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§1 Introduction; a basic observation

§1 Introduction; a basic observation

Analogues between value distribution theory and Diophantine
approximaion theory.

Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:

(1.1) a + b = c .

Why is this equation interesting?

There might be several answers, but one should be that
(1.1) gives a hyperbolic space.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,

X ⊂ P2

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1

minus three distinct points, to say, 0,1, and ∞:

X ∼= P1 \ {0, 1,∞}.

In complex function theory, (1.1) was studied by E. Picard for units of
entire functions.

Picard’s Theorem (1879). A meromorphic function f on C omitting
three distinct values of P1 must be constant.
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§1 Introduction; a basic observation

How are they related?

If f omits 0, 1,∞, then f , (1 − f ) and 1 are units in the ring of entire
functions, and satisfy

f + (1 − f ) = 1.

R. Nevanlinna (Acta ’25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem ⇐⇒ abc Conjecture

(Masser-Oesterlé (’85)).

These are certain estimates of order (height) functions by the counting
functions (the functions counting orders at finite places); explicit formulae
will be given later, soon.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) a + b + c + · · · + f = 0 (n variables).

Equation (1.2) defines a variety isomorphic to
Pn−2 \ {n hyperplanes in general position}.

In complex function theory (1.2) was studied by E. Borel for units of
entire functions:

E. Borel (1897): Subsum Theorem for units of entire functions holds;
i.e., a proper shorter subsum of a, b, c , . . . , f vanishes constantly.

W. Schmidt (1971): Subsum Theorem for S-units of an algebraic
number field holds.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan (’33), also by Weyls and Ahlfors (’41), which
generalized Nevanlinna’s theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc · · · Conjecture”:

Second Main Theorem for hol. curves ⇐⇒ abc · · · Conjecture.

These are the topics we are going to discuss.
N.B.

First Main Theorem ⇐⇒ Product Formula.

Related topics: Kobayashi hyperbolicity.
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§2 Log Bloch-Ochiai & Faltings-Vojta

§2 Log Bloch-Ochiai & Faltings-Vojta

Here I show a fine analogue in the distribution of holomorphic curves
and the distribution of rational points.

.

Theorem 2.1

.

.

.

. ..

.

.

(Log Bloch-Ochiai (26-77), N. (77-81)). Let X be a complex algebraic
variety with logarithmic irregularity q̄(X ) > dim X.
Then every holomorphic curve f : C → X is algebraically degenerate.

.

Theorem 2.2

.

.

.

. ..

.

.

(Faltings (91)-Vojta (96)). Let X be defined over a number field k with
q̄(X ) > dim X.
Then X (k) is contained in a proper subvariety of X .
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§2 Log Bloch-Ochiai & Faltings-Vojta

.

Theorem 2.3

.

.

.

. ..

.

.

Let
M = a projective manifold of dimension m;
{Di}l

i=1 = a family of ample hypersurfaces of M in general position;
W (⊂ M) = a subvariety such that ∃ non-constant holomorphic curve
f : C → W \

∪
Di ̸⊃W

Di with Zariski dense image.

Then we have
(i) (l − m) dim W 5 m

(
rankZ{c1(Di )}l

i=1 − q(W )
)+

.
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§2 Log Bloch-Ochiai & Faltings-Vojta

(ii) Let f : C → M be a holomorphic curve such that for every Di , either
f (C) ⊂ Di , or f (C) ∩ Di = ∅.

Assume that l > m.

Then f (C) is contained in an algebraic subspace W of M such that

dim W 5 m

l − m
rankZ NS(M).

In particular, if rankZ NS(M) = 1 (e.g., M = Pm(C)), then we have

dimW 5 m

l − m
; W is finite for l > 2m.
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§2 Log Bloch-Ochiai & Faltings-Vojta

.

Theorem 2.4

.

.

.

. ..

.

.

Assume that everything is defined over a number field k, and Let
S = a finite subset of inequivalent non-trivial places of k containing all
infinite places;
V = a projective smooth variety of dimension m;
{Di}l

i=1 = a family of ample hypersurfaces of V in general position;
W (⊂ V ) = a subvariety of V .
Assume that there exists a Zariski dense (

∑
Di ̸⊃W Di ∩ W , S)-integral

point set of W (k) in W .
Then we have
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§2 Log Bloch-Ochiai & Faltings-Vojta

.

.
.

1 (l − m) dimW 5 m
(
rankZ{c1(Di )}l

i=1 − q(W )
)+

.

.

. .
2 Let Di , 1 5 i 5 l , be ample divisors of V in general position.

Let Z be a subset of V (k) such that for every Di , either Z ⊂ Di , or
Z is a (

∑
Di ̸⊃A Di , S)-integral point set.

Assume that l > m.
Then Z is contained in an algebraic subvariety W of V such that

dim W 5 m

l − m
rankZ NS(V ).

In particular, if rankZ NS(V ) = 1 (V = Pm
K ), then we have

dimW 5 m

l − m
; W is finite for l > 2m.
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§2 Log Bloch-Ochiai & Faltings-Vojta

The Mandala of the analogues:

“Value Dist.” “Dist. of Rational Points”

f : C → X ⇐⇒ Infin. Family of Rat’l Pts

Kobay. Hyperbolic. ⇐⇒
Lang’s Conj.

Finiteness of Rat’l Pts

⇑ ⇑

Nevan. Theory ⇐⇒
Vojta’s Dict.

Dioph. Approx.

NOGUCHI (UT) Hol. Curves & Rat. Points. 2008 November 4 12 / 33



. . . . . .

§3 abc Conjecture and Nevanlinna’s S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. For ∀ϵ > 0, ∃Cϵ > 0 such that if co-prime integers
a, b, c ∈ Z satisfyies

(3.1) a + b = c ,

then

(3.2) max{|a|, |b|, |c|} ≤ Cϵ

∏
prime p|(abc)

p1+ϵ.

N.B. The order of abc at every prime p is counted only by “1 + ϵ”
(truncation), when it is positive.
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§3 abc Conjecture and Nevanlinna’s S.M.T.

As in §1 we put x = [a,−b] ∈ P1(Q), and set

h(x) = log max{|a|, |b|} ≥ 0 (height),(3.3)

N1(x ;∞) =
∑
p|a

log p (counting function truncated to level 1),(3.4)

N1(x ; 0) =
∑
p|b

log p (　〃　),

N1(x ; 1) =
∑
p|c

log p (　〃　).

Then abc Conjecture (3.2) is rewritten as

(3.5) (1 − ϵ)h(x) ≤ N1(x ; 0) + N1(x ;∞) + N1(x ; 1) + Cϵ, x ∈ P1(Q).
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§3 abc Conjecture and Nevanlinna’s S.M.T.

For q distinct points ai ∈ P1(Q), 1 ≤ i ≤ q,

(3.6) (q − 2 − ϵ)h(x) ≤
q∑

i=1

N1(x ; ai ) + Cϵ

(formulated by N ’96, Vojta ’98).

.

Theorem 3.7

.

.

.

. ..

.

.

(Nevanlinna’s S.M.T.) Let f be a meromorphic function in C.
For q distinct points ai ∈ P1(C), 1 ≤ i ≤ q,

(q − 2)Tf (r) ≤
q∑

i=1

N1(r , f
∗ai ) + O(log+(rTf (r))||.

Tf (r) =

∫ r

0

dt

t

∫
|z|<t

f ∗(F.-S. metric) (due to Shimizu).

If f is entire, Tf (r) ∼ log max|z|≤r |f (z)|.
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§4 abc· · · Conjecture

§4 abc· · · Conjecture

abc· · · Conjecture 1. Let a, b, c , . . . , e, f ∈ Z be n integers without
common factor satisfying

a + b + c + · · · + e + f = 0.

Then for ∀ϵ > 0, ∃Cϵ and a proper algebraic subset ∃Eϵ ⊂ Pn−2
Z such that

for [a, b, . . . , e] ̸∈ Eϵ

(4.1) (1 − ϵ) log max{|a|, . . . , |f |} ≤
∑

p|a log p + · · · +
∑

p|f log p + Cϵ .

For the sake of notational convenience, we set

a = x0, b = x1, . . . , e = xn (n + 1 variables).
x = [x0, . . . , xn] ∈ Pn(Q).
h(x) = log max0≤j≤n{|xj |}: the height of x .
Hj = xj , 0 ≤ j ≤ n, Hn+1 = −

∑n
j=0 xj : n + 2 linear forms in general

position.
N1(x ; Hj): the counting function truncated to level 1.
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§4 abc· · · Conjecture

Then (4.1) is equivalent to

(4.2) (1 − ϵ)h(x) ≤
n+1∑
j=0

N1(x ; Hj) + Cϵ.

We consider a bit more general case.
Let S be a finte set of primes and let l ≤ ∞.
We define an S-counting function truncated to level l by

(4.3) Nl(x ;S , Hj) =
∑

p ̸∈S , p|Hj (x)

min{degp Hj(x)), l} · log p.
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§4 abc· · · Conjecture

abc· · · Conjecture 2. Let Hj , 1 ≤ j ≤ q be q (≥ n + 2) linear forms on
Pn

Q in general position.

Then for ∀ϵ > 0, ∃Cϵ and a proper algebraic subset ∃Eϵ ⊂ Pn
Q such that

(4.4) (q − n − 1 − ϵ)h(x) ≤
∑q

j=1 N1(x ; S , Hj) + Cϵ, x ∈ Pn(Q) \ Eϵ

(N ’96, Vojta ’98).

Schmidt’s Subspace Theorem is stated as follows.

.

Theorem 4.5

.

.

.

. ..

.

.

Let the notaion be as above.
For ∀ϵ > 0, ∃Cϵ and a finite union ∃Eϵ of proper linear subspaces of Pn

Q
such that

(q − n − 1 − ϵ)h(x) ≤
∑q

j=1 N∞(x ; S , Hj) + Cϵ, x ∈ Pn(Q) \ Eϵ.

N.B. When n = 1, this is Roth’s Theorem.

NOGUCHI (UT) Hol. Curves & Rat. Points. 2008 November 4 18 / 33



. . . . . .

§4 abc· · · Conjecture

abc· · · Conjecture 2. Let Hj , 1 ≤ j ≤ q be q (≥ n + 2) linear forms on
Pn

Q in general position.

Then for ∀ϵ > 0, ∃Cϵ and a proper algebraic subset ∃Eϵ ⊂ Pn
Q such that

(4.4) (q − n − 1 − ϵ)h(x) ≤
∑q

j=1 N1(x ; S , Hj) + Cϵ, x ∈ Pn(Q) \ Eϵ

(N ’96, Vojta ’98).

Schmidt’s Subspace Theorem is stated as follows.

.

Theorem 4.5

.

.

.

. ..

.

.

Let the notaion be as above.
For ∀ϵ > 0, ∃Cϵ and a finite union ∃Eϵ of proper linear subspaces of Pn

Q
such that

(q − n − 1 − ϵ)h(x) ≤
∑q

j=1 N∞(x ; S , Hj) + Cϵ, x ∈ Pn(Q) \ Eϵ.

N.B. When n = 1, this is Roth’s Theorem.

NOGUCHI (UT) Hol. Curves & Rat. Points. 2008 November 4 18 / 33



. . . . . .

§4 abc· · · Conjecture

.

Theorem 4.6

.

.

.

. ..

.

.

(H. Cartan’s S.M.T., ’33) Let f : C → Pn(C) be a linearly
non-degenerate holomorphic curve.
Let Hj be q hyperplanes of Pn(C) in general position.
Then

(q − n − 1)Tf (r) ≤
q∑

i=1

Nn(r , f
∗Hj) + O(log+(rTf (r)))||
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§5 Analogue over algebraic function fields

§5 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory 　　　　
　　　　 Number Theory

� �
Theory/ F.F.

(a) There are a number of works on this subject for Pn (n ≥ 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).

(b) Deformation of a family of p.p. abelian varieties over function fields
(Family of families ..., Kuga-Ihara (77)).

(c) A gap theorem for contact orders in abelian or semi-abelian varieties.

We skip (a) today.
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§5 Analogue over algebraic function fields

Problem (b) → Deformation of a holomorphic map y : B → D/Γ (Siegel
domain/Γ). Here

B denotes a smooth algebraic variety with the given function field,
D a bunded symmetric domain in general, and
Γ is arithmetic or co-compact discrete sugroup of Aut(D).

By making use of the Kobayashi hyperbolic metric and the theory of
harmonic maps we have
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§5 Analogue over algebraic function fields

.

Theorem 5.1

.

.

.

. ..

.

.

(N. (88), Miyano-N. (91)). For the simplicity, assume that D/Γ is smooth.
(i) The moduli space Hol(B, D/Γ) of all holomorphic maps from B into
D/Γ is a smooth quasi-projective algebraic variety.
For every component Z1 of Hol(B, D/Γ), the evaluation map at x ∈ B

Φx : y ∈ Z1 → y(x) ∈ D/Γ

is a proper holomorphic immersion onto a totally geodesic submanifold of
D/Γ, and hence

Z1
∼= D1/Γ1.
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§5 Analogue over algebraic function fields

(ii) There is a natural holomorphic map

η : x ∈ B → Φx ∈ Hol(D1/Γ1, D/Γ),

and the natural map (2nd evaluation map)

Φ2 : (D1/Γ1) × (D2/Γ2) → D/Γ,

is a proper holomorphic embedding onto a totally geodesic submanifold of
D/Γ such that y(x) = Φ2(y , η(x)) for (y , x) ∈ (D1/Γ1) × B.

.

Corollary 5.2

.

.

.

. ..

.

.

If D/Γ admits no non-trivial product structure of totally geodesic
submanifolds, then every non-constant y : B → D/Γ is rigid, and hence
there are only finitely many such y.
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§5 Analogue over algebraic function fields

(c) A gap theorem. The problem for abelian varieties was first dealt with
by A. Buium.

.

Theorem 5.3

.

.

.

. ..

.

.

(Buium-98). Let
A = an abelian variety;
D = a reduced divisor on A which is Kobayashi hyperbolic;
C = a smooth compact curve.
Then ∃N ∈ N depending on C, A and D such that for every morphism
f : C → A, either multx f ∗D ≤ N (∀x ∈ C ), or f (C ) ⊂ D.

.

Corollary 5.4

.

.

.

. ..

.

.

Let the notation be as in Theorem 5.3. If f (C ) ̸⊂ D, then

“ height (f )” = deg(f ) ≤ N|f −1(D)|.
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§5 Analogue over algebraic function fields

This is a problem of type of abc-Conjecture. His proof based on
Kolchin’s theory of differential algebra and he posed two problems:

Find a proof by complex geometry.
The Kobayashi hyperbolicity assumption for D is too strong, and the
ampleness should suffice.

Definition. A complex algebraic group A is semi-abelian if

0 → (C∗)t → A → A0 (= abelian) → 0.

.

Theorem 5.5

.

.

.

. ..

. .

(Nog.-Winkelmann (’04)). Let
A = a semi-abelian variety with a smooth equivariant algebraic
compactification Ā;
D̄ = an effective reduced ample divisor on Ā, and D = D̄ ∩ A;
C = a smooth algebraic curve with smooth compactification C ↪→ C̄ .
Then ∃N ∈ N such that for every morphism f : C → A either

f (C ) ⊂ D or multx f ∗D ≤ N (∀x ∈ C ).
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Furthermore, the number N depends only on the numerical data
involved as follows:

.

.
.

1 The genus of C̄ and the number #(C̄ \ C ) of the boundary
(puncture) points of C (only the genus in compact case),

.

. .
2 the dimension of A,

.

.
.

3 the toric variety (or, equivalently, the associated “fan”) which occurs
as closure of the orbit in Ā of the maximal connected linear algebraic
subgroup T ∼= (C∗)t of A,

.

.

.

4 all intersection numbers of the form D̄h · Bi1 · · ·Bik , where the Bij are

closures of A-orbits in Ā of dimension nj and h +
∑

j nj = dim A (only
Dn in compact case).

.

Corollary 5.6

.

.

.

. ..

.

.

If f (C ) ̸⊂ Supp D, then

deg f ∗D (height) ≤ N · |Supp f ∗D|.

NOGUCHI (UT) Hol. Curves & Rat. Points. 2008 November 4 26 / 33



. . . . . .

§5 Analogue over algebraic function fields

Furthermore, the number N depends only on the numerical data
involved as follows:

.

.
.

1 The genus of C̄ and the number #(C̄ \ C ) of the boundary
(puncture) points of C (only the genus in compact case),

.

. .
2 the dimension of A,

.

.
.

3 the toric variety (or, equivalently, the associated “fan”) which occurs
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§5 Analogue over algebraic function fields

In particular, if we let A, Ā, C and D vary within a flat connected
family, then we can find a uniform bound for N.

As an application, a finiteness theorem was obtained for morphisms from
a non-compact curve into an abelian variety omitting an ample divisor.
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§6 abc· · · for semi-abelian varieties

§6 abc· · · Theorem for holomorphic curves
into semi-abelian varieties

Let A be a semi-abelian variety.
The universal covering Ã ∼= Cn, n = dimA. Let

f : C → A, be a holomorphic curve ;

Jk(A) = k-jet bundle over A; Jk(A) ∼= A × Cnk ;

Jk(f ) : C → Jk(A), k-jet lift of f ;

Xk(f ) = Zariski closure of the image Jk(f )(C).

Ik : Jk(A) ∼= A × Cnk → Cnk , jet projection.
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§6 abc· · · for semi-abelian varieties

.

Lemma 6.1

.

.

.

. ..

.

.

(N. ’77)
(i) For f : C → A,

TIk◦Jk (f )(r) = O(log+(rTf (r))) ||.

(ii) For f : C → Ā (compactification),

m(r ; Ik ◦ Jk(f ))
def
=

∫
|z|=r

log+ ∥Ik ◦ Jk(f )(z)∥dθ

2π
= O(log+(rTf (r))) ||.

N.B. This is Lemma on logarithmic derivatives in higher dimension.
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§6 abc· · · for semi-abelian varieties

.

Theorem 6.2

.

.

.

. ..

.

.

(N.-Winkelmann-Yamanoi, Acta ’02, Forum Math. ’08)
Let f : C → A be algebraically non-degenerate.

(i) Let Z be an algebraic reduced subvariety of Xk(f ) (k = 0).
Then ∃X̄k(f ), compactification of Xk(f ) such that

(6.3) TJk (f )(r ; ωZ̄ ) 5 N1(r ; Jk(f )∗Z ) + ϵTf (r)||ϵ, ∀ϵ > 0.

(ii) Moreover, if codim Xk (f )Z = 2, then

(6.4) TJk(f )(r ; ωZ̄ ) 5 ϵTf (r)||ϵ, ∀ϵ > 0.

(iii) If k = 0 and Z is an effective divisor D on A, then Ā is smooth,
equivariant, and independent of f ; furthermore, (6.3) takes the form

(6.5) Tf (r ; L(D̄)) 5 N1(r ; f
∗D) + ϵTf (r ; L(D̄))||ϵ, ∀ϵ > 0.

NOGUCHI (UT) Hol. Curves & Rat. Points. 2008 November 4 30 / 33



. . . . . .

§6 abc· · · for semi-abelian varieties

.

Theorem 6.2

.

.

.

. ..

.

.

(N.-Winkelmann-Yamanoi, Acta ’02, Forum Math. ’08)
Let f : C → A be algebraically non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xk(f ) (k = 0).
Then ∃X̄k(f ), compactification of Xk(f ) such that

(6.3) TJk (f )(r ; ωZ̄ ) 5 N1(r ; Jk(f )∗Z ) + ϵTf (r)||ϵ, ∀ϵ > 0.

(ii) Moreover, if codim Xk (f )Z = 2, then

(6.4) TJk(f )(r ; ωZ̄ ) 5 ϵTf (r)||ϵ, ∀ϵ > 0.

(iii) If k = 0 and Z is an effective divisor D on A, then Ā is smooth,
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N.B. (1) In N.-W.-Y. Acta ’02, we proved (6.5) with a higher level
truncated counting function Nk(r ; f ∗D) for some special compactification
of A and with a better error term “O(log+(rTf (r)))”.

(2) For the truncation of level 1, the error term “ϵTf (r)” cannot be
replaced by “O(log+(rTf (r)))”.

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, ’04.

Because of the trunction level 1, we have the following interesting
application.

.

Theorem 6.6

.

.

.

. ..

.

.

(Conjectured by M. Green, ’74) Assume that f : C → P2(C) omits two
lines {xi = 0}, i = 1, 2 , and the conic {x2

0 + x2
1 + x2

2 = 0}. Then f is
algebraically degenerate.

Lately, Corvaja-Zannier obtained some corresponding result over
algebraic function fields (J.A.G. 2008).
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§7 Application

§7 Application

.

Theorem 7.1

.

.

.

. ..

.

.

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. ’07)
Let X be an algebraic variety such that

(i) q̄(X ) = dim X (log. irregularity);

(ii) κ̄(X ) > 0 (log. Kodaira dimension);

(iii) the quasi- Albanese map X → A is proper.

Then ∀f : C → X is algebraically degenerate.

Moreover, the normalization of f (C)
Zar

is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.

N.B. The case “q̄(X ) > dim X” was known as Log-Bloch-Ochiai’s
Theorem (N. ’77-’81). The proof for the case “q̄(X ) = dimX” requires
our new Theorem 6.2.
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§7 Application

As a special case we have

.

Theorem 7.2

.

.

.

. ..

.

.

Let D =
∑q

i=1 Di ⊂ Pn(C) be an s.n.c. divisor.
Assume that q > n and deg D > n + 1.
Then ∀f : C → Pn(C) \ D is algebraically degenerate.

Question. Let D =
∑q

i=1 Di ⊂ Pn(C) be a divisor in general position
(the codimensions of intersections of Di ’s decrease exactly as the number
of Di ’s), possibly with singularities.

Assume that q > n and deg D > n + 1.

Then, is κ̄(Pn(C) \ D) > 0?
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§7 Application

As a special case we have

.

Theorem 7.2

.

.

.

. ..

.

.

Let D =
∑q

i=1 Di ⊂ Pn(C) be an s.n.c. divisor.
Assume that q > n and deg D > n + 1.
Then ∀f : C → Pn(C) \ D is algebraically degenerate.

Question. Let D =
∑q

i=1 Di ⊂ Pn(C) be a divisor in general position
(the codimensions of intersections of Di ’s decrease exactly as the number
of Di ’s), possibly with singularities.

Assume that q > n and deg D > n + 1.

Then, is κ̄(Pn(C) \ D) > 0?
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