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1 Introduction

1.1. Several integral systems are accidentally related to root systems.
Olshanetsky-Perelomov ([OP1], [OP2]) considered integrable n-particle mod-
els in dimension one arising from root systems. The systems of differential
operators satisfied by zonal spherical functions give such integrable systems
and these were generalized by Sekiguchi and Heckman-Opdam ([Sj], [HO]).

In [OOS] we announce a classification of integrable systems invariant
under simple classical Weyl groups. The precise discussion has already been
given by [OS] and [O] except for the case of type B2. As is shown in [OS],
the classification problem for type B2 is reduced to a functional differential
equation (1.4).

In §2 we give a complete list of solutions of this functional equation.
Some solutions have already been obtained, after [OP2], by Inozemtsev [IM],
[I] (See also [P]). The main result of §2 is Theorem 2.9, which is stated in
§1.3 in a different form.

In §3 we examine the reducibility of the system obtained in §2. We
note that if the system coincides with the system satisfied by zonal spherical
functions of a semisimple Lie group, the reducibility is related to degenerate
series representations.

The final draft of this paper was completed when the authors were visiting
University of Leiden in the fall of 1994. The authors express their sincere
gratitude to Profḋrv̇an Dijk for his hospitality during their stay there.

1.2. Now we give a quick review of the results in [OS, §6] concerning
with type B2. Let W (B2) be the Weyl group of type B2, which is identi-
fied with the group of coordinate transformations of (x1, x2) generated by
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(x1, x2) 7→ (x2, x1) and (x1, x2) 7→ (x1,−x2). Consider W (B2)-invariant dif-
ferential operators

(1.1)

{
P1 = ∂2

1 + ∂2
2 +R(x),

P2 = ∂2
1∂

2
2 + lower order terms

which satisfies [P1, P2] = 0 and tP2 = P2. Here we denote ∂1 =
∂

∂x1
and ∂2 =

∂
∂x2

for simplicity and the map t is the anti-automorphism of the algebra of

differential operators such that ta(x) = a(x) for functions a(x) and t∂i = −∂i
for i = 1 and 2. We assume that the coefficients of differential operators
are extended to holomorphic functions on a Zariski open subset of an open
connected neighborhood of the origin of the complexification C2 of R2.

The operators are proved to be expressed by even functions u and v of
one variable as follows ([OS, Proposition 6.3]):

(1.2)


P1 = ∂2

1 + ∂2
2 + u(x1 + x2) + u(x1 − x2) + v(x1) + v(x2),

P2 =
(
∂1∂2 +

u(x1 + x2)− u(x1 − x2)

2

)2

+ v(x2)∂
2
1 + v(x1)∂

2
2

+v(x1)v(x2) + T (x1, x2),

where T is determined by the following equations up to a constant.
(1.3){
∂2T = 1

2
v′(x1)

(
u(x1 + x2)− u(x1 − x2)

)
+ v(x1)

(
u′(x1 + x2)− u′(x1 − x2)

)
,

∂1T = 1
2
v′(x2)

(
u(x1 + x2)− u(x1 − x2)

)
+ v(x2)

(
u′(x1 + x2) + u′(x1 − x2)

)
.

As the compatibility condition for the existence of the solution T of the
equation (1.3), we have an equation

(1.4)

∂2

(
v′(x2)

(
u(x1 + x2)− u(x1 − x2)

)
+ 2v(x2)

(
u′(x1 + x2) + u′(x1 − x2)

))
= ∂1

(
v′(x1)

(
u(x1+x2)−u(x1−x2)

)
+2v(x1)

(
u′(x1+x2)−u′(x1−x2)

))
,

which have been posed in [OS, Proposition 6.3] (cf. [P, §2.2.C]).
Conversely for any solution (u, v) of (1.4) and the pair (P1, P2) of the

operators which are given by (1.2) with

(1.5) T =
1

2

(
∂2
1 − ∂2

2

)(
V (x1)

(
U(x1 + x2) + U(x1 − x2)

)
−G(x1)

)
under the notation in Remark 2.1 and Lemma 2.2, we have [P1, P2] = 0.
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1.3. We give a complete list of solutions of the functional equation (1.4).
Remind that the Schrödinger operator P1 is explicitly expressed as in (1.2)
using u and v.

1) (Trivial case) u = constant, v = an arbitrary even function,

1d) u = an arbitrary even function, v = constant.

Let ω1 and ω2 denote the primitive half periods of the Weierstrass elliptic
function ℘(t) and put ω3 = −ω1 − ω2 and ω4 = 0.

2) (Elliptic case) For ω1, ω2 < ∞{
u(t) = C6℘(t) + C7E,

v(t) =
∑4

i=1 Ci℘(t+ ωi) + C5,

2d){
u(t) =

∑4
i=1 Ci℘(t+ ωi) + C5,

v(t) = C6℘(2t) + C7.

2)′ (Trigonometric case){
u(t) = C6 sinh

−2 λt+ C7,
v(t) = C1 sinh

−2 λt+ C2 sinh
−2 2λt+ C3 sinh

2 λt+ C4 sinh
2 2λt+ C5,

2d)′{
u(t) = C1 sinh

−2 λt+ C2 sinh
−2 2λt+ C3 sinh

2 λt+ C4 sinh
2 2λt+ C5

v(t) = C6 sinh
−2 2λt+ C7.

2)′′ (Rational case){
u(t) = C6t

−2 + C7,
v(t) = C1t

−2 + C2 + C3t
2 + C4t

4 + C5t
6,

2d)′′{
u(t) = C1t

−2 + C2 + C3t
2 + C4t

4 + C5t
6,

v(t) = C6t
−2 + C7.

3) (Elliptic case) For ω1, ω2 < ∞{
u(t) = C1

(
℘( t

2
+ ω1) + ℘( t

2
+ ω2)

)
+ C2℘(t) + C3,

v(t) = C4℘(t) + C5℘(t+ ω3) + C6.
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3)′ (Trigonometric case){
u(t) = C1 sinh

−2 λ
2
t+ C2 sinh

−2 λt+ C3,
v(t) = C4 sinh

−2 λt+ C5 sinh
2 λt+ C6,

3d)′{
u(t) = C4 sinh

−2 λt+ C5 sinh
2 λt+ C6,

v(t) = C1 sinh
−2 λt+ C2 sinh

−2 2λt+ C3.

3)′′ (Rational case){
u(t) = C1t

−2 + C2 + C3t
2,

v(t) = C4t
−2 + C5 + C6t

2.

1.4. Although we deal with the commuting differential operators of type
B2 with the Weyl group symmetry in the main body of this paper, we will
give a brief summary of the related works.

The commuting differential operators of type A have been studied very
well. The commuting differential operators of type A with the Weyl group
invariant condition are classified in [OS]. This work is generalized to the
commuting differential operators of type A2 without Weyl group invariant
condition 

∆1 = ∂1 + ∂2 + ∂3,

∆2 = ∂1∂2 + ∂2∂3 + ∂3∂1 +R(x),

∆3 = ∂1∂2∂3 + lower order terms.

To classify the potential function R(x), we may assume that t∆3 = −∆3.
Then there exist one-variable functions u1 = u1(x2 − x3), u2 = u2(x3 − x1)
and u3 = u3(x1 − x2) such that R(x) = −u1 − u2 − u3, and

(1.6)

∣∣∣∣∣∣
1 1 1
u1(x) u2(y) u3(z)
u′
1(x) u′

2(y) u′
3(z)

∣∣∣∣∣∣ = 0 for x+ y + z = 0.

For the Weyl group invariant case, we have u1(z) = u2(z) = u3(z) and the
proof of this fact is given in Proposition 4.2 (with m = 3) of [OS], which is
valid for the general case with no change. For the Weyl group invariant case,
the functional differential equation (1.6) is solved in [WW] and the solution
is a Weierstrass elliptic function ℘. The corresponding potential R(x) is of
Calogero-Moser type. For the general case, the equation (1.6) is solved in
[BP] and [BB]. Besides the ℘ solutions, we also have solutions expressed
by exponential functions. The corresponding potential is known as of type
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periodic/non-periodic Toda, which can be regarded as a degenerating limit
of a Weyl group invariant potential [vD].

For type B2, the classification of the commuting differential operators
(1.1) without the Weyl group symmetry has not been done yet. It is known
that the similar functional differential equation (see (2.3)) is related to such
operators. The following results are obtained in [Oc]:

(i) We have the expression of the (non Weyl group invariant) operators P1

and P2 by using four functions u1 = u1(x1+x2), u2 = u2(x1−x2), v1 = v1(x1)
and v2 = v2(x2) with one-variable. Actually, if we replace u(x1 + x2) by
u1(x1+x2), u(x1−x2) by u2(x1−x2), and so on, the formula (1.2) is also valid
for non-invariant operators. These functions satisfy the functional differential
equation like (1.4).

(ii) Suppose P1 be non-trivial (cf. Lemma 2.4 i)). If P1 is holomorphic
at some point, then P1 and P2 can be meromorphically continued to whole
plane C2. The orders of poles of P1 are at most two.

(iii) Suppose, moreover, that v2(z) has poles at three points z = z1, z2, z3
such that z1 − z2 and z2 − z3 are linearly independent over Q. Then the
function v2 can be expressed as

v2(z) =
4∑

i=1

Ci℘(z + ωi) + C5,

with an elliptic function ℘ and constants C1, . . . , C5.

2 Functional differential equation for type B2

2.1 Functional differential equations

In this section we solve (1.4).

Remark 2.1. For even holomorphic functions u and v on 0 < |t| ≪ 1, there
exist unique odd holomorphic functions U and V with U ′ = u and V ′ = v on
0 < |t| ≪ 1. Then the equation (1.4) is equivalent to

(2.1) ∂1∂2(∂
2
1 − ∂2

2)
(
V (x1)

(
U(x1 + x2) + U(x1 − x2)

)
+ V (x2)

(
U(x1 + x2)− U(x1 − x2)

))
= 0.

Lemma 2.2. Odd holomorphic functions U and V on a small punctured disk
satisfy the equation (2.1) if and only if there exist even holomorphic functions
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F and G on a small punctured disk such that

(2.2)
V (x1)

(
U(x1 + x2) + U(x1 − x2)

)
+ V (x2)

(
U(x1 + x2)− U(x1 − x2)

)
= F (x1 + x2) + F (x1 − x2) +G(x1) +G(x2).

Proof. The “if” part is clear. Now we assume (2.1) and set the left hand
side of (2.2) to be W (x1, x2) ∈ O({(x1, x2) ∈ C2| 0 < |x1| < ε/2, 0 < |x2| <
ε/2, x1 ̸= ±x2}). Then the function ∂2(∂

2
1 − ∂2

2)W ∈ O({(x1, x2) ∈ C2| 0 <
|x1| < ε/2, 0 < |x2| < ε/2, x1 ̸= ±x2}) is locally constant with respect to x1

and consequently it is constant with respect to x1. Then this is an element of
O({x2 ∈ C| 0 < |x2| < ε/2}). Moreover, the residue Resx2=0 ∂2(∂

2
1 −∂2

2)W =∫
γ
∂2(∂

2
1 − ∂2

2)W (x1, x2)dx2 = 0. Hence we have a holomorphic function

g2(x2) ∈ O({x2 ∈ C| 0 < |x2| < ε/2}) such that ∂2(∂
2
1 − ∂2

2)W (x1, x2) =
∂2g2. Then the difference (∂2

1 − ∂2
2)W − g2 is locally constant with respect

to x2. The same argument tells us that there exists a holomorphic function
g1 ∈ O({x1 ∈ C| 0 < |x1| < ε/2}) such that (∂2

1 − ∂2
2)W = g1 + g2.

Next we change the coordinates ξ1 = (x1 + x2)/2, ξ2 = (x1 − x2)/2 and
write ∂′

1 = ∂
∂ξ1

, ∂′
2 = ∂

∂ξ2
for short. Then ∂′

1∂
′
2W = g1(ξ1 + ξ2) + g2(ξ1 − ξ2).

The residue Resξ1=−ξ2 g1(ξ1 + ξ2) =
∫
γ
∂′
1∂

′
2Wdξ1 −

∫
γ
g2(ξ1 − ξ2)dξ1 = 0.

Then we have an integral g3(t) ∈ O({t ∈ C| 0 < |t| < ε/2}) such that
g′3 = g1. Similarly we have g4 with g′4 = g2, and ∂′

1(∂
′
2W − g3 − g4) = 0.

Then g5 := ∂′
2W − g3 − g4 is locally constant with respect to ξ1, that is, g5

is constant with respect to ξ1. As before g3, g4 and g5 have integrals G3, G4

and G5, and the difference G6 := W −G3 −G4 −G5 depends only on ξ1.
Taking the averages of G3, G4, G5 and G6 under the action of the Weyl

group W (B2), we get functions F and G with required property.
This lemma can be generalized to the case when theWeyl group invariance

is not imposed. In fact, the functional equation mentioned in Section 1.4 (ii)
can be expressed as

(2.3) ∂1∂2(∂
2
1 − ∂2

2)
(
V1(x1)

(
U1(x1 + x2) + U2(x1 − x2)

)
+ V2(x2)

(
U1(x1 + x2)− U2(x1 − x2)

))
= 0.

This can be integrated as
(2.4)

V1(x1)
(
U1(x1 + x2) + U2(x1 − x2)

)
+ V2(x2)

(
U1(x1 + x2)− U2(x1 − x2)

)
= F1(x1 + x2) + F2(x1 − x2) +G1(x1) +G2(x2).

For detail, see [Oc, Proposition 2.4].
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Remark 2.3. The same argument holds for type A2. The equation (1.6) with
u1 = u2 = u3 is equivalent to the equation

(2.5) ∂x∂y(∂x − ∂y)
((

U(x) + U(y) + U(−x− y)
)2)

= 0,

where U is the odd primitive function of u. By the same argument as in the
proof of the previous lemma this is also equivalent to

(2.6)
(
(U(x) + U(y) + U(z)

)2
= F (x) + F (y) + F (z) for x+ y + z = 0

with some even function F . Remark that u = ℘ satisfies (1.6) and that
U = −ζ and F = ℘ satisfy (2.6).

Lemma 2.4. i) If u or v is constant, then (u, v) is a solution of (1.4). A
solution of this form is called a trivial solution.
ii) If there are functions F1 and G1 such that

(2.7)
(
U(x1 + x2) + V (−x1) + V (−x2)

)2
= F1(x1 + x2) +G1(x1) +G1(x2),

then (U, V ) is a solution of (2.2).
iii) If u = v = ℘, then (u, v) is a solution of (1.4).

Proof. For ii), (U, V ) satisfy (2.2) with F (t) = 1
2
(U(t)2 − F1(t)) and

G(t) = V (t)2 −G1(t). iii) follows from ii) and Remark 2.3.
We summarize several elementary properties of the equation (1.4).

Lemma 2.5. i) The equation (1.4) is bilinear with respect to (u, v).
ii) For a solution (u0(t), v0(t)) of (1.4) and a non-zero constant C, (u(t), v(t))
= (u0(Ct), v0(Ct)) is also a solution.
iii) For a solution (u0(t), v0(t)) of (1.4), (u(t), v(t)) = (v0(t), u0(2t)) is also
a solution.
iv) For a solution (u0(t), v0(t)) of (1.4) with u0(t + 2ω) = u0(t) satisfying
some constant ω, (u(t), v(t)) = (u0(t), v0(t+ ω)) is also a solution.

Proof. All but iv) are shown in [OS, Proposition 6.3 iv)]. iv) follows from
u(x1−x2) = u((x1+ω)−(x2+ω)) and u(x1+x2) = u((x1+ω)+(x2+ω)).

Remark 2.6. The equations (2.1) and (2.5) above are written in a uniform
manner. Let the root system (E,Σ) be (R2,Σ(A2)) or (R2,Σ(B2)) with
the Weyl group W . Consider an element V of the space of W -invariants
(O(E)⊗E∗)W inO(E)⊗E∗. Extend the natural invariant inner bilinear form
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⟨ , ⟩ on E∗ to a O(E)-linear form on this space of W -invariants. Consider
the differential equations

(2.8)


( ∏
α∈Σ+

∂α
)
V = 0,

( ∏
α∈Σ+

∂α
)
⟨V,V⟩ = 0.

Here differential operators act on the first factor of O(E)⊗ E∗.
This is equivalent to the equations (2.1) or (2.5). In fact, if we set

(2.9) V =
∑
α∈Σ+

Vα(⟨α, · ⟩)⊗ α =
1

2

∑
α∈Σ

Vα(⟨α, · ⟩)⊗ α

with Vα corresponding to the solutions (2.1) or (2.5), it satisfies the equation
(2.8). On the other hand, any solution of the former equation of (2.8) is
written in the form (2.9) with odd functions Vα, and the W -invariance and
the latter equation of (2.8) are sufficient for the equations (2.1) or (2.5).

2.2 Elliptic functions

We summarize several well-known properties of the elliptic functions ℘ and
ζ of Weierstrass type for latter convenience (cf. [WW]).

They are given by

℘(z) = ℘(z|2ω1, 2ω2) =
1

z2
+
∑
ω ̸=0

( 1

(z − ω)2
− 1

ω2

)
,(2.10)

ζ(z) = ζ(z|2ω1, 2ω2) =
1

z
+
∑
ω ̸=0

( 1

z − ω
+

1

ω
+

z

ω2

)
,(2.11)

where the sum ranges over all non-zero periods 2m1ω1 + 2m2ω2 of ℘. They
satisfy

ζ ′(z) = −℘(z),

℘(z + 2m1ω1 + 2m2ω2|2ω1, 2ω2) = ℘(z|2ω1, 2ω2),

ζ(z + 2m1ω1 + 2m2ω2|2ω1, 2ω2) = ζ(z|2ω1, 2ω2) + 2m1η1 + 2m2η2

for m1,m2 ∈ Z,
(℘′)2 = 4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3).
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Here the constants have the relations

g2 = 60
∑
ω ̸=0

ω−4, g3 = 140
∑
ω ̸=0

ω−6,

ω3 = −ω1 − ω2, ej = ℘(ωj), ηj = ζ(ωj),

e1 + e2 + e3 = 0, g2 = −4(e1e2 + e2e3 + e3e1), g3 = 4e1e2e3,

η1 + η2 + η3 = 0, η2ω1 − η1ω2 = ±π
√
−1
2

.

The following are variants of addition formulas.(
ζ(x) + ζ(y) + ζ(z)

)2
= ℘(x) + ℘(y) + ℘(z) when x+ y + z = 0,(2.12)

ζ(x+ y)− ζ(x)− ζ(y) =
1

2

℘′(x)− ℘′(y)

℘(x)− ℘(y)
.(2.13)

The Laurent expansion at the origin is

(2.14) ℘(z|2ω1, 2ω2) = z−2 +
g2
20

z2 +
g3
28

z4 +
g22

1200
z6 + · · · .

The complex numbers ω1 and ω2 are assumed to be linearly independent over
R but we allow the period to be infinity. In other words, the numbers g2 and
g3 are any complex numbers. For example we have

(2.15)
℘(z|

√
−1π,∞) = sinh−2 z + 1

3
when g2 = 4

3
and g3 = − 8

27
,

℘(z|∞,∞) = z−2 when g2 = g3 = 0.

If ω1 and ω2 are finite, we have a formula

(2.16)
℘(z + ων |2ω1, 2ω2) = eλ +

(eν − eλ)(eν − eµ)

℘(z|2ω1, 2ω2)− eν

with {ν, µ, λ} = {1, 2, 3}

and every function of the form ℘′−2×(a polynomial of ℘ of degree at most 4) is
written by a linear combination of 1, ℘, (℘−e1)

−1, (℘−e2)
−1 and (℘−e3)

−1,
equivalently by a linear combination of 1, ℘(z), ℘(z + ω1), ℘(z + ω2) and
℘(z + ω3).

Lastly we quote the Landen transformation

(2.17) ℘(z|ω1, 2ω2) = ℘(z|2ω1, 2ω2)+℘(z+ω1|2ω1, 2ω2)−e1 if ω1 is finite.
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2.3 Solutions of the functional equation

Theorem 2.7. The functions

(2.18)

u(t) = c6
(℘( t

2
)− e3)

2

℘′( t
2
)2

+ c7℘(t) + c8,

v(t) =
(℘(t)− e1)(℘(t)− e2)(c1℘(t)

2 + c2℘(t) + c3) + c4℘(t) + c5
℘′(t)2

satisfy the equation (1.4) if c4c6 = c5c6 = 0.

Proof. Since the equation is bilinear, we may check for each monomial in
u or v. Here we will give a proof for ω1, ω2 < ∞, which implies the theorem
by the analytic continuation.

i) Case c6 = c7 = 0: It follows from Lemma 2.4 i).
ii) Case c6 = c8 = 0, c7 = 1: We may assume that v = ℘(t + a) with

a = 0, ω1, ω2 or ω3. Moreover we may assume a = 0 by Lemma 2.5 iv), that
is, u = v = ℘. Then (2.2) follows from Lemma 2.4 ii) and Remark 2.3. This
simplifies the proof of [OS, Proposition 7.3 ii)].

iii) Case c7 = c8 = 0, c6 = 1: By §2.2 the function

v(t) = ℘′(t)−2(℘(t)− e1)(℘(t)− e2)(c1℘(t)
2 + c2℘(t) + c3)

=
c1℘(t)

2 + c2℘(t) + c3
4(℘(t)− e3)

is a linear combination of 1, ℘(t) and ℘(t+ ω3). Since

(2.19)

(℘( t
2
)− e3)

2

℘′( t
2
)2

=
1

4

(
e1 − e3
e1 − e2

1

℘( t
2
)− e1

+
e2 − e3
e2 − e1

1

℘( t
2
)− e2

)
=

1

4(e1 − e2)2

(
℘(

t

2
+ ω1)− e1 + ℘(

t

2
+ ω2)− e2

)
=

1

4(e1 − e2)2

(
℘(

t

2
+ ω1|2ω1, ω3) + 2e3

)
=

1

(e1 − e2)2

(
℘(t+ 2ω1|4ω1, 2ω3) +

e3
2

)
has a period 2ω3, we may assume v(t) = ℘(t) by Lemma 2.5 iv). By
Lemma 2.5 iii) we can reduce to the case u(t) = ℘(t) and v(t) = 1

4(e1−e2)2

(
℘(t+

ω1) + ℘(t+ ω2)− e1 − e2
)
, which has already treated in ii).
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Remark 2.8. i) The solutions in §1.3 corresponds to (2.18) with the following
conditions:

2) c6 = 0, e1 ̸= e2 ̸= e3 ̸= e1,
2′) c6 = 0, e1 = −2

3
λ2 ̸= 0, e2 = e3 =

1
3
λ2,

2′′) c6 = 0, e1 = e2 = e3 = 0,
3) c4 = c5 = 0, e1 ̸= e2 ̸= e3 ̸= e1,
3′) c4 = c5 = 0, e1 = −2

3
λ2 ̸= 0, e2 = e3 =

1
3
λ2,

3′)d c4 = c5 = 0, e1 = e2 =
1
3
λ2 ̸= 0, e3 = −2

3
λ2,

3′′) c4 = c5 = 0, e1 = e2 = e3 = 0.

ii) The family of solutions with c4 = c5 = 0 are written in a more symmetric
form under the symmetry in Lemma 2.5 iii). By the proof of Theorem 2.7 iii)
we can write

(2.20)
u(t) = a1℘(t|4ω1, 2ω3) + a2℘(t|2ω1, 2ω3) + a3,

v(t) = b1℘(t|2ω1, 2ω3) + b2℘(t|2ω1, ω3) + b3.

Then the solution (ū(t), v̄(t)) = (v(t), u(2t)) can be expressed in the same
form as (2.20) by replacing 2ω̄1 = ω3, 2ω̄3 = 2ω1, ā1 = b1, ā2 = b2, ā3 = b3,
b̄1 = a1/4, b̄2 = a2/4 and b̄3 = a3.

2.4 The main theorem

In this subsection we shall solve the functional differential equation (1.4)
by the aid of a computer with the algebraic programming system REDUCE
Ver3̇.4. The following is the main result in §2, which is proved at the end of
§ 2.5.4:

Theorem 2.9. Any solution (u(t), v(t)) of the equation (1.4) such that u(t)
and v(t) are real analytic on {t ∈ R| 0 < |t| ≪ 1} is one of the following
form.
i) Functions (u(t), v(t)) is of the form in Theorem 2.7 with c4c6 = c5c6 = 0.
ii) Functions (v(t), u(2t)) is of the form in Theorem 2.7 with c4c6 = c5c6 = 0.
iii) Either u or v is constant.
iv) u′ = 0 and v′′ is constant.
v) v′ = 0 and u′′ is constant.

Here we note that if u(t) and v(t) are even or they are holomorphic on
{t ∈ C| 0 < |t| ≪ 1}, then iv) and v) are reduced to iii).

2.4.1 The following lemma is a generalization of [OS, Lemma 7.1 i)].
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Lemma 2.10. Let u(t) and v(t) be real analytic functions on {t ∈ R| 0 <
|t| ≪ 1} which satisfy (1.4). Suppose u′ ̸= 0 and v′ ̸= 0. Then u(t) and v(t)
can be extended to even meromorphic functions on {t ∈ C| 0 < |t| ≪ 1} with
poles of order at most 2 at the origin.

Proof. We may assume v′|t>0 ̸= 0 by replacing the following x by −x if
necessary. Fix x with 0 < x ≪ 1 and consider the Laurent expansion for
0 < |y| ≪ x

(2.21) u(x+ y)− u(x− y) = 2

(
u(1)(x)

1!
y +

u(3)(x)

3!
y3 + · · ·

)
.

Then we have

(2.22)

∂

∂x

(
v′(x)

∞∑
k=0

u(2k+1)(x)

(2k + 1)!
y2k+1 + 2v(x)

∞∑
k=0

u(2k+2)(x)

(2k + 1)!
y2k+1

)
− ∂

∂y

(
v′(y)

∞∑
k=0

u(2k+1)(x)

(2k + 1)!
y2k+1 + 2v(y)

∞∑
k=0

u(2k+1)(x)

(2k)!
y2k

)
= 0

and for 0 < |y| ≪ x
(2.23)
f(x, y) = y

(
u′(x) + yc2(x, y)

)
v′′(y) + 3

(
u′(x) + yc1(x, y)

)
v′(y) + c0(x, y)v(y)

with a suitable holomorphic functions f(x, y), c0(x, y), c1(x, y) and c2(x, y)
of y defined on a neighborhood of the origin. Since this equation for v(y)
has regular singularities at the origin with the characteristic exponents 0 and
−2,

(2.24) v(t) = a−1t
−2 + v0(t) + v1(t) log t for 0 < t ≪ 1.

Here v0(t) and v1(t) are holomorphic function defined in a neighborhood of
the origin and moreover v1(0) = 0 means v1 = 0.

By the analytic continuation of (2.22) for the variable y around the origin
we have

(2.25)
∂

∂y

(
v′1(y)

∞∑
k=0

u(2k+1)(x)

(2k + 1)!
y2k+1 + 2v1(y)

∞∑
k=0

u(2k+1)(x)

(2k)!
y2k

)
= 0.

The coefficients of y1 in this equation mean

(2.26) 2v1(0)u
(3)(x) + 4v′′1(0)u

′(x) = 0.
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Suppose v1 ̸= 0. Let λ be a complex number with λ2 = −2v′′1(0)/v1(0).

(2.27) u(3)(x) = λ2u′(x).

Then (2.25) is

(2.28)
∂

∂y

(
v′1(y)u

′(x)
sinhλy

λ
+ 2v1(y)u

′(x) coshλy

)
= 0.

For u′(x0) ̸= 0

∂

∂y

(
v′1(y)

(sinhλy
λ

)2
)

= 0,

v′1(y)
(sinhλy

λ

)2

= v′1(0)0 = 0,

then v1 = 0, which contradicts to the assumption v1 ̸= 0.
Thus we have proved that v1 = 0. By (2.24) we can put

v(t) = a−1t
−2 +

∞∑
j=0

(
ajt

2j + cjt
2j+1

)
with suitable aj, cj ∈ C on 0 < t ≪ 1. Suppose there exist ck satisfying
ck ̸= 0 and cj = 0 for j = 0, . . . , k − 1. Then the coefficients of y2k in (2.22)
shows

−
(
(2k + 1)2 + 2(2k + 1)

)
cku

(1)(x) = 0,

which contradicts to the assumption ck ̸= 0 and hence v(t) = a−1t
−2 +∑∞

j=0 ajt
2j on 0 < t ≪ 1. Here we note that v′′ ̸= 0 and that u′′ ̸= 0 by the

symmetry of u and v.
Substituting (x1, x2) in (1.4) by (x, y) and (x,−y), respectively, and sum-

ming up the resulting equations, we have

∂

∂y

((
v′(y) + v′(−y)

)(
u(x+ y)− u(x− y)

)
+ 2

(
v(y)− v(−y)

)(
u′(x+ y) + u′(x− y)

))
= 0

and hence

∂2

∂y2

((
v(y)− v(−y)

)(
u(x+ y)− u(x− y)

)2)
= 0.

Thus we have v(−y) = v(y) because u′′ ̸= 0.
By the symmetry of u(t) and v(t) we have the lemma.
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First suppose that u(t) and v(t) are real analytic functions on {t ∈ R| 0 <
|t| ≪ 1}. It is clear that (u, v) given by iii) or iv) or v) in Theorem 2.9 satisfies
(1.4). Assume u′ = 0. Then there exist C1, C2 ∈ C such that u(t) = C1 and
u(−t) = C2 for 0 < t ≪ 1. Suppose (u, v) satisfies (1.4) and suppose C1 ̸= C2

and let 0 < x < y ≪ 1. Substituting (x1, x2) in (1.4) by (x, y), (−x,−y)
and (−x, y), we have v′′(y) = v′′(x), v′′(−y) = v′′(−x) and v′′(y) = v′′(−x),
respectively, and therefore v′′ is constant. In the same way, if v′ = 0 and
(u, v) satisfies (1.4), then v is constant or u′′ is constant.

Then owing to Lemma 2.10 we assume u(t) and v(t) are holomorphic
on e {t ∈ C| 0 < |t| ≪ 1} and satisfy (1.4) to the end of this section. By
Lemma 2.10, the Laurent expansion at the origin can be assumed as follows.

(2.29) u(t) = a−1t
−2 +

∞∑
j=1

ajt
2j, v(t) = b−1t

−2 +
∞∑
j=1

bjt
2j.

Suppose 0 < |y| ≪ |x| ≪ 1. It follows from (2.21) that

(2.30)
∂2

∂x∂y

(
v′(x)

∞∑
k=0

u(2k+1)(x)

(2k + 2)!
y2k+2 + 2v(x)

∞∑
k=0

u(2k+2)(x)

(2k + 2)!
y2k+2

−
( ∞∑
j=−1

2jbjy
2j−1

) ∞∑
k=0

u(2k)(x)

(2k + 1)!
y2k+1

−
( ∞∑
j=−1

2bjy
2j
) ∞∑

k=0

u(2k)(x)

(2k)!
y2k

)
= 0.

Since the coefficient of the term bju
(2m−2j)(x)y2m inside the above

( )
equals

− 2j

(2m− 2j + 1)!
− 2

(2m− 2j)!
= −2

2m− j + 1

(2m− 2j + 1)!
,

for any positive integer m, we obtain
(2.31)

u(2m−1)(x)v′(x)+2u(2m)(x)v(x)−
m∑

j=−1

2(2m)!(2m− j + 1)

(2m− 2j + 1)!
bju

(2m−2j)(x) = Cm

with suitable constant numbers Cm.
Let X(m, k) denote the the coefficients of x2k in the left hand side of

(2.22). Then the condition X(m, k) = 0 for all m ≥ 1 and k ≥ 1 is equivalent
to (2.22), and so is to (1.4).
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For example, we have the following, all of which will be used in the proof
of Theorem 2.9.

X(1, 1) = 0,

X(1, 2) = 4(3a1b2 + 6a2b1 − 32a4b−1 − a−1b4),

X(1, 3) = 8(2a1b3 + 5a2b2 + 8a3b1 − 64a5b−1 − a−1b5),

X(1, 4) = 4(5a1b4 + 12a2b3 + 21a3b2 + 30a4b1 − 336a6b−1 − 3a−1b6),

X(1, 5) = 8
5
(15a1b5 + 35a2b4 + 60a3b3 + 90a4b2 + 120a5b1

− 1792a7b−1 − 10a−1b7),

X(1, 6) = 4(7a1b6 + 16a2b5 + 27a3b4 + 40a4b3 + 55a5b2 + 70a6b1

− 1344a8b−1 − 5a−1b8),

X(1, 7) = 8(4a1b7 + 9a2b6 + 15a3b5 + 22a4b4 + 30a5b3 + 39a6b2 + 48a7b1

− 1152a9b−1 − 3a−1b9),

X(1, 8) = 4(9a1b8 + 20a2b7 + 33a3b6 + 48a4b5 + 65a5b4 + 84a6b3 + 105a7b2

+ 126a8b1 − 3696a10b−1 − 7a−1b10),

X(1, 9) = 8(5a1b9 + 11a2b8 + 18a3b7 + 26a4b6 + 35a5b5 + 45a6b4 + 56a7b3,

+ 68a8b2 + 80a9b1 − 2816a11b−1 − a−14b11),

X(2, 1) = 48(−3a1b2 − 6a2b1 + 32a4b−1 + a−1b4),

X(2, 2) = 0,

X(2, 3) = 16(12a2b3 + 66a3b2 + 140a4b1 − 1056a6b−1 − 3a−1b6),

X(2, 4) = 48(5a2b4 + 30a3b3 + 95a4b2 + 180a5b1 − 1664a7b−1 − 2a−1b7),

X(2, 5) = 48(6a2b5 + 35a3b4 + 112a4b3 + 267a5b2 + 462a6b1

− 5184a8b−1 − 3a−1b8),

X(2, 6) = 16(21a2b6 + 120a3b5 + 378a4b4 + 900a5b3 + 1806a6b2 + 2912a7b1

− 39168a9b−1 − 12a−1b9),

X(2, 7) = 48
7
(56a2b7 + 315a3b6 + 980a4b5 + 2310a5b4 + 4620a6b3

+ 8260a7b2 + 12600a8b1 − 200640a10b−1 − 35a−1b10),

X(2, 8) = 48(+9a2b8 + 50a3b7 + 154a4b6 + 360a5b5 + 715a6b4 + 1274a7b3

+ 2097a8b2 + 3060a9b1 − 57024a11b−1 − 6a−1b11),

X(3, 1) = 2880(−2a1b3 − 5a2b2 − 8a3b1 + 64a5b−1 + a−1b5),

X(3, 2) = 480(−12a2b3 − 66a3b2 − 140a4b1 + 1056a6b−1 + 3a−1b6),

X(3, 3) = 0,

X(3, 4) = 1440(5a3b4 + 52a4b3 + 219a5b2 + 462a6b1 − 4160a8b−1 − a−1b8),

X(3, 5) = 192(45a3b5 + 490a4b4 + 2490a5b3 + 8085a6b2 + 16016a7b1

− 163200a9b−1 − 15a−1b9),
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X(3, 6) = 480(21a3b6 + 224a4b5 + 1134a5b4 + 3948a6b3 + 10556a7b2

+ 19656a8b1 − 227392a10b−1 − 9a−1b10),

X(3, 7) = 5760(2a3b7 + 21a4b6 + 105a5b5 + 363a6b4 + 1000a7b3

+ 2316a8b2 + 4080a9b1 − 53504a11b−1 − a−1b11),

X(4, 1) = 80640(−5a1b4 − 12a2b3 − 21a3b2 − 30a4b1 + 336a6b−1 + 3a−1b6),

X(4, 2) = 80640(−5a2b4 − 30a3b3 − 95a4b2 − 180a5b1 + 1664a7b−1 + a−12b7),

X(4, 3) = 80640(−5a3b4 − 52a4b3 − 219a5b2 − 462a6b1

+ 4160a8b−1 + a−1b8),

X(4, 4) = 0,

X(4, 5) = 16128(30a4b5 + 500a5b4 + 3300a6b3 + 12298a7b2 + 25740a8b1

− 258400a10b−1 − 5a−1b10),

X(4, 6) = 80640(7a4b6 + 120a5b5 + 886a6b4 + 4108a7b3 + 13182a8b2

+ 26520a9b1 − 289408a11b−1 − 2a−1b11),

We borrow the following notation from REDUCE. For a polynomial func-
tion p, we denote by coeffn(p, x, k) the coefficient of the term xk of p with re-
spect to one specific variable x. For example, coeffn(x2+2xy+3x+y2, x, 1) =
2y + 3.

2.4.2. Now we shall prove Theorem 2.9 dividing into the cases classified by
the order of zeros of

(
u(t), v(t)

)
. Owing to the symmetry between u and v,

[OS, Lemma 7.1 ii)] shows that we may assume the pair of orders of the zeros
equal (−2, 6), (−2, 4), (2, 2), (−2, 2) or (−2,−2).

2.4.3 Type (–2,6)

We may assume a−1 = b3 = 1 and b−1 = b1 = b2 = 0. For k ≥ 5 we have(
coeffn(X(1, k − 2), ak−4, 1) coeffn(X(1, k − 2), bk, 1)
coeffn(X(2, k − 3), ak−4, 1) coeffn(X(2, k − 3), bk, 1)

)
=

(
(2k − 8)(2k − 6) (−2)(2k − 6)

(2k − 8)(2k − 9)(2k − 8)(2k − 10) (−2)(−3)(−4)(2k − 10)

)
.

The determinant of this matrix equals

4(2k − 5)(2k − 6)(2k − 8)(2k − 10)(2k − 12).

Hence if k ≥ 7, the equations X(1, k − 2) = X(2, k − 3) = 0 assure that
ak−4 and bk are expressed suitable linear combinations of ak−j−1bj with j =
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4, . . . , k − 2, which proves that ak−4 and bk with k ≥ 7 are expressed by
polynomial functions of (a1, a2, b1, b4, b5, b6) by the induction on k.

Now we note that X(1, 2) = 0 implies b4 = 0. Moreover it follows from
X(1, 3) = X(1, 4) = 0 that b5 and b6 are expressed by polynomial functions
of (a1, a2, b4). Hence we have proved that all the coefficients aj and bj are
uniquely expressed by polynomial functions of (a1, a2). In particular for any
given (a1, a2) ∈ C2 the solution is unique if it exists.

On the other hand we have the solution

u(t) = ℘(t) = t−2 +
g2
20

t2 +
g3
28

t4 + · · · ,

v(t) =
4

℘′(t)2
= t6 +

g2
10

t10 + · · · .

Hence the coefficients aj and bj which are uniquely determined by (a1, a2)
equal the coefficients of the above u(t) and v(t) with g2 = 20a1 and g3 = 28a2.

2.4.4 Type (–2,4)

We may assume a−1 = b2 = 1 and b−1 = b1 = 0. Then for k ≥ 4(
coeffn(X(1, k − 2), ak−3, 1) coeffn(X(1, k − 2), bk, 1)
coeffn(X(2, k − 3), ak−3, 1) coeffn(X(2, k − 3), bk, 1)

)
=

(
2(2k − 6)(2k − 5) (−2)(2k − 6)

2(2k − 4)(2k − 10)(4k2 − 28k + 57) (−2)(−3)(−4)(2k − 10)

)
.

Since the determinant of this matrix is

4(2k − 3)(2k − 6)(2k − 7)(2k − 8)(2k − 10),

ak−3 and bk for k ≥ 6 are uniquely determined by (a1, a2, b3, b4, b5). Moreover
X(1, 2) = X(1, 3) = 0 imply that b4 and b5 are uniquely determined by
(a1, a2, b3). On the other hand, we have the solution

u(t) = ℘(t) = t−2 +
g2
20

t2 +
g3
28

t4 + · · · ,

v(t) =
4(℘(t) + C5)

℘′(t)2
= t4 + C5t

6 + · · ·

with parameters g2, g3 and C5. Thus the coefficients ak and bk uniquely
determined by (a1, a2, b3) corresponds to this solution with g2 = 20a1, g3 =
28a2 and C5 = b3.
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2.4.5 Type (2,2)

We may assume a1 = b1 = 1 and a−1 = b−1 = 0. For k ≥ 4(
coeffn(X(1, k − 2), ak−2, 1) coeffn(X(1, k − 2), bk−2, 1)
coeffn(X(2, k − 3), ak−2, 1) coeffn(X(2, k − 3), bk−2, 1)

)
=

(
2(2k − 2)(2k − 6) 2(2k − 2)

2(2k − 2)(2k − 4)(2k − 5)(2k − 10) 0

)
and the determinant of this matrix equals

−4(2k − 2)2(2k − 4)(2k − 5)(2k − 10).

Hence ak−2 and bk−2 for k ≥ 6 are uniquely determined by (a2, a3, b2, b3).
Moreover since X(1, 2) = X(1, 3) = 0, for any given (a2, a3) the solution

is unique if it exists and therefore it corresponds to the solution

u(t) =
16
(
℘( t

2
)− e3

)2
℘′( t

2
)2

= t2 − e3
2
t4 +

1

16
(
g2
5
+ e23)t

6 + · · · ,

v(t) =
1

℘(t)− e3
= t2 + · · · .

with e3 = −2a2 and g2 = 5(16a3 − e23).

2.4.6 Type (–2,2)

We may assume a−1 = b1 = 1 and b−1 = 0. For k ≥ 4,(
coeffn(X(1, k − 2), ak−2, 1) coeffn(X(1, k − 2), bk, 1)
coeffn(X(2, k − 3), ak−2, 1) coeffn(X(2, k − 3), bk, 1)

)
=

(
2(2k − 2)(2k − 6) (−2)(2k − 6)

2(2k − 2)(2k − 4)(2k − 5)(2k − 10) (−2)(−3)(−4)(2k − 10)

)
and the determinant of this matrix equals

4(2k − 1)(2k − 2)(2k − 6)(2k − 8)(2k − 10).

Hence ak−2 and bk for k ≥ 6 are uniquely determined by (a1, a2, a3, a4, a5, b2, b3).
Owing to this with X(1, 2) = X(1, 3) = 0, for any given (a1, a2, a3, b2, b3) the
solution is unique if it exists.

Now putting
a3 = c3 +

1
3
a21,
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we write X(3, 4) and X(3, 5) by the variables (a1, a2, c3, b2, b3):

X(3, 4) = 12096c3(−7a1b2 − 14a2 − b32 + 3b2b3),

X(3, 5) = 12096c3(−16a21 + 29a1b
2
2 − 12a1b3 + 28a2b2 + 3b42 − 11b22b3

+ 4b23 − 48c3).

First suppose c3 = 0. Then the solution is uniquely determined by (a1, a2, b2, b3),
which corresponds to the solution

u(t) = ℘(t) = t−2 +
g2
20

t2 +
g3
28

t4 + · · · ,

v(t) =
1

℘(t)− e3
+

4(C4℘(t) + C5)

℘′(t)2

= t2 + (e3 + C4)t
4 + (C5 + e23 −

g2
20

)t6 + · · ·

with g2 = 20a1, g3 = 28a2, C4 = b2 − e3 and C5 = b3 − e23 +
g2
20
.

Next suppose c3 ̸= 0. Then it follows from X(3, 4) = X(3, 5) = 0 that
(a2, c3) is uniquely determined by (a1, b2, b3). Hence the solution is uniquely
determined by (a1, b2, b3), which corresponds to the solution

u(t) = ℘(t) + 16C6

(
℘( t

2
)− e3

)2
℘′( t

2
)2

= t−2 + (C6 +
g2
20

)t2 + · · · ,

v(t) =
1

℘(t)− e3
= t2 + e3t

4 + (e23 −
g2
20

)t6 + · · ·

with e3 = b2, g2 = 20(e23 − b3) and C6 = a1 − g2
20
.

2.5 Type (–2,–2)

We shall do a similar but more complicated calculation for the type (−2,−2).
In § 2.5.3 and 2.5.6 we also use REDUCE.

2.5.1. We may assume a−1 = b−1 = 1. For k ≥ 4(
coeffn(X(1, k − 2), ak, 1) coeffn(X(1, k − 2), bk, 1)
coeffn(X(2, k − 3), ak, 1) coeffn(X(2, k − 3), bk, 1)

)
=(

− 4
15
k(2k − 2)(2k − 6)(2k + 2) (−2)(2k − 6)

4
35
k(2k − 1)(2k − 2)(2k − 4)(2k + 2)(2k − 10) (−2)(−3)(−4)(2k − 10)

)
The determinant of this matrix equals

− 4
35
2k(2k + 2)(2k + 3)(2k − 2)(2k − 6)(2k − 8)(2k − 10).
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Hence ak and bk with k ≥ 6 are uniquely determined by (a1, . . . , a5, b1, . . . , b5).
Moreover by the equations X(1, 2) = X(1, 3) = 0, b4 and b5 are expressed by
polynomial functions of (a1, . . . , a5, b1, b2, b3).

Thus ai and bj with i ≥ 6 and j ≥ 4 are determined by polynomial
functions of

(a1, a2, a3, a4, a5, b1, b2, b3).

Here we have used all of X(1, 1), X(1, 2), . . . and X(2, 1), X(2, 2), . . ..
We put

(2.32)

a3 = c3 +
1
3
a21,

b3 = d3 +
1
3
b21,

a4 = c4 +
3
11
a1a2,

a5 = c5 +
2
39
a31 +

1
13
a22.

Then all coefficients are suitable polynomial functions of

(a1, a2, c3, c4, c5, b1, b2, d3).

Similarly by denoting

b4 = d4 +
3
11
b1b2,

b5 = d5 +
2
39
b31 +

1
13
b22,

we have

d4 =
3
11

(
− 32a1a2 + 11a1b2 + 22a2b1 − b1b2

)
− 32c4,

d5 =
1
39

(
− 128a31 + 104a21b1 + 26a1b

2
1 + 78a1d3 − 192a22 + 195a2b2

− 2b31 + 312b1c3 − 3b22)− 64c5.

Here we remark that c3 = c4 = c5 = 0 (resp˙ d3 = d4 = d5 = 0) if u (resp˙ v)
is the Weierstrass function ℘.

2.5.2. Before going into the detail we prepare several notations.

V := {(a1, a2, a3, a4, a5, b1, b2, b3) ∈ C8| a solution (u, v)

of the form (2.29) with a−1 = b−1 = 1 satisfies (1.4)}.

Since the map defined by (2.29) and (2.32)

V ∋ (u, v) 7→ (a1, a2, c3, c4, c5, b1, b2, d3) ∈ C8

is injective, we will consider V as a subset of C8, which is a closed subvariety.
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Lemma 2.11. i) The solutions

(2.33)

u(t) = ℘(t) + 16C
(℘( t

2
)−e3)2

℘′( t
2
)2

= t−2 + ( g2
20

+ C)t2 + ( g3
28

− e3C
2
)t4 + (

g22
1200

+ 1
16
(e23 +

g2
5
)C)t6

+ (3g2g3
6160

+ 3
64
( g3
14

− g2e3
10

)C)t8 + · · · ,
v(t) = ℘(t) + C′

℘(t)−e3

= t−2 + ( g2
20

+ C ′)t2 + ( g3
28

+ e3C
′)t4 + (

g22
1200

+ (e23 −
g2
20
)C ′)t6

+ (3g2g3
6160

+ 3
64
(e33 −

g3
28

− g2e3
10

)C ′)t8 + · · ·

belong to V . Therefore we can define a map

Ψ3 : (e1 + e2, e1e2, C, C
′) ∈ C4 → V.

ii) We can define a C×-action by
(2.34)
λ.(A,B,C,C ′) = (λA, λ2B, λ2C, λ2C ′),
λ.(a1, a2, c3, c4, c5, b1, b2, d3) = (λ2a1, λ

3a2, λ
4c3, λ

5c4, λ
6c5, λ

2b1, λ
3b2, λ

4d3)

so that Ψ3 is C×-equivariant. Moreover Ψ−1
3 (0) = 0.

iii) The solutions

(2.35)
u(t) = ℘(t),

v(t) = 4℘(t)4+C℘(t)2+C′℘(t)+C′′

℘′(t)2

belong to V . Then we have a map

Ψ1 : (g2, g3, C, C
′, C ′′) ∈ C5 → V.

Similarly the solutions

(2.36)
u(t) =

℘( t
2
)4+C℘( t

2
)2+C′℘( t

2
)+C′′

℘′( t
2
)2

,

v(t) = ℘(t)

belong to V , which define a map

Ψ2 : (g2, g3, C, C
′, C ′′) ∈ C5 → V.

We have a C×-action

λ.(g2, g3, C, C
′, C ′′) = (λ2g2, λ

3g3, λ
2C, λ3C ′, λ4C ′′)

so that Ψ1 and Ψ2 are C×-equivariant.
iv) Cf. [OS, Proposition 7.3 ii)]

ImΨ1 = V ∩ {c3 = c4 = c5 = 0},
ImΨ2 = V ∩ {d3 = d4 = d5 = 0}.

v) The maps Ψ1 and Ψ2 are injective.
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Proof. i) follows from Theorem 2.7.
ii) The C×-equivariance is easy. To prove Ψ−1

3 (0) = 0, suppose u(t) =
v(t) = t−2 of the form (2.33). If one of ei is not zero, u(t) and v(t) have
a finite period. Since t−2 has no period, e1 = e2 = e3 = 0. This means
℘(t) = t−2. Then one should have C = C ′ = 0.

iii) is similarly proved as in the case of i) and ii).
iv) The Laurent expansion (2.14) of ℘(t) implies that the left hand side

is contained in the right hand side. Conversely, for any (a1, a2) we can take
g2 = 20a1 and g3 = 28a2 and moreover for any (b1, b2, b3), we can take
(C,C ′, C ′′) so that the expansion of v(t) has desired coefficients.

v) For Ψ1, the Taylor expansion (2.14) of u(t) determines g2 and g3.
The other coefficients C,C ′, C ′′ are determined by the Taylor expansion of
v(t).

2.5.3. By direct calculations we obtain that the vanishing ofX(3, 4), X(3, 5),
X(3, 6), X(4, 5), X(3, 7) and X(4, 6) are equivalent to

f1 := 96a1a2c3 − 33a1b2c3 − 66a2b1c3 + 3b1b2c3 + 352c3c4 − 22c4d3 = 0,
(2.37)

f2 := 128a31c3 − 104a21b1c3 + 1056a1a2c4 − 26a1b
2
1c3 − 363a1b2c4 − 54a1c3d3

(2.38)

+ 192a22c3 − 726a2b1c4 − 195a2b2c3 + 2b31c3 + 33b1b2c4 − 312b1c
2
3

+ 6b1c3d3 + 3b22c3 + 2496c3c5 + 3872c24 − 156c5d3 = 0,

f3 := 394240a31c4 + 446976a21a2c3 − 320320a21b1c4 − 153648a21b2c3

(2.39)

− 272736a1a2b1c3 + 1946880a1a2c5 − 80080a1b
2
1c4 + 2088a1b1b2c3

− 669240a1b2c5 + 1638912a1c3c4 − 268752a1c4d3 + 591360a22c4

− 23760a2b
2
1c3 − 1338480a2b1c5 − 600600a2b2c4 − 116640a2c3d3

+ 6160b31c4 + 1080b21b2c3 + 60840b1b2c5 − 834240b1c3c4

− 16170b1c4d3 + 9240b22c4 − 10935b2c3d3 + 14826240c4c5 = 0,

f4 := 305536a31c4 + 257760a21a2c3 − 248248a21b1c4 − 88605a21b2c3

(2.40)

− 165978a1a2b1c3 + 1812096a1a2c5 − 62062a1b
2
1c4 + 4194a1b1b2c3

− 622908a1b2c5 + 945120a1c3c4 − 225390a1c4d3 + 458304a22c4

− 7722a2b
2
1c3 − 1245816a2b1c5 − 465465a2b2c4 − 68526a2c3d3

+ 4774b31c4 + 351b21b2c3 + 56628b1b2c5 − 703560b1c3c4

− 20328b1c4d3 + 7161b22c4 − 13122b2c3d3 + 12602304c4c5 = 0,
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f5 := 122880a41c3 − 89600a31b1c3 + 1198080a31c5 + 4308480a21a2c4

(2.41)

− 33280a21b
2
1c3 − 973440a21b1c5 − 1481040a21b2c4 − 120960a21c3d3

+ 1331712a1a
2
2c3 − 2085600a1a2b1c4 − 303696a1a2b2c3 − 160a1b

3
1c3

− 243360a1b
2
1c5 − 166650a1b1b2c4 − 299520a1b1c

2
3 + 7920a1b1c3d3

− 92655a1b
2
2c3 + 2396160a1c3c5 + 15797760a1c

2
4 − 767520a1c5d3

− 773472a22b1c3 + 1797120a22c5 − 602580a2b
2
1c4 − 170814a2b1b2c3

− 1825200a2b2c5 + 4207104a2c3c4 − 690624a2c4d3 + 160b41c3

+ 18720b31c5 + 27390b21b2c4 − 24960b21c
2
3 − 1140b21c3d3

+ 8925b1b
2
2c3 − 2720640b1c3c5 + 3213760b1c

2
4 + 1560b1c5d3

+ 28080b22c5 + 1019040b2c3c4 − 10230b2c4d3 − 155520c23d3

− 4860c3d
2
3 + 23362560c25 = 0,

f6 := 2826240a41c3 − 2245120a31b1c3 + 49121280a31c5 + 164482560a21a2c4

(2.42)

− 615680a21b
2
1c3 − 39911040a21b1c5 − 56540880a21b2c4 − 2782080a21c3d3

+ 33864192a1a
2
2c3 − 74865120a1a2b1c4 − 917136a1a2b2c3 + 33760a1b

3
1c3

− 9977760a1b
2
1c5 − 7996890a1b1b2c4 − 6888960a1b1c

2
3 + 532080a1b1c3d3

− 4599135a1b
2
2c3 + 55111680a1c3c5 + 603102720a1c

2
4 − 32816160a1c5d3

− 20290272a22b1c3 + 73681920a22c5 − 26273940a2b
2
1c4 − 8482974a2b1b2c3

− 74833200a2b2c5 + 108624384a2c3c4 − 24323904a2c4d3 + 800b41c3

+ 767520b31c5 + 1194270b21b2c4 − 124800b21c
2
3 − 102900b21c3d3

+ 425325b1b
2
2c3 − 118734720b1c3c5 + 140127680b1c

2
4 − 497640b1c5d3

+ 1151280b22c5 + 49764000b2c3c4 − 918390b2c4d3 − 4510080c23d3

− 315900c3d
2
3 + 957864960c25 = 0,

respectively.
Note that f1 = 0 is equivalent to

(2.43) c3d4 + 2d3c4 = 0.

Lemma 2.12. i) V ∩ {c3 = d3 = 0} ⊂ ImΨ1 ∪ ImΨ2.
ii) V ∩ {c3 = 0, d3 ̸= 0} ⊂ ImΨ1.
iii) V ∩ {c3 ̸= 0, d3 = 0} ⊂ ImΨ2.

Proof. We examine the left hand sides.
i) First note that f2 = −121c4d4 when c3 = d3 = 0. Hence we may

assume c3 = c4 = d3 = 0 by the symmetry of u and v. In this case f3 =
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−223080c5d4 and f5 = −365040c5d5. Hence we have c5 = 0 or d4 = d5 = 0.
By Lemma 2.11 iv) the result holds.

ii) Since c4 = 0 by (2.43), we have f2 = −156c5d3. Then we have c3 =
c4 = c5 = 0.

iii) By the symmetry between u and v, it is reduced to ii).

2.5.4. The remaining case is c3d3 ̸= 0. Since V ∩ {c3d3 ̸= 0} ∩ (ImΨ1 ∪
ImΨ2) = ∅, we have to prove

(2.44) V ∩ {c3d3 ̸= 0} ⊂ ImΨ3,

which will be proved at the end of this subsection.

Proposition 2.13. Recall the map Ψ3 : C4 → C8 in Lemma 2.11. Let Y
be a d-dimensional subspace of C4, L a subspace of C8 and Ω a Zariski open
subset of L such that
a) Ψ3(Y ) ⊂ L.
b) Ω ∩Ψ3(Y ) ̸= ∅ and Ψ3|Ψ−1

3 (Ω)∩Y is locally injective at a certain point.

c) Ω ∩ V is contained in an irreducible d-dimensional subvariety of V ∩ L.
Then Ω ∩ V ⊂ ImΨ3.

Proof. By Lemma 2.11 ii),

Ψ̄3 : (Y − {0})/C× → (L− {0})/C×

is well defined. Then the image of Ψ̄3 is compact, Ψ3(Y − {0}) is closed in
L − {0}, Ψ3(Y ) is closed in L and then Ω ∩ Ψ3(Y ) is closed in Ω ∩ Y . On
the other hand, by the assumption c),

Ψ3(Ψ
−1
3 (Ω)∩Y ) ⊂ Ω∩Ψ3(Y ) ⊂ Ω∩V ⊂ (a d-dimensional irreducible variety).

By the assumption b), the first term is dense in the last term and then
Ω ∩Ψ3(Y ) is dense in Ω ∩ V . Hence Ω ∩Ψ3(Y ) = Ω ∩ V .

Proposition 2.14. The following Y, L and Ω satisfy the assumptions a), b)
and c) in Proposition 2.13. Here (A,B,C,C ′) and (a1, a2, c3, c4, c5, b1, b2, d3)
are the coordinates of C4 and C8, respectively.
i) Y = C4, L = C8 and Ω = {c3d3c4d4 ̸= 0}.
ii) Y = {A = 0}, L = {a2 = b2 = c4 = 0} and Ω = {c3d3(16c3−d3) ̸= 0}∩L.
iii) Y = {A = 4C − C ′ = 0}, L = {a2 = b2 = c4 = 16c3 − d3 = 0} and
Ω = {c3d3 ̸= 0, 4a1 + b1 ̸= 0} ∩ L.
iv) Y = {A = B−4C−C ′ = 0}, L = {a2 = b2 = c4 = 16c3−d3 = 4a1+ b1 =
0} and Ω = {c3d3 ̸= 0} ∩ L.
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Proof. The explicit expression of Ψ3 shows

(2.45)

a1 =
g2
20

+ C = 1
5
(A2 −B + 5C),

a2 =
g3
28

− e3C
2

= 1
14
A(−2B + 7C),

c3 = −1
3
C
(
C + 1

16
(g2 − 3e23)

)
= 1

48
C(−A2 + 4B − 16C),

c4 =
3
22
e3C

(
C + 1

16
(e1 − e2)

2
)

= 3
352

AC(−A2 + 4B − 16C),
b1 =

g2
20

+ C ′ = 1
5
(A2 −B + 5C ′),

b2 =
g3
28

+ e3C
′ = −1

7
A(B + 7C ′),

d3 = −1
3
C ′(C ′ + 1

4
(g2 − 12e23)) = 1

3
C ′(2A2 +B − C ′).

Hence if A = 0, we have

(2.46)

a1 = C − 1
5
B,

c3 = −1
3
C2 + 1

12
BC,

b1 = C ′ − 1
5
B,

d3 = −1
3
C ′2 + 1

3
BC ′,

a2 = c4 = b2 = 0,
4a1 + b1 = C ′ + 4C −B,

d3 − 16c3 =
1
3
(4C − C ′)(4a1 + b1)

which proves a) for ii), iii) and iv). The assumption b) is also clear from
(2.45) and (2.46).

The assumption c) will be proved in Lemma 2.16, 2.18, 2.19 and 2.20,
respectively.

Proof of Theorem 2.9. As we have already remarked, we have to prove
(2.44). By Proposition 2.12 with the help of Proposition 2.14, it is enough
to show

(2.47) V ∩ {c3d3 ̸= 0, c4d4 = 0} ⊂ V ∩ {c3d3 ̸= 0, a2 = b2 = c4 = 0}.

This is proved as follows: Take an element in V such that c3d3 ̸= 0, and
c4d4 = 0 First note that we have c4 = d4 = 0 by (2.43). Putting c4 = 0, we
have

(2.48)

coeffn(f1, b2, 1)f3 − coeffn(f3, b2, 1)f1

= c3(−11a1 + b1)f3 − 3(−17072a21c3 + 232a1b1c3 − 74360a1c5

+ 120b21c3 + 6760b1c5 − 1215c3d3)f1

= 51030a2c
2
3d3(32a1 − 7b1).

Suppose a2 ̸= 0. Then we have b1 =
32
7
a1 and therefore f1 = −45

7
a1c3(32a2+

3b2). Since the assumption b2 = −32
3
a2 implies f4 = 71442a2c3d3 ̸= 0,

we have a1 = b1 = 0 and hence f4 = 1458c3d3(−47a2 − 9b2). Applying
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a1 = b1 = c4 = 0 and b2 = −47
9
a2 to f3, we obtain f3 = −59535a2c3d3 ̸= 0,

which means a contradiction.
Thus we can conclude a2 = 0 and by the symmetry between u and v, we

have a2 = b2 = c4 = 0.

Proposition 2.15. The subset ImΨ1, ImΨ2 and ImΨ3 are closed subvari-
eties.

Proof. Lemma 2.11 iv) shows that ImΨ1 and ImΨ2 are closed. Proposi-
tion 2.14 and the proof of Proposition 2.13 imply that ImageΨ3 is closed.

2.5.5. We shall examine the assumption c).

Lemma 2.16. The restriction of the projection

(2.49) V ∩ {c3d3c4d4 ̸= 0} ∋ (a1, . . . , d3) 7→ (a1, a2, c3, c4, b1) ∈ C5

is injective. Its image is contained in {h1 = 0} with an irreducible polynomial
h1(a1, a2, c3, c4) in (2.57).

Proof. If 16c3 ̸= d3, then we have
(2.50)

c5 =
1

156(16c3 − d3)

(
− 128a31c3 + 104a21b1c3 − 1056a1a2c4 + 26a1b

2
1c3

+ 363a1b2c4 + 54a1c3d3 − 192a22c3 + 726a2b1c4 + 195a2b2c3 − 2b31c3

− 33b1b2c4 + 312b1c
2
3 − 6b1c3d3 − 3b22c3 − 3872c24

)
from f2 = 0. If d3 = 16c3, then we have
(2.51)

c5 =
1

1853280
c−1
4

(
− 49280a31c4 − 55872a21a2c3 + 40040a21b1c4 + 19206a21b2c3

+ 34092a1a2b1c3 + 10010a1b
2
1c4 − 261a1b1b2c3 + 332640a1c3c4 − 73920a22c4

+ 2970a2b
2
1c3 + 75075a2b2c4 + 233280a2c

2
3 − 770b31c4 − 135b21b2c3

+ 136620b1c3c4 − 1155b22c4 + 21870b2c
2
3

)
from the relation c3f3 − 20280c5f1 = 0. In either case, the relation (2.50) or
(2.51) shows that c5 is uniquely determined by (a1, a2, c3, c4, b1, b2, d3).

Next we will do eliminations of variables in f1 = · · · = f4 = 0. Put

r1 = coeffn(f1, d3, 1)f2 − coeffn(f2, d3, 1)f1,

r2 = 17f3 − 20f4.
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Then
r1 = (−22c4)f2 − 6(−9a1c3 + b1c3 − 26c5)f1.

Moreover motivated by coeffn(r1, c5, 1)/ coeffn(r2, c5, 1) = −c3/210, we put

r3 = −c3r2 − 210r1,

r4 = coeffn(f1, d3, 1)r3 − coeffn(r3, d3, 1)f1,

= −22c4r3 − 63c3(968a1c4 + 9720a2c3 − 2090b1c4 − 1215b2c3)f1.

Then r4 is a polynomial function of (a1, a2, c3, c4, b1, b2) and it is factored into

(2.52) r4 = −105d4(7128a1c
2
3c4−5832a2c

3
3+1782b1c

2
3c4+729b2c

3
3−10648c34).

Then we have

(2.53) 7128a1c
2
3c4 − 5832a2c

3
3 + 1782b1c

2
3c4 + 729b2c

3
3 − 10648c34 = 0

and hence

(2.54) b2 =
2

729
c−3
3 (−3564a1c

2
3c4 + 2916a2c

3
3 − 891b1c

2
3c4 + 5324c34).

Finally from f1 = 0 we have

(2.55) d3 =
1
22
c3c

−1
4 (96a1a2 − 33a1b2 − 66a2b1 + 3b1b2 + 352c4).

Since c5, b2 and d3 is given by (2.50) or (2.51), (2.54) and (2.55), all coeffi-
cients are uniquely determined by (a1, a2, c3, c4, b1). This proves the injectiv-
ity.

By substituting (2.54) and (2.55) we have

(2.56)

coeffn(f2, c5, 1)f3 − coeffn(f3, c5, 1)f2

= 156(16c3 − d3)f3

− 4680(416a1a2 − 143a1b2 − 286a2b1 + 13b1b2 + 3168c4)f2

= 1040
24057

c−5
3 c−2

4 d4h1

(
108a1c

2
3 + 27b1c

2
3 − 484c24

)
with

(2.57)
h1 = −39694050a21c

4
3c

2
4 − 22733865a1a2c

5
3c4 + 59296050a1c

2
3c

4
4

+ 26040609a22c
6
3 + 47544651a2c

3
3c

3
4 − 85739148c53c

2
4 − 14172488c64.

Suppose h1 ̸= 0. Then from (2.56) we have

(2.58) b1 =
4
27
c−2
3 (−27a1c

2
3 + 121c24).
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When 16c3 ̸= d3, it follows from (2.50), (2.54), (2.55) and (2.58) that

f5 =
80

29403
c−3
3 c−2

4 d3h1 ̸= 0,

which contradicts to the fact that f5 = 0.
When 16c3 = d3, substituting (2.51), (2.54), (2.58) and d3 = 16c3 to f1

we have
f1 =

968
6561

c−4
3 c24(8910a1c

2
3c4 − 5103a2c

3
3 − 10648c34)

and therefore
a2 =

22
5103

c−3
3 c4(405a1c

2
3 − 484c24).

Combining this with (2.51), (2.54), (2.58) and d3 = 16c3, we have

f5 = −3732480c33 ̸= 0,

which also leads a contradiction.
Hence we obtain

(2.59) h1(a1, a2, c3, c4) = 0.

Lemma 2.17. On V ∩ {c3d3 ̸= 0, a2 = b2 = c4 = d4 = 0}, (a1, c3, b1, d3)
satisfy an equation h2(a1, c3, b1, d3) = 0, which is given in (2.61).

Proof. By f2 = 0, we have

(2.60) 156c5(16c3 − d3) =

− c3(128a
3
1 − 104a21b1 − 26a1b

2
1 − 54a1d3 + 2b31 − 312b1c3 + 6b1d3).

Now applying a2 = b2 = c4 = 0 and (2.60) to (16c3−d3)
2f5 and (16c3−d3)

2f6,
we obtain

(16c3 − d3)
2f5 = 60c3d3h2r5,

(16c3 − d3)
2f6 = 60c3d3h2r6

with

h2 = 256a41 − 144a31b1 − 104a21b
2
1 + 1536a21c3 − 204a21d3 − 9a1b

3
1 − 432a1b1c3

− 27a1b1d3 + b41 − 204b21c3 + 6b21d3 + 2304c23 − 288c3d3 + 9d23,

r5 = 64a21 − 68a1b1 + 4b21 − 288c3 − 9d3,

r6 = 2624a21 − 2788a1b1 + 164b21 − 8352c3 − 585d3,
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respectively. We have h2r5 = h2r6 = 0. Moreover because of the identity

5184h2 = 1681r25 − 82r5r6 + r26
− (144576a21 − 1512a1b1 − 9414b21)r5 + (4032a21 + 216a1b1 − 198b21)r6

we can conclude

(2.61) h2(a1, c3, b1, d3) = 0.

Lemma 2.18. The map V ∩ {c3d3(16c3 − d3) ̸= 0, a2 = b2 = c4 = d4 =
0} ∋ (a1, . . . , d3) 7→ (a1, c3, b1, d3) ∈ C4 is injective. Its image is contained in
{h2 = 0}.

Proof. Since d3 ̸= 16d3, c5 is uniquely determined by (2.60) and the
lemma is clear from Lemma 2.17.

Lemma 2.19. The map

V ∩ {c3(4a1 + b1) ̸= 0, a2 = b2 = c4 = d4 = 16c3 − d3 = 0}
∋ (a1, . . . , d3) 7→ (a1, b1)

is injective.

Proof. For an element of V such that a2 = b2 = c4 = d4 = 16c3 − d3 = 0,
we have

h2 = (4a1 + b1)
2(16a21 − 17a1b1 + b21 − 108c3).

Moreover assume c3(4a1 + b1) ̸= 0, then we have

c3 =
1

180
(16a21 − 17a1b1 + b21).

Then

f5 =
20
27
h4r7,

f6 =
20
27
h4r8

with

h4 = 128a31 − 152a21b1 + 25a1b
2
1 − b31 − 2808c5,

r7 = −384a31 + 520a21b1 − 143a1b
2
1 + 7b31 − 11232c5,

r8 = −11136a31 + 17576a21b1 − 6799a1b
2
1 + 359b31 − 460512c5.

Now by the equality

r8 − 41r7 = 7776c3(4a1 + b1) ̸= 0,

we can conclude h4 = 0. Then c5 is determined by (a1, b1).
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Lemma 2.20. The map V ∩ {c3 ̸= 0, a2 = b2 = c4 = d4 = 16c3 − d3 =
4a1 + b1 = 0} ∋ (a1, . . . , d3) 7→ (a1, c3, c5) ∈ C3 is injective. Its image is
contained in {f5 = 0}.

Proof. In this case,

f5 = 69120(338c25 + 13a1c3c5 − 28a21c
2
3 − 54c33)

is an irreducible polynomial.

3 Reducible systems of type B2

3.1. For our commuting differential operators P1 and P2 we can consider
the simultaneous eigenvalue problem

(3.1) Pju(x) = λju(x) for j = 1 and 2

with λj ∈ C. If the potential function of P1 is generic, the study of this
problem seems to be difficult. For the first step to analyze (3.1) we examine
the case when the system (3.1) is reducible. To be precise we study the
operators P and Q in the following lemma such that P = P1 and P2 =

tQQ.

Lemma 3.1. Let P be a self-adjoint differential operator and let Q be a
differential operator satisfying

(3.2) [P,Q] = BQ

with a self-adjoint operator B. Then

[P, tQQ] = 0.

Proof. The assumption of the lemma implies [P, tQQ] = [P, tQ]Q +
tQ[P,Q] = −t[tP,Q]Q+ tQ[P,Q] = −tQBQ+ tQBQ = 0.

Theorem 3.2. Let ε be the one dimensional representation ε : W (B2) →
{±1} such that g(x1x2) = ε(g)x1x2 for g ∈ W (B2). Let P and Q be holo-
morphic differential operators of the form

(3.3)

{
P = ∂2

1 + ∂2
2 +R(x1, x2),

Q = ∂1∂2 + a1(x1, x2)∂1 + a2(x1, x2)∂2 + a0(x1, x2)

defined on a Zariski open subset of a connected open neighborhood of the
origin of C2. Suppose

g(P ) = P, g(Q) = ε(g)Q for g ∈ W (B2)(3.4)
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and

[P,Q] = b(x1, x2)Q(3.5)

with a function b(x1, x2). Then

R(x1, x2) = u(x1 + x2) + u(x1 − x2) + w(x1) + w(x2),
w(t) = V ′(t)− V 2(t),
a0(x1, x2) = V (x1)V (x2) +

1
2

(
u(x1 + x2)− u(x1 − x2)

)
,

a1(x1, x2) = V (x2),
a2(x1, x2) = V (x1),
b(x1, x2) = 2V ′(x1) + 2V ′(x2),

(3.6)

where 
u(t) = c4

(℘( t
2
)− e3)

2

℘′( t
2
)2

+ c5℘(t) + c6,

V (t) =
c1(℘(t)− e1)(℘(t)− e2) + c2℘(t) + c3

℘′(t)

(3.7)

(3.8)

with suitable complex numbers c1, . . . , c6 satisfying

(3.9) c2c4 = c3c4 = 0

or

(3.10) u(t) = c, V (t) is any odd function with c ∈ C

or

(3.11) u(t) is any even function, V (t) = 0.

On the other hand the operators P and Q given by (3.6) satisfy the relation
(3.5) by putting (3.7) for any complex numbers c1, . . . , c6 with (3.9) and any
periods of ℘(t) or by putting (3.10) or by putting (3.11).

The following Remark 3.3 and Remark 3.4 are easily obtained by direct
calculations.

Remark 3.3. Under the notation of Theorem 3.2

tQQ =
(
∂1∂2 +

(
u(x1 + x2)− u(x1 − x2)

)
2

)2

+ w(x2)∂
2
1 + w(x1)∂

2
2

+ w(x1)w(x2) + V (x1)V (x2)
(
u(x1 + x2)− u(x1 − x2)

)
− 1

2

(
V (x1)

(
u′(x1 + x2) + u′(x1 − x2)

)
+ V (x2)

(
u′(x1 + x2)− u′(x1 − x2)

))
.
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Remark 3.4. In Theorem 3.2 we have the following from (3.7) with complex
numbers C1, . . ..

i) If the fundamental half periods ω1 and ω2 of ℘ are finite and c4 = 0, then

u(t) = c5℘(t) + c6,

V (t) =
∑3

j=1
1
2
Cj

℘′(t)
℘(t)−ej

,

w(t) = −
∑4

j=1(Cj + C2
j )℘(t+ ωj)

−(C2
1 − 2C2C3)e1 − (C2

2 − 2C3C1)e2 − (C2
3 − 2C1C2)e3,

C4 = −(C1 + C2 + C3).

ii) If ω1 and ω2 are finite and c2 = c3 = 0, then
u(t) = C2℘(t) + C3

(
℘( t

2
+ ω1) + ℘( t

2
+ ω2)

)
+ C4,

V (t) = 1
2
C1

℘′(t)
℘(t)−e3

,

w(t) = −(C1 + C2
1)℘(t+ ω3) + (C1 − C2

1)℘(t)− C2
1e3

iii) If e1 = e2 =
1
3
λ2 ̸= 0 and c4 = 0, then

u(t) = C4 sinh
−2 λt+ C5,

V (t) = C1 cothλt+ C2 tanhλt+ C3 sinh 2λt,
w(t) = −(C1λ+ C2

1) sinh
−2 λt+ (C2λ+ C2

2) cosh
−2 λt

+2(C3λ− C1C3 − C2C3) cosh 2λt− C2
3 cosh

2 2λt
−(C2

1 + C2
2 − C2

3 + 2C1C2 + 2C1C3 − 2C2C3).

iv) If e2 = e3 =
1
3
λ2 ̸= 0 and c2 = c3 = 0, then

u(t) = C2 sinh
−2 λt+ C3 sinh

−2 λ
2
t+ C4,

V (t) = C1 cothλt,
w(t) = −(C1λ+ C2

1) sinh
−2 λt− C2

1 .

v) If e1 = e2 =
1
3
λ2 ̸= 0 and c2 = c3 = 0, then

u(t) = C2 sinh
−2 λt+ C3 cosh 2λt+ C4,

V (t) = C1 sinh
−1 2λt,

w(t) = −C1λ sinh
−2 λt+ (2C1λ− C2

1) sinh
−1 2λt.

vi) If e1 = e2 = c4 = 0, then
u(t) = C4t

−2 + C5,
V (t) = C1t

−1 + C2t+ C3t
3,

w(t) = −(C1 + C2
1)t

−2 − (2C1C2 − C2)− (2C1C3 + C2
2 − 3C3)t

2

−2C2C3t
4 − C2

3 t
6.
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vii) If e1 = e2 = c2 = c3 = 0, then
u(t) = C2t

−2 + C3t
2 + C4,

V (t) = C1t
−1,

w(t) = −(C1 + C2
1)t

−2.

3.2. To prove Theorem 3.2 we will translate the reducibility into a functional
equation. The coefficients of ∂2

1 and ∂2
2 in (3.5) mean 2∂1a2 = 2∂2a1 = 0 and

therefore
a1 = V (x2) and a2 = V (x1)

with a suitable odd function V (t). The coefficient of ∂1∂2 in (3.5) proves

(3.12) b = 2(∂2a1 + ∂1a2) = 2
(
V ′(x2) + V ′(x1)

)
.

The coefficients of ∂1 and ∂2 in (3.5) are{
V ′′(x2) + 2∂1a0 − ∂2R = 2V (x2)

(
V ′(x1) + V ′(x2)

)
,

V ′′(x1) + 2∂2a0 − ∂2R = 2V (x1)
(
V ′(x1) + V ′(x2)

)
and equivalently{(

∂1 + ∂2
)(
R− 2a0 − V ′(x1)− V ′(x2) + (V (x1) + V2(x2))

2
)
= 0,(

∂1 − ∂2
)(
R + 2a0 − V ′(x1)− V ′(x2) + (V (x1)− V2(x2))

2
)
= 0.

Hence there exist functions u+(t) and u−(t) such that
(3.13)

R = V ′(x1) + V ′(x2)− V (x1)
2 − V (x2)

2 + u+(x1 + x2) + u−(x1 − x2),

a0 = V (x1)V (x2) +
1
2

(
u+(x1 + x2)− u−(x1 − x2)

)
.

Since g(a0) = ε(g)a0, we have

(3.14) u+(t) = u−(t) = u(t)

with a suitable even function u(t). This proves (3.6).
Let U(t) be the odd function with U ′(t) = u(t). Then

[P,Q]− bP

= −V (x1)
(
u(x1 + x2) + u(x1 − x2)

)
− V (x2)

(
u(x1 + x2)− u(x1 − x2)

)
−
(
V ′(x1) + V ′(x2)

)(
u(x1 + x2)− u(x1 − x2)

)
= −∂1∂2

(
V (x1)

(
U(x1 + x2) + U(x1 − x2)

)
+ V (x2)

(
U(x1 + x2)− U(x1 − x2)

)
.

Thus we have
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Theorem 3.5. The operators P and Q satisfy (3.3), (3.4) and (3.5) if and
only if there exist odd functions U and V and an even function H(t) such
that

(3.15) V (x1)
(
U(x1 + x2) + U(x1 − x2)

)
+ V (x2)

(
U(x1 + x2)− U(x1 − x2)

)
= H(x1) +H(x2)

and that the relation (3.6) holds with u = U ′.

Hence we will concentrate the functional equation (3.15), which is a spe-
cial case of (2.2).

Lemma 3.6. Suppose (U, V, F,G) is a solution of (2.2) such that{
U ′(t) has a period 2ω,

W (t) := V (t+ ω)− V (t)− V (ω) is an odd function.

Then (U,W,H) satisfies (3.15) with an appropriate H.

Proof. Put U(t + 2ω) = U(t) + η. Changing the variable (x1, x2) into
(x1 + ω1, x2 + ω2) in the equation (2.2), we have(

U(x1+x2)+η+U(x1−x2)
)
V (x1+ω)+

(
U(x1+x2)+η−U(x1−x2)

)
V (x2+ω)

= F (x1 + x2 + 2ω) + F (x1 − x2) +G(x1 + ω) +G(x2 + ω).

Subtracting the original one from this, we obtain(
U(x1 + x2) + U(x1 − x2)

)
W (x1) +

(
U(x1 + x2)− U(x1 − x2)

)
W (x2)

=
(
F (x1 + x2 + 2ω)− F (x1 + x2)− 2V (ω)U(x1 + x2)

)
+
(
G(x1 + ω)−G(x1)− ηV (x1 + ω)

)
+
(
G(x2 + ω)−G(x2)− ηV (x2 + ω)

)
.

Since the left hand side is W (B2)-invariant, the first term of the right hand
side is constant. Then H(t) = G(t+ω)−G(t)−ηV (t+ω)+C with a suitable
constant number C and we have the lemma.

Corollary 3.7. Suppose the fundamental half periods ω1 and ω2 of ℘(t) are
finite. Then for odd functions U(t) and V (t) given by{

U ′(t) = C4℘(t) + C5,

V (t) =
∑3

j=1Cj

(
ζ(t+ ωj)− ζ(t)− ζ(ωj)

)
or {

U ′(t) = C1

(
℘( t

2
+ ω1) + ℘( t

2
+ ω2)

)
+ C2℘(t) + C3,

V (t) = ζ(t+ ω3)− ζ(t)− ζ(ω3),

there exists a function H(t) so that (3.15) holds.
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Proof. Note that the equation (3.15) is bilinear for (U, V ). In the lemma
put

(
U(t), V (t)

)
=

(
ζ(t), ζ(t)

)
and ω = ωj or put

(
U(t), V (t)

)
=

(
ζ( t

2
+ω1)+

ζ( t
2
+ ω2)− ζ(ω1)− ζ(ω2), ζ(t)

)
and ω = ω3, we have the corollary.

Now we will continue the proof of Theorem 3.2. Since

ζ(t+ ωj)− ζ(t)− ζ(ωj) =
1

2

℘′(t)

℘(t)− ej
,

the last statement in Theorem 3.2 follows from Corollary 3.7 with the holo-
morphic continuation of the parameters e1 and e2 of ℘(t) and from the fol-
lowing Lemma 3.8 i). Thus we have proved that the operators given in
Remark 3.4 satisfy (3.5).

Lemma 3.8. i) If U(t) = Ct (C ∈ C), then for any V , H(t) := 2CtV (t)
satisfies (3.15). If V (t) = 0, then H(t) = 0 satisfies (3.15). We call these
(U, V ) trivial solutions of (3.15), which correspond to (3.10) and (3.11).
ii) If (U, V,H) is a solution of (3.15), then (U + Ct, V,H + 2tV ) is also a
solution of (3.15)
iii) If V ′(t) has a period ω, then U ′(t) has a period 2ω.
iv) If V (t+ ω) = V (t) + η with η ∈ C, then η = 0.

Proof. The claims i) and ii) are clear and the claim iii) is also clear from
the result in §2. Suppose V (t+ ω) = V (t) + η. Then U(t+ 2ω) = U(t) + η′

with some η′ ∈ C. By the change of variable (x1, x2) into (x1 + ω, x2 + ω) in
(3.15)(

U(x1 + x2) + η′ + U(x1 − x2)
)(
V (x1) + η

)
+
(
U(x1 + x2) + η′ − U(x1 − x2)

)(
V (x2) + η

)
= H(x1 + ω) +H(x2 + ω).

Subtracting (3.15) from the above,

2ηU(x1 + x2)

=
(
H(x1+ω)−H(x1)−η′V (x1+ω)

)
+
(
H(x2+ω)−H(x2)−η′V (x2+ω)

)
.

Since we have assumed U ′′(x1 + x2) ̸= 0, we can conclude η = 0.
Finally we will prove that there is no more solutions than we have already

described in Remark 3.4 and Lemma 3.8 i).
From now on we consider only non-trivial solutions unless otherwise

stated. Let (U, V,H) be a non-trivial solution of (3.15). Owing to Theo-
rem 2.9 we see that V (t) is expressed by ℘(t).
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Suppose the fundamental half periods ω1 and ω2 of ℘ are finite. Then

V (t) =
4∑

j=1

Cjζ(t+ ωj) + C0t

with Cj ∈ C. By Lemma 3.8, we have

0 = V (t+ 2ωi)− V (ωi) =
4∑

j=1

2Cjηi + 2C0ωi

for i = 1 and 2. Since η2ω1 − η1ω2 = ±π
√
−1
2

̸= 0, C0 =
∑4

j=1Cj = 0 and we
have the theorem.

When ω1 = ω2 = ∞, the theorem follows from

Lemma 3.9. The rational solution of (3.15) is of the form in Remark 3.4 vi)
or vii).

Proof. Let (U, V,H) is a rational solution of (3.15). If U(t) = t−1, the
left hand side of (3.15) equals

2

(
x1V (x1)− x2V (x2)

x2
1 − x2

2

)
=

∑
n≥0

a2n
x2n
1 − x2n

2

x2
1 − x2

2

for tV (t) =
∑

n≥0 a2nt
2n. Hence if u(t) = C4t

−2 + C5 with C4 ̸= 0, the
solution is of the form in Remark 3.4 vi).

Suppose U(t) = C1t
−1 + C2t+ C3t

3 and V (t) = C4t
−1 + C5t+ C6t

3 with
C3 ̸= 0. We may assume C1 = C2 = C4 = 0. Then the left hand side of
(3.15) equals 6C3

(
x1V (x1)x

2
2 + x2

1V (x2)x2

)
and hence C5 = C6 = 0. This is

the case in Remark 3.4 vii).
Suppose V (t) = C1t

−1+C2t and U(t) = C3t
−1+C4t+C5t

3+C6t
5+C7t

7.
We may assume C3 = C4 = 0. If C1 ̸= 0 and C2 = 0, the left hand side of
(3.15) equals

C1

4∑
j=2

Cn+3
(x1 + x2)

2n − (x1 − x2)
2n

x1x2

and therefore C6 = C7 = 0, which also corresponds to Remark 3.4 vii). Hence
suppose C2 ̸= 0. Since (U(t), V (t)) = (t, tn) does not satisfy (3.15) for n = 7,
5 and 3, we have C7 = C6 = C5 = 0 by considering the homogeneous parts
of degree 8, 6 and 4, successively. This is the case in Remark 3.4 vi).

Lastly suppose ω1 = ∞ and ω2 is finite. We may assume

V (t) = C1 cothλt+ C2 tanhλt+ C3 sinh 2λt+ C4 sinh 4λt+ C0t.
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Applying Lemma 3.9 to this, we have C0 = 0.
If the dimension of the space {V (t)| (λ cothλt, V (t)) is a solution of (3.15)}

is larger than 3 for λ ̸= 0, the dimension of the space {V (t)| (t−1, V (t)) is a
solution of (3.15)} is proved to be larger than 3 by considering the limit to
λ = 0 (cf. [OSj, Proposition 2.21]), which contradicts to Lemma 3.9. Hence
we have Theorem 3.2 if u(t) = C sinh−2 λt+ C ′.

In the same way we can prove that the space {U(t)| (U(t), λ cothλt) is a
solution of (3.15)} is of dimension 2 for λ ̸= 0, which implies the theorem in
the case V (t) = C1 cothλt.

Thus we may assume that

(3.16)

{
U(t) = C1 cothλt+ C2t+ C3 coth

λ
2
t,

V (t) = C4 cothλt+ C5 sinh 2λt.

or

(3.17)

{
U(t) = C1 cothλt+ C2t+ C3 sinh 2λt,

V (t) = C4 sinh
−1 2λt+ C5 cothλt.

The pairs (U, V ) corresponding to C3C5 = 0 have been proved to be solutions.
Suppose there exists a solution with C3C5 ̸= 0 in (3.16) or (3.17). Then the
bilinearity of the equation (3.15) implies that the pair (U, V ) given by (3.16)
or (3.17) is a solution for any complex numbers C1, . . . , C5, which similarly
contradicts to Lemma 3.9 by taking the limit to λ = 0.

Thus we have completed the proof of Theorem 3.2.
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