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§1 Introduction; a basic observation

§1 Introduction; a basic observation

Analogues between value distribution theory and Diophantine
approximaion theory.

Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:

(1.1) a + b = c .

Why is this equation interesting?

There might be several answers, but one should be that
(1.1) gives a hyperbolic space.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,

X ⊂ P2

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1

minus three distinct points, to say, 0,1, and ∞:

X ∼= P1 \ {0, 1,∞}.

In complex function theory, (1.1) was studied by E. Picard for units of
entire functions.

Picard’s Theorem (1879). A meromorphic function f on C omitting
three distinct values of P1 must be constant.
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§1 Introduction; a basic observation

How are they related?

If f omits 0, 1,∞, then f , (1 − f ) and 1 are units in the ring of entire
functions, and satisfy

f + (1 − f ) = 1.

R. Nevanlinna (Acta ’25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem ⇐⇒ abc Conjecture

(Masser-Oesterlé (’85)).

These are certain estimates of order (height) functions by the counting
functions (the functions counting orders at finite places); explicit formulae
will be given later, soon.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) a + b + c + · · · + f = 0 (n variables).

Equation (1.2) defines a variety isomorphic to
Pn−2 \ {n hyperplanes in general position}.

In complex function theory (1.2) was studied by E. Borel for units of
entire functions:

E. Borel (1897): Subsum Theorem for units of entire functions holds;
i.e., a proper shorter subsum of a, b, c , . . . , f vanishes constantly.

W. Schmidt (1971): Subsum Theorem for S-units of an algebraic
number field holds.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan (’33), also by Weyls and Ahlfors (’41), which
generalized Nevanlinna’s theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc · · · Conjecture”:

Second Main Theorem for hol. curves ⇐⇒ abc · · · Conjecture.

These are the topics we are going to discuss.
N.B.

First Main Theorem ⇐⇒ Product Formula.

Kobayashi hyperbolicity?

NOGUCHI (UT) Val. Dist. & Dist. Rat. Pt’s. 2008 March 27 6 / 30



. . . . . .

§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan (’33), also by Weyls and Ahlfors (’41), which
generalized Nevanlinna’s theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc · · · Conjecture”:

Second Main Theorem for hol. curves ⇐⇒ abc · · · Conjecture.

These are the topics we are going to discuss.

N.B.

First Main Theorem ⇐⇒ Product Formula.

Kobayashi hyperbolicity?

NOGUCHI (UT) Val. Dist. & Dist. Rat. Pt’s. 2008 March 27 6 / 30



. . . . . .

§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan (’33), also by Weyls and Ahlfors (’41), which
generalized Nevanlinna’s theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc · · · Conjecture”:

Second Main Theorem for hol. curves ⇐⇒ abc · · · Conjecture.

These are the topics we are going to discuss.
N.B.

First Main Theorem ⇐⇒ Product Formula.

Kobayashi hyperbolicity?

NOGUCHI (UT) Val. Dist. & Dist. Rat. Pt’s. 2008 March 27 6 / 30



. . . . . .

§2 Lang’s Conjectures & Kobayashi Hyperbolicity
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Set

k: an algebraic number field (finite over Q) ;

X : an algebraic variety defined over k;

X (k): the set of k-rational points of X .

Lang’s Conjecture (’74). If there is an embedding k ↪→ C such that
the obtained complex space XC is Kobayashi hyperbolic, then the
cardinality |X (k)| < ∞.

The analogue of the conjecture over algebraic function fields was
proposed in the same paper; in paticular for split case, he conjectured

There exist only finitely many surjective rational maps from an
algebraic variety to a Kobayashi hyperbolic compact algebraic variety.
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§2 Lang’s Conjectures & Kobayashi Hyperbolicity

.

Theorem 2.1

.

.

.

. ..

.

.

(N. ’85∼’92) (i)(’85) Let X → R be a family of compact hyperbolic
spaces over R. Here R may be an open variety such that

(*) X → R carries a hyperbolically embedded compactification X̄ → R̄
relative over R̄.

Then, if there are infinitely many meromorphic cross-sections of X → R,
there is a constant subfamily in X → R.
(ii) (Curve case, ’85) If dim R = dimR X = 1, then condition (*) is
automatically satisfied. Thus, Mordell’s conjecture for curves over
algebraic function fields follows.
(iii) (Split case, ’92). Let X be a Kobayashi hyperbolic compact complex
space. Let Y be another compact complex space. Then there are only a
finite number of surjective meromorphic mappings from Y onto X .

N.B. For (ii) (Curve case): Y. Manin (’63), H. Grauert (’65), N. (’85),
Imayoshi-Shiga (’88), R.F. Coleman (’90), C.-L. Chai (’91).
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§2 Lang’s Conjectures & Kobayashi Hyperbolicity

The Mandala of the analogues:

“Value Dist.” “Dist. of Rational Points”

f : C → X ⇐⇒ Infin. Family of Rat’l Pts

Kobay. Hyperbolic. ⇐⇒
Lang’s Conj.

Finiteness of Rat’l Pts

⇑ ⇑

Nevan. Theory ⇐⇒
Vojta’s Dict.

Dioph. Approx.
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§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. Let a, b, c ∈ Z be co-prime integers satisfying

(3.1) a + b = c .

Then for ∀ϵ > 0, ∃Cϵ > 0 such that

(3.2) max{|a|, |b|, |c|} ≤ Cϵ

∏
prime p|(abc)

p1+ϵ.

N.B. The order of abc at every prime p is counted only by “1 + ϵ”
(truncation), when it is positive.
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§3 abc Conjecture and Nevanlinna’s S.M.T.

As in §1 we put x = [a,−b] ∈ P1(Q), and set

h(x) = log max{|a|, |b|} ≥ 0 (height),(3.3)

N1(x ;∞) =
∑
p|a

log p (counting function truncated to level 1),(3.4)

N1(x ; 0) =
∑
p|b

log p (　〃　),

N1(x ; 1) =
∑
p|c

log p (　〃　).

Then abc Conjecture (3.2) is rewritten as

(3.5) (1 − ϵ)h(x) ≤ N1(x ; 0) + N1(x ;∞) + N1(x ; 1) + Cϵ, x ∈ P1(Q).
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§3 abc Conjecture and Nevanlinna’s S.M.T.

For q distinct points ai ∈ P1(Q), 1 ≤ i ≤ q,

(3.6) (q − 2 − ϵ)h(x) ≤
q∑

i=1

N1(x ; ai ) + Cϵ

(N ’96, Vojta ’98).

.

Theorem 3.7

.

.

.

. ..

. .

(Nevanlinna’s S.M.T.) Let f be a meromorphic function in C.
For q distinct points ai ∈ P1(C), 1 ≤ i ≤ q,

(q − 2)Tf (r) ≤
q∑

i=1

N1(r , f
∗ai ) + O(log+(rTf (r))||.
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§4 abc· · · Conjecture

§4 abc· · · Conjecture

abc· · · Conjecture 1. Let a, b, c , . . . , e, f ∈ Z be n integers without
common factor satisfying

a + b + c + · · · + e + f = 0.

Then for ∀ϵ > 0, ∃Cϵ and a proper algebraic subset ∃Eϵ ⊂ Pn−2
Z such that

for [a, b, . . . , e] ̸∈ Eϵ

(4.1) (1 − ϵ) log max{|a|, . . . , |f |} ≤
∑

p|a log p + · · · +
∑

p|f log p + Cϵ .

For the sake of notational convenience, we set

a = x0, b = x1, . . . , e = xn (n + 1 variables).
x = [x0, . . . , xn] ∈ Pn(Q).
h(x) = log max0≤j≤n{|xj |}: the height of x .
Hj = xj , 0 ≤ j ≤ n, Hn+1 = −

∑n
j=0 xj : n + 2 linear forms in general

position.
N1(x ; Hj): the counting function truncated to level 1.
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§4 abc· · · Conjecture

Then (4.1) is equivalent to

(4.2) (1 − ϵ)h(x) ≤
n+1∑
j=0

N1(x ; Hj) + Cϵ.

We consider a bit more general case.
Let S be a finte set of primes and let l ≤ ∞.
We define an S-counting function truncated to level l by

(4.3) Nl(x ;S , Hj) =
∑

p ̸∈S , p|Hj (x)

min{degp Hj(x)), l} · log p.
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§4 abc· · · Conjecture

abc· · · Conjecture 2. Let Hj , 1 ≤ j ≤ q be q (≥ n + 2) linear forms on
Pn

Q in general position. Then for ∀ϵ > 0, ∃Cϵ and a proper algebraic subset
∃Eϵ ⊂ Pn

Q such that

(4.4) (q − n − 1 − ϵ)h(x) ≤
∑q

j=1 N1(x ; S , Hj) + Cϵ, x ∈ Pn(Q) \ Eϵ

(N ’96, Vojta ’98).

Schmidt’s Subspace Theorem is stated as follows.

.

Theorem 4.5

.

.

.

. ..

.

.

Let the notaion be as above.
For ∀ϵ > 0, ∃Cϵ and a finite union ∃Eϵ of proper linear subspaces of Pn

Q
such that

(q − n − 1 − ϵ)h(x) ≤
∑q

j=1 N∞(x ; S , Hj) + Cϵ, x ∈ Pn(Q) \ Eϵ.

N.B. When n = 1, this is Roth’s Theorem.
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§4 abc· · · Conjecture

.

Theorem 4.6

.

.

.

. ..

.

.

(H. Cartan’s S.M.T., ’33) Let f : C → Pn(C) be a linearly
non-degenerate holomorphic curve.
Let Hj be q hyperplanes of Pn(C) in general position.
Then

(q − n − 1)Tf (r) ≤
q∑

i=1

Nn(r , f
∗Hj) + O(log+(rTf (r)))||
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§5 Analogue over algebraic function fields

§5 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory 　　　　
　　　　 Number Theory

� �
Theory/ F.F.

We skip this today.
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§6 abc· · · for semi-abelian varieties

§6 abc· · · Theorem for holomorphic curves
into semi-abelian varieties

Let A be a semi-abelian variety:

0 → (C∗)t → A → A0 (abelian variety) → 0.

The universal covering Ã ∼= Cn, n = dim A.

Let f : C → A be a holomorphic curve. Set

Jk(A): the k-jet bundle over A; Jk(A) ∼= A × Cnk ;

Jk(f ) : C → Jk(A): the k-jet lift of f ;

Xk(f ): the Zariski closure of the image Jk(f )(C).
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Let f : C → A be a holomorphic curve. Set

Jk(A): the k-jet bundle over A; Jk(A) ∼= A × Cnk ;

Jk(f ) : C → Jk(A): the k-jet lift of f ;

Xk(f ): the Zariski closure of the image Jk(f )(C).

NOGUCHI (UT) Val. Dist. & Dist. Rat. Pt’s. 2008 March 27 18 / 30



. . . . . .

§6 abc· · · for semi-abelian varieties

Put the jet projection

Ik : Jk(A) ∼= A × Cnk → Cnk .

.

Lemma 6.1

.

.

.

. ..

.

.

(N. ’77)
(i) For f : C → A,

TIk◦Jk (f )(r) = O(log+(rTf (r))) ||.

(ii) For f : C → Ā (compactification),

m(r ; Ik ◦ Jk(f ))
def
=

∫
|z|=r

log+ ∥Ik ◦ Jk(f )(z)∥dθ

2π
= O(log+(rTf (r))) ||.

N.B. This is Lemma on logarithmic derivatives in higher dimension.
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§6 abc· · · for semi-abelian varieties

.

Theorem 6.2

.

.

.

. ..

.

.

(N.-Winkelmann-Yamanoi, to appear in Forum Math. ’08)
Let f : C → A be algebraically non-degenerate.

(i) Let Z be an algebraic reduced subvariety of Xk(f ) (k = 0). Then
∃X̄k(f ), compactification of Xk(f ) such that

(6.3) TJk (f )(r ; ωZ̄ ) 5 N1(r ; Jk(f )∗Z ) + ϵTf (r)||ϵ, ∀ϵ > 0.

(ii) Moreover, if codim Xk (f )Z = 2, then

(6.4) TJk(f )(r ; ωZ̄ ) 5 ϵTf (r)||ϵ, ∀ϵ > 0.

(iii) If k = 0 and Z is an effective divisor D on A, then Ā is smooth,
equivariant, and independent of f ; furthermore, (6.3) takes the form

(6.5) Tf (r ; L(D̄)) 5 N1(r ; f
∗D) + ϵTf (r ; L(D̄))||ϵ, ∀ϵ > 0.
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§6 abc· · · for semi-abelian varieties

N.B. (1) In N.-W.-Y. Acta ’02, we proved (6.5) with a higher level
truncated counting function Nk(r ; f ∗D) for some special compactification
of A and with a better error term “O(log+(rTf (r)))”.

(2) For the truncation of level 1, the error term “ϵTf (r)” cannot be
replaced by “O(log+(rTf (r)))”.

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, ’04.

Because of the trunction level 1, we have the following interesting
application.

.

Theorem 6.6

.

.

.

. ..

.

.

(Conjectured by M. Green, ’74) Assume that f : C → P2(C) omits two
lines {xi = 0}, i = 1, 2 , and the conic {x2

0 + x2
1 + x2

2 = 0}. Then f is
algebraically degenerate.

Lately, Corvaja-Zannier obtained the corresponding result over algebraic
function fields (preprint).
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§7 Application

§7 Application

.

Theorem 7.1

.

.

.

. ..

.

.

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. ’07)
Let X be an algebraic variety such that

(i) q̄(X ) = dim X (log. irregularity);

(ii) κ̄(X ) > 0 (log. Kodaira dimension);

(iii) the Albanese map X → A is proper.

Then ∀f : C → X is algebraically degenerate.

Moreover, the normalization of f (C)
Zar

is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.

N.B. The case “q̄(X ) > dim X” was known as Log-Bloch-Ochiai’s
Theorem (N. ’77-’81). The proof for the case “q̄(X ) = dimX” requires
our new Theorem 6.2.
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§7 Application

As a special case we have

.

Theorem 7.2

.

.

.

. ..

.

.

Let D =
∑q

i=1 Di ⊂ Pn(C) be an s.n.c. divisor.
Assume that q > n and deg D > n + 1.
Then ∀f : C → Pn(C) \ D is algebraically degenerate.

This is even more than Green’s Conjecture.

Question. Let D =
∑q

i=1 Di ⊂ Pn(C) be a divisor in general position
(the codimensions of intersections of Di ’s decrease exactly as the number
of Di ’s), possibly with singularities.

Assume that q > n and deg D > n + 1.

Then, is κ̄(Pn(C) \ D) > 0?
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§8 Yamanoi’s abc Theorem

§8 Yamanoi’s abc Theorem

In Acta ’04, K. Yamanoi proved a striking S.M.T. for meromorphic
functions with respect to moving targets, where the counting functions are
truncated to level 1; it gives the best answer to Nevanlinna’s Conjecture
for moving targets, and more.

It is considered to be “abc Theorem” for fields of meromorphic
functions, which are transcendental in general.

His method:

Ahlfors’ covering theory;

Mumford’s theory of the compactification of curve moduli;

The tree theory for point configurations.
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§8 Yamanoi’s abc Theorem

We recall his result in a form suitable to the present talk.

Let p : X → S be a surjective morphism between smooth projective
algebraic varieties with relative canonical bundle KX/S .

.

Theorem 8.1

.

.

.

. ..

.

.

(Yamanoi, ’04, ’06) Assume that

dimX/S = 1 ;

D ⊂ X is a reduced divisor ;

f : C → X is algebraically nondegenerate ;

g = p ◦ f : C → S.

Then for ∀ϵ > 0, ∃C (ϵ) > 0 such that

(8.2) Tf (r ; [D]) + Tf (r ; KX/S) ≤ N1(r ; f
∗D) + ϵTf (r) + C (ϵ)Tg (r)||ϵ.
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§8 Yamanoi’s abc Theorem

Here we introduce a new notion of the
small-dimension, s-dim(f )

for f : C → X as follows.

Let C(X ) be the rational function field of X . Then,

transc-degC C(X ) = dimX .

Set S(f ) = {ϕ ∈ C(X );Supp (ϕ)∞ ̸⊃ f (C),Tϕ◦f (r) ≤ ϵTf (r)||ϵ, ∀ϵ > 0}.
Then S(f ) is a subfield of C(X ) by F.M.T., and we define

s-dim(f ) = transc-degC S(f ).

.

Proposition 8.3

.

.

.

. ..

.

.

If s-dim(f ) = dimX, then f is algebraically degenerate.

Otherwise, Tf (r) ≤ ϵTf (r)||; this is easily follows from the general
theory of F.M.T.

N.B. If dimX = 1 and genus(X ) ≥ 2, then Lemma 6.1 (L.L.D.) &
F.M.T. imply s-dim(f ) = 1 for non-constant f : C → X .
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theory of F.M.T.

N.B. If dimX = 1 and genus(X ) ≥ 2, then Lemma 6.1 (L.L.D.) &
F.M.T. imply s-dim(f ) = 1 for non-constant f : C → X .
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. . . . . .

§8 Yamanoi’s abc Theorem

The proofs of many important degeneracy theorems for holomorphic
curves rely on “s-dim(f ) = dimX”, at least in part.

As an application of Yamanoi’s abc Theorem we have

.

Theorem 8.4

.

.

.

. ..

.

.

Assume that dimX = 2, and that X is of general type.
Let f : C → X be a holomorphic curve such that s-dim(f ) = 1.
Then f is algebraically degenerate.

Proof. Suppose that f is algebraically nondegenerate. The assumption
implies that

∃S , a curve, and
∃p : X → S , a morphism (after some birational change) such that
g = p ◦ f : C → S is non-constant and satisfies

Tg (r) ≤ ϵTf (r)||ϵ.
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. . . . . .

§8 Yamanoi’s abc Theorem

Therefore S is rational or elliptic. Thus, −KS is effective.

Since KX is big and KX/S = KX − p∗KS , KX/S is big. Hence,

Tf (r ; KX/S) ∼ Tf (r).

Yamanoi’s abc Theorem 8.2 (with D = 0) implies that

Tf (r ;KX/S) = O(Tg (r))||.

Since Tg (r) ≤ ϵTf (r)||ϵ and KX/S is big,

s-dim(f ) = dimX , or Tf (r) ≤ ϵTf (r)|| (∀ϵ > 0).

This is a contradiction!; Q.E.D..
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§9 Fundamental Conjecture for holomrophic curves

§9 Fundamental Conjecture for holomrophic
curves

The titled conjecture is as follows:

Fund. Conj. for hol. curves.
Let X be a smooth algebraic variety, and let D =

∑
i Di be a reduced

s.n.c. divisor on X with irreducible Di .
Then, for an algebraically non-degenerate f : C → X we have

(9.1) Tf (r ; L(D)) + Tf (r ;KX ) ≤
∑

i

N1(r ; Di ) + ϵTf (r)||, ∀ϵ > 0.

This implies Green-Griffiths’ Conjecture and Kobayashi’s Conjecture.
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§9 Fundamental Conjecture for holomrophic curves

Even when X = Pn(C) and Di are hyperplanes, the Fundamental
Conjecture is open; if N1(r ; Di ) are replaced by Nn(r ; Di ), this is Cartan’s
Theorem 4.6, where f suffices to be linearly non-degenerate.

If f : C → Pn(C) omits n + 1 hyperplanes Hi , 1 ≤ i ≤ n + 1 in general
position, then Pn(C) \

∑n+1
i=1 Hi

∼= (C∗)n. In this case, the Fundamental
Conjecture is true because of Theorem 6.2.
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