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§1 Introduction; a basic observation

§1 Introduction; a basic observation

@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:
(1.1) a+b=c.

Why is this equation interesting?
There might be several answers, but one should be that
(1.1) gives a hyperbolic space.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,
X c P?

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1
minus three distinct points, to say, 0,1, and oc:

X =P\ {0,1,00}.

In complex function theory, (1.1) was studied by E. Picard for units of
entire functions.

Picard’s Theorem (1879). A meromorphic function f on C omitting
three distinct values of P' must be constant.
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire

functions, and satisfy
f+(1-7)=1

R. Nevanlinna (Acta '25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem <= abc Conjecture

(Masser-Oesterlé ('85)).

These are certain estimates of order (height) functions by the counting
functions (the functions counting orders at finite places); explicit formulae
will be given later, soon.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) at+b+c+---+f=0 (nvariables).

Equation (1.2) defines a variety isomorphic to
P72\ {n hyperplanes in general position}.
In complex function theory (1.2) was studied by E. Borel for units of
entire functions:
E. Borel (1897): Subsum Theorem for units of entire functions holds;
i.e., a proper shorter subsum of a, b, c, ..., f vanishes constantly.

W. Schmidt (1971): Subsum Theorem for S-units of an algebraic
number field holds.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc--- Conjecture’:

Second Main Theorem for hol. curves <= abc--- Conjecture.

These are the topics we are going to discuss.
N.B.

o First Main Theorem <= Product Formula.
@ Related topics: Kobayashi hyperbolicity.
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§2 Log Bloch-Ochiai & Faltings-Vojta

§2 Log Bloch-Ochiai & Faltings-Vojta

Here | show a fine analogue in the distribution of holomorphic curves
and the distribution of rational points.

Theorem 2.1

(Log Bloch-Ochiai (26-77), N. (77-81)). Let X be a complex algebraic
variety with logarithmic irregularity g(X) > dim X.
Then every holomorphic curve f : C — X is degenerate.

Here we say that f is degenerate if f(C) is not Zariski dense in X.
Theorem 2.2

(Faltings (91)-Vojta (96)). Let k be a number field and let S be a finite
subset of inequivalent places of k containing all infinite places.

Let X be defined over k with a compactification X and D = X \ X.
Assume g(X) > dim X.

Then every (D, S)-integral point set is contained in a proper algebraic
subset of X.
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§2 Log Bloch-Ochiai & Faltings-Vojta

Theorem 2.3

Let M = a projective manifold of dimension m (or defined over k; the
same in below);

{D,-}f:1 = a family of ample hypersurfaces of M in general position;
W(C M) = a subvariety such that

(CA) 3 non-degenerate holomorphic curve f : C— W\ |J D;.
DipW
or
(Ar) 3 Zariski dense (3_p, 5 Di N W, S)-integral point set in W.
Then we have

(i) (/ — m)dim W £ m (rankz{c1(D;)}\_; — q(W))" .
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§2 Log Bloch-Ochiai & Faltings-Vojta

(ii) (CA) Let f : C — M be a holomorphic curve such that for every D;,
either f(C) C D;, or f(C)N D; = ):

or

(Ar) Let Z be a subset of V(k) such that for every D;, either Z C D;,
or ZND; =0 and Z is a (3 p, 47 Di, S)-integral point set.

Assume that | > m.

Then f(C) or Z is contained in an algebraic subspace W of M such that

m

dimW < ; rankz NS(M).

—m

In particular, if rankz NS(M) =1 (e.g., M = P™(C)), then we have

dim W < /i; W is finite for | > 2m.
—m
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§2 Log Bloch-Ochiai & Faltings-Vojta

The Mandala of the analogues:

“Value Dist.” “Dist. of Rational Points”
— [Infin. Family of Rat'l Pts]
’ Kobay. Hyperbolic. ‘ — ’ Finiteness of Rat'l Pts‘
Lang’s Conj.
i) fr
’ Nevan. Theory‘ —= ’ Dioph. Approx. ‘
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§3 abc Conjecture and Nevanlinna’'s S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. For Ve > 0, 7C. > 0 such that if co-prime integers
a, b, c € Z satisfyies

(3.1) a+b=c,
then
(32) max{lal, b < ¢ [ P

prime p|(abc)

N.B. The order of abc at every prime p is counted only by “1 + ¢€”
(truncation), when it is positive.
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§3 abc Conjecture and Nevanlinna’'s S.M.T.

As in §1 we put x = [a, —b] € P1(Q), and set

(3.3) h(x) = log max{|al|, |b|} > 0 (height),
(3.4) Ni(x;00) = Z log p (counting function truncated to level 1),
pla

Nl(x;O):Z log p (ooo),

plb
Ni(x;1)=> logp (DO0O).
plc

Then abc Conjecture (3.2) is rewritten as

(3.5) (1 —e)h(x) < Ni(x;0) + Ni(x;00) + Ni(x;1) + C, x € PI(Q).
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§3 abc Conjecture and Nevanlinna’'s S.M.T.

For g distinct points a; € P1(Q),1< i < g,

(3.6) (g —2—e€)h(x

1(x; a7)

I MQ

(formulated by N '96, Vojta '98).
Theorem 3.7

(Nevanlinna’s S.M.T.) Let f be a meromorphic function in C.
For q distinct points a; € P}(C),1 < i< g,

(g —2)T¢(r) < Z Ny (r, f*a;) + O(log™ (rT¢(r))]l.

T¢(r) _/ dt/ f*(F.-S. metric) (due to Shimizu).
0 t Jzl<t

If f is entire, T¢(r) ~ log max,<, |f(2)].
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§4 abc- - - Conjecture

54 abc--- Conjecture

abc--- Conjecture 1. Let a,b,c,...,e,f € Z be n integers without
common factor satisfying

at+b+c+---+e+f=0.

Then for e > 0, ?C, and a proper algebraic subset 7E, C P;72 such that
for [a, b, ..., €] & E

(4.1) (1—e)logmax{lal,....[f[} <> ,, logp+ 4>, logp+ C.

For the sake of notational convenience, we set

@ a=xp,b=x1,...,e =x, (n+ 1 variables).

x = [x0,...,xn] € P"(Q).

h(x) = log maxg<j<n{|xj|}: the height of x.

Hi=x,0<;<n, Hyy1=— ZJ'-’ZOXJ-: n + 2 linear forms in general
position.

Ni(x; H;): the counting function truncated to level 1.
00 210 (2009) 00000000 ég/
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§4 abc- - - Conjecture

Then (4.1) is equivalent to

n+1
(4.2) (1-eh(x) <> M(x; Hj)+ Ce.
j=0

We consider a bit more general case.
Let S be a finte set of primes and let | < cc.
We define an S-counting function truncated to level / by

(4.3) Ni(x;S,Hj)= ) min{deg, H(x)),/} - log p.
pES, plH;(x)
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§4 abc- - - Conjecture

abc: - - Conjecture 2. Let H;,1 < j < g be g (> n+2) linear forms on
PQ in general position.
Then for Ve > 0, C. and a proper algebraic subset E, C PQ such that

(44) (q—n—1—eh(x) <31, M(xS, H)+C, xeP(Q)\E

(N '96, Vojta '98).

Schmidt’s Subspace Theorem is stated as follows.

Theorem 4.5

Let the notaion be as above.
For Ve > 0, 7C. and a finite union 2 E. of proper linear subspaces of Pa
such that

(q—n—1-eh(x) <37, Noo(x: S, H) + G, x € P(Q)\ Ee.

N.B. When n =1, this is Roth's Theorem.
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§4 abc- - - Conjecture

Theorem 4.6

(H. Cartan’s S.M.T., ’33) Let f : C — P"(C) be a linearly
non-degenerate holomorphic curve.

Let H; be q hyperplanes of P"(C) in general position.

Then

(q—n—=1)Te(r) < D Na(r,f*H;) + O(log™ (rT¢(r)))|]
i=1
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85 abc- - - for semi-abelian varieties

56 abc- - - Theorem for hppolomorphic curves
into semi-abelian varieties

Let A be a semi—abelian~variety.

The universal covering A= C", n =dimA. Let

o f:C — A, be a holomorphic curve ;

o Jk(A) = k-jet bundle over A; Jx(A) = A x Ck ;
o Ji(f): C— Jk(A), k-jet lift of f;

o Xy (f) = Zariski closure of the image Jx(f)(C).
o I : J(A) =2 A x C"™ — Ck, jet projection.
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85 abc- - - for semi-abelian varieties

Lemma 5.1

(N. 77)
(i) For f : C— A,

Tiou(r)(r) = Olog™ (rT¢(r))) |-

(ii) For f : C — A (compactification),

def

m(r; l o Ji(f))= /ll— log™ [|/j o Jk(f)(Z)ngﬁ = O(log™ (rT¢())) I

N.B. This is Lemma on logarithmic derivatives in higher dimension.
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85 abc- - - for semi-abelian varieties

Theorem 5.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. ’08)

Let f : C — A be non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(5.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.

(ii) Moreover, if codim x.(HZ > 2, then
(5.4) Thr(riwz) S eTe(r)lle, “e>0.

(iil) If k =0 and Z is an effective divisor D on A, then A is smooth,
equivariant, and independent of f; furthermore, (5.3) takes the form

(55)  Tr(r; L(D)) < Ny(r; F*D) + eT¢(r; L(D))||, Ye> 0.
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85 abc- - - for semi-abelian varieties

N.B. (1) In N.-W.-Y. Acta '02, we proved (5.5) with a higher level
truncated counting function Ni(r; f*D) for some special compactification
of A and with a better error term “O(log™ (rT¢(r)))".

(2) For the truncation of level 1, the error term “eT¢(r)" cannot be
replaced by “O(log™t (rT¢(r)))".

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, '04.

Because of the trunction level 1, we have the following:

Theorem 5.6

(Conjectured by M. Green, '74) Assume that f : C — P?(C) omits two
lines {x; = 0},i = 1,2, and the conic {x3 + x? + x3 = 0}. Then f is
degenerate.

There is a historical reason in this case of 2 lines and 1 conic.

Lately, Corvaja-Zannier obtained some corresponding result over
algebraic function fields (J.A.G. 2008).
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85 abc- - - for semi-abelian varieties

56 Application
Theorem 6.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that
(i) g(X) = dim X (log. irregularity);
(i) R(X) > 0 (log. Kodaira dimension);
(i) the quasi- Albanese map X — A is proper.
Then Vf : C — X is degenerate.

Moreover, the normalization of f(C) ™ is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.

N.B. The case “G(X) > dim X” was known as Log-Bloch-Ochiai’s
Theorem (N. '77-'81). The proof for the case “G(X) = dim X"
requires our new Theorem 5.2.
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85 abc- - - for semi-abelian varieties

As a special case we have

Theorem 6.2

Let D=7, D; C P"(C) be an s.n.c. divisor.
Assume that g > n and deg D > n+ 1.
Then Vf : C — P"(C)\ D is degenerate.

Here are more applications:

Theorem 6.3

Let A be a semi-abelian variety and D a reduced divisor on A.
Let f: C — A be a holomorphic curve such that

deg. f*D =2, (e fD.

Then f is degenerate.
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85 abc- - - for semi-abelian varieties

Theorem 6.4

Let D = S D; be an s.n.c. divisor on P"(C) and
Dp1» a reduced divisor not contained in D.
Let f : C — P"(C)\ D be a holomorphic curve such that

dEgg f*Dny2 2 2, Vg € fﬁan+2-

Then f is degenerate.

4

Example. Let D = Z?:l D;, be a sum of lines of P? in general position,
and set
Pi=DinD,, Py=DnND;s.
Let C be a smooth conic intersecting D at P, P», tangent to D> and Ds,
respectively. Let Dy be a line tangent to C such that Z?:l D; is in general
position. Let f : C — C\ {P1,P2} be a holomorphic
curve.d:/Sagyo/PAPER/d:/Sagyo/PAPER/ Then

deg, f*Dy 22, V(€ f 1D,
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abc- - - for semi-abelian varieties

D, Ds
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§7 Yamanoi's abc Theorem

§8 Yamanoi’'s abc Theorem

In Acta '04, K. Yamanoi proved a striking S.M.T. for meromorphic
functions with respect to moving targets, where the counting functions are
truncated to level 1; it gives the best answer to Nevanlinna's Conjecture
for moving targets, and more.

It is considered to be “abc Theorem” for fields of meromorphic
functions, which are transcendental in general.

His method:

@ Ahlfors' covering theory;

@ Mumford's theory of the compactification of curve moduli;

@ The tree theory for point configurations.
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§7 Yamanoi's abc Theorem

We recall his result in a form suitable to the present talk.

Let p: X — S be a surjective morphism between smooth projective
algebraic varieties with relative canonical bundle Kx/s.

Theorem 7.1
(Yamanoi, ’04, '06) Assume that
o dimX/S=1;

e D C X is a reduced divisor ;
o f: C — X is nondegenerate ;
e g=pof:C—S.
Then for Ve > 0, C(€) > 0 such that

(7.2)  T¢(r;[D]) + Te(r; KX/S) < Ni(r; f*D) + €T¢(r) + C(€) Tg(r)|le

00 210 (2009) DOOO0O000
EEGEEENGEEE)) 000D00000000000

27/
30



§8 Fundamental Conjecture for holomrophic curves

89 Fundamental Conjecture for holomrophic
curves

The titled conjecture is as follows:

Fund. Conj. for hol. curves.

Let X be a smooth algebraic variety, and let D = )", D; be a reduced
s.n.c. divisor on X with irreducible D;.

Then, for a non-degenerate f : C — X we have

(81)  Te(r;L(D)) + Te(riKx) < Y Na(r: £*Di) + eTe(r)]|, Ye > 0.

Even in the case when X = P"(C) and D is allowed to have some
singularities, the fundamental conjecture implies Green-Griffiths’
Conjecture and Kobayashi's Conjecture.
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§8 Fundamental Conjecture for holomrophic curves

Green-Gritffiths” Conjecture. Let X be a variety of general type. Then
Vf: C — X is degenerate.

Kobayashi’'s Conjecture. A generic hypersurface X C P"(C) of high
degree (> 2n — 1) is Kobayashi hyperbolic.

Even when X = P"(C) and D; are hyperplanes, the Fundamental
Conjecture is open; if Ny(r; D;) are replaced by N,(r; D;), this is Cartan's
Theorem 4.6, where f suffices to be linearly non-degenerate.

If f: C— P"(C) omits n+ 1 hyperplanes H;,1 < < n+1 in general
position, then P"(C )\Z"Jrl H; = (C*)". In this case, the Fundamental
Conjecture is true because of Theorem 5.2.
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§8 Fundamental Conjecture for holomrophic curves

After establishing the case of semi-abelian varieties, it is interesting to
deal with K3 surfaces.

Problem 1. Let X be a K3 surface. Does there exist a non-degenerate
holomorphic curve f : C — X7

Problem 2. Let X be a K3 surface and let D be a reduced non-zero
divisor on X. Is every f : C — X \ D degenerate?

After Green's conjecture the following is interesting:

Problem 3. Let D = 27:1 D; be an s.n.c. divisor on P2 such that
degD =4 and qg=1,2.

Is every f : C — P2\ D degenerate?
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