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§1 Introduction; a basic observation
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@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.
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@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:
(1.1) a+b=c.

Why is this equation interesting?
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§1 Introduction; a basic observation

§1 Introduction; a basic observation

@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:
(1.1) a+b=c.

Why is this equation interesting?
There might be several answers, but one should be that
(1.1) gives a hyperbolic space.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,
X c P?

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1
minus three distinct points, to say, 0,1, and oo:

X =P\ {0,1,00}.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,
X c P?

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1
minus three distinct points, to say, 0,1, and oo:

X =P\ {0,1,00}.

In complex function theory, (1.1) was studied by E. Picard for units of
entire functions.

Picard’s Theorem (1879). A meromorphic function f on C omitting
three distinct values of P* must be constant.
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire
functions, and satisfy
f+1-7)=1
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire
functions, and satisfy
f+1-7)=1

R. Nevanlinna (Acta '25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem <= abc Conjecture

(Masser-Oesterlé ('85)).
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire

functions, and satisfy
f+1-7)=1

R. Nevanlinna (Acta '25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem <= abc Conjecture

(Masser-Oesterlé ('85)).

These are certain estimates of order (height) functions by the counting
functions (the functions counting orders at finite places); explicit formulae
will be given later, soon.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) a+b+c+---+f=0 (nvariables).

Equation (1.2) defines a variety isomorphic to
P"=2\ {n hyperplanes in general position}.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) a+b+c+---+f=0 (nvariables).

Equation (1.2) defines a variety isomorphic to
P"=2\ {n hyperplanes in general position}.
In complex function theory (1.2) was studied by E. Borel for units of
entire functions:
E. Borel (1897): Subsum Theorem for units of entire functions holds;
i.e., a proper shorter subsum of a, b, c, ..., f vanishes constantly.

W. Schmidt (1971): Subsum Theorem for S-units of an algebraic
number field holds.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc--- Conjecture’:

Second Main Theorem for hol. curves <= abc--- Conjecture.

These are the topics we are going to discuss.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc--- Conjecture’:

Second Main Theorem for hol. curves <= abc--- Conjecture.

These are the topics we are going to discuss.
N.B.

o First Main Theorem <= Product Formula.
@ Related topics: Kobayashi hyperbolicity.
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§2 Log Bloch-Ochiai & Faltings-Vojta

§2 Log Bloch-Ochiai & Faltings-Vojta

Here | show a newer fine analogue in the distribution of holomorphic
curves and the distribution of rational points.

Theorem 2.1

(Log Bloch-Ochiai (26-77), N. (77-81)). Let X be a complex algebraic
variety with logarithmic irregularity g(X) > dim X.
Then every holomorphic curve f : C — X is algebraically degenerate.
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§2 Log Bloch-Ochiai & Faltings-Vojta

§2 Log Bloch-Ochiai & Faltings-Vojta

Here | show a newer fine analogue in the distribution of holomorphic
curves and the distribution of rational points.

Theorem 2.1

(Log Bloch-Ochiai (26-77), N. (77-81)). Let X be a complex algebraic
variety with logarithmic irregularity g(X) > dim X.

Then every holomorphic curve f : C — X is algebraically degenerate.

Theorem 2.2

(Faltings (91)-Vojta (96)). Let X be defined over a number field k with
(X) > dim X.
Then X(k) is contained in a proper subvariety of X.
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§2 Log Bloch-Ochiai & Faltings-Vojta

Theorem 2.3

Let

M = a projective manifold of dimension m;

{D,-}f:1 = a family of ample hypersurfaces of M in general position;
W(C M) = a subvariety such that 3 non-constant holomorphic curve

f:C— W\ U D; with Zariski dense image.
D;pW
Then we have

(i) (/ — m)dim W £ m (rankz{c1(D;)}\_; — q(W))" .
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§2 Log Bloch-Ochiai & Faltings-Vojta

(ii) Let f : C — M be a holomorphic curve such that for every D;, either
f(C) C D;, or f(C)N D; = 0.

Assume that | > m.

Then f(C) is contained in an algebraic subspace W of M such that

dim W = mrankz NS(M).

I —
In particular, if rankz NS(M) =1 (e.g.,, M = P™(C)), then we have

dmW < /L; W is finite for [ > 2m.
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§2 Log Bloch-Ochiai & Faltings-Vojta

Theorem 2.4

Assume that everything is defined over a number field k, and Let

S = a finite subset of inequivalent non-trivial places of k containing all
infinite places;

V = a projective smooth variety of dimension m;

{D,-}f:1 = a family of ample hypersurfaces of V' in general position;
W(C V) = a subvariety of V.

Assume that there exists a Zariski dense (3_p, 4y Di N W, S)-integral
point set of W(k) in W.
Then we have
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§2 Log Bloch-Ochiai & Faltings-Vojta

@ (/- m)dimW < m (rankz{ci(Dy)}_y — q(W))"
Q Let D;,1 < i</, be ample divisors of V' in general position.
Let Z be a subset of V (k) such that for every D;, either Z C D;, or
Z is a (3_p,sa Di, S)-integral point set.
Assume that | > m.
Then Z is contained in an algebraic subvariety W of V such that

dimW < rankz NS(V).
/ m
In particular, if rankz NS(V) =1 (V = PR), then we have

dimW < IL; W is finite for | > 2m.

NOGUCHI (UT) Geom. of Hol. Curves & Dist. of Rat. Pts. 2008 November 7 11 /33



§2 Log Bloch-Ochiai & Faltings-Vojta

The Mandala of the analogues:

“Value Dist.” “Dist. of Rational Points”
— [Infin. Family of Rat'l Pts|
’ Kobay. Hyperbolic. ‘ — ’ Finiteness of Rat'l Pts‘
Lang’s Conj.
) fr
’ Nevan. Theory‘ = ’ Dioph. Approx. ‘
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§3 abc Conjecture and Nevanlinna’s S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?
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§3 abc Conjecture and Nevanlinna's S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. For e > 0, 7C. > 0 such that if co-prime integers
a, b, c € Z satisfyies

(3.1) a+b=c,
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§3 abc Conjecture and Nevanlinna's S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. For e > 0, 7C. > 0 such that if co-prime integers
a, b, c € Z satisfyies

(3.1) a+b=c,
then
(32) max{lal, bl < ¢ [ P

prime p|(abc)

N.B. The order of abc at every prime p is counted only by "1 + ¢€”
(truncation), when it is positive.
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§3 abc Conjecture and Nevanlinna's S.M.T.

As in §1 we put x = [a, —b] € P1(Q), and set

(3.3) h(x) = log max{|al|, |b|} > 0 (height),
(3.4) Ni(x;00) = Z log p (counting function truncated to level 1),
pla
Nl(x;O):Z log p (ooo),
plb
Ni(x;1)=> logp (0O0O).
plc
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§3 abc Conjecture and Nevanlinna's S.M.T.

As in §1 we put x = [a, —b] € P1(Q), and set

(3.3) h(x) = log max{|al, |b|} > 0 (height),
(3.4) Ni(x;00) = Z log p (counting function truncated to level 1),
pla

Nl(x;O):Z log p (ooo),

plb
Ni(x;1)=> logp (0O0O).
plc

Then abc Conjecture (3.2) is rewritten as

(3.5) (1 —e)h(x) < Ni(x;0) + Ni(x;00) + Ni(x; 1) + C, x € PI(Q).
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§3 abc Conjecture and Nevanlinna's S.M.T.

For g distinct points a; € P1(Q),1< i < g,

(3.6) (g—2—¢€)h Z (x; a;) + C.

(formulated by N '96, Vojta '98).
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§3 abc Conjecture and Nevanlinna's S.M.T.

For g distinct points a; € P1(Q),1< i < g,

(3.6) (g —2—e€)h(x

1(x; a7)

I MQ

(formulated by N '96, Vojta '98).
Theorem 3.7

(Nevanlinna’s S.M.T.) Let f be a meromorphic function in C.
For q distinct points a; € P}(C),1 < i< g,

(g —2)T¢(r) < Z Ny(r, f*a;) + O(log™ (rT¢(r))]l.

—/ dt/ f*(F.-S. metric) (due to Shimizu).
|z|<t

If f is entire, T¢(r) ~ log max,<, |f(2)].
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§4 abc- - - Conjecture

54 abc--- Conjecture

abc--- Conjecture 1. Let a,b,c,...,e,f € Z be n integers without
common factor satisfying

at+b+c+---+e+f=0.

Then for e > 0, ?C, and a proper algebraic subset 7E, C P;72 such that
for [a, b, ..., €] & E

(4.1) (1—e€)logmax{|al,....[f[} <3, logp+ 4>, logp+ C.
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§4 abc- - - Conjecture

54 abc--- Conjecture

abc--- Conjecture 1. Let a,b,c,...,e,f € Z be n integers without
common factor satisfying

at+b+c+---+e+f=0.
Then for e > 0, ?C, and a proper algebraic subset 7E, C P;72 such that
for [a, b, ..., €] & E

(4.1) (1—e€)logmax{|al,....[f[} <3, logp+ 4>, logp+ C.

For the sake of notational convenience, we set

@ a=xp,b=x1,...,e =x, (n+ 1 variables).

x = [xo0,...,xn] € P"(Q).

h(x) = log maxg<j<n{|xj|}: the height of x.

Hi=x,0<;<n, Hyy1=— ZJ'-’ZOXJ-: n + 2 linear forms in general
position.

Ni(x; H;): the counting function truncated to level 1.
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§4 abc- - - Conjecture

Then (4.1) is equivalent to

n+1
(4.2) (1-eh(x) <> M(x; Hj)+ Ce.
j=0
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§4 abc- - - Conjecture

Then (4.1) is equivalent to

n+1
(4.2) (1-eh(x) <> M(x; Hj)+ Ce.
j=0

We consider a bit more general case.
Let S be a finte set of primes and let A < co.
We define an S-counting function truncated to level A by

(4.3) NA(x; S, H)= > min{deg, Hj(x)), A} - log p.
pES, plH;(x)
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§4 abc- - - Conjecture

abc- - Conjecture 2. Let H;,1 < j < g be g (> n+ 2) linear forms on

qQ in general position.

Then for Ve > 0, C. and a proper algebraic subset E, C PQ such that
(44) (g—n—1—-¢e)h(x) < Zj’:l Ni(x; S, Hj)+ C, xeP"(Q)\E

(N '96, Vojta '98).
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§4 abc- - - Conjecture

abc: - - Conjecture 2. Let H;,1 < j < g be g (> n+2) linear forms on
PQ in general position.
Then for Ve > 0, C. and a proper algebraic subset E, C PQ such that

(44) (q—n—1—-eh(x) <31, M(x S, H)+C, xeP(Q)\E

(N '96, Vojta '98).

Schmidt’s Subspace Theorem is stated as follows.

Theorem 4.5

Let the notaion be as above.
For Ve > 0, 7C. and a finite union 2 E. of proper linear subspaces of Pa
such that

(q—n—1-eh(x) <37, Noo(x: S, H) + G, x € P(Q)\ Ee.

N.B. When n =1, this is Roth's Theorem.

NOGUCHI (UT) Geom. of Hol. Curves & Dist. of Rat. Pts. 2008 November 7 18 / 33



§4 abc- - - Conjecture

Theorem 4.6

(H. Cartan’s S.M.T., ’33) Let f : C — P"(C) be a linearly
non-degenerate holomorphic curve.

Let H; be q hyperplanes of P"(C) in general position.
Then

q

(= n—=1)Te(r) <D Na(r,f*H;) + O(log™ (rT¢(r))l]
i=1
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.

(a) There are a number of works on this subject for P" (n > 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.

(a) There are a number of works on this subject for P" (n > 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).

(b) Deformation of a family of p.p. abelian varieties over function fields
(Family of families ..., Kuga-lhara (77)).
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.

(a) There are a number of works on this subject for P" (n > 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).

(b) Deformation of a family of p.p. abelian varieties over function fields
(Family of families ..., Kuga-lhara (77)).

(c) A gap theorem for contact orders in abelian or semi-abelian varieties.

We skip (a) today.
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§5 Analogue over algebraic function fields

Problem (b) — Deformation of a holomorphic map y : B — D/ (Siegel
domain/TI"). Here

B denotes a smooth algebraic variety with the given function field,

D a bunded symmetric domain in general, and

I is arithmetic or co-compact discrete sugroup of Aut(D).
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§5 Analogue over algebraic function fields

Problem (b) — Deformation of a holomorphic map y : B — D/ (Siegel
domain/TI"). Here

B denotes a smooth algebraic variety with the given function field,

D a bunded symmetric domain in general, and

I is arithmetic or co-compact discrete sugroup of Aut(D).

By making use of the Kobayashi hyperbolic metric and the theory of
harmonic maps we have

NOGUCHI (UT) Geom. of Hol. Curves & Dist. of Rat. Pts. 2008 November 7 21 /33



§5 Analogue over algebraic function fields

Theorem 5.1

(N. (88), Miyano-N. (91)). For the simplicity, assume that D/T is smooth.
(i) The moduli space Hol(B, D/T) of all holomorphic maps from B into
D/T is a smooth quasi-projective algebraic variety.

For every component Zy of Hol(B, D/T'), the evaluation map at x € B

Oy €1 —y(x)€D/T

is a proper holomorphic immersion onto a totally geodesic submanifold of
D/T, and hence

Zy =2 Dy /Ty.
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§5 Analogue over algebraic function fields

ii) There is a natural holomorphic ma
(i) P P
n:xe€B— &, Hol(Dy/I1,D/T),

and a proper holomorphic embedding (2nd evaluation map) on a totally
geodesic submanifold of DT,

¢2 . (Dl/rl) X (D2/F2) — D/I',

such that y(x) = ®2(y,n(x)) for (y,x) € (D1/I'1) x B.
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§5 Analogue over algebraic function fields

ii) There is a natural holomorphic ma
(i) P P
n:xe€B— &, Hol(Dy/I1,D/T),

and a proper holomorphic embedding (2nd evaluation map) on a totally
geodesic submanifold of DT,

¢2 . (Dl/rl) X (Dz/rz) — D/I',

such that y(x) = ®2(y,n(x)) for (y,x) € (D1/I'1) x B.
Corollary 5.2

If D/T admits no non-trivial product structure of totally geodesic
submanifolds, then every non-constant 'y : B — D/T is rigid.
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§5 Analogue over algebraic function fields

(c) A gap theorem. The problem for abelian varieties was first dealt with
by A. Buium.

Theorem 5.3

(Buium-98). Let

A = an abelian variety;

D = a reduced divisor on A which is Kobayashi hyperbolic;

C = a smooth compact curve.

Then AN € N depending on C, A and D such that for every morphism
f:C— A, eithermult,f*D <N (Vx e C), or f(C) C D.

Corollary 5.4
Let the notation be as in Theorem 5.3. If f(C) ¢ D, then

“height (f)” = deg(f) < N|f~}(D)|.
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This is a problem of type of abc-Conjecture. His proof based on
Kolchin's theory of differential algebra and he posed two problems:

@ Find a proof by complex geometry.
@ The Kobayashi hyperbolicity assumption for D is too strong, and the

ampleness should suffice.
Definition. A complex algebraic group A is semi-abelian if

0 — (C*)! — A — Ag (= abelian) — 0.
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This is a problem of type of abc-Conjecture. His proof based on
Kolchin's theory of differential algebra and he posed two problems:

@ Find a proof by complex geometry.
@ The Kobayashi hyperbolicity assumption for D is too strong, and the

ampleness should suffice.
Definition. A complex algebraic group A is semi-abelian if
0 — (C*)! — A — Ag (= abelian) — 0.
Theorem 5.5

(Nog.-Winkelmann(’04)). Let

A = a semi-abelian variety with a smooth equivariant algebraic
compactification A;

D = an effective reduced ample divisor on A, and D= DN A;

C = a smooth algebraic curve with smooth compactification C — C.
Then AN € N such that for every morphism f : C — A either

f(C)cD or mult,f*D<N (¥vxe ().
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Furthermore, the number N depends only on the numerical data
involved as follows:

24
o

The genus of C and the number #(C \ C) of the boundary

(puncture) points of C (only the genus in compact case),
the dimension of A,
the toric variety (or, equivalently, the associated “fan”) which occurs

as closure of the orbit in A of the maximal connected linear algebraic

subgroup T = (C*)t of A, _
all intersection numbers of the form D" - Bi, -+ Bj,, where the B;, are

closures of A-orbits in A of dimension n; and h + >_;nj =dimA (only
D™ in compact case).
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Furthermore, the number N depends only on the numerical data
involved as follows:

© The genus of C and the number #(C \ C) of the boundary

(puncture) points of C (only the genus in compact case),
@ the dimension of A,
@ the toric variety (or, equivalently, the associated “fan”) which occurs

as closure of the orbit in A of the maximal connected linear algebraic

subgroup T = (C*)t of A, _
Q all intersection numbers of the form D" - Bi, -+ Bj,, where the B;, are

closures of A-orbits in A of dimension n; and h + >_;nj =dimA (only
D™ in compact case).

Corollary 5.6
If f(C) ¢ Supp D, then

deg *D (height) < N - |[Supp f*D|.

v
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§5 Analogue over algebraic function fields

In particular, if we let A, A, C and D vary within a flat connected
family, then we can find a uniform bound for N.

As an application, a finiteness theorem was obtained for morphisms from
a non-compact curve into an abelian variety omitting an ample divisor.
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§6 abc- - - for semi-abelian varieties

56 abc--- Theorem for holomorphic curves
into semi-abelian varieties
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§6 abc- - - for semi-abelian varieties

56 abc--- Theorem for holomorphic curves
into semi-abelian varieties

Let A be a semi-abelian variety.
The universal covering A= C" n = dim A.
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§6 abc- - - for semi-abelian varieties

56 abc--- Theorem for holomorphic curves
into semi-abelian varieties

Let A be a semi-abelian variety.
The universal covering A= C", n =dimA. Let

o f:C — A, be a holomorphic curve ;

o Jk(A) = k-jet bundle over A; Jx(A) = A x Ck ;
o Ji(f): C— Jk(A), k-jet lift of f;

o Xy (f) = Zariski closure of the image Jx(f)(C).
o I : J(A) = A x C"™ — C"k, jet projection.
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§6 abc- - - for semi-abelian varieties

Lemma 6.1

(N. 77)
(i) For f : C— A,

Tiou(r)(r) = O(log™ (rT¢(r))) |-

(ii) For f : C — A (compactification),

def

m(r; l o Ji(f))= /ll— log™ [|/j o Jk(f)(Z)ngﬁ = O(log™ (rT¢())) I

N.B. This is Lemma on logarithmic derivatives in higher dimension.
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§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)
Let f : C — A be algebraically non-degenerate.

v
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§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)

Let f : C — A be algebraically non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(6.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.
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§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)

Let f : C — A be algebraically non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(6.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.

(ii) Moreover, if codim x.(HZ > 2, then

(6.4) Thr(riwz) S eTe(r)lle, “e>0.

NOGUCHI (UT) Geom. of Hol. Curves & Dist. of Rat. Pts. 2008 November 7

30 /33



§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)

Let f : C — A be algebraically non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(6.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.

(ii) Moreover, if codim x.(HZ > 2, then

(6.4) Thr(riwz) S eTe(r)lle, “e>0.

(iil) If k =0 and Z is an effective divisor D on A, then A is smooth,

equivariant, and independent of f; furthermore, (6.3) takes the form

(65)  Tr(r; L(D)) < Ny(r: F*D) + eT¢(r; L(D))||, Ye>oO.
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§6 abc- - - for semi-abelian varieties

N.B. (1) In N.-W.-Y. Acta '02, we proved (6.5) with a higher level
truncated counting function Ny (r; f*D) for some special compactification

of A and with a better error term “O(log™ (rT¢(r)))".

(2) For the truncation of level 1, the error term “eT¢(r)" cannot be
replaced by “O(log™ (rT¢(r)))".

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, '04.
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§6 abc- - - for semi-abelian varieties

N.B. (1) In N.-W.-Y. Acta '02, we proved (6.5) with a higher level
truncated counting function Ny (r; f*D) for some special compactification
of A and with a better error term “O(log™ (rT¢(r)))".

(2) For the truncation of level 1, the error term "eT¢(r)" cannot be
replaced by “O(log™ (rT¢(r)))".

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, '04.

Because of the trunction level 1, we have the following interesting
application.

Theorem 6.6

(Conjectured by M. Green, '74) Assume that f : C — P2(C) omits two
lines {x; = 0},i = 1,2, and the conic {x3 + x? + x3 = 0}. Then f is
algebraically degenerate.

Lately, Corvaja-Zannier obtained some corresponding result over
algebraic function fields (J.A.G. 2008).
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§7 Application

57 Application

Theorem 7.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that

(i) g(X) = dim X (log. irregularity);
(i) R(X) > 0 (log. Kodaira dimension);
(iii) the Albanese map X — A is proper.
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§7 Application

57 Application

Theorem 7.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that

(i) g(X) = dim X (log. irregularity);

(i) R(X) > 0 (log. Kodaira dimension);
(iii) the Albanese map X — A is proper.
Then Yf : C — X is algebraically degenerate.

NOGUCHI (UT) Geom. of Hol. Curves & Dist. of Rat. Pts. 2008 November 7 32/33



§7 Application

Theorem 7.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that

(i) g(X) = dim X (log. irregularity);

(i) R(X) > 0 (log. Kodaira dimension);
(iii) the Albanese map X — A is proper.
Then Yf : C — X is algebraically degenerate.

Moreover, the normalization of f(C) ™ is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.
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§7 Application

Theorem 7.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that
(i) g(X) = dim X (log. irregularity);
(i) R(X) > 0 (log. Kodaira dimension);
(iii) the Albanese map X — A is proper.
Then Yf : C — X is algebraically degenerate.

Moreover, the normalization of f(C) ™ is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.

N.B. (1) The case "g(X) > dim X" was known as Log Bloch-Ochiai’s
Theorem (N. '77-'81). The proof for the case “g(X) = dim X" requires
our new Theorem 6.2.
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§7 Application

N.B. (2) In the case where dim X =2 and f : C — X is Brody, G.
Dethloff and S. Lu proved a similar degeneration theorem under weaker
condition than (iii) for the quasi-Albanese morphism.
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§7 Application

N.B. (2) In the case where dim X =2 and f : C — X is Brody, G.
Dethloff and S. Lu proved a similar degeneration theorem under weaker
condition than (iii) for the quasi-Albanese morphism.

As a special case we have

Theorem 7.2

Let D=7, D; C P"(C) be an s.n.c. divisor.
Assume that g > n and deg D > n+ 1.
Then Vf : C — P"(C)\ D is algebraically degenerate.
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§7 Application

N.B. (2) In the case where dim X =2 and f : C — X is Brody, G.
Dethloff and S. Lu proved a similar degeneration theorem under weaker
condition than (iii) for the quasi-Albanese morphism.

As a special case we have

Theorem 7.2

Let D=7, D; C P"(C) be an s.n.c. divisor.
Assume that g > n and deg D > n+ 1.
Then Vf : C — P"(C)\ D is algebraically degenerate.

Question. Let D =37  D; C P"(C) be a divisor in general position
(the codimensions of intersections of D;'s decrease exactly as the number
of D;'s), possibly with singularities.

Assume that g > n and degD > n+ 1.

Then, is &(P"(C)\ D) > 07?
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