J6(N),

Xepeo
(4.7) Js(A) = X;pi Us(g)(X = Xa(X)), MgA) =U(g)/Jg(N),
J(Ne) = XZ@ U(g)(X — de(X)), M<(Xe) =Uc(g)/J* (o).

For a U¢(g)-module M the annihilator of M is denoted by Ann(M) and put
Anng(M) = (,cqAd(g) Ann(M). Note that Anng(M) = Ann(M) if € # 0.



16 TOSHIO OSHIMA

When e = 1, U¢(g) is the universal enveloping algebra U(g) of g and we will some-
times omit the superfix € for J§(\) and M§(A) etc. Then Mg(A) and Mg(A) are
generalized Verma modules which are quotients of the Verma module M (\g).

Remark 4.1. i) Suppose g = 02,. Then we have not considered the parabolic
subalgebra p such that the fundamental system for (m,,a) contains a,,—; and does
not contains «,,. But this is reduced to the case when it contains «,, and does not
contains a,,_1 by the outer automorphism of 0g,,.

ii) Considering the above remark, the parabolic subalgebra p containing the
Borel subalgebra b corresponds to pe or pg and therefore we will sometimes use
the notation my, ny, 0y, Ay, J5(A), Mg (A) and M<(A,) for mer, ner, ner, Ae, L (A),
Mg, (X) and M¢()\e), respectively, by this correspondence. Note that ©’ = © means
An =0.

Let p € a* with p(H) = £ Trace(ad(H))|s for H € a. Then with § in (3.14)

M=

l/—?)ey lfg:g[T”

N
Il
-

N
Il
=
—~ —~ —~ —~
N
Il
=

y_n—%)e,/: Z(V—TL_M—Tl)eV ifg:02n+17

M=

(48) p= n
v—-n—1e, =3 (v—n—23)e, if g =sp,,,

M=

S
I
-

n
l/fn)eyzz an—%)ey if g = o02,.

M=

N
Il
—
<
Il
-

We define A = (Ay,...,\,) € C" by
(4.9) Nola +€p = A1e1 + Asea + - + Ay
For P € U¢(g) let w(P) and @w(P) denotes the elements of S(a) ~ U(a) with
P —w(P) € alU(g) + U(g)n,

(4.10) O(P)(p+ep) = w(P)(u) for Vu € a*.

Then @ induces the Harish-Chandra isomorphism
(4.11) w:2) = S@W.

Here W is the Weyl group for the pair (g,a) and S(a)" denotes the totality of
W-invariants in S(a).

Definition 4.2. Retain the above notation and define polynomials

L
Qé(g[n7xa )‘) = H (‘T - >\J - nj—1€)7

j=1

46 (02n4132,A) = (# — ne) [[ (x — Aj —nj—1e)(z + Aj + (n; — 2n)e),
(4.12) I J
a6(sp,i @, A) = [ (x = Aj —nj_1e)(@ + Aj + (nj — 2n — 1)e),
j=1
L
q§(02n;2,N) = [[ (@ — Aj —nj_ie)(x + Aj + (n; —2n+ 1)e)
j=1

L
=1

and if g = sp,, Or 02,41 O 02y,

L—1
(4.13) qg(g:z,N\) = (x —np_1€) H (x = Aj —nj_1e)(x+ A+ (n; —2n — d)e)
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with the § given by (3.3). Furthermore define two-sided ideals of U¢(g)

N
60 = 3 U@)ib(e F Ay + 3 US(e) (85— w(8,)0)),

(4.14) e et
I5(0) = X X US(@)as (6 F N + X US(@) (4 = w(dy) (o))

i=1j=1 JjEJ

with
J={1,2,...,L—1} if g=gl,,

(415) J:{7172a~~'aL}7J:{172a"'7L71} ng:UQn—O—lv
J=J={L2,...,L -1} it g =1sp,,,
J=J={1,2,...,L -1} U {n} if g = 0gy,.

Remark 4.3. i) Let p(x) and g(z) be monic polynomials with ¢(z) € C[z]p(z). Then

Z:lp(F)ii € Z(9)
N
S p(F)i — 3 F®P € aU<(g) + Ue(g)n + U*(g)(desr—D)
i=1 i=1
a(Flig e > U(e)p(F)u
1<p<N
102N
Hence it is clear
(4.16) I&(N) > > Us w(D)(Xe)) for © =©O and 6.
Dez<(g)

Note that it is known that the right hand side of the above equals Anng(M(Ao)).
ii) I§()\) and I§(A) are homogeneous ideals with respect to (g, A, €).

Now we give the main theorem in this paper:
Theorem 4.4. i) Let g = gl,,, 02,41, 5p,, 07 02,. Then

I§(N) € Ann(Mg(N)),
(4.17) 368 Fy N)iir1 =75(9;0, M) Fii1 mod J(Xe) if ng_1 <1i<ng,

Jo(N) = I65(N) + J*(Xe) if r(8:0,)) # 0.
Here
k-1 L
(00,0 = [T = A = (nw —i)e) J] (k= A — (o1 — i)e)

v=1 v=k+1

k-1 L B

= (A = An,) H (Ait1 = Any_y41)
v=1 v=k+1

ri (89,5 0, A) = 77 (020; O, A)

L
A T Ok + A+ (ny — 20— 6+ i)e)
v=1
-1 Lo L
= H(Ai*/\nu) H (Nit1 = Ay y41 H Ait1 + An,
v=1 v=k+1 v=1

L
r§(02n4+1; 0, \) = r5(gl,; O, \) ()\k —(n— z)e) H ()\;C + A+ (ny, —2n+ z)e)
v=1
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k—1 L L

1 - -

=5+ Niet) [TV =) TT ir = Xami0) [T ier +20)
v=1 v=k+1 v=1

if ng_1 < i <ng and then

(4.18) r(:0,A) = H IT ri@e.n.

k=1np_1<i<ng

ii) Suppose Ay, = 0. If g = sp,, or 02,11 Or 02,, then

(4.19)

IS (X) € Ann(Mg(N)),

45(8; F, Niig1 = 75(8:©, ) Fiip1 - mod J¢(Xe) if 1o(i) =1e(i+1),
qf:)(g,F )\)nnJrl =7 (97 @ )\) nn+1 mOd JG()‘@) lf g 7& 02717
JEN) =I§(\) + J¢(Ne) if 7¢(g;0,)) #0

with denoting
) k—1 L
i@ 0,0) =[] =X = (nw —i)e) [T (A=A = (w1 — i)e)
v=1 v=k+1
L—1
JT %+ A+ (n = 20— 6+ i)e)
v=1
k=1 L -
=T =) TT Cirr = i40) H i+1+ An,)
v=1 v=k+1 v=1
if np_1<i< Nk,
7o(3:0,0) = (=1)"~ 1H (A + (n, —n)e) (A + (n, —n — d)e)
L—1_ _
(=t An, (An, = An) if g =sp,,,
= i1

(=12 T Ay — An)? if g = 0241,
v=1
and

~ L _
7(02,; 0, ) = ri(g; 0, ),
(4.20) (02 ) kl_ll - IIZIKM ( )

7€(g; 0, A) = 7(02,;0, \)7(9;0,\)  if g =sp,, or 02,41
Proof. Define the parameters p, in Proposition 3.4 by
Ho =X +n,_1 for 1 <v <L
ool =My — Ny +2n+6=—p, —n, +2n+3§ for1 <v <L,
H2L+1 = — 1.
Then in the proposition H(O, u1,...,ur) = Hf;l(F — ) with L' = L, 2L, 2L or

2L +11if g = gl,,, sp,,, 02, OF 02,41, respectively. Moreover H(O, i1, ..., pp—1) =
1257 (F — ) with A = 0. Note that if £ < L,

fo — fy — M, — Mg+ 1= A+ — Ay — Ny,
e — [y —Me_1+T=Xg+i— X, —ny_1,
e — potr, — N1 +i= A +i+ X, +n, —2n -9,
— p2r41 —Ne—1+ 1= +i+n.
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For © = © or © Proposition 3.4 and the isomorphism U(g) ~ U¢(g) show that
4o/ (8 F\A)i; =0 mod aU(g) + J(Aer),

which assures I§, (A\) C Ann(M§, (X)) (cf. [O4, Lemma 2.11 and Remark 2.12])
because Mg, ()) is irreducible g-module for generic (A, ¢) and > Cq§, (g; F, A);; is
g-invariant.

Suppose g = 02,. Since I§ + J°(Ag) is stable under the outer automorphism
which maps a1 to ay, I§ + J¢(Xe) 2 Fy;y1 if and only if I§ + J(No) 3 Fyiyo.

Hence other statements of the theorem are direct consequences of Proposition 3.4.
Note that the functions in the theorem should be homogeneous with respect to
(z,9, A, €). O

Any zero of r¢(g;©’, A) in the above theorem corresponds to the hypersurface
defined by a root in X(g) except for the term A\iy1 + A, withi =n, —1landv =k
in the case when g = 09,,. Hence we have the following remark.

Remark 4.5. i) Suppose g = gl,,. Considering the weights with respect to a, we
have

(I(i)()\) + Je()\@)) NCEiit1 = <Q(€a(9§ F, N)iig1 + JE()\@)) NCE;i+1

as in the argument in [O4, §3]. Hence J§(\) = I§(N\) + J¢(Xe) if and only if

r(g:0,\) # 0.

ii) If the infinitesimal character of M¢(Ag) is regular (resp. strongly regular) in the

case when g = gl,,, 02,41 OF 5p,, (r€sp. 02,,), then 7¢(g; ©, \) # 0 and 7¢(g; ©, \) # 0.
Here we defined that the infinitesimal character p is strongly regular if it is not

fixed by any non-trivial element of the group of automorphisms of the root system.

Note that the group is generated by the reflections with respect to the simple roots

and the automorphisms of the Dynkin diagram.

iii) Suppose g = 02,,. Then r¢(g; 0, \) # 0 if

(ola+ep,0) £ 0 for a € (a),

(Mola+€p,2a;+ - +20m o+ an_1+a,) #0 forj=2,...,n—1

under the notation in (4.3).

(4.21)

It is proved by [BG] and [Jo] that for u € a* the map

(4.22) {I; I are the two-sided ideals of U(g) with I > Ann(M(p))}
51— I+ J(u) e {J; J are the left ideals of U(g) with J D J(u)}

is injective if p + p is dominant

(4.23) 2<,u<+p,>a> ¢ {—1,-2,...} for any root « for the pair (n,a).
oo

Under the notation (4.9) with u = Ag|q and € = 1 the condition (4.23) is equal to
Ni—XN¢{1,2,...} (1<i<j<n) if g = gl,,

(4.24) NEXNE{1,2,...}) (1<i<j<n) if g = 09y,

' NiEXN, Mg {1,2,...} (1<i<j<n,1<k<n) ifg=sp,,

NN, 20 ¢ {1,2,... (1<i<ji<n,1<k<n) ifg=o02,41.

Note that

(4.25) Ni—Aip1=—1 if np_y <i<npand1<k<L.

Corollary 4.6. i) If Ae|q + p is dominant and r(g;©’,\) # 0, then

(4.26) Ann(Mer (X)) = 14 (N)

for ® =0 orO.
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ii) Suppose the infinitesimal character Mer(\) is regular (resp. strongly regular)
in the case when g = 09, with © = © or g = gl,, or g = 09,41 0r g = 8p,
(resp. g = 09y, with ©' = ©). Then (4.26) holds.

Proof. i) Since Jo/(A) = Ier(A) + J(Ae') C ADD(M@/()\)) + J(Xer) C Jo(A) by
Theorem 4.4, we have (4.26) by the injectivity of (4.22).

ii) Let U(mg,a) denote the fundamental system for (mg,a). Here ¥(mg,a) C
U(a). Fix w € W satisfying w¥(mg,a) C ¥(a). Define w.©" and w.\ so that
my,.e = Ad(w)me: and w.\A = wA € C*. Then [Ja, Corollary 15.27] says

(4.27) Ann(Mer(N)) = Ann (Mo (w.N)).

For example, Ann(M{kyn}()\l, )\2)) = Ann(M{n_k}n} Ao +Ek, M\ —n+ k)) Here we
note that ger(g; 2, \) does not change under this transformation.

Case g = gl,,. By a permutation of the L blocks {{nk_l +1,...,nk}s k =
1,.. .7L}7 we may assume §R5\n0+1 < SRanﬂ <o < %thﬁl. Here e denotes
the real part of ¢ for ¢ € C. Since Mg()) has a regular infinitesimal character,
(4.24) and (4.25) assure that A\g|q + p is dominant and r!(g;©, ) # 0. Hence we
have ii) from 1i).

Case g = sp,, or 09,4+1. First suppose @ = ©. We may assume §R5\n0+1 <

RAny11 <+ <R\, 41 < 0. Since Mo () has a regular infinitesimal character,

Aela+p is dominant and we have ii). Here we note that if A, +1 < 0 and Ay, ,, >0,
then A\, ., ¢ 27Z because \; + A\jy1 # 0 if ng <i <ngqy.
_Next suppose © = ©. Then we may assume RAo+1 < RApyq1 < -0 <

RAny 41 < 0and A, = —%EL (cf. (3.14)). Hence we similarly have ii).

Case g = 02,,. The map e, — —e, corresponds to an outer automorphism of
02, which does not change b. Combining the corresponding automorphism of the
universal enveloping algebra with the above argument, we may have the same as-
sumption on A as in the previous case. Thus we similarly have ii). [l

Remark 4.7. Suppose g = gl,,.

i) In [O4] another generator system of Anng (Mg (X)) is given for every (6, ¢, A).
It is interesting to express them by the generators constructed in this note, which
is done by [Sa] when pg is a maximal parabolic subalgebra. In the case of the
minimal parabolic subalgebra, that is, in the case of the central elements of U(g), it
is studied by [I1], [I12] and [Um]. In general, it may be considered as a generalization
of Newton’s formula for symmetric polynomials.

ii) Put © = {k,n} with 1 <k < n and fix A = (A1, \2) € C%. Then

s regular & A — A\g ¢ {1,2,...,n— 1},
A is dominant < A\; — A2 ¢ {2,3,4,...},
Jo(N) =Io(N) +J(Ne) & A1 — A2 ¢ {1,2,... ,max{k,n — k} — 1},
Jo(A) = Ann(Me (X)) + J(Ae) & A1 — A2 ¢ {1,2,... ,min{k,n — k, % — 1} }.

Here the last equivalence follows from [O4, Theorem 3.1] and the one before last is
clear from Remark 4.5 i).

Remark 4.8. Considering the m-th exterior product of the natural representa-
tion of gl,,, we may put p(F) = (EI'])#Iz#sz € M((:l),U(g)) in Lemma 2.1,
where I = {i1,...,im}, J = {J1,-+-sm} with 1 < 43 < -+ < 4p, < n and

1< j1 << jm <nand Ejj = det(E,'”ju + (p — m)fdiuju)lgugm- Here
1<v<m

det(Aij) = ves, Aoy Ag(myn- The study of f(p(E)) for polynomials f(x)
may be interesting because it may be a quantization of the ideals of the rank vari-
eties (cf. [ES]) defined by the condition rank f(A) = m for A € M(n,C).
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Remark 4.9. For g = o0, or sp, we may expect an explicit generator system for
Anng(Mg (X)) which are of the same type given by [O4] for gl,. It should be a
quantization of determinants and Pfaffians (and elementary divisors for the singular
case). The quantization of Pfaffians for o,, is studied by [12], [IU] and [Od] etc. It
is shown by [Od] that it gives Ann(M,(\)) for the expected p.

Remark 4.10. We have considered }, ; Cf(p(E));; for the construction of a two-
sided ideal of U(g) with a required property. We may pick up a g-invariant sub-
space V of 37, . Cf(p(E))i; to get a refined result. Moreover for a certain prob-
lem (cf. [O1]) related to a symmetric pair (g, ) it is useful to study ¢-invariant
subspaces of 2, ; Cf(p(£));; which should have required zeros under the map of
Harish-Chandra homomorphism for the pair. This will be discussed in another
paper [OSh].

In the case when € = 0 we have the following.

Theorem 4.11. Let A € a and suppose that the centralizer of A in g equals mer
with ©' = O or ©. If g = 02,, we moreover assume \; # 0 fori=1,...,n. Then

1§, (N) = {f € S(9); flaa)» =0}

Proof. Tt is clear from Theorem 4.4 that the element of I3,()\) vanishes on A
and therefore I3, ()\) vanishes on Ad(G)\ because I, ()\) is G-stable.

We will prove that the dimension of the space Zfil Zjvzl Cdq, (g; F, \)ijlx is
not smaller than dimmg,. This is shown by the direct calculation and it is almost
the same in any case and therefore we give it in the case when g = sp,, and ©’ = ©.

Put ©® = {ny,...,np}and A = (A\1,...,Ar). Note that A\, = 0 and qoé(spn;x, A) =
Tlicper(@=X)(@4+N). Ifngg <i<ngandng .y <j<ngandk <L, we
have

dgd(spn; F N ijlao =200 [ O = M)k + A)dF;.
1<v<L, v#k
Ifnp 1 <i<2n—np_1and np_1 <2n—ngr_1, then

dgd(spai F, Nijho = [ (=M)(W)dE;.

1<v<L

The assumption of the proposition implies Ay, # 0, A, # 0 and A7 # A2 in the
above and therefore we get the required result.

PuuV={Xecg; f(X)=0 (Vf € lo (M)} Since [ g] = ne + fig, the tangent
space of Ad(G)A at A is isomorphic ng +1g. Since Ad(G)A C V, it follows from the
above calculation of the dimension that Ad(G)X and V are equal in a neighborhood
of A. In particular, V is non-singular at \.

Let X € g with f(X) =0 for all f € I2,()\). We will show X € Ad(G)), which
completes the proof of the theorem. Let X = X+ X, be the Jordan decomposition
of X. Here X, is semisimple and X, is nilpotent. By the action of the element of
Ad(G), we may assume X, € a and X,, € n. Then it is clear that f(X,+tX,) =0
for all f € I3, (\) and ¢ € C. Moreover it is also clear that X is a transformation
of Ao under a suitable element of the Weyl group of the root system for the pair
(g,a) and therefore we may assume X, = A. Since the tangent space of V and A
is isomorphic to ng + g, we have X,, € ng. Hence X,, = 0 because [ X, X,,] = 0.
and therefore X € Ad(G)A. O

Remark 4.12. Theorem 4.11 shows that we have constructed a generator system of
the defining ideal of the adjoint orbit of any semisimple element of any classical Lie
algebra. In fact, for any A € a in the orbit the centralizer of A in g is mg or mg or
g with a suitable ©.
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On the other hand [O4] constructed a generator system of the ideal corresponding
to the closure of an arbitrary conjugacy class of gl,,, which is of a different type
from the one given here.

We will generalize the Cayley-Hamilton theorem in the linear algebra. Put

ﬁ(m—Fi—%e) if g = gl,,,

i=1

[1(z — F; — ne) (z + F; — ne) if g =sp,,,
JE($) =%

[1(z—F, —(n—1))(z+ F, — (n—1)e) if g = o2y,

i=1

(z —ne) [] (z—F,—(n—3)e)(z+F,— (n—1)e) if g=02,41.

i=1
Here we note that if © = {1,2,...,n}, then n; = j, \i + nj_16 = X\; + (n + 5_71)6
and A\; + (n; — 2n — d)e = X; — (n + 252 )e. Since dg(z) € S(a)" [z], there exists
dyg(x) € Z¢(g)[x] with

(4.28) w(dg(x)) = dg(z),

which is equivalent to dg(z) = dg(x)(p) mod J(u—ep). Then Theorem 4.4 assures
dg(F) = dg(F)(1) = 0 mod J(p — ep). Hence w(dy(F'))(p) = 0 for any pu € a*
and therefore w(dy(F)) = 0, which assures dy(F) = 0 because ), ; Cdg(F);; is
g-invariant (cf. [O4, Lemma 2.12]). Thus we have the following corollary.

Corollary 4.13 (The Cayley-Hamilton theorem for the natural representation of
the classical Lie algebra g).
dg(F)=0.

Remark 4.14. This result for gl,, and o, is given by [Um] and [I2], respectively. A
much general result is given by [Go2] (cf. [00]).

Remark 4.15. Suppose g = gl,,. Then it follows from [O3] that
dg(x) = det(x — Fij — (Z — n)eéij) 1<i<n
1<5<n

In [O4] we define another generator system of Anng (Mg (X)) for any (O, X, €) by
using “elementary divisors” in place of the “minimal polynomial” ¢§(gl,,;x, A).

Proposition 4.16. Suppose g = gl,, and let © be its natural representation. Then
the characteristic polynomial of F = (EZJ) in U(g) equals di(z) and the minimal
polynomial of (F, M§(N)) equals q§(g; z, A).

Proof. Suppose € = 0 and identify the dual space g* of g with g by the bilinear
form (2.1). Put JQ(\)* = {X € g*;(X,Y) =0 (VY € J3(N))}. Then the condition
q(F)MJ(X) = 0 for a polynomial g(z) is equivalent to q(F)(J3(N\)*) = 0, which
also equivalent to g(Ag(\)) = 0 for a generic element Ag ) of J3(A)L because the
closure of Uyeqrin.c) 940,09~ " equals Uycarin.c) 9(JE(N))g™" (cf. [04, §2]). In

fact
A1 In’l
Aor Aolyy O
Aoy = | A Az Azl
Ay A Az o Al
with generic A;; € M(nj,n},C). Hence our minimal polynomial is the same as that

of Ag  in the linear algebra and the claim in the lemma for the minimal polynomial
is clear.
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We may assume ¢ = 1. Let p(z) be the minimal polynomial of (F, Mg(\))
with a fixed A\. Define a homogeneous and monic polynomial p(z,¢) of (x,€) with
p(z) = p(z,1). Then p(z,e)Mg(er) = 0 for € € C. If follows from the result in the
case € = 0 that the degree of p(x) should not be smaller than that of go(g;x, \).
Hence go(g; x, A) is the minimal polynomial for M§(A).

Since the degree of the minimal polynomial gg(g;x, A) for © = {1,2,...,n} is
n, the degree of the characteristic polynomial is not smaller than n. Hence dg(x)
is the characteristic polynomial. |

Definition 4.17. The non-zero element q(x, A\, €) € Clz, \, €] ~ S(ag/)[z, €] is called
the global minimal polynomial of (F, My (X)) if g(x, A, €) satisfies g(F, A, €)M, (A\) =0
for any (A, €) in the parameter space ag, x C and any other non-zero polynomial
whose degree with respect to z is smaller than that of g(z, A, €) does not satisfies
this.

Proposition 4.18. The polynomials ¢ (g;x,A) in Definition 4.2 are the global
minimal polynomials of (F, Me/(\)) for ® =0 and ©.

Proof. Let q(z, A, €) be a global minimal polynomial of (F, Mg/ ()\)). We may
assume ¢(z, \,0) is not zero by dividing by €* with an integer k if necessary. Put
€ = 0 and consider the generic A. Since g({(F,\), A\,0) = 0, the minimality of the
degree is clear. Here (F,\) = (A(F})d;;)1<i<n is a diagonal matrix in M(N,C). O

155N

Let f(z) be any polynomial in C[x]. We will give a characterization of the image
@(f(F)) under the Harish-Chandra homomorphism & defined by (4.10) in the case
of the natural representation of g = gl,,.

Theorem 4.19. Put f(x) = [[i~,(x — X\i). For sets A and B we denote by
Map(A4, B) the totality of the maps of A to B. For T € Map({l, oonk AL, 7m})

we put

() =) Cla,\¢d (Ejj — Ay =(me(j) = = 5 - )6)»
j=1
m.(j) =#{ve{l,....i—1h ) =70)} forj=1,....n.

Then for F = <E1> € M(n,gl,) we have

1<i<n
1<j<n

(4.29) S Cla A, da(f(F))y5 = N 1OV,

j=1 T7€Map({1,...,n},{1,...,m})
Moreover w(f(F)j) = 0 if i # j and the polynomial w(f(F'));;) is the unique
homogeneous element in Cla, A, €] belonging to the right hand side of (4.29) such
that W(f(F)jj)|x=e=0 = EJ;.

Proof. First note that w(f(F);j)le=0 = 6;; [ [y (Ej; — M) and @(f(F);;) are of

v=1
homogeneous of degree m with respect to (a, A, €).
We have already proved that w(f(F)i;) = 0 if i # j and w(f(F);;) = F}}

mod U¢(a)™~Y[)\]. Hence for any fixed A and e, the system of the equations
(4.30) G(f(F)n) = -+ = &(f(F)nn) = 0 for (En, ..., Enp) € C"

is in the complete intersection and has m™ roots counting their multiplicities. Hence
to prove (4.29) it is sufficient to show that

(4.31) ()\r(l) + (m.,-(l) — n; 1 )6, ce Arm) + (mT(n) — n; 1)6)

is a root for any 7 € Map({l, conh L. ,m}) and a generic (\,€) € C™HL.
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Fix any o € Map({1,...,n},{1,...,m}) which satisfies (i) < o(j) if 1 <i <
j < n. Define ©® = {ny,...,nr} so that 0 = ng < ny < --- < ny = n and that
the condition o(i) = o(ng) is equals to np—1 < i < ny for k = 1,...,L. Put
= (Ao(ni) + 106 ..., Ao(n,) + nr—1€). Then Theorem 4.4 shows that f(F);;
is in Ann(M/J§(p)). Here we note that pg + ep = Z?Zl (Ao(j) + (Mmo(j) +
2=L)e)e;. On the other hand, [O4, Theorem 2.12] determines the common zeros of

2
@(Ann(M/J§(1))) for € # 0. Namely they are (4.31) with 7 in

{T € Map({l, coonk {1 ,m}); #{v; T(v) =0(j)} =nj—n,_; for j = 1,...,L}.

For any 7 we have the above ¢ so that 7 is in this set and we have the theorem. [J

5. INTEGRAL TRANSFORMS ON GENERALIZED FLAG MANIFOLDS

Let g be a complex reductive Lie algebra and p be a parabolic subalgebra con-
taining a Borel subalgebra b. For a holomorphic character A of p we define left
ideals

(5.1) {Jpw = Y xep (X = AX)),

Jb()\) = ZXeb(X - /\(X))

of the universal enveloping algebra U(g) of g. Let I,(\) be the two-sided ideal of
U(g) which satisfies

(5.2) I,(\) C Jy(\).

Let G be a connected real semisimple Lie group and let P be a parabolic subgroup of
P such that the complexifications of Lie(G) and Lie(P) equal g and p, respectively.
Let Ly be a line bundle over G/P such that the local section of Ly is killed by
Jp(A). Then the image of any g-equivalent map of the space of sections of Ly over
an open subset of G/ P is killed by I,(A). Here the element of I, ()) is identified with
a left invariant differential operator but it may be identified with a right invariant
differential operator through the anti-automorphism of U(g) (X — —X, XY —
(=Y)(—X) for X, Y € g) because I,()\) is a two-sided ideal. If the g-equivariant
map is an integral transform to the space of functions on a homogeneous space X
of G or sections of a vector bundle over X, it is a natural question how the system
of differential equations induced from I, () characterizes the image.

The same problem may be considered when L) is the holomorphic line bundle
over the complexification of G/P.

5.1. Penrose transformations. Let G¢ be a reductive complex Lie group with
the Lie algebra g. Let G be a real from of G¢ and let P¢ be a parabolic subalgebra
of G¢ with the Lie algebra p and let V' be a G-orbit in G¢/Pc. Suppose O, is a
holomorphic line bundle over G¢/Pr which is killed by J,(\). Here the element of
Jp(A) is identified with a right invariant holomorphic differential operators on Ge.
Then the image of any G-equivariant map

(53) T:H{;(Gc/P({j,OA) — F

is killed by I,(A\). This is obvious because I,()) is a two-sided ideal. Here E is
usually a space of sections of a certain line (or vector) bundle over a homogeneous
space of G. In this case I, () is identified with a system of holomorphic differential
equations and we may identify the element of I,(\) as a left invariant differential
operator on G through the anti-automorphism of the universal enveloping algebra
or a right invariant differential operator on G.
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5.2. Poisson transformations. Let GG be a connected semisimple Lie group with
finite center, let K be a maximal compact subgroup of G and let P be a parabolic
subalgebra of G with the Langlands decomposition P = MAN and let P, be
a minimal parabolic subgroup with the Langlands decomposition P, = M,A,N,
satisfying M, ¢ M, A, D A, N, D N and P, C P. Let X\ be an element of the
complexification a* of the dual of the Lie algebra of A and put

B(G/P,Ly) = {f € B(G); f(xman) = a* f(z) (Ym € M, Ya € A, ¥Yn € N)}
which is the space of hyperfunction sections of spherical degenerate principal series.

Let p be a complexification of the Lie algebra of P. The Poisson transformation of
the space B(G/P, Ly) is defined by

(5.4) P B(G/P,Ly) — BG/K), s (PMf)(z) = /K F(ak)dk

with the normalized Haar measure dk on K. Let D(G/K) be the ring of invariant
differential operator of G and let x be the algebra homomorphism of D(G/K) to
C so that the image of P is in the solution space A(G/K, M) of the system

(5.5) My : Du=xA(D)u (VD e D(G/K))
for v € A(G/K). Here A(G/K) denotes the space of real analytic functions on
G/K.

Note that B(G/P, Ly) is the subspace of the space of hyperfunction sections of
spherical principal series

B(G/P,,Ly) = {f € B(G); f(xman) = a*f(z) (Ym € M,, Ya € A,, Vn € N,)}.
Here A is extended to the complexification a} of the dual of the Lie algebra ag of
A, so that it takes the value 0 on Lie(M) N Lie(A4,).

Theorem 5.1. Suppose that the Poisson transform
(5:6)  PYiBIG/Pa L)~ AG/K M), fro (PAD@) = [ fak)ak
K

for the boundary G/ P, of G/K is bijective. Assume the condition
(5.7) Jo(A) = I, (A) + Ju(A)

for a two-sided ideal I,(\) of U(g). Then the Poisson transform P> for the boundary
G/P is a G-isomorphism onto the simultaneous solution space of the system My
and the system defined by I,(X).

Proof. Since B(G/P, Ly) is a subspace of B(G/P,, Ly) and P* is a G-equivariant
map, the image of P, satisfies the systems M and I, ()).

Suppose the function v € A(G/K, M)) satisfies I,(\). Since the function
(P))~tu € B(G/P,, Ly) also satisfies I,(\), the condition (5.7) assures (P2) lu €
B(G/P, L)) because we may assume C ®g Lie(P,) D b. O

Remark 5.2. i) The above theorem with its proof is based on the idea given by [O3]
which explains it in the case when G = GL(n,R).

ii) The bijectivity of P, is equivalent to the condition e(\+ p) # 0 by [K-]. This
condition is introduced by [He] for the injectivity of P). Here

58 e =] {F(é?a% +”Z“+§)F(2<<§;fl>> +nr+m2m>}’

aesd

YT is the set of the positive roots for the pair (g, ag) so that Lie(IN) corresponds
to ©T. Moreover 5f = {a € F; La ¢ BT}, m, is the multiplicity of the root
aceXtandp=3Y

aext Mal.
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iii) Suppose G is simple and of the classical type and suppose the condition
e(A+p) # 0. Let I,(A\) be the system given by (4.14). Then if moreover the
infinitesimal character of B(G/P, L)) is regular (or strongly regular in the case
when Lie(G) equals 0y, or its real form), P* is G-isomorphic to the solution space
of the system of differential equations I, (\) on G/K since Theorem 4.4 assures (5.7).
This is because the natural map of Z(g) to D(G/K) is surjective and therefore it
follows from Remark 4.3 i) that M, is contained in I,(XA). Here the function on
G/K is identified with the right K-invariant function on G. Note that all the
assumptions are valid when A = 0.

iv) Let p, be the complexification of the Lie algebra of P, and put J,,(\) =
> xep, (X —A(X)). Then we may replace the assumption (5.7) by
(5.9) Jp(N) = L (A) + Jp, (A)
in Theorem 5.1, which is clear from its proof. Suppose that I, () is the system given
by (4.14). Then under the notation in Theorem 4.4, (5.9) is valid if 7{(g; ©’, \) # 0
for i ¢ © and moreover if 7¢(g; ©’, \) # 0 for g = 04,41 and sp,, in the case ©’ = O.

v) Owing to [K-] the abstract existence of the system of differential equations
characterizing the image of P* is clear (cf. [OSh]) but a certain existence theorem

of the system in the case A = 0 is given by [Jn]. A more precise study for this
problem including the relation to the Hua equations will be discussed in [OSh].

5.3. Intertwining operators. Retain the notation in §5.2. Let X and it be char-
acters of P and Py, respectively. Put

(5.10) B(G/Q,L:) = {f € B(G); f(zq) = 7(¢)"" f(z) (Vg€ Q)}
for (Q,7) = (P,\), (Po,A) and (Py,ji). Let j be a Cartan subalgebra of Lie(G)

containing a and let A be an element of the complexification of the dual of j. Assume
(5.7) and A(ef) = e~ for H € j. If there exists a G-equivariant bijective map

T B(G/Po,Ly) = B(G/Py, Ly),

’TﬁS‘(B(G /P, Ly)) is identical with the space of solutions of the system of differential
equations on B(G/ Py, L;) defined by I, (\).

5.4. Radon transformations. Let G be a connected real semisimple Lie group
and let P; and P, be maximal parabolic subgroups of G. If there exists a G-
equivariant map R : B(G/Py, Ly,) — B(G/P», Ly,) for certain characters \; of P;
under the notation (5.10), the image of R satisfies the system I, (). Here p and A
correspond to P; and \p, respectively.

5.5. Hypergeometric functions. Some special cases of Radon or Penrose trans-
formations and their relations to Aomoto-Gelfand hypergeometric functions are
discussed in [03], [Se] and [Ta].

6. CLOSURE OF IDEALS

Now we will consider the non-regular A\ which are excluded in Theorem 4.4. We
begin with a general consideration.

Definition 6.1. Let M be a C°-manifold and let U be an open subset of C’.
We denote by D'(M) the space of distributions on M. Suppose that meromorphic
functions f1(A), ..., fn(A) of U with values in D’(M) are given. Moreover suppose
there exists a non-zero holomorphic function r(A) on U such that fi,..., f, are
holomorphic on U, = {X € U; r(\) # 0} and dimV), = m for any A € U,. For
A € U we define

V,, = {f(0); f is a holomorphic function on {t € C; |¢t| < 1} valued in D’'(M)
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and there exists a holomorphic curve ¢: {t € C; |¢| < 1} — U such that
c(t) € U and f(t) € Vo) for 0 < |t| < 1 and ¢(0) = p}.

We call V,, the closure of the holomorphic family of the spaces Vi (A € U,) at
p. It follows from [OS, Proposition 2.21] that dim Vu > m. We define that a
point p € U \ U, is a removable (resp. un-removable) singular point if dimV, =m
(resp. dimV,, > m). Note that Vy = V) if A € U,, which follows from the last
statement in Lemma 6.3 by replacing u and U, by A (€ U,) and U, \ {\}.

Example 6.2. The origin A = (A1, A2) = 0 is a removable singular point of V) =
C(z+ M) +C(Aaz+ Ay +A?) and an un-removable singular point of Vy = C(A\jz +

A2y).

Lemma 6.3. i) If u is a removable singular point of the spaces V, then there exist
a neighborhood U, of i and holomorphic functions hi(X), ..., hpm(X) on U, valued
in D'(M) such that they are linearly independent for any A € U, and they span V)
for any A € U, NU,. On the other hand, the existence of h;(A) (j =1,...,m) with
these property implies that p is a removable singular point.

i) If U is conver and there is no un-removable singular point in U, we may
choose U, =U in i).

Proof. i) Suppose dimV,, = m. We may assume fi()\),..., fm()\) are linearly
independent for a generic point A in U,. Fix a curve ¢ to U with ¢(0) = u and
c(t) € Uy for 0 < |t| < 1. Then [OS, Proposition 2.21] assures the existence of
holomorphic functions v;(t) (1 <i < m) on {t € C; |t| < 1} valued in D'(M) and a
holomorphic curve ¢ : {t € C; |t| < 1} — U such that ¢(0) = p, ¢(t) € U, and v;(¢) €
Ve for 0 < |t] < 1 and vy(t),...,vm(t) are linearly independent for any ¢. Then
the set {v1(0),...,v,(0)} is a basis of V},. Fix test functions ¢i,..., ¢, so that
(v:(0), ¢;) = d;5 and put ¢;;(X) = (fi(N),¢;). If 0 < [t| < 1, then v;(2),. .., v (1)
span Vo) = >0, Cfi(c(t)) and therefore fi(c(t)) = -7, cij(c(t))v;(t), which
means det (cij(/\)) is not identically zero. Let (dij ()\)) be the inverse of (cij ()\))
and define h;(A) = 377" dij(N) f5(A) so that (hi(c(t)), ;) = dij for 0 < [t] < 1.

Suppose hi(A) has a pole at A = u. Then there exists a test function ¢ such that
(hk(X), @) has a pole at p. Then it follows from Weierstrass’ preparation theorem
that there exists a curve ¢(t) as above and moreover (hi(c(t)),®) has a pole at
the origin. Choose a positive integer ¢ so that the function h(t) = t‘hy(c(t)) is
holomorphically extends to t = 0 and h(0) # 0. Since (h(t), ¢;) = t'6;, (h(0), p;) =
0 for j = 1,...,m, which contradicts to the facts (v;(0),¢;) = d;; because 0 #
h(0) € V,, = 37 | Cu;(0) by definition.

Thus we have proved that h;(\) are holomorphic functions on A in a neighbor-
hood of U,, of p. Since (h;(X), ¢;) = d;j, they are the required functions. In fact,
fi(N) = 220 (fi(N), &5)h;(A) for generic A and therefore Vi C 3771, Chy(A) for
AeU,NU,.

Now suppose the existence of Ay, ..., h,, and consider the function f to define V,,
in Definition 6.1. Then under the above notation, f(t) = >72, (f(t), ¢;)h;(c(t)) for
0 < |t] < 1 and therefore f(0) = Z;';l(f(O), ®i)h;(c(0)), which means dim V,, = m.

ii) The claim in i) reduces the global existence of h; to the second problem of
Cousin and it is solved for the convex open domain by Oka’s principle. O

Remark 6.4. i) Replacing “meromorphic” and “holomorphic” by “rational” and
“regular” | respectively, we have also Lemma 6.3 in the algebraic sense.

ii) When M is a finite set in Lemma 6.3, D'(M) is a finite dimensional vector
space V over C and f;(\) are the elements of V' with a meromorphic parameter .
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Definition 6.5. Fix a base {X1,...,X,,} of g. Let
(6.1) a(N€) = Z Qua(A, €)X Xom

be elements of U¢(g) for (\,e) € C"*! and v = 1,...,k. Here g, are polynomial
functions of (A, €) and ¢, o = 0 if a1 +- - - + @y, is sufficiently large. Let I(\, €) is the
left ideal of U¢(g) generated by ¢, for v = 1,..., k. Put d; = max, dim I (X, €) N
U<(g)¥) for j =1,2,.... Then we can find

Pm(% €) = Z pjyuya()‘v G)Xlal s X
a1>0,..., 0ty >0

such that p; (A €) € I(\e) NU(g)VY) for any (A €), pjual() €) are polynomial
functions and pj1(A,€),...,pj4;(A €) are linearly independent for generic (A,e).
Then we denote by I()\,€)U) the closure of the holomorphic family Zijzl Cpj.p
at (\,€) and put I(\€) = U;’il I\, €)). We call T()\,¢) the closure of the ideal
I(), €) with respect to the parameter (A, €). We call a point (\,€) € C"*! is an un-
removable singular point if (A, €) is an un-removable singular point of fozl Cpjpu
for a certain j. Note that I(), €) does not depend on the choice of {X7,..., X}
or Pj .-

Let I, (X) be the closure of the two-sided ideal I§, () given by (4.14) for ©' = ©
or ©. Then we give some problems.

Problem 1. Does there exists no un-removable singular point in the parameter
(A, €) of the holomorphic family I, (A)?
Problem 2. Does the equality Ie/(\) = Ann(Me-()\)) hold?

Remark 6.6. i) It is clear that I}, (\) C Ann(Me(N)).

ii) The non-existence of the un-removable singularity in Problem 1 is equivalent
to the following conditions. We can choose {g, (A, €); v = 1,...,k} of the form (6.1)
such that I§, (\) = Z§=1 U<(g)qu (A, €) for any fixed (A, €). It is also equivalent to
the fact that the graded ring

oo
gr(Te (V) = P (T ()N U (@)D /Te, (3) NU(5) V)
j=1
does not depend on (), €) because they are also equivalent to the fact that the
dimension of the vector space 1§, (\) N U¢(g)") does not depend on (), ¢) and the
space is spanned by homogeneous elements with respect to (g, A, €).

iii) Problem 1 and Problem 2 are affirmative if g = gl, because there exist
¢ (N e) (v =1,...,k) of the form (6.1) such that Anng(M§(A)) is generated by
aw(Xe) (v =1,...,k) for any (X, €) (cf. [04]). In this case gr(I§(\)) is a prime
ideal of S(g) but this is not true in general.

iv) If gr(12,(\)) is a prime ideal for generic A, then Problem 1 and Problem 2
are affirmative, which is proved by the same argument as in [04]. Note that IQ,())
is the defining ideal of Ad(G)A for generic A € ag: by Theorem 4.11.

v) Problem 2 is affirmative if the infinitesimal character is (strongly) regular.

REFERENCES

[BG] J. N. Bernstein and S. 1. Gelfand, Tensor products of finite and infinite dimensional rep-
resentations of semisimple Lie algebras, Comp. Math. 41(1980), 245-285.

[C1] A. Capelli, Uber die Zurickfihrung der Cayley’schen Operation Q auf gewéhnliche Polar
Operationen, Math. Ann. 29 (1887), 331-338.

[C2] , Sur les opérations dans la théorie des formes algébriques, Math. Ann. 37(1890),

1-37.



[ES]
(Ge]
[Gol]
[Go2]
[He]
(1]
2]
(U]

(K]

[Ko]
[Jal
()
[Jol
[KW]
[od]
[00]
[o1]
[02]
(03]
[04]
[0s]
[OSh]
[Sa]
Se]
[Ta)

[Um]

ANNIHILATORS OF GENERALIZED VERMA MODULES 29

D. Eisenbud and D. Saltman, Rank variety of matrices, Commutative algebra, Math. Sci.
Res. Inst. Publ. 15, 173-212, Springer-Verlag, 1989.
I. M. Gelfand, Center of the infinitesimal groups, Mat. Sb. Nov. Ser. 26(68)(1950), 103—
112; English transl. in “Collected Papers”, Vol. 11, pp.22-30.
M. D. Gould, A trace formula for semi-simple Lie algerbras, Ann. Inst. Henri Poincaré,
Sect. A 32(1980), 203-219.

, Characteristic identities for semi-simple Lie algebras, J. Austral Math. Ser. B
26(1985), 257-283.
S. Helgason, A duality for symmetric spaces with applications to group representations II,
Advances in Math. 22(1976), 187-219.
M. Itoh, Explicit Newton’s formula for gl,,, J. Alg. 208(1998), 687—-697.
, Capelli elements for the orthogonal Lie algebras, J. Lie Theory 10(2000), 463-489.
M. Ttoh and T. Umeda, On the central elements in the universal enveloping algebra of the
orthogonal Lie algebras, Compositio Math. 127(2001), 333-3509.
M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima and M. Tanaka,
FEigenfunctions of invariant differential operators on a symmetric space, Ann. of
Math. 107(1978), 1-39.
B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85(1963), 327—
404.
J. C. Jantzen, Einhillende Algebren halbeinfacher Lie-Algebren, Springer-Verlag, 1983,
pp. 298.
K. D. Johnson, Generalized Hua operators and parabolic subgroups, Ann. of
Math. 120(1984), 477-495.
A. Joseph, Dizmier’s problem for Verma and principal series submodules, J. London Math.
Soc. 20(1979), 193-204.
K. Kinoshita and M. Wakayama, Explicit Capelli identities for skew symmetric matrices,
preprint, 1998.
H. Oda, Annihilator operators of the degenerate principal series for simple Lie groups of
type (B) and (D), Doctor thesis presented to the University of Tokyo, 2000.
H. Oda and T. Oshima, Minimal polynomials and annihilators of generalized Verma mod-
ules of the scalar type, preprint, math.RT/0411006.
T. Oshima, Boundary value problems for various boundaries of symmetric spaces, RIMS
Kokytiroku, Kyoto Univ. 281(1976), 211-226, in Japanese.
, Capelli identities, degenerate series and hypergeometric functions, Proceedings of
a symposium on Representation Theory at Okinawa, 1995, 1-19.
, Generalized Capelli identities and boundary value problems for GL(n), Structure
of Solutions of Differential Equations, World Scientific, 1996, 307-335.
, A quantization of conjugacy classes of matrices, UTMS 2000-38, preprint, 2000,
to appear in Adv. in Math.
T. Oshima and J. Sekiguchi, Figenspaces of invariant differential operators on an affine
symmetric spaces, Invent. Math. 57(1980), 1-81.
T. Oshima and N. Shimeno, Boundary value problems on Riemannian symmetric spaces
of the noncompact type, in preparation.
H. Sakaguchi, U(g)-modules associated to Grassmannian manifolds, Master thesis pre-
sented to the University of Tokyo, 1999.
H. Sekiguchi, The Penrose transform for certain mon-compact homogeneous manifolds of
U(n,n), J. Math. Sci. Univ. Tokyo 3(1996), 655-697.
T. Tanisaki, Hypergeometric systems and Radon transforms for Hermitian symmetric
spaces, Adv. Studies in Pure Math. 26(2000), 235-263.
T. Umeda, Newton’s formula for gl,,, Proc. Amer. Math. Soc. 126 (1998), 3169-3175.



