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rigid ODE

3 var.
KZ GKZ

MO
Oi

H-Pfaff
KZ-type equation

M :
∂u

∂xi
=

∑
1≤ν≤n
ν ̸=i

Aiν

xi − xν
u

(i ∈ Ln := {1, . . . , n})

u =

( u1...
uN

)
, Aij = Aji ∈ Mat(N,C), Aii = 0

with integrability condition [Aij , Akℓ] = [Aij , Aik +Ajk] = 0

KZ-type eq. ←↩ rigid Fuchsian ODE (Haraoka) du
dx = A12

x−x1
u+ · · ·+ A1n

x−xn
u

middle convolutions and additions → accessory parameters and local structures

KZ-type eq. : SpM ← ODE: spectral type / (generalized) Riemann scheme

Ai∞ := −(Ai1 +Ai2 + · · ·+Ain) (i ∈ Ln)

L̃n := Ln ∪ {∞}, Ai = A∅ = 0

Ai1···ik :=
∑

1≤p<q≤k

Aipiq ({i1, . . . , ik} ⊂ L̃n) (generalized) residue matrices

[AI , AJ ] = 0
(
I ⊂ J or I ⊃ J or I ∩ J = ∅, I, J ⊂ L̃n

)
[AI , ALn

] = 0 ⇒ ALn
= κ : scalar ifM is irreducible (κ = 0 : homogeneous)



[
A12, A1234...k

]
=

[
A12, A12 +

k∑
j=3

(A1j +A2j) +
∑

2≤i<j≤k

Aij

]
= 0,

n∑
i=1

Ai∞ =

n∑
i=1

(
−

n∑
j=1

Aij

)
= −2A1···n = −2ALn ,

Ak...n∞ = Ak...n +

n∑
i=k

Ai∞ =
1

2

n∑
i=k

n∑
j=k

Aij −
n∑

i=k

n∑
j=1

Aij

= −
n∑

i=k

k−1∑
j=1

Aij −
1

2

n∑
i=k

n∑
j=k

Aij ,

A1...k−1 −Ak...n∞ =
1

2

(k−1∑
i=1

k−1∑
j=1

Aij + 2

n∑
i=k

k−1∑
j=1

Aij +

n∑
i=k

n∑
j=k

Aij

)
= ALn

• I ⊂ Ln ⇒ AI = AL̃n\I + κ

• [A,B] = 0 ⇒ ∃ Simultaneous (generalized) eigenvalue class :

A =

(
1
2
2
3

)
B =

(
0
0
0
4

)
⇒ [A] = {[1]1, [2]2, [3]1}= {1, [2]2, 3}

[A : B] = {[1 : 0]1, [2 : 0]2, [3 : 4]1}= {[1 : 0], [2 : 0]2, [3, 4]}
• [Bi, Bj ] = 0 (i, j = 1, .., r) ⇒ [B1 : · · · : Br] = {[λ1,1 : · · · : λr,1]m1

, · · · }



Def. I = {Iν | ν = 1, . . . , r} is a commuting family of subsets of a finite set L
def.⇐⇒ Iν ⊂ L, |Iν | > 1 and (Iν ⊂ Iν′ or Iν ⊃ Iν′ or Iν ∩ Iν′ = ∅)

I is maximal
def.⇐⇒ (I, I ′ are these families with I ⊂ I ′ ⇒ I = I ′)

Def. Ln := {maximal commuting families of subsets of Ln}

SpM :=
{
[AI1 : · · · : AIn−1

] | I = {I1, . . . , In−2, In−1 = Ln}
}
I∈Ln

Fact. Ln ≃ {single-elimination tournaments of teams labeled by Ln}
|Ln| = (2n− 3)!! |I| = n− 1 (I ∈ Ln)

1 2 3 4 : 4!
23 = 3 cases

{{1, 2}, {3, 4}, {1, 2, 3, 4}}
1 2 3 4 : 4!

2 = 12 cases
{{1, 2}, {1, 2, 3}, {1, 2, 3, 4}}

12 34

1234

12345

1 2 3 4 5

Ex. L4 = {1, 2, 3, 4}, |L4| = 15

SpM =
{
[Aij : Akℓ : Aijkℓ], [Aij : Aijk : Aijkℓ] | {i, j, k, `} = {1, 2, 3, 4}

}
L5 = {1, 2, 3, 4, 5}, |L5| = 105

I =
{
{1, 2}, {1, 2, 3, 4}, {3, 4}, {1, 2, 3, 4, 5}

}
∈ L5{

[Aij : Akℓ : Aijkℓ], [Aij : Aijk : Aℓm], [Aij : Aijk : Aijkℓ] | {i, j, k, `,m} = L5

}



4 teams

1 2 3 4

: 1 pattern

: 4!
23 = 3 cases

◦
{{1, 2}, {3, 4}}

1 2 3 4

: 4 patterns

: 4!
2 = 12 cases

◦ ◦ ◦
{{1, 2, 3}, {1, 2}}

2 types, 5 (=1+4) patterns, 15 (=3+12) tournaments, 4 (=1+3) win-types

1 2 3 4 5

: 2 patterns

: 5!
23 = 15 cases

◦ ◦{
{1, 2}, {1, 2, 3, 4}, {3, 4}

} 1 2 3 4 5

: 4 patterns

: 5!
22 = 30 cases

◦ ◦ ◦{
{1, 2, 3}, {1, 2}, {4, 5}

}

5 teams

1 2 3 4 5
◦ ◦ ◦ ◦

: 8 patterns

: 5!
2 = 60 cases{

{1, 2, 3}, {1, 2}, {1, 2, 3, 4}
}

3 types, 14 patterns, 105 (=15+30+60) tournaments, 9 (=2+3+4) win-types

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗n

n teams

deletion

insertion ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗n

n− 1 teams



Desingularization

KZ-type equation (Pfaffian form) : du = Ωu, Ω =
∑

1≤i<j≤n

Aijd log(xi − xj)

I = {I1, . . . , In−2, Ln} ∈ Ln : a maximal commuting family of Ln

J, J ′ ∈ Ĩ := I ∪
⋃

ν∈Ln

{
{ν}

}
with Ln = J ⊔ J ′ : semi-final games

J = {j0, . . . , jk}, J ′ = {j′0, . . . , j′k′} (k + k′ = n− 2)

A singular point : xj0 = · · · = xjk and xj′0
= · · · = xj′

k′
(k, k′ ≥ 0)

A local coordinate : (xj1 , . . . , xjk , xj′1
, . . . , xj′

k′
) with xj0 = 0 and xj′0

= 1

{ni, n
′
i} : players of the game Ii (determined after the tournament)

(ni is the loser of Ii)

Def. X = (X1, . . . , Xn−2) : local coordinate defined by

1 2 3 4

1 2
1 3

X1 :
X2 :xni

− xn′
i
=

∏
Ii⊂Iν ̸=Ln

Xν

Theorem. Ω−
n−2∑
i=1

AIid logXi is non-singular around the origin of X



Lemma. Ioi,j : minimal subset in I for i, j ∈ Ln

xI := xni − xn′
i
(I = Ii) with I ∈ I are linearly independent over C and

xi − xj =
∑
I∈I

εIi,jxI with


εIi,j = 0 (I ⫌ Ioi,j or I ∩ Ioi,j = ∅)
εIi,j ∈ {1,−1} (I = Ioi,j)

εIi,j ∈ Z (I ⫋ Ioi,j)

Proof of Lemma: Induction on |Ioi,j |. i = i0 or Ioi,i0 ⫋ Ioi,j , j = j0 or Ioj,j0 ⫋ Ioi,j .

xi − xj = (xi0 − xj0) + (xi − xi0)− (xj − xj0).

Lemma shows xi − xj = fi,j(X) ·
∏

{i,j}⊂I∈I\{Ln}

XI

fi,j : a polynomial of XI (I ∈ I and Ii,j ⊂ I ̸= Ln) with fi,j(0) = 1 or −1.

Note that {i, j} ⊂ I ∈ I ⇔ Ioi,j ⊂ I ∈ I and d log(fg) = d log f + d log g.

Hence, ∑
1≤i<j≤n

Aij
d(xi − xj)

xi − xj
−

∑
1≤i<j≤n

∑
{i,j}⊂I∈I\{Ln}

Aij
dXI

XI

is regular in a neighborhood of the origin.



1 2 3 4 5

I =
{
{1, 2}, {3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}

}
x4 − x1 = x1234 = X1234,

d(x1 − x4)

x1 − x4
=

dX1234

X1234

x2 − x1 = x12 = X12X1234,
d(x1 − x2)

x1 − x2
=

dX12

X12
+

dX1234

X1234

x3 − x4 = x34 = X34X1234,
d(x3 − x4)

x3 − x4
=

dX34

X34
+

dX1234

X1234

Io13 = Io23 = Io24 = {1234}
x1 − x3 = (x1 − x4)− (x3 − x4) = −x1234 − x34 = −(1 +X34)X1234

x2 − x3 = (x2 − x1)− (x3 − x4) + (x1 − x4) = x12 − x34 − x1234

= −(1−X12 +X34)X1234

x2 − x4 = (x2 − x1)− (x4 − x1) = −x12 − x1234 = −(1 +X12)X1234

d(x1 − x3)

x1 − x3
≡ d(x2 − x3)

x2 − x3
≡ d(x2 − x4)

x2 − x4
≡ dX1234

X1234
,

d(1 +X34)

1 +X34
≡ 0

Ω =
∑

1≤i<j≤5

Aij
d(xi − xj)

xi − xj
≡ A12

dX12

X12
+A34

dX34

X34
+A1234

dX1234

X1234

(X,Y, Z) = (X12, X34, X1234), (x1, x2, x3, x4) = (0, x, y, z, 1)



Ex.(x, y, z) = (0, 0, 0) :

0 x y z 1
x1 x2 x3 x4 x5

1 2 3 4
1 4

X: Y :
Z:


x4 − x1 = z = Z

x2 − x1 = x = XZ

x3 − x4 = y − z = Y Z
X = x

z

Y = y−z
z

Z = z


y = (1 + Y )Z

x− y = (X − Y − 1)Z

x− z = (X − 1)Z

Ω ≡ Ω′ = Ax0
dX
X

+Ayz
dY
Y

+Axyz0
dZ
Z

(|x|, |y − z| ≪ |z| ≪ 1)

Ex. Ω = Ax0
dx
x

+Ay0
dy
y

+Axy
d(x−y)
x−y

+Ax1
d(x−1)
x−1

+Ay1
d(y−1)
y−1

(n = 4)

• (x, y) = (0, 0) :

x3 − x1 = y = Y

x2 − x1 = x = XY

x2 − x3 = (X − 1)Y

(X,Y ) = (x
y
, y)

0 x y 1
x1 x2 x3 x4

1 2
1 3

X :
Y :

dx
x

= dX
X

+ dY
Y

, dy
y

= dY
Y

, d(x−y)
x−y

= dY
Y

+ d(X−1)
X−1

, {I1, I2} =
{
{1, 2

X
}, {1, 2, 3

Y
}
}

Ω′ :=
n−2∑
i=1

AIid logXi = Ax0
dX
X

+Axy0
dY
Y

(|x| ≪ |y| ≪ 1)

• (x, y) = (0, 1) :

x2 − x1 = x = X

x3 − x4 = y−1 = Y

X = x

Y = y−1 0 x y 1
x1 x2 x3 x4

1 2 3 4X: Y :

x

y

1

1

2

3

•

•

Ω′ = Ax0
dX
X

+Ay1
dY
Y

(|x|, |y − 1| ≪ 1)



Transformation of SpM induced by middle convolutins is stated in terms of single-

elimination tournaments.

SpM is necessary to get the eigenvalues of each residue matrices of mcxi,µM

1 2 3 4 0 5 6 7 8 9 10

∞

• •← md0,J−−−−−→
J={3,4} 1 2 3 4 0 5 6 7 8 9 10

•

∞

J = {3, 4} : {3, 4} → {0, 3, 4}, {1, 2, 3, 4} → {0, 1, 2, 3, 4}, {0, 5, 6} → {5, 6}

KZ-type equations vs single-elimination tournaments

KZ-type equation with n variables Tournament of n teams

Family of maximal commuting residue matrices Tournament

Local coordinate for desingularization Result of a tournament

Spectra of KZ-type equation Set of all tournaments

Variable of middle convolution Winner of tournament

Base of upper triangulation of the family Result of a tournament with the winner

Middle convolution Deletion and Insertion of the winner

Kernels to define middle convolution Basic/Top insertion of the winner



Remarks

• SpM gives local structure at every strata of the desingularization ofM.

It is a generalization of the Riemann scheme of linear Fuchsian ODE’s.

• Rigidity and accessory parameters are defined on KZ-type systems through

SpM.

• SpM is generalized to Pfaffian systems with logarithmic singularites along

hyperplane arrangements.

• Characterize basic KZ-type equations !

(basic: cannot reduce the rank by middle convolutions+additions)

Is there a non-trivilal rigid basic KZ-type equation?

Is there a basic KZ-type equation with more than three (essential) variables?



Thank you for your attention!

[Om] T. Oshima, Middle convolutions of KZ-type equations and single-elimination

tournaments, arXiv:2504.09003.


