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Abstract

We discuss three topics, confluence, restrictions, and real forms for the Heckman-Opdam

hypergeometric functions.

Introduction

In this article, we discuss three topics on the Heckman-Opdam hypergeometric
functions. The Heckman-Opdam hypergeometric functions were introduced by Heck-
man and Opdam [HO, Hec1, Op1, Op2, Op3]. They are joint eigenfunction of a Weyl
group invariant commuting family of differential operators on an Euclidean space as-
sociated to a root system and a parameter, which is a function on the roots. By a
gauge transformation, the commuting family of differential operators gives an quantum
integrable system, which is called the Sutherland model. Among joint eigenfunctions,
the Heckman-Opdam hypergeometric function is characterized by the properties that
it is real analytic and its value at the origin is 1. Opdam [Op3] proved the Gauss sum-
mation formula for the Heckman-Opdam hypergeometric function, which asserts that
the value of the hypergeometric function at the origin is 1. Thus the Heckman-Opdam
hypergeometric function is determined by a root system, a parameter attached to the
roots (that is generic) and a parameter of the eigenvalue. For some special values of the
parameter for the roots, the hypergeometric functions are radial parts of zonal spheri-
cal functions on Riemannian symmetric spaces. Thus the hypergeometric functions are
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generalization of the zonal spherical functions. If the root system is of rank one, then
the hypergeometric function turns out to be the Gauss hypergeometric function by a
change of variable. Though there is no underlying Lie group and their integral repre-
sentations are not known in general, the theory of the Heckman-Opdam hypergeometric
functions are well developed by using techniques used by Harish-Chandra in group case
and also those of representations of Hecke algebras, and serve a good class of multivari-
able hypergeometric functions. A brief review of the Heckman-Opdam hypergeometric
functions is given in §1.

The first topic, which is discussed in §2, is “confluences”. Among hypergeometric
differential equations of one variable, the Gauss equation has three regular singular
points, and the Whittaker equation has two singular points one is regular and the other
is irregular. There exists a limit transition between differential equations from Gauss
to Whittaker, which we call a confluence, because two of the three regular singular
points confluent to one irregular singular point. For the solution of those equations,
corresponding limit of the Gauss hypergeometric function is the Whittaker function,
which is rapidly decreasing at infinity. We consider higher rank counterpart of this
phenomenon. A typical example of confluences on the level of commuting families of
differential operators, or integrable systems is a confluence from the Sutherland model
to the Toda model, by translating the origin to infinity along with the parameter for the
roots going to infinity. We show that the corresponding limit of the Heckman-Opdam
hypergeometric function is up to constant multiples a unique joint eigenfunction of the
Toda model with moderate growth. We also discuss intermediate confluences between
Sutherland and Toda models, and give some estimates for the limit functions.

The second topic, which is discussed in §3, is “restrictions”. The system of Heckman-
Opdam hypergeometric differential equations has singularities on the walls of the Weyl
group for the root system. We studied ordinary differential equations that are satisfied
by the restriction of the Heckman-Opdam hypergeometric function to a generic point of
singular sets of dimension one. The monodromies of the resulting ordinary differential
equations can be analyzed by using representation theory of Iwahori-Hecke algebras. In
certain restrictions in the case of root systems of type An−1 and BCn, resulting ordinary
differential equations are rigid, that is, free from accessory parameters, which mean that
the differential equations are determined uniquely by their Riemann schemes. For An−1

it is the generalized hypergeometric equation of rank n, and for BCn it corresponds
to the even family of rank 2n in Simpson’s list of rigid local systems [Si]. For these
two cases, we give another proof of the Gauss summation formula for the Heckman-
Opdam hypergeometric function together with its asymptotic behavior at infinity by
using connection formulae for Fuchsian differential equations.

The third topic, which is discussed in §4, is “real forms” of the Heckman-Opdam
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hypergeometric system. The Heckman-Opdam hypergeometric system and hypergeo-
metric function are considered mainly on a real Euclidean space, though sometimes
techniques of complex analysis are employed. We consider the hypergeometric system
on other real sections in the complexification of the original Euclidean space by changes
of variables and study the spaces of real analytic solutions. For some special values of
parameter for the roots, the hypergeometric systems are radial parts of invariant dif-
ferential equations on Riemannian symmetric spaces G/K. In these cases, another real
form means radial parts of invariant differential operators on a pseudo-Riemannian sym-
metric space G/Kϵ with respect to the generalized Cartan decomposition G = KAKϵ.
In those group cases, Oshima and Sekiguchi [OS2] studied the space of real analytic
joint eigenfunctions. Namely they determined the dimension of the solution space, gave
an explicit formula for a basis and proved a functional equation. We generalize their
results for generic parameters for the roots. The results are compatible with those of
[OS2] with minor changes, though the method is different because of the absence of
underling Lie groups.

We do not give proofs of the statements in this article. Sometimes the statements
are not given in full details. They will be given in our forthcoming papers. Instead, we
include detailed examples of rank one or two cases, because they might give ideas or
feelings and be useful for readers.

§ 1. Heckman-Opdam hypergeometric functions

In this section, we review on the Heckman-Opdam hypergeometric functions. We
refer to [HS, Part I], [Hec4], and [Op5] for details.

§ 1.1. Commuting family of differential operators

Let a be an n-dimensional Euclidean space and a∗ denote its dual space. The inner
products on a and a∗ are denoted by ⟨ , ⟩. We often identify a and a∗ by using the inner
products. Let Σ ⊂ a∗ be a root system of rank n and W denote its Weyl group. Let
R denote one of types of irreducible root systems. If Σ is the irreducible root system
of type R, then we write Σ = ΣR. For example, the root system of type An−1 is
denoted by ΣAn−1 . Let k be a complex valued function on Σ such that kα = kwα for all
α ∈ Σ, w ∈ W . We call k a multiplicity function. We choose a positive system Σ+ ⊂ Σ
and let Ψ denote the set of simple roots.

For α ∈ a∗, let ∂α denote the differential operator on a defined by

(∂αϕ)(x) =
d

dt
ϕ(x + t α)

∣∣
t=0

.
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Choose an orthonormal basis {e1, . . . , en} of a∗ and define

L(k) =
n∑

i=1

∂2
ei

+
∑

α∈Σ+

2kα cothα ∂α.

Example 1.1. We give examples for Σ of type BCn and An−1.

Σ+
BCn

= {ei ± ej , (1 ≤ i < j ≤ n), ep, 2ep (1 ≤ p ≤ n)},
ΨBCn = {ei − ei+1 (1 ≤ i < n), en},

L(k)BCn =
n∑

i=1

∂2

∂x2
i

+
n∑

k=1

(
2k3 coth xk + 4k2 coth 2xk

) ∂

∂xk
(1.1)

+
∑

1≤i<j≤n

2k1

(
coth(xi − xj)

( ∂

∂xi
− ∂

∂xj

)
+ coth(xi + xj)

( ∂

∂xi
+

∂

∂xj

))
.

Here we put k1 = kei±ej (i ̸= j), k2 = k2ei , k3 = kei .
For Σ with type An−1, we embed a in Rn with orthonormal basis {e1, e2, . . . , en}.

a = {x ∈ Rn : x1 + x2 + · · · + xn = 0},
Σ+

An−1
= {ei − ej (1 ≤ i < j ≤ n)},

ΨAn−1 = {ei − ei+1 (1 ≤ i < n)},

L(k)An−1 =
n∑

i=1

∂2

∂x2
i

+
∑

1≤i<j≤n

2k coth(xi − xj)
(

∂

∂xi
− ∂

∂xj

)
.(1.2)

Here we put k = kα (α ∈ ΣAn−1).

If Σ is the restricted root system for a Riemannian symmetric space G/K of the
noncompact type and 2kα is the dimension of the root space for every α ∈ Σ, then
L(k) is the radial part of the Laplace-Beltrami operator on A = exp a with respect
to the Cartan decomposition G = KAK. We call it the group case. For example,
Σ = ΣBCn , k1 = k2 = 1/2, k3 = 0 for G/K = Sp(n, R)/U(n), and Σ = ΣAn−1 , k = 1/2
for G/K = SL(n, R)/SO(n).

In the group case, there exists a commuting family of differential operators con-
taining L(k), which consists of radial parts of invariant differential operators, and there
is a theory of joint eigenfunction, that is the zonal spherical function on a symmetric
space. Heckman and Opdam generalized them for arbitrary k.

Indeed, there exists a commuting family of differential operators D(k) containing
L(k) for arbitrary k. There exists an algebra isomorphism γ of D(k) onto S(a)W , the
Weyl group invariants in the symmetric algebra on a. The commutative algebra D(k)
was constructed by means of the trigonometric Dunkl operators (cf. [Hec3, Hec4, Op5]).
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α1

α2

α1 + α2

α1

α2 α1 + α2 2α1 + α2

Figure 1. root diagrams for A2 (left) and B2 (right)

For λ ∈ a∗C, we consider simultaneous eigenvalue problem for D(k):

(1.3) D u = γ(D)(λ) u ( ∀D ∈ D(k) ).

We call (1.3) the Heckman-Opdam hypergeometric system or (HO) system, shortly. In
particular, (HO) system contains the following equation:

(1.4) L(k)u = (⟨λ, λ⟩ − ⟨ρ(k), ρ(k)⟩)u.

Here ρ(k) =
∑

α∈Σ+ kαα.
We mention on a relation between D(k) and a quantum integrable system. Let

δ(k)
1
2 =

∏
α∈Σ+

(2 sinh α)kα .

Then

(1.5) δ(k)
1
2 ◦ (L(k) + ⟨ρ(k), ρ(k)⟩) ◦ δ(k)−

1
2 =

n∑
i=1

∂2
ei
−

∑
α∈Σ+

kα(kα + 2k2α − 1)⟨α, α⟩
sinh2 α

.

The right hand side of (1.5) is of the form the Euclidean Laplacian plus a potential
function, which is (−2 times) the Sutherland Hamiltonian. δ(k)

1
2 ◦ D(k) ◦ δ(k)−

1
2 gives

a commuting family of differential operators containing the Hamiltonian. This proves
the complete integrability of the model.

Example 1.2. We give generators of D(k) for rank 2 cases. Put ∂i = ∂
∂xi

.
For R = A2,

a = {x ∈ R3 : x1 + x2 + x3 = 0},
Σ+

A2
= {e1 − e2, e2 − e3, e1 − e3}

and the simple roots are α1 = e1−e2 and α2 = e2−e3. The Weyl group is generated by
the simple reflection si corresponding to αi for i = 1, 2. si is the permutation of i and
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i + 1. D(k) (considered as operators on R3) is generated by algebraically independent
differential operators

L1 =∂1 + ∂2 + ∂3,

L2 =∂1∂2 + ∂2∂3 + ∂3∂1 − k coth(x1 − x2)(∂1 − ∂2)

− k coth(x1 − x3)(∂1 − ∂3) − k coth(x2 − x3)(∂2 − ∂3) − 4k2,

L3 =∂1∂2∂3 − k coth(x1 − x2)(∂1∂3 − ∂2∂3)

− k coth(x1 − x3)(∂1∂2 − ∂3∂2) − k coth(x2 − x3)(∂2∂1 − ∂3∂1)

+ 4k2 e2(x1−x3) + e2(x1−x2)

(e2(x1−x3) − 1)(e2(x1−x2) − 1)
∂1 + 4k2 e2(x2−x3) + e2(x2−x1)

(e2(x2−x3) − 1)(e2(x2−x1) − 1)
∂2

+ 4k2 e2(x3−x1) + e2(x3−x2)

(e2(x3−x1) − 1)(e2(x3−x2) − 1)
∂3,

with L(k) = L2
1 − 2L2 − 8k2 (cf. [Sekj1]). Let (λ1, λ2, λ3) ∈ C3 with λ1 + λ2 + λ3 = 0.

(HO) system for A2 is equivalent to the following system of differential equations on R3:

L1u = 0,

L2u = (λ1λ2 + λ2λ3 + λ3λ1)u,

L3u = λ1λ2λ3u.

For R = BC2, we include here the construction of a fourth order operator in
D(k) due to Koornwinder [Koo], instead of the construction by means of trigonometric
Dunkl operators. We put a = k2e1 + ke1 = k2 + k3, b = k2e1 = k2, c = ke1 = k3.
(a = α + 1/2, b = β + 1/2, c = γ + 1/2 in the notation of [Koo].) By the change of
variables ti = cosh 2xi (i = 1, 2),

−L(k)
4

= (1 − t21)
∂2

∂t21
+ (1 − t22)

∂2

∂t22

+
{

b − a − (a + b + 1)t1 +
2c(1 − t21)

t1 − t2

}
∂

∂t1

+
{

b − a − (a + b + 1)t2 +
2c(1 − t22)

t2 − t1

}
∂

∂t2
.

Define differential operators D− and D+ by

D− =
∂2

∂t1∂t2
− c

t1 − t2

(
∂

∂t1
− ∂

∂t2

)
,

D+ = ((1 − t1)(1 − t2))−a+1/2((1 + t1)(1 + t2))−b+1/2D−

◦ ((1 − t1)(1 − t2))a+1/2((1 + t1)(1 + t2))b+1/2.
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2α

α1

Figure 2. root diagram for G2

Then the operator L4 = D+D− satisfies [L(k), L4] = 0 and is algebraically independent
with L(k), and D(k) is generated by L(k) and L4. D± is the hypergeometric shift
operator with the shift k1 = ∓1, that is

(L2(k1 ∓ 1, k2, k3)+ρ(k1 ∓ 1, k2, k3)) ◦ D±

= D± ◦ (L2(k1, k2, k3) + ρ(k1, k2, k3)).

For R = G2,

a = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0},
ΣG2 = {α = λ1e1 + λ2e2 + λ3e3 : λi ∈ Z (i = 1, 2, 3), ⟨α, α⟩ = 2 or 6},
Σ+

G2
= {e1 − e2,−2e1 + e2 + e3,−e1 + e3,−e2 + e3,−2e2 + e1 + e3, 2e3 − e1 − e2}

and the simple roots are

α1 = e1 − e2, α2 = −2e1 + e2 + e3.

Fundamental weights ϖ1, ϖ2 are defined by

2⟨ϖi, αj⟩
⟨αj , αj⟩

= δij (1 ≤ i, j ≤ 2),

which turn out to be

ϖ1 = 2α1 + α2 = −e2 + e3,

ϖ2 = 3α1 + 2α2 = −e1 − e2 + 2e3.
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Let zi =
∑

w∈(W/stab(ϖi))
exp(−wϖi(x)) and write ∂i for ∂/∂zi. In this coordinates

L(k) and ρ(k) are given by the following expressions (cf. [Op1, Table 2.6]):

L(k) =2
(
z2
1 − 3 z1 − z2 − 12

)
∂2
1 + 6

(
−2 z2

1 + z1z2 + 4 z2 + 12
)
∂1∂2

+ 6
(
−z3

1 + 3 z1z2 + z2
2 + 9 z1 + 3 z2

)
∂2
2

+ 2 ((2 k1 + 3 k2 + 1) z1 + 6 k1) ∂1

+ 6 ((k1 + 2 k2 + 1) z2 + 2 k1z1 + 6 k2) ∂2,

ρ(k) =k1ϖ1 + k2ϖ2,

⟨ρ(k), ρ(k)⟩ =2 k2
1 + 6 k2

2 + 6 k1k2.

Define

f1 = z2
1 − 4 z2 − 12,

f2 = −4 z3
1 + z2

2 + 12 z1z2 + 24 z2 + 36 z1 + 36.

The weight function becomes
δ(k) = fk1

1 fk2
2 .

Let e1 = (1, 0), e2 = (0, 1), and e = e1 + e2 = (1, 1). The following shift operators
G(l, k) for l = e1 and e2 are given by Opdam ([Op1, Section 2]).

G(e1, k) =(2 z2
1 + 18 z1 + z2 + 30)∂3

1

+ 9
(
z1z2 + 4 z2

1 + z2 + 6 z1 − 6
)
∂2
1∂2

+ 9
(
2 z3

1 + z2
2 + 3 z1z2 + 9 z2 + 18

)
∂1∂

2
2

+ 27
(
z2
1z2 − z2

2 + 2 z2
1 − 5 z2 − 6

)
∂3
2 + (k1 + 9 k2 + 6) (z1 + 3) ∂2

1

+ 3 ((k1 + 6 k2 + 6) z2 + 2 (k1 + 9 k2 + 12) z1 + 18 k2 + 36) ∂1∂2

+ 9
(
(k1 + 3 k2 + 6) z2

1 − (2 k1 + 3 k2 + 6) z2 − 2 k1z1 − 3 k1 − 9 k2 − 18
)
∂2
2

+
(
3 k1k2 + 9 k2

2 + k1 + 9 k2 + 2
)
∂1 − 6 k1 (3 k2 + 1) ∂2,

G(e2, k) = (z1 + 2) ∂3
1 +

(
z2
1 + 3 z1 + 2 z2 + 6

)
∂2
1∂2

+
(
3 z2

1 + 3 z1z2 + 9 z1 − 6 z2 − 18
)
∂1∂

2
2

+
(
z3
1 − 3 z1z2 − 9 z1 + 2 z2

2 + 12 z2 + 18
)
∂3
2

+ (k1 + k2 + 2) ∂2
1 + ((2 k1 + k2 + 4) z1 − 6 k1) ∂1∂2

+ (9 k1 + 3 k2 + 18 + (3 k1 + k2 + 6) z2 − 3 k1z1) ∂2
2

+
(
k2
1 + 3 k1 + k1k2 + k2 + 2

)
∂2.

These two operators are hypergeometric shift operator with shift l in the sense that
they satisfy

(1.6) G(l, k) ◦ ML(k) = ML(k + l) ◦ G(l, k).
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Here we put

ML(k) = L(k) + (ρ(k), ρ(k)).

By (1.5), we have

(1.7) δ(k − e/2) ◦ ML(k) ◦ δ(k − e/2)−1 = ML(e − k)

Define G(−ei, k) (i = 1, 2) by

(1.8) G(−ei, k) = δ(−k + ei + e/2) ◦ G(ei, e − k) ◦ δ(k − e/2).

By (1.6) and (1.7), it is easy to see that G(−ei, k) is a shift operator with shift −ei.
We can see by calculating the image under the Harish-Chandra homomorphism that
G(−e2, k) coincides with the shift operator

G̃(e2, k) = δ(e2 − k) ◦ G(e2, k)∗ ◦ δ(k)

given by Opdam [Op1, Definition 3.3]). Here G(e2, k)∗ means formal transpose as a
differential operator on A = exp a with respect to the Haar measure da.

Define L6 by

(1.9) L6 = G(−e2, k + e2) ◦ G(e2, k).

By (1.6) and (1.8), [L(k), L6] = 0. Moreover the proof of [Op1, Theorem 3.6] shows
that L(k) and L6 are algebraically independent. Commutativity of L(k) and L6 also
can be proved by the following commutation relations.

[L(k), f1/2
2 G(e2, k)]

= −12 k2 (z1 + 3)
(
z1

2 − 3 z1 − 3 z2

)
f
−1/2
2 G(e2, k),

[L(k), G(−e2, k + e2) ◦ f
−1/2
2 ]

= G(−e2, k) ◦ 12 k2(z1 + 3)(z2
1 − 3 z1 − 3 z2) f

−3/2
2 .

§ 1.2. Heckman-Opdam hypergeometric functions

(HO) system has singularities on the walls of the Weyl group. For generic λ, there
exists a unique local solution for (1.4) of the form

Φ(λ, k; x) = e⟨λ−ρ(k),x⟩ + · · · (x → ∞).

Here x → ∞ means ⟨α, x⟩ → ∞ for all α ∈ Ψ. It turns out that Φ satisfies all equations
in (HO) system. In the group case, Φ is the series solution given by Harish-Chandra.
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For generic λ, {Φ(wλ, k ; ·) : w ∈ W} forms a basis of the space of local solutions of
(HO) system. The connection coefficients are given by c(λ, k), which is a generalization
of the Harish-Chandra c-function. It is defined by

c̃(λ, k) =
∏

α∈Σ+

Γ
(

⟨λ,α∨⟩+kα/2

2

)
Γ

(
⟨λ,α∨⟩+kα/2+2kα

2

) , c(λ, k) =
c̃(λ, k)

c̃(ρ(k), k)
.

Here α∨ = 2α
⟨α,α⟩ and kα/2 = 0 if α/2 ̸∈ Σ. Define the Heckman-Opdam hypergeometric

function by

(1.10) F (λ, k; x) =
∑

w∈W

c(wλ, k)Φ(wλ, k; x).

In a series of papers [HO, Hec1, Op1, Op2, Op3] Heckman and Opdam proved the
following theorem:

Theorem 1.3 (Heckman-Opdam). If k is generic (⇐ kα > 0 for all α ∈ Σ) ,
then F (λ, k;x) is the unique real analytic solution on a of (HO) system with value 1 at
x = 0. Moreover, it satisfies

F (wλ, k; x) = F (λ, k; x) (w ∈ W ),

F (λ, k; wx) = F (λ, k; x) (w ∈ W ).

If the rank of the root system Σ is one, then the Heckman-Opdam hypergeometric
function can be written by the Gauss hypergeometric function. Let α denote the unique
positive simple root. λ and ρ(k) in a∗ ≃ C are given by λ ∈ C, ρ(k) = kα + 2k2α. Then

(1.11) F (λ, k;x) = 2F1( 1
2 (ρ(k) − λ), 1

2 (ρ(k) + λ) ; kα + k2α +
1
2
;− sinh2 x).

In the group case, F (λ, k; ·) is the radial parts of the zonal spherical function on a
Riemannian symmetric space.

Remark 1. Differences between notation of symmetric spaces, Heckman-Opdam,
and ours may cause confusions. In the group case, Heckman and Opdam use root
system 2Σ, where Σ is the restricted root system for a symmetric space, and 2kα is the
multiplicity of the restricted root α for the symmetric space. In this article, we use the
root system Σ and the multiplicity 2kα.

§ 2. Confluences of the Heckman-Opdam system to the Toda systems

The right hand side of (1.5) times −1/2 is of the form

(2.1) P = −1
2

n∑
i=1

∂2
ei

+
∑

α∈Σ+

Cα

sinh2⟨α, x⟩
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where Cα (α ∈ Σ) are constants such that Cwα = Cα for all w ∈ W . P is the Hamil-
tonian (Schrödinger operator) for the quantum Sutherland model associated with Σ.
The Sutherland model is completely integrable, that is there exist n algebraically in-
dependent mutually commuting differential operators containing (2.1). More generally,
consider the Hamiltonian

(2.2) P = −1
2

n∑
i=1

∂2
ei

+
∑

α∈Σ+

Cαuα(⟨α, x⟩),

where uα (α ∈ Σ+) are functions with uwα = uα for all w ∈ W . The quantum model
with the Hamiltonian (2.2) is known to be completely integrable for u(t) = ℘(t, 2ω1, 2ω2)
(Weierstrass ℘-function), u(t) = sinh−2 λt, and u(t) = t−2. There is a hierarchy among
completely integrable systems. By hierarchy we mean that a complete integrable system
is a limit of another one, and so on. See [O2] for the complete list of integrable potentials
and the hierarchy among them for classical root systems.

In particular, we are interested in a limit transition from the Sutherland Hamilto-
nian (2.1) to the Toda Hamiltonian. For R = A1,

P = −1
2

d2

dx2
+

C1

sinh2 x
.

Put C1 = Ce2K/4 and let x 7→ x + K. Then we have

P → −1
2

d2

dx2
+ Ce−2x (K → ∞),

because

lim
K→∞

e2 K

4 sinh2 (x + K)
= lim

K→∞

e−2x

(1 − e−2x−2K)2
= e−2x.

For R = An−1, let xi 7→ xi − iK and (K → ∞). Then exj−xi 7→ e−(j−i)Kexj−xi and

∑
1≤i<j≤n

Ce2K

4 sinh2(xi − xj)
7→

∑
1≤i<j≤n

Ce2(1−j+i)Ke2(xj−xi)(
1 − e2(xj−xi)e−2(j−i)K

)2

→
n−1∑
i=1

Ce−2(xi−xi+1) (K → +∞).

The right hand side is the potential function for the non-periodic Toda model for An−1.
Non-trivial limits of the Sutherland Hamiltonian (2.1) associated with a root system

Σ when x 7→ x + Kv and K → ∞ with a suitable vector v ∈ a is a direct sum of
Hamiltonians for lower rank root systems with the potential functions in the following
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list. (Here “trivial” means the potential function is a constant.)

(HO-R) Heckman-Opdam potential of type R:∑
α∈Σ+

R

Cα sinh−2⟨α, x⟩ (Cα = Cα′ if |α| = |α′|)

(Toda-R) Toda potential of type R (R : reduced) :∑
α∈ΨR

Cαe−2⟨α,x⟩ (Cα = Cα′ if |α| = |α′|)

(Toda-BCn) Toda potential of type BCn :

C0

n−1∑
i=1

exi−xi+1 + C3 e−2xn + C4 e−xn

(Trig-An−1-bry-reg) Trigonometric potential of type An−1 with RS boundary conditions:

∑
1≤i<j≤n

C3 sinh−2(xi − xj) +
n∑

k=1

(
C1e

−2xk + C2e
−4xk

)
(Toda-Bn-bry-reg) Toda potential of type Bn with RS boundary conditions:

n−1∑
i=1

C3e
−2(xi−xi+1) + C3e

−2(xn−1+xn) + C1 sinh−2 xn + C2 sinh−2 2xn

(Trig-A2-Toda-D4) Trigonometric and Toda potential of type D4:

C1

(
sinh−2(x2 − x3) + sinh−2(x3 − x4) + sinh−2(x2 − x4)

)
+ C2

(
e−2x2 + e−2x3 + e−2x4 + ex2+x3+x4−x1

)
(Trig-A2-Toda-D(d)

4 )

C1

(
sinh−2(x2 − x3) + sinh−2(x3 − x4) + sinh−2(x2 − x4)

)
+ C2

(
e−4x2 + e−4x3 + e−4x4 + e2(x2+x3+x4−x1)

)
(HOP-G2) Partial confluent Heckman-Opdam potential of type G2:

C1 sinh−2(x2 − x3) + C2

(
ex1−2x2+x3 + ex1+x2−2x3

)
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(HOP-G(d)
2 )

C1 sinh−2(x2 − x3) + C2

(
e2(x1−2x2+x3) + e2(x1+x2−2x3)

)
We call these limit transitions “confluences”. Not only the Hamiltonian but the

commuting family of differential operators has a limit and it turns out that the quantum
models with the above potential functions are completely integrable. The proof for
classical R and references to related studies are given in [O2]. Among integrable systems,
they form a class that their joint eigenfunctions are easy to analyze, because they have
regular singularities at an infinite point (cf. [O1, O4]) and have no accessory parameter.

Remark 2. Some of the Hamiltonians with potential functions in the above list
appear in group cases. If Σ is the restricted root system of a Riemannian symmetric
space G/K and Σ0 is of type R, then Hashizume [Has] showed that (Toda-R) appears
as the radial part of the Casimir operator with respect to the Iwasawa decomposition
G = NAK, a non-degenerate one-dimensional representation of N and the trivial rep-
resentation of K from the left and right respectively. (Toda-BCn) appears as the radial
part of the Casimir operator for a Hermitian symmetric space G/K of tube type with
respect to the Iwasawa decomposition G = NAK, a non-degenerate one-dimensional
representation of N and a one-dimensional representation of K from the left and right
respectively. (Trig-An−1-bry-reg) with a special value of C3 appear as the radial part
of the Casimir operator for a Hermitian symmetric space of tube type with respect to
G = ((Ls ∩K)nNs)AK where Ps = Ls nNs is the Siegel parabolic subgroup of G, the
trivial representation of Ls ∩K, a non-degenerate one-dimensional representation of Ns

from the left, and a one-dimensional representation of K from the right. It was observed
by Ishii [I] for G = SO0(2, n) and by the second author in general. In these group cases,
the commutativity of the algebras of invariant differential operators on G/K prove the
complete integrability of the quantum models.

We give an answer to the following problem:

Problem. What is the limit of the Heckman-Opdam hypergeometric function
F (λ, k; x) corresponding to confluences of the Sutherland model to the Toda models
described above?

The answer is that the limit is a joint eigenfunction of the confluent system that is
of moderate growth.

For R = BC1, the Heckman-Opdam hypergeometric function can be written by the
Gauss hypergeometric function as in (1.11) and δ(k)1/2 = (sinhx)kα(sinh 2x)k2α . Put
4 k2α (k2α − 1) = e2K and x 7→ x + K. Then we have

(2.3) lim
K→∞

k
−(kα+1)/2
2α 2−ρ(k) δ(k, x + K)1/2 F (λ, k, x + K) = exW−kα/2,λ/2(e−2x).
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Here Wκ,µ(z) is the classical Whittaker function. The Whittaker function is up to
constant multiples unique analytic solution of the Whittaker differential equation that
is of moderate growth.

We prove (2.3). Recall that for generic λ,

F (λ, k; x) = c(λ, k)Φ(λ, k, x) + c(−λ, k)Φ(−λ, k, x),

where
Φ(λ, k; x) ∼ e(λ−ρ(k))x (x → ∞)

is the series solution of (1.4) and

c(λ, k) =
Γ(λ)

Γ( 1
2 (λ + kα + 1))

2−λ+ρ(k) Γ(k2α + kα + 1
2 )

Γ(1
2λ + 1

2kα + k2α)
.

F (λ, k; x) is the unique real analytic eigenfunction of

L(k) =
d2

dx2
+ (2kα coth x + 4k2α coth 2x)

d

dx

with eigenvalue λ2 − ρ(k)2 such that F (λ, k; 0) = 1. We have

(2.4) δ(k) ◦ (L(k) + ρ(k)2) ◦ δ(k)−1 =
d2

dx2
+

kα(1 − kα − 2k2α)
sinh2 x

+
4k2α(1 − k2α)

sinh2 2x
.

Let 4 k2α (k2α −1) = e2K and x 7→ x+K. Then as K → ∞, the right hand side of (2.4)
goes to

(2.5)
d2

dx2
− 2kαe−2x − e−4x.

As K → ∞, we have

δ(k, x + K)1/2 Φ(λ, k, x + K) ∼ 2λ k
λ/2
2α ΦT(λ, kα, x),

where ΦT(λ, kα, x) is the eigenfunction of (2.5) with eigenvalue λ2 such that

ΦT(λ, kα, x) ∼ eλx (x → ∞)

and

c(λ, k) ∼ 2−λ+ρ(k) k
(−λ+kα+1)/2
2α

Γ(λ)
Γ( 1

2 (λ + kα + 1))
.

Hence the limit in the left hand side of (2.3) turns out to be

Γ(λ)
Γ( 1

2 (λ + kα + 1))
ΦT(λ, kα, x) +

Γ(−λ)
Γ(1

2 (−λ + kα + 1))
ΦT(−λ, kα, x),
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which is equal to exW−kα/2,λ/2(e−2x) by using a connection formula for the Whittaker
function (cf. [WW]).

For the confluence of (HO) to each of eight cases (Toda-R) to (HOP-G(d)
2 ) listed

above, a scaled limit of the Heckman-Opdam hypergeometric function is a joint eigen-
function of the confluent system with moderate growth. Let C ⊂ a ≃ a∗ denote the
positive Weyl chamber. We give main results of this section:

Theorem 2.1. (i) For a suitable vector v ∈ Rn and kα, (HO) system is holo-
morphically continued to the confluent commuting system by x 7→ x+vK with K → ∞.

(ii) For Re λ ∈ C̄, the normalized Heckman-Opdam hypergeometric function

F̄ (λ, k; x) = δ(k)−
1
2 c(λ, k)−1e−⟨λ,v⟩KF (λ, k, x + vK)·π(λ)

and its expansion (at the infinity of C) converge to the solution W̄ (x) of the confluent
system with moderate growth, that is, there exist C > 0 and m > 0 such that

|W̄ (x)| ≤ Cem|x|.

Here π(λ) is a certain normalizing factor, which satisfies π(λ) = 1 for Re λ ∈ C.
(iii) The global solutions of the confluent system with moderate growth are unique

up to constant multiples.
(iv) We have an explicit estimate of W̄ (x) such as

|W̄ (x)| ≤ eRe ⟨λ,x⟩, |W̄ (x)| ≤ C exp(−eK dist(x, C)) (Toda)R:reduced.

The existence and uniqueness of joint eigenfunction with moderate growth and
estimates for the eigenfunction are proved by rank 1 reduction. We use an estimate
of the Heckman-Opdam hypergeometric function (cf. [Sc]) to prove part (iv) of the
theorem.

Remark 3. For (Toda-R), it is known that there exists a unique joint eigenfunc-
tion with moderate growth up to constant multiples. The eigenfunction with moderate
growth is given by the Jacquet integral on a semisimple Lie group. The eigenfunction
is the radial part of the class one Whittaker function on a semisimple Lie group, and
Hashizume [Has] gave connection formula for the Whittaker function that is similar to
(1.10). Shimeno [Sh3] proved that a scaled limit of the Heckman-Opdam hypergeomet-
ric function is the radial part of the Jacquet integral, by using an argument similar to
the above proof of (2.3).

Hirano-Ishii-Oda [HIO] studied a problem closely related to ours for Whittaker
functions on Sp(2, R).
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§ 3. Restrictions of Heckman-Opdam systems

In this section, we discuss restrictions of (HO) system to singular sets, that is,
intersections of walls of the Weyl group. In particular we restrict (HO) system to a
generic point of a singular set of dimension one to get an ordinary differential equation.
Monodromies at the origin for the restriction equation are related to representation
theory of Hecke algebras. In some cases, we have ordinary differential equations that
are free from accessory parameters (cf. [Har, G, Koh, Si]). As an application to the
Heckman-Opdam hypergeometric function for An−1 and BCn, we give another new
proof of Theorem 1.3, in particular, the Gauss summation formula, which was proved
by Opdam [Op3] for general root systems.

§ 3.1. Rank 2 cases

First we consider rank 2 cases, where we can explicitly compute ordinary differential
equation by restricting (HO) system to singular lines. In this subsection, we use the
notations given in Example 1.1 and Example 1.2. We employed the Computer Algebra
System Maple to do very complicated computations.

3.1.1. A2 case Let R = A2. Then the walls of the Weyl group S3 are xi = xj

(1 ≤ i < j ≤ 3) in a = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}. D(k) is generated by
L(k) and a third order differential operator, as we gave in Example 1.2.

We consider the restriction of (HO) system to the wall x1 = x2. Let u be a solution
of (HO) system given by the series expansion

u(x1, x2, x3) =
∞∑

j=0

uj

(
x1 + x2

2
− x3

)
(x1 − x2)j

near x1 = x2. Substitute u into (HO) system

L1u = 0,(3.1)

L2u = (λ1λ2 + λ2λ3 + λ3λ1)u,(3.2)

L3u = λ1λ2λ3u(3.3)

and put x1 = x2. From (3.2) we have

− 3
4u′′

0(t) − (4k + 2)u1(t) − 3k coth t u′
0(t) = (µ2 + 4k2)u0(t).

Here t = x2 − x3 and set µ2 = λ1λ2 + λ2λ3 + λ3λ1, µ3 = λ1λ2λ3. Thus

(4k + 2)u1(t) = − 3
4u′′

0(t) − 3k coth t u′
0(t) − (µ2 + 4k2)u0(t),(3.4)

(4k + 2)u′
1(t) = − 3

4u′′′
0 (t) − 3k(1 − coth2 t)u′

0(t)(3.5)
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− 3k coth t u′′
0(t) − (µ2 + 4k2)u′

0(t).

From (3.3) we have

−1
4u′′′

0 (t) − 3
2k coth t u′′

0(t) + 2k2(1 − coth2 t)u′
0(t)(3.6)

+ (4k + 2)u′
1(t) + 2k(4k + 2) coth t u1(t) = µ3u0(t).

Eliminating u1 from (3.4), (3.5), and (3.6), we obtain a differential equation for u0.

u′′′
0 (t) + 6k coth t u′′

0(t)(3.7)

+{(10k2 − 3k) coth2t − k2 sinh−2 t + (2k2 + 3k + µ2)}u′
0(t)

+ {2k(µ2 + 4k2) coth t + µ3}u0(t) = 0

By the change of variable z = e−2t, w(z) = z−k−λ3/2(1 − z)−1+3ku0(t) satisfies the
generalized hypergeometric equation of rank 3

(3.8)
{(

z d
dz + β1

) (
z d

dz + β2

)
d
dz −

(
z d

dz + α1

) (
z d

dz + α2

) (
z d

dz + α3

)}
w = 0,

with

α1 = 1 − k + 1
2 (λ3 − λ2), α2 = 1 − k + 1

2 (λ3 − λ1), α3 = 1 − k,

β1 = 1 + 1
2 (λ3 − λ2), β2 = 1 + 1

2 (λ3 − λ1).

Characteristic exponents at the regular singular points 0, 1, ∞ are given by the following
Riemann scheme

(3.9) P


z = 0 z = 1 z = ∞

0 3k − 1 1 − k + (λ3 − λ2)/2
(λ2 − λ3)/2 0 1 − k + (λ3 − λ1)/2
(λ1 − λ3)/2 1 1 − k

 .

The point z = 1 corresponds to the origin x1 = x2 = x3 and the solution with the
exponent 3k − 1 corresponds to the restriction of the Heckman-Opdam hypergeometric
function. The generalized hypergeometric equation is free from accessory parameters,
that is, the Riemann scheme determines the differential equation uniquely. We call such
Fuchsian equation rigid.

3.1.2. BC2 case Let R = BC2. Then the walls of the Weyl group are x1 ± x2 =
0, x1 = 0, x2 = 0, which corresponds to roots e1 ± e2, e1, e2, respectively.

First we consider the restriction of (HO) system to the wall x2 = 0. Let u be a
solution of (HO) system given by series expansion

(3.10) u(x1, x2) =
∞∑

j=0

uj(x1)x
j
2
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near x2 = 0 with x1 ̸= 0. Substituting u into (HO) system and putting x2 = 0, we get a
fourth order differential equation for u0(x1). By the change of variable z = − sinh2 x1,
w(z) = za+c−1/2u0(x1) satisfies the differential equation

(3.11) p4(z)
d4w

dz4
= p3(z)

d3w

dz3
+ p2(z)

d2w

dz2
+ p1(z)

dw

dz
+ p0(z)w

with

p0(z) = − 1
16 (a − b − 1 + λ1)(a − b − 1 − λ1)(a − b − 1 + λ2)(a − b − 1 − λ2),

p1(z) = 1
4 (a − b − 2)(2a2 − 4ab − 8a + 2b2 + 8b + 10 − λ1

2 − λ2
2)z

+ 15
4 + 3

4b2 − 1
2c2 + 11

4 a2 − 11
2 a + 3b + bc − 7

2ab + 1
2c

− 1
2ab2 − bc2 − 1

2a3 + a2b + 1
8 (2a − 3)(λ2

1 + λ2
2),

p2(z) =
(
−3

2 (a2 + b2) + 3ab + 9a − 9b − 29
2 + 1

4 (λ2
1 + λ2

2)
)
z2

+
(

5
2a2 − 13a − 3ab + 1

2b2 + 7b − c2 + c + 35
2 − 1

4 (λ2
1 + λ2

2)
)
z

− 1
4 (2a + 2c − 5)(2a − 2c − 3),

p3(z) = z(z − 1)((2a − 2b − 8)z − 2a + 5),

p4(z) = z2(z − 1)2.

The Riemann scheme is

(3.12) P



z = 0 z = 1 z = ∞
0 0 (−a + b + 1 + λ1)/2
1 1 (−a + b + 1 − λ1)/2

a − c + 1/2 −b + 1/2 (−a + b + 1 + λ2)/2
a + c − 1/2 −b + 3/2 (−a + b + 1 − λ2)/2


.

For generic k and λ, the local monodromy representation for each singular point is
semisimple. Local monodromy type at a singular point is a partition of 4 consisting of
multiplicities of the eigenvalues of the local monodromy matrix at the singular point.
The local monodromy types for z = 0, 1 and ∞ are (2, 1, 1), (2, 2), and (1, 1, 1, 1)
respectively. By consulting Simpson’s list (3.14), the resulting differential equation
turns out to be free from accessory parameters, which is the even family of rank 4
(cf. [G, Si]). In other words, it is rigid in the sense that local monodromies uniquely
determine the global monodromy. The point z = 0 corresponds to the origin x1 = 0
and the exponent a + c − 1/2 is multiplicity one, which corresponds to the restriction
of the Heckman-Opdam hypergeometric function.

Remark 4. Let P (x, d
dx )u = 0 be an ordinary differential equation on the Rie-

mann sphere with p+1 isolated singular points. Suppose that the equation is Fuchsian,
mamely, all the singular points are regular. Moreover suppose the local monodromies are
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semisimple and the global monodromy group is irreducible. Let (m0,1, . . . ,m0,n0),. . .,
(mp,1, . . . ,mp,np) be the local monodromy types. Here

∑nj

ν=1 mj,ν , denoted by n, is the
order of the differential equation.

(i) Katz [Katz] proved that the corresponding local system is rigid if and only if

(3.13)
p∑

j=0

nj∑
ν=1

m2
j,ν − (p − 1)n2 = 2.

(ii) Simpson [Si] classified the monodromy types of irreducible rigid local systems
with m0,1 = · · · = m0,n0 = 1. In this case they satisfy p = 2 and they are as follows

(3.14)

(1, . . . , 1), (1, . . . , 1), (1, n − 1) (hypergeometric family of rank n)

(1, . . . , 1), (1,m − 1,m), (m,m) (even family of rank 2m)

(1, . . . , 1), (1,m, m), (m,m + 1) (odd family of rank 2m + 1)

(1, 1, 1, 1, 1, 1), (2, 4), (2, 2, 2) (extra case)

Let u be a solution of (HO) system given by series expansion

(3.15) u(x1, x2) =
∞∑

j=0

uj(x1 + x2)(x1 − x2)j

near x1 = x2 ̸= 0. Substituting u into (HO) system and putting x1 = x2, we get a
differential equation for u0(2x1). Then w(z) = za+c−1/2(z − 1)b+c−1/2u0(2x1) with the
variable z = − sinh2 x1 satisfies the differential equation (3.11) with

p0(z) = − 1
16 (2 − 2c + λ1 + λ2) (2 − 2c − λ1 − λ2)

× (2 − 2c + λ1 − λ2) (2 − 2c − λ1 + λ2) ,

p1(z) = (2 c − 3)
(
2 c2 − 6 c + 5 − 1

2 (λ2
1 + λ2

2)
)
z

+ (2 c − 3)
(
−c2 + 3 c + 1

2 a2 − 1
2 b2 + 1

2 b − 1
2 a − 5

2 + 1
4 (λ2

1 + λ2
2)

)
,

p2(z) =
(
−6 c2 + 24 c − 25 + 1

2 (λ2
1 + λ2

2)
)
z2

+
(
6 c2 − 24 c + 25 − 1

2 (λ2
1 + λ2

2) − a2 + b2 + a − b
)
z

+ a2 − c2 − a + 4 c − 15
4 ,

p3(z) = z (z − 1) (2 z − 1) (2 c − 5) ,

p4(z) = (z − 1)2 z2.

The Riemann scheme is

(3.16) P



z = 0 z = 1 z = ∞
0 0 1 − c + (λ1 + λ2)/2
1 1 1 − c − (λ1 + λ2)/2

c − a + 1/2 −b + c + 1/2 1 − c + (λ1 − λ2)/2
a + c − 1/2 b + c − 1/2 1 − c − (λ1 − λ2)/2


.
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For generic k and λ, the local monodromy representation for each singular point is
semisimple. The local monodromy types are (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), hence this
equation is not rigid by the classification (3.14) of Simpson.

3.1.3. G2 case Let R = G2. Choose simple roots α1 and α2 with |α2| > |α1| and let
ϖ1 and ϖ2 denote the fundamental weights corresponding to α1 and α2. Put ki = kαi

(i = 1, 2) and let λ = λ1ϖ1 + λ2ϖ2 with (λ1, λ2) ∈ C2.
First we consider the restriction of (HO) system to the wall α1 = 0. The resulting

equation is of sixth order and has regular singularities at 0, 1, ∞ in the coordinate
z = tanh2(ϖ2/2). The Riemann scheme is

(3.17) P



z = 0 z = 1 z = ∞
0 k1 + 2 k2 + λ2 0

3
2 − 3 k2 k1 + 2 k2 − λ2 1

1 − 3
2 (k1 + k2) k1 + 2 k2 + λ1 + λ2 2

2 − 3
2 (k1 + k2) k1 + 2 k2 − λ1 − λ2 1/2 − k2

1/2 − 3
2 (k1 + k2) k1 + 2 k2 + λ1 + 2λ2 3/2 − k2

5/2 − 3
2 (k1 + k2) k1 + 2 k2 − λ1 − 2λ2 5/2 − k2


.

For generic k and λ, the local monodromy representation for each singular point is
semisimple. The local monodromy types are (1, 1, 2, 2), (1, 1, 1, 1, 1, 1), (3, 3), which
shows that the resulting differential equation is not rigid by the list (3.14).

Next we consider the restriction of (HO) system to the wall α2 = 0. The result-
ing equation is of sixth order and has regular singularities at −1, −1/2, 1, ∞ in the
coordinate z = cosh(ϖ1/2). The Riemann scheme is

(3.18) P



z = −1 z = −1/2 z = 1 z = ∞
0 0 0 2k1 + 3k2 + λ1

1 3 3/2 − 3k1 2k1 + 3k2 − λ1

2 1 − 3k2 (1 − 3k1 − 3k2)/2 2k1 + 3k2 + 2λ1 + 3λ2

1/2 − k1 2 − 3k2 (5 − 3k1 − 3k2)/2 2k1 + 3k2 − 2λ1 − 3λ2

3/2 − k1 4 − 3k2 (2 − 3k1 − 3k2)/2 2k1 + 3k2 + λ1 + 3λ2

5/2 − k1 5 − 3k2 (4 − 3k1 − 3k2)/2 2k1 + 3k2 − λ1 − 3λ2


.

For generic k and λ, the local monodromy representation for each singular point is
semisimple. The local monodromy types are (3, 3), (2, 4), (1, 1, 2, 2), (1, 1, 1, 1, 1, 1),
which shows that the resulting differential equation is not rigid by the list (3.14).

Remark 5. There are several algorithms to compute restrictions of partial dif-
ferential equations to singular sets. For example, Oaku [Oa] gave an algorithm for
computing the restriction of a Fuchsian system of partial differential equations to a
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singular set. He call the resulting system “tangent system”. Though we do not use his
algorithm, it may work well for our cases.

§ 3.2. General cases

The ordinary differential equation obtained by restricting (HO) system to a singular
line is not necessarily rigid, as in the cases of x1 = x2 for BC2 and both walls for G2.
But its monodromy can be calculated by using representations of the Hecke algebra.

In this subsection, we assume that Σ is an irreducible root system. First we review
on the monodromy representation for (HO) system around the origin. See [Op4, Section
5, 7], [Hec2], and [HS, Part I, Section 4.3] for details. (HO) system is W -invariant and
it can be viewed as a system on W\aC. Let

areg
C = {x ∈ aC : α(x) ̸= 0 (α ∈ Σ)}.

Let Ψ = {α1, . . . , αn} and let si ∈ W denote the simple reflection corresponding to αi.
W is generated by s1, . . . , sn with the relation of the form

s2
i = 1 (1 ≤ i ≤ n), (sisj)mij = 1 (1 ≤ i ̸= j ≤ n).

Let AW denote the associated Artin group generated by elements δ1, . . . , δn satisfying
the relations

δiδjδi · · · = δjδjδi · · · (1 ≤ i ̸= j ≤ n, mij factors on both sides).

Fix a point x0 ∈ a+. For 1 ≤ i ≤ n let gi ∈ π1(W\aC, x0) be defined by the loop

gi(t) = (1 − t)x0 + t rix0 +
√
−1ϵ(t)αi,

where ϵ : [0, 1] → [0, 1] is continuous function with ϵ(0) = ϵ(1) = 0 and ϵ(1/2) > 0. The
fundamental group π1(W\aC, x0) is isomorphic to AW by δi 7→ gi.

Let qj = e−2π
√
−1(kαj

+k2αj
) (1 ≤ i ≤ n). Define

Σ0 = {α ∈ Σ :
α

2
̸∈ Σ}

and Σ+
0 = Σ0 ∩ Σ+. Let q denote the function on Σ0 defined by qα = qαi if α = wαi

for w ∈ W . The Iwahori-Hecke algebra of the Weyl group W is the complex algebra
HW (q) generated by elements Ti with the relations

(Ti − 1)(Ti + qi) = 0 (1 ≤ i ≤ n),

TiTjTi · · · = TjTiTj · · · (1 ≤ i ̸= j ≤ n, mij factors on both sides).

Let V (λ, k) denote the local solution space of (HO) system around x0 and

µ(λ, k) : π1(W\aC) → GL(V (λ, k))
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the monodromy representation. The monodromy representation for (HO) system on
W\aC factors through τ : CAW → HW (q) defined by δi 7→ Ti, that is

(µ(λ, k)(gi) − 1)(µ(λ, k)(gi) + qi) = 0 (1 ≤ i ≤ n).

Let ν(λ, k) : HW (q) → GL(V (λ, k)) be the representation such that µ(λ, k) = ν(λ, k) ◦
τ . If k is generic, ν(λ, k) is equivalent with the regular representation of HW (q).

For w ∈ W we define
Tw = Tsj1

Tsj2
· · ·Tsjm

where w = sj1sj2 · · · sjm is a minimal expression. It does not depend on the choice of
minimal expressions of w. Let w∗ denote the longest element of W . The monodromy
for the loop g(t) = e2π

√
−1t·x0 (0 ≤ t ≤ 1) is given by the action of T 2

w∗ on the regular
representation of HW (q). We can compute the monodromy by using the following
theorem:

Theorem 3.1 (Deligne [D], Springer (cf. [GP])). T 2
w∗ ∈ Z(HW (q)) the center

of the HW (q). For any irreducible representation V of HW (q)

T 2
w∗

∣∣
V

=
∏

α∈Σ+
0

q
1−χV (sα)

χV (1)
α ,

where χV denote the character of V .

For 1 ≤ j ≤ n, let Hj denote the singular line of (HO) system defined by

Hj = {t ∈ a : ⟨t, αi⟩ = 0 (∀i ∈ {1, . . . , n} \ {j})}.

Set kj = kαj for 1 ≤ j ≤ n. They are complex parameters such that ki = kj if
|αi| = |αj |. (HO) system is W -invariant and has regular singularity along the line Hj

with the characteristic exponents 0 and 1 − 2kj . Put

Hj = {v ∈ H : Tiv = 0 (∀i ∈ {1, . . . , n} \ {j})},
Wj = ⟨si : (∀i ∈ {1, . . . , n} \ {j})⟩.

We set H = HW (q) for simplicity. We have the following results for the restriction of
(HO) system to Hj .

Theorem 3.2. Fix j with 1 ≤ j ≤ n.
(i) If q is generic, then the restrictions of local holomorphic solutions of the Heckman-

Opdam system at a generic point of Hj form #Hj-dimensional vector space and they
satisfy an ordinary differential equation of Fuchsian type with order #Hj. The lo-
cal monodromy matrix of the equation at the origin is semisimple and isomorphic to
T 2

w∗ |Hj .
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(ii) Suppose moreover that w∗(αj) = −αj. Then the ordinary differential equation
with the variable t allows the coordinate s = t2 at the origin t = 0 and Tw∗(Hj) = Hj.
The local monodromy matrix of the equation at the origin under the coordinate s is
semisimple and isomorphic to Tw∗ |Hj .

(iii) Let Θ ⊂ Ψ and WΘ = ⟨si ; i ∈ Θ⟩ be the corresponding parabolic subgroup of
W and

(aΘ)∗C = {λ ∈ a∗C : ⟨λ, αi⟩ = 0 (i ̸∈ Θ)}.

For a generic λ ∈ (aΘ)∗C, consider the differential equations satisfied by the Heckman-
Opdam hypergeometric function with eigenvalue λ. Then the above claim (i) is valid for
these equations by replacing Hj by HWΘ

j . Here HWΘ
j = {v ∈ Hj : Tiv = 0 (i ∈ Θ)}.

Example 3.3 (An−1). For R = An−1, WAn−1 ≃ Sn and

T 2
w∗

∣∣
V

= qn(n−1) dim{v∈V |q=1 : s1v=−v}/ dim V

by Theorem 3.1. We have Wj ≃ Sj × Sn−j for 1 ≤ j ≤ n
2 and

IndW
Wj

(1) ≃
j⊕

i=0

Vn−i,i dim IndW
Wj

(1) =
(

n

j

)
,

where Vn−i,i is the representation of W that corresponds to the partition (n − i, i) and

T 2
w∗ |Vn−i,i = qin.

For the restriction (An−1, An−2), we have

T 2
w∗

∣∣
IndSn

Sn−1
(1)

≃ I1 ⊕ qnIn−1

and the characteristic exponents at the origin are 0, j − nk (j = 1, . . . , n − 1) and the
local monodromy type is (1, n− 1). For the restriction (A3, A1 + A1) (n = 3, j = 2), we
have

Tw∗
∣∣
Ind

S4
S2×S2

(1)
≃ I1 ⊕ (−q2)I3 ⊕ q4I2

and the characteristic exponents are 0, 1 − 4k, 2 − 4k, 1
2 − 2k, 3

2 − 2k, 5
2 − 2k and the

local monodromy type is (1, 2, 3).

Remark 6. (i) In the group case, the system of differential equation for the
Heckman-Opdam hypergeometric function that is mentioned in (iii) of the above theo-
rem is the radial part of the “Hua system”. The Hua system characterizes the image
of the Poisson transform from the boundary G/PΘ of a Riemannian symmetric space
G/K with the restricted root system Σ (cf. [Sh1, Sh2]).

(ii) Beerends [B] studied restrictions to some singular lines of the BC type Heckman-
Opdam hypergeometric function with some degenerate eigenvalues and special values
of the hypergeometric functions.
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§ 3.3. Cases of (An−1, An−2) and (Bn, Bn−1)

By using general results of §3.2, we have Fuchsian differential equations that are
free from accessory parameters for certain restrictions in An−1 and Bn cases, which are
generalizations of those given in §3.1.

3.3.1. (An−1, An−2)
First we consider the case of R = An−1. Then

a = {(x1, . . . , xn) ∈ Rn : x1 + · · · + xn = 0}

and (HO) system has singularities along the walls xi = xj of the Weyl group W ≃ Sn.
We consider the restriction of (HO) system to the singular line

H1 = {x ∈ a : x2 = x3 = · · · = xn}.

For this restriction of type (An−1, An−2), (HO) system gives an ordinary differential
equation of order n with the following Riemann scheme:

P



z = 0 z = 1 (origin) z = ∞
n−1

2 k + λ1
2 0 n−1

2 k − λ1
2

n−1
2 k + λ2

2 1 − nk n−1
2 k − λ2

2
n−1

2 k + λ3
2 2 − nk n−1

2 k − λ3
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n−1

2 k + λn

2 n − 1 − nk n−1
2 k − λn

2


.(3.19)

The characteristic exponents at z = 0 and z = ∞ come from the characteristic exponents
of (HO) system at infinity and the characteristic exponents at 1 are given in Example 3.3.
If n = 3, then adding and subtracting k + λ3/2 from exponents at x = ∞ and x = 0
respectively, (3.19) becomes (3.9).

For generic k and λ, the local monodromy representation for each singular point is
semisimple. Local monodromy type at a singular point is a partition of n consisting of
multiplicities of the eigenvalues of the local monodromy matrix at the singular point.
Though characteristic exponents 1−nk, 2−nk, . . . , n−1−nk have integral differences,
they contribute by the same eigenvalue exp(2π

√
−1(1 − nk)) in the local monodromy

matrix. Hence the local monodromy types at the singular points 0, 1, ∞ are

(1, . . . , 1), (1, n − 1), (1, . . . , 1),

respectively. For these local monodromy types, the ordinary differential equation is (up
to some multiples of powers of z and z − 1) the differential equation for the generalized
hypergeometric function nFn−1.
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The characteristic exponent 0 at z = 1 is of multiplicity one and it corresponds to
the restriction of the Heckman-Opdam hypergeometric function. By using this fact, we
can prove that the dimension of real analytic solutions of An−1-type (HO) system is
one for generic k.

Levelt [L] and Okubo et al. [OTY] gave the connection coefficient c((n − 1)k/2 +
λi/2Ã0) from the local solution at z = 0 with the characteristic exponent (n−1)k/2+
λi/2 (1 ≤ i ≤ n) to the local solution at z = 1 with the characteristic exponent 0. There
is also an explicit formula for the connection coefficient c(0Ã(n− 1)k/2+λi/2) for the
opposite direction (cf. [O5]). By using these connection formulae, the following identity
for trigonometric functions follows:

n∑
j=1

∏
1≤ν≤n

ν ̸=j
sin(µν − µj + t)∏

1≤ν≤n
ν ̸=j

sin(µν − µj)
=

sinnt

sin t
( ∀(µ1, . . . , µn) ∈ a∗C).(3.20)

By using these results, we can prove that the value of the An−1-type Heckman-Opdam
hypergeometric function at the origin is 1. We will explain about the proof in the next
subsection.

3.3.2. (Bn, Bn−1)
For R = BCn, Σ0 = ΣBn and (HO) system has singularities along the walls

H±
(i,j) : xi = ±xj (1 ≤ i ̸= j ≤ n), H(p) : xp = 0 (1 ≤ p ≤ n)

of the Weyl group. We consider the restriction of (HO) system to the singular line

Hn = {x ∈ a : x1 = x2 = · · · = xn−1 = 0}.

For this restriction of type (Bn, Bn−1), (HO) system gives ordinary differential
equation of order 2n with the following Riemann scheme:

P



z = 1 z = 0 (origin) z = ∞
0 0 (n − 1)k1 + k2 + 1

2k3 − λ1
2

1 1 − nk1 (n − 1)k1 + k2 + 1
2k3 − λ2

2

2 2 − nk1 (n − 1)k1 + k2 + 1
2k3 − λ3

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n − 1 n − 1 − nk1 (n − 1)k1 + k2 + 1
2k3 − λn

2

1 − 1
2 − k2 1 − 1

2 − (n − 1)k1 − k2 − k3 (n − 1)k1 + k2 + 1
2k3 + λ1

2

2 − 1
2 − k2 2 − 1

2 − (n − 1)k1 − k2 − k3 (n − 1)k1 + k2 + 1
2k3 + λ2

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n − 1
2 − k2 n − 1

2 − (n − 1)k1 − k2 − k3 (n − 1)k1 + k2 + 1
2k3 + λn

2



(3.21)



26 Toshio Oshima and Nobukazu Shimeno

The characteristic exponents at z = ∞ come from the characteristic exponents of (HO)
system at infinity and the characteristic exponents at z = 0 are obtained by using
Theorem 3.2 and Theorem 3.1. The regular singular point z = 1 corresponds to the
pure imaginary point xn = ±

√
−1, which is not a singular point of (HO) system but

of (HO)ϵ system for certain ϵ. We can compute the monodromy at z = 1 by using
representations of the Hecke algebra for Wϵ. See the next section for (HO)ϵ system. If
n = 2, adding and subtracting 1

2 + k1 + k2 + k3 from exponents at z = 0 and z = ∞
respectively, (3.21) becomes (3.12).

For generic k and λ, the local monodromy representation for each singular point is
semisimple. Local monodromy type at a singular point is a partition of 2n consisting of
multiplicities of the eigenvalues of the local monodromy matrix at the singular point.
The local monodromy types at the singularities are (n, n), (1, n − 1, n), (1, . . . , 1). For
these local monodromy types, the ordinary differential equation corresponds to the even
family of rank 2n in the list (3.14). The resulting Fuchsian differential equation is free
from accessory parameter.

The characteristic exponent 0 at z = 0 is of multiplicity one and it corresponds to
the restriction of the Heckman-Opdam hypergeometric function. By using this fact, we
can prove that the dimension of real analytic solutions of BCn-type (HO) system is one
for generic k.

The general form of the Riemann scheme for the even family of rank 2n is the
following:

P



z = 1 z = 0 z = ∞
λ2,1 λ1,1 λ0,1

λ2,1 + 1 λ1,1 + 1 λ0,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2,1 + n − 1 λ1,1 + n − 1 λ0,n

λ2,2 λ1,2 λ0,n+1

λ2,2 + 1 λ1,2 + 1 λ0,n+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ2,2 + n − 1 λ1,3 λ0,2n



.(3.22)

For generic k and λ, the local monodromy representation for each singular point is
semisimple. Local monodromy type at a singular point is a partition of 2n consisting of
multiplicities of the eigenvalues of the local monodromy matrix at the singular point.
The local monodromy types are (n, n), (n, n − 1, 1), (1, . . . , 1).

Connection coefficients between the local solution at z = 0 with the characteristic
exponent λ1,3 and the local solution at ∞ with the characteristic exponent λ0,i (1 ≤
i ≤ 2n) were given explicitly by Oshima [O5]. The connection coefficient from the local
solution at z = ∞ with the characteristic exponent λ0,i to the local solution at z = 0
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with the characteristic exponent λ1,3 is given by

c(λ0,i Ãλ1,3) =
2∏

ν=1

Γ(λ1,ν − λ1,3)
Γ(λ0,i + λ1,1 + λ2,ν)

(3.23)

·
∏

1≤ν≤2n
ν ̸=i

Γ(λ0,i − λ0,ν + 1)
Γ(λ0,i + λ1,1 + λ2,1 + λ0,ν + λ1,2 + λ2,2 − 1)

for 1 ≤ i ≤ 2n. There is a similar formula for c(λ1,3 Ãλ0,i).
By using these connection formulae, the following identity for trigonometric func-

tions follows:
2n∑
i=1

sin(xi + s) sin(xi + t)
∏

j∈{1,...,2n}\{i}

sin(xi + xj + 2u)
sin(xi − xj)

(3.24)

= sin

2nu +
2n∑

j=1

xj

 sin

s + t + (2n − 2)u +
2n∑

j=1

xj

 .

By using these results, we can prove that the value of the BC-type Heckman-Opdam
hypergeometric function at the origin is 1. We will explain about the proof in the next
subsection.

§ 3.4. Application

Opdam [Op4] proved the Gauss summation formula for the Heckman-Opdam hy-
pergeometric function, which asserts that F (λ, k; 0) = 1. The proof given by Opdam is
complicated and indirect. One of our motivations to study ordinary differential equa-
tions by restricting (HO) system to singular sets of dimension one is to prove the Gauss
summation formula for the Heckman-Opdam hypergeometric functions by using con-
nection formulae for hypergeometric functions of one variable.

We proved that the restrictions of (HO) systems for (An−1An−2) and (Bn, Bn−1)
are Fuchsian differential equations that are free from accessory parameters, which are
generalized hypergeometric equation and a equation corresponding to the even family
in the list (3.14) of rigid local systems respectively. In these two cases, we know some
connection coefficients, as we explained in the last subsection. We can prove the Gauss
summation formula for An−1 and BCn by the following way: Let R = BCn and use
notations of § 3.3.2. Let u be a real analytic solution of (HO) system with u(0) = 1.
By using the formulae for the connection coefficients c(λ1,3 Ãλ0,i) and the method of
rank-one reduction, the connection coefficient for u from 0 to ∞ is nothing but c(λ, k),
which proves that u(x) = F (λ, k; x).

There is a proof that uses the connection coefficients c(λ0,i Ãλ1,3) and the trigono-
metric identity (3.24). This proof is essentially the same as that was described above,
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but it seems to be indirect. We give the proof for R = A2.
The generalized hypergeometric series

3F2(α1, α2, α3; β1, β2; z) =
∞∑

j=0

(α1)j(α2)j(α3)j

(β1)j(β2)j

zj

j!

is a solution of (3.8) that is analytic at z = 0 and the exponent at z = 1 is 3k − 1.
Levelt [L] and Okubo et al [OTY] proved that

lim
z→1−0

(1 − z)β3
3F2(α1, α2, α3;β1, β2; z)

=

∏3
j=1 Γ(βj)∏3
j=1 Γ(αj)

=
Γ(1 − 3k)Γ(1 + (λ3 − λ2)/2)Γ(1 + (λ3 − λ1)/2)

Γ(1 − k)Γ(1 − k + (λ3 − λ2)/2)Γ(1 − k + (λ3 − λ1)/2)
.(3.25)

Here β3 = α1 + α2 + α3 − β1 − β2 and Reβ3 > 0. We denote the right hand side of
(3.25) by d(λ, k). The function

F{e1−e2}(λ, k, x) = c{e1−e2}(λ, k)Φ(λ, k, x) + c{e1−e2}(se1−e2λ, k)Φ(se1−e2λ, k, x)

is real analytic on x1 = x2 and

(3.26) F (λ, k, x) =
∑

w∈W/W{e1−e2}

c{e1−e2}(wλ, k)F{e1−e2}(wλ, k, x).

Here
cΘ(λ, k) =

∏
α∈⟨Θ⟩+

cα(λ, k), cΘ(λ, k)cΘ(λ, k) = c(λ, k)

for Θ ⊂ Ψ and now c{e1−e2}(λ, k) = ce1−e2(λ, k). W{e1−e2} is a subgroup of W ≃ S3

generated by the simple reflection with respect to the root e1 − e2.
The restriction of the Heckman-Opdam hypergeometric function F (λ, k, x) to the

wall x1 = x2 is a constant multiple of

zk+λ3/2(1 − z)1−3k
3F2(α1, α2, α3;β1, β2, β3; z)

with z = e−x2+x3 . On the other hand, the boundary value of F{e1−e2}(λ, k, x) as
x2 − x3 → ∞ (z → 0) is the Gauss hypergeometric function and its value at the origin
is 1. Therefore the constant is 1.

It follows from (3.26) and the above consideration that F (λ, k, 0) is equal to∑
w∈W/W{e1−e2}

c{e1−e2}(wλ, k)d(wλ, k).
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By using

c{e1−e2}(λ, k) =
c̃{e1−e2}(λ, k)

c̃{e1−e2}(ρ(k), k)

with

c̃{e1−e2}(λ, k) =
Γ((λ1 − λ3)/2)Γ((λ2 − λ3)/2)

Γ(k + (λ1 − λ3)/2)Γ(k + (λ2 − λ3)/2)
,

c̃{e1−e2}(ρ(k), k) =
Γ(2k)Γ(k)
Γ(3k)Γ(2k)

=
Γ(k)
Γ(3k)

,

and Γ(x)Γ(1 − x) = π/ sinπx, we have

c{e1−e2}(λ, k) d(λ, k) =
sin πk sin π(k + (λ2 − λ3)/2) sin π(k + (λ1 − λ3)/2)

sin 3πk sinπ((λ2 − λ3)/2) sin π((λ1 − λ3)/2)
.

By the identity (3.20) for n = 3, we have∑
w∈W/W{e1−e2}

c{e1−e2}(wλ, k) d(wλ, k) = 1,

and complete the proof of the Gauss summation formula for A2.

Remark 7. Fuchsian equations without accessory parameters form a class of or-
dinary differential equations whose solutions and their monodromies can be analyzed
algebraically. We can see (HO) system a “rigid” system of partial differential equation
in a sense.

§ 4. Real forms of Heckman-Opdam systems

The Heckman-Opdam hypergeometric function is up to constant multiples a unique
analytic solution of (HO) system on a ≃ Rn. In this section, we study globally real
analytic solutions of (HO) system on another real form aϵ, or equivalently (HO)ϵ system
on a.

In the group case, (HO) system is the radial part of the system of the invariant
differential equations for the zonal spherical function on a Riemannian symmetric space
G/K with respect to the Cartan decomposition G = KAK. (HO)ϵ system is the radial
part of the system of the invariant differential equations with respect to the generalized
Cartan decomposition G = KAKϵ in the sense of Oshima and Sekiguchi [OS2].

Oshima and Sekiguchi [OS2] constructed a basis for the space of the (K, Kϵ)-
spherical functions and gave connection formulae explicitly by using the Poisson trans-
forms for G/Kϵ. In this section, we generalized these results for arbitrary multiplicity k.
This problem was studied by J. Sekiguchi [Sekj2] for rank two cases. A closely related
problem was studied by Heckman [HS, Part III].
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We begin by the simplest example R = A1. Then

L(k) =
d2

dx2
+ 2k coth x

d

dx

and the Heckman-Opdam hypergeometric function is given by

F (λ, k; x) = 2F1( 1
2 (k + λ), 1

2 (k − λ), k + 1
2 ;− sinh2 x)

= c(λ, k)Φ(λ, k; x) + c(−λ, k)Φ(−λ, k; x),

where
Φ(λ, k;x) = e(λ−k)x

2F1(−λ + k, k,−λ + 1; e−2x).

If k = 1/2, then L(k) is the radial part of the Laplace-Beltrami operator and F (λ, k;x)
is the radial part of the zonal spherical function on the symmetric space G/K =
SL(2, R)/SO(2). By the change of variable x 7→ x + 1

2π
√
−1, L(k) becomes

L(k)ϵ =
d2

dx2
+ 2k tanhx

d

dx
.

Then Φϵ(λ, k;x) = c(λ, k)Φ(λ, k; x + 1
2π

√
−1) is an real analytic eigenfunction of L(k)ϵ

with the eigenvalue λ2 − ρ(k)2 for ±λ, and for generic λ, {Φϵ(λ, k; x), Φϵ(−λ, k;x)}
forms a basis of real analytic solutions. The following connection formula follows from
that for the Gauss hypergeometric function.

Φϵ(−λ, k;−x) =
sinπλ

sinπ(λ + k)
Φϵ(λ, k;x) +

sin πk

sin π(λ + k)
Φϵ(λ, k;−x).

If k = 1/2, then L(k)ϵ is the radial part of the pseudo-Laplacian and the (K, Kϵ)-
spherical function on G/Kϵ = SL(2, R)/SO0(1, 1) with respect to the generalized Car-
tan decomposition G = KAKϵ.

Now we consider the general cases. Let ϵ : Σ → {±1} be a map such that

ϵ(α + β) = ϵ(α)ϵ(β) (α, β, α + β ∈ Σ).

We call ϵ a signature of roots. Define L(k)ϵ by

(4.1) L(k)ϵ =
n∑

i=1

∂2
ei

+
∑

α∈Σ+

ϵ(α)>0

2kα coth α ∂α +
∑

α∈Σ+

ϵ(α)<0

2kα tanhα ∂α

It is given by the change of variable x 7→ x+
√
−1vϵ for L(k), where vϵ = π

∑
ϵ(αi)=−1 ϖi.

Here ϖ1, . . . , ϖn are fundamental weights. There exists a commutative algebra of differ-
ential operators D(k)ϵ containing L(k)ϵ. We denote by (HO)ϵ system the corresponding
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system of differential equations. That is, (HO)ϵ system is obtained by the change of
variable x 7→ x +

√
−1vϵ for (HO) system (1.3).

For the group case, 2kα is the multiplicity of the restricted root α ∈ Σ of a Rieman-
nian symmetric space and L(k)ϵ is the radial part of the Casimir operator with respect
to the generalized Cartan decomposition G = KAKϵ. For example,

G = SL(n, R), K = SO(n), Kϵ = SO0(p, n − p) (0 ≤ p ≤ n),

kα = 1
2 , {α ∈ Σ+

An−1
: ϵ(α) = −1} = {ei − ej : 1 ≤ i ≤ p < j ≤ n}.

The Radial part of the Casimir operator with respect to the generalized Cartan decom-
position G = KAH for a semisimple symmetric spaces G/H (that is not necessarily of
type Kϵ) is of the form L(k)ϵ for some signature of roots ϵ (cf. [Sekh], [HS, Part III],
[O1]).

For a signature of roots ϵ, let Wϵ = ⟨sα : ϵ(α) = 1⟩⊂ W and # W/Wϵ = r. Choose
a representative {v1 = e, v2, . . . , vr} ⊂ W for the coset Wϵ\W . Let C ⊂ a denote the
positive Weyl chamber.

Theorem 4.1. The dimension of the global real analytic solutions of (HO)ϵ sys-
tem is r for generic k. There exists a basis

Fϵ(λ, k; x) =
(
F (1)

ϵ (λ, k; x), . . . , F (r)
ϵ (λ, k;x)

)
of analytic solutions of (HO)ϵ system such that

Fϵ(λ, k; x)i =
∑

w∈W

c(wλ, k)Aϵ
w(λ, k)i-th rowΦϵ(wλ, k, x)i (1 ≤ i ≤ r, x ∈ C).

Here F
(j)
ϵ (λ, k;x) is a column vector of r components whose i-th row giving the value at

vix ∈ viC, Aϵ
w(λ, k) are intertwining matrices of size r which satisfy

(4.2) Aϵ
wv(λ, k) = Aϵ

w(vλ, k)Aϵ
v(λ, k) (∀w, v ∈ W ),

and Φϵ(λ, k, x) is a column vector of r components whose i-th row giving the series
solution of (HO)ϵ on vix ∈ viC with

Φϵ(λ, k, x)i ∼ e⟨λ−ρ(k),x⟩ + · · · (x → ∞).

If sα is a simple reflection with respect to α ∈ Ψ, Aϵ
sα

(λ, k) is a suitable direct
product of matrices and scalars of the form

(4.3) A(s, k) =

(
sin πk

sin π(s+k)
sin πs

sin π(s+k)
sin πs

sin π(s+k)
sin πk

sin π(s+k)

)
,

cos 1
2π(s − k)

cos 1
2π(s + k)

and 1.

Moreover there is a functional equation

Fϵ(λ, k; x) = Fϵ(wλ, k; x)Aϵ
w(λ, k) (∀w ∈ W ).
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We did not give precise definition of the r × r matrix Aw(λ, k) in the statement of
the above theorem. We first define Aw(λ, k) for simple reflections. Then Aw(λ, k) for
general w ∈ W are given by the product formula (4.2). We give rank two examples.

Example 4.2 (Case A2). Ψ = {e1−e2, e2−e3}. Let ϵ be the signature of roots
defined by ϵ(e1 − e2) = 1, ϵ(e2 − e3) = −1. Then Wϵ = {1, s1} and #W/Wϵ = 3. In
this case,

Aϵ
s1

(λ) =

(
1

A(λ1 − λ2, k)

)
, Aϵ

s2
(λ) =

(
A(λ2 − λ3, k)

1

)
,

where A(s, k) is the 2 × 2 matrix in (4.3).

Example 4.3 (Case B
(1)
2 ). Ψ = {α1 = e1 − e2, α2 = e2}, ϵ(e1 − e2) = −1,

ϵ(e2) = 1.
Wϵ = {1, s2}, Wϵ\W = {1, s1, s1s2, s1s2s1}.

Aϵ
s1

(λ) =

(
A(λ1 − λ2, k1)

A(λ1 − λ2, k1)

)
∈ GL(4, C),

Aϵ
s2

(λ) =

1
A(2λ2, k2)

1

 ∈ GL(4, C),

where A(s, k) is the 2 × 2 matrix in (4.3).

Example 4.4 (Case B
(2)
2 ). Ψ = {α1 = e1 − e2, α2 = e2}, ϵ(e1 − e2) = 1, ϵ(e2) =

−1. Wϵ = {1, s1, s2s1s2, s1s2s1s2}, Wϵ\W = {1, s2}.

As1(λ) = I2,

As2(λ) =

(
sin πk2

sin π(2λ2+k2)
sin π(2λ2)

sin π(2λ2+k2)
sin π(2λ2)

sin π(2λ2+k2)
sin πk2

sin π(2λ2+k2)

)
= A(2λ2, k2).

For the group case, that is, the case of a pseudo-Riemannian symmetric space
G/Kϵ due to Oshima and Sekiguchi [OS2], the product formula (4.2) was proved by
using intertwining operators, which can be viewed as a generalization of the Gindikin-
Karpelevič product formula, and the formulae for simple reflections were obtained by
computing integrals. For generic parameter k, we define Aw(λ, k) for simple reflections
w by generalizing Lemma 4.14 of [OS2]. (Compare above rank two examples with those
of [OS1].) Then define Aw(λ, k) for general w ∈ W by (4.2). We have to show that
Aw(λ, k) is well-defined, which can be proved by direct computations for rank two cases.
For example, for A2 case, we can prove by direct computations that

As1(s2s1λ)As2(s1λ)As1(λ) = As2(s1s2λ)As1(s2λ)As2(λ)
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corresponding to minimal expressions w∗ = s1s2s1 = s2s1s2 of the longest element of
W ≃ S3. Analytic continuation of the function F

(j)
ϵ (λ, k; x) through the walls of the

Weyl group can be proved by the method of rank one reduction, which was employed
by Heckman and Opdam for ϵ ≡ 1.
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