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§1 Introduction; a basic observation

§1 Introduction; a basic observation

@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.
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§1 Introduction; a basic observation

§1 Introduction; a basic observation

@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:
(1.1) a+b=c.

Why is this equation interesting?
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§1 Introduction; a basic observation

§1 Introduction; a basic observation

@ Analogues between value distribution theory and Diophantine
approximaion theory.

@ Some (not all) results motivated by the analogues.

We recall the unit equation with variables a, b, c:
(1.1) a+b=c.

Why is this equation interesting?
There might be several answers, but one should be that
(1.1) gives a hyperbolic space.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,
X c P?

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1
minus three distinct points, to say, 0,1, and oo:

X =P\ {0,1,00}.
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§1 Introduction; a basic observation

In fact, equation (1.1) defines a subvariety of the projective 2-space,
X c P?

with homogeneous coordinates [a, b, c].
Since the variables are assumed to be units, X is isomorphic to P1
minus three distinct points, to say, 0,1, and oo:

X =P\ {0,1,00}.

In complex function theory, (1.1) was studied by E. Picard for units of
entire functions.

Picard’s Theorem (1879). A meromorphic function f on C omitting
three distinct values of P* must be constant.
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§1 Introduction; a basic observation

How are they related?
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire
functions, and satisfy
f+1-7)=1
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire
functions, and satisfy
f+1-7)=1

R. Nevanlinna (Acta '25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem <= abc Conjecture

(Masser-Oesterlé ('85)).
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§1 Introduction; a basic observation

How are they related?

If f omits 0,1, 00, then f,(1 — ) and 1 are units in the ring of entire

functions, and satisfy
f+1-7)=1

R. Nevanlinna (Acta '25): Quantitative theory to measure the
frequencies for non-constant f to take those three values.

Second Main Theorem <= abc Conjecture

(Masser-Oesterlé ('85)).

These are certain estimates of order (height) functions by the counting
functions (the functions counting orders at finite places); explicit formulae
will be given later, soon.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) a+b+c+---+f=0 (nvariables).

Equation (1.2) defines a variety isomorphic to
P"=2\ {n hyperplanes in general position}.
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§1 Introduction; a basic observation

It is of importance and interest to study a unit equation in several
variables,

(1.2) a+b+c+---+f=0 (nvariables).

Equation (1.2) defines a variety isomorphic to
P"=2\ {n hyperplanes in general position}.
In complex function theory (1.2) was studied by E. Borel for units of
entire functions:
E. Borel (1897): Subsum Theorem for units of entire functions holds;
i.e., a proper shorter subsum of a, b, c, ..., f vanishes constantly.

W. Schmidt (1971): Subsum Theorem for S-units of an algebraic
number field holds.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc--- Conjecture’:

Second Main Theorem for hol. curves <= abc--- Conjecture.

These are the topics we are going to discuss.
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§1 Introduction; a basic observation

In complex function theory the corresponding quantitative theory was
established by H. Cartan ('33), also by Weyls and Ahlfors ('41), which
generalized Nevanlinna's theory.

Following it, we can formulate the n variable version of abc Conjecture,
named “abc--- Conjecture’:

Second Main Theorem for hol. curves <= abc--- Conjecture.

These are the topics we are going to discuss.
N.B.

o First Main Theorem <= Product Formula.
@ Related topics: Kobayashi hyperbolicity.
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§2 Log Bloch-Ochiai & Faltings-Vojta

§2 Log Bloch-Ochiai & Faltings-Vojta

Here | show a fine analogue in the distribution of holomorphic curves
and the distribution of rational points.

Theorem 2.1

(Log Bloch-Ochiai (26-77), N. (77-81)). Let X be a complex algebraic
variety with logarithmic irregularity g(X) > dim X.
Then every holomorphic curve f : C — X is degenerate.

Here we say that f is degenerate if f(C) is not Zariski dense in X.
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§2 Log Bloch-Ochiai & Faltings-Vojta

§2 Log Bloch-Ochiai & Faltings-Vojta

Here | show a fine analogue in the distribution of holomorphic curves
and the distribution of rational points.

Theorem 2.1

(Log Bloch-Ochiai (26-77), N. (77-81)). Let X be a complex algebraic
variety with logarithmic irregularity g(X) > dim X.

Then every holomorphic curve f : C — X is degenerate.

Here we say that f is degenerate if f(C) is not Zariski dense in X.

Theorem 2.2

(Faltings (91)-Vojta (96)). Let X be defined over a number field k with
g(X) > dim X.
Then X (k) is contained in a proper subvariety of X.
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§2 Log Bloch-Ochiai & Faltings-Vojta

Theorem 2.3

Let

M = a projective manifold of dimension m;

{D,-}f:1 = a family of ample hypersurfaces of M in general position;
W(C M) = a subvariety such that 3 non-constant holomorphic curve

f:C— W\ U D; with Zariski dense image.
D;pW
Then we have

(i) (/ — m)dim W £ m (rankz{c1(D;)}\_; — q(W))" .
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§2 Log Bloch-Ochiai & Faltings-Vojta

(ii) Let f : C — M be a holomorphic curve such that for every D;, either

f(C) C D;, or f(C)N D; = 0.
Assume that | > m.
Then f(C) is contained in an algebraic subspace W of M such that

dim W = mrankz NS(M).

I —
In particular, if rankz NS(M) =1 (e.g.,, M = P™(C)), then we have

dmW < /L; W is finite for [ > 2m.
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§2 Log Bloch-Ochiai & Faltings-Vojta

Theorem 2.4

Assume that everything is defined over a number field k, and Let

S = a finite subset of inequivalent non-trivial places of k containing all
infinite places;

V = a projective smooth variety of dimension m;

{D,-}f:1 = a family of ample hypersurfaces of V' in general position;
W(C V) = a subvariety of V.

Assume that there exists a Zariski dense (3_p, 4y Di N W, S)-integral
point set of W(k) in W.
Then we have
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§2 Log Bloch-Ochiai & Faltings-Vojta

@ (/- m)dimW < m (rankz{ci(Dy)}_y — q(W))"
Q Let D;,1 < i</, be ample divisors of V' in general position.
Let Z be a subset of V (k) such that for every D;, either Z C D;, or
Z is a (3_p,sa Di, S)-integral point set.
Assume that | > m.
Then Z is contained in an algebraic subvariety W of V such that

dimW < rankz NS(V).
/ m
In particular, if rankz NS(V) =1 (V = PR), then we have

dimW < IL; W is finite for | > 2m.
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§2 Log Bloch-Ochiai & Faltings-Vojta

The Mandala of the analogues:

“Value Dist.” “Dist. of Rational Points”
— [Infin. Family of Rat'l Pts|
’ Kobay. Hyperbolic. ‘ — ’ Finiteness of Rat'l Pts‘
Lang’s Conj.
) fr
’ Nevan. Theory‘ = ’ Dioph. Approx. ‘
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§3 abc Conjecture and Nevanlinna’s S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?
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§3 abc Conjecture and Nevanlinna's S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. For e > 0, 7C. > 0 such that if co-prime integers
a, b, c € Z satisfyies

(3.1) a+b=c,
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§3 abc Conjecture and Nevanlinna's S.M.T.

§3 abc Conjecture and Nevanlinna’s S.M.T.

What is abc Conjecture?

abc Conjecture. For e > 0, 7C. > 0 such that if co-prime integers
a, b, c € Z satisfyies

(3.1) a+b=c,
then
(32) max{lal, bl < ¢ [ P

prime p|(abc)

N.B. The order of abc at every prime p is counted only by "1 + ¢€”
(truncation), when it is positive.
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§3 abc Conjecture and Nevanlinna's S.M.T.

As in §1 we put x = [a, —b] € P1(Q), and set

(3.3) h(x) = log max{|al|, |b|} > 0 (height),
(3.4) Ni(x;00) = Z log p (counting function truncated to level 1),
pla
Nl(x;O):Z log p (ooo),
plb
Ni(x;1)=> logp (0O0O).
plc
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§3 abc Conjecture and Nevanlinna's S.M.T.

As in §1 we put x = [a, —b] € P1(Q), and set

(3.3) h(x) = log max{|al, |b|} > 0 (height),
(3.4) Ni(x;00) = Z log p (counting function truncated to level 1),
pla

Nl(x;O):Z log p (ooo),

plb
Ni(x;1)=> logp (0O0O).
plc

Then abc Conjecture (3.2) is rewritten as

(3.5) (1 —e)h(x) < Ni(x;0) + Ni(x;00) + Ni(x; 1) + C, x € PI(Q).
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§3 abc Conjecture and Nevanlinna's S.M.T.

For g distinct points a; € P1(Q),1< i < g,

(3.6) (g—2—¢€)h Z (x; a;) + C.

(formulated by N '96, Vojta '98).
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§3 abc Conjecture and Nevanlinna's S.M.T.

For g distinct points a; € P1(Q),1< i < g,

(3.6) (g —2—e€)h(x

1(x; a7)

I MQ

(formulated by N '96, Vojta '98).
Theorem 3.7

(Nevanlinna’s S.M.T.) Let f be a meromorphic function in C.
For q distinct points a; € P}(C),1 < i< g,

(g —2)T¢(r) < Z Ny(r, f*a;) + O(log™ (rT¢(r))]l.

—/ dt/ f*(F.-S. metric) (due to Shimizu).
|z|<t

If f is entire, T¢(r) ~ log max,<, |f(2)].
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§4 abc- - - Conjecture

54 abc--- Conjecture

abc--- Conjecture 1. Let a,b,c,...,e,f € Z be n integers without
common factor satisfying
at+b+c+---+e+f=0.

Then for e > 0, ?C, and a proper algebraic subset 7E, C P;72 such that
for [a, b, ..., €] & E

(4.1) (1—e€)logmax{|al,....[f[} <3, logp+ 4>, logp+ C.
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§4 abc- - - Conjecture

54 abc--- Conjecture

abc--- Conjecture 1. Let a,b,c,...,e,f € Z be n integers without
common factor satisfying

at+b+c+---+e+f=0.

Then for e > 0, ?C, and a proper algebraic subset 7E, C P;72 such that
for [a, b, ..., €] & E

(4.1) (1—e€)logmax{|al,....[f[} <3, logp+ 4>, logp+ C.

For the sake of notational convenience, we set

@ a=xp,b=x1,...,e =x, (n+ 1 variables).

x = [xo0,...,xn] € P"(Q).

h(x) = log maxg<j<n{|xj|}: the height of x.

Hi=x,0<;<n, Hyy1=— ZJ'-’ZOXJ-: n + 2 linear forms in general
position.

Ni(x; H;): the counting function truncated to level 1.
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0oooo | (00D0D) 00000000000000000



§4 abc- - - Conjecture

Then (4.1) is equivalent to

n+1
(4.2) (1-eh(x) <> M(x; Hj)+ Ce.
j=0
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§4 abc- - - Conjecture

Then (4.1) is equivalent to

n+1
(4.2) (1-eh(x) <> M(x; Hj)+ Ce.
j=0

We consider a bit more general case.
Let S be a finte set of primes and let | < cc.
We define an S-counting function truncated to level / by

(4.3) Ni(x;S,Hj)= ) min{deg, H(x)),/} - log p.
pES, plH;(x)

00 200 (2008) 00000000
EEGEEENGEEE)) 0000D000000D000000

17
i1



§4 abc- - - Conjecture

abc: - - Conjecture 2. Let H;,1 < j < g be g (> n+2) linear forms on
PQ in general position.
Then for Ve > 0, C. and a proper algebraic subset E, C PQ such that

(44) (q—n—1—-eh(x) <31, M(xS, H)+C, xeP(Q)\E

(N '96, Vojta '98).
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§4 abc- - - Conjecture

abc: - - Conjecture 2. Let H;,1 < j < g be g (> n+2) linear forms on
PQ in general position.
Then for Ve > 0, C. and a proper algebraic subset E, C PQ such that

(44) (q—n—1—-eh(x) <31, M(x S, H)+C, xeP(Q)\E

(N '96, Vojta '98).

Schmidt’s Subspace Theorem is stated as follows.

Theorem 4.5

Let the notaion be as above.
For Ve > 0, 7C. and a finite union 2 E. of proper linear subspaces of Pa
such that

(q—n—1-eh(x) <37, Noo(x: S, H) + G, x € P(Q)\ Ee.

N.B. When n =1, this is Roth's Theorem.
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§4 abc- - - Conjecture

Theorem 4.6

(H. Cartan’s S.M.T., ’33) Let f : C — P"(C) be a linearly
non-degenerate holomorphic curve.

Let H; be q hyperplanes of P"(C) in general position.

Then
q
(q—n=1)Te(r) <D Nu(r, f*H;) + O(log™ (rT¢(r)))|]
i=1
00 200 (2008) 0OOOO0DO 19/
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.

(a) There are a number of works on this subject for P" (n > 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.

(a) There are a number of works on this subject for P" (n > 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).

(b) Deformation of a family of p.p. abelian varieties over function fields
(Family of families ..., Kuga-lhara (77)).
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55 Analogue over algebraic function fields

It is interesting to consider the problem over algebraic function fields.
The case of algebraic function fields is situated in the middle of the
Nevanlinna theory and the number theory.

Nevanlinna Theory‘ % ’ Number Theory
N /

Theory/ F.F.

(a) There are a number of works on this subject for P" (n > 1) over
algebraic function fields (Voloch, Mason, Brownawell-Masser, J. T.-Y.
Wang, Nog.,...).

(b) Deformation of a family of p.p. abelian varieties over function fields
(Family of families ..., Kuga-lhara (77)).

(c) A gap theorem for contact orders in abelian or semi-abelian varieties.

We skip (a) today.
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§5 Analogue over algebraic function fields

Problem (b) — Deformation of a holomorphic map y : B — D/ (Siegel
domain/TI"). Here

B denotes a smooth algebraic variety with the given function field,

D a bunded symmetric domain in general, and

I is arithmetic or co-compact discrete sugroup of Aut(D).
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§5 Analogue over algebraic function fields

Problem (b) — Deformation of a holomorphic map y : B — D/ (Siegel
domain/TI"). Here

B denotes a smooth algebraic variety with the given function field,

D a bunded symmetric domain in general, and

I is arithmetic or co-compact discrete sugroup of Aut(D).

By making use of the Kobayashi hyperbolic metric and the theory of
harmonic maps we have
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§5 Analogue over algebraic function fields

Theorem 5.1

(N. (88), Miyano-N. (91)). For the simplicity, assume that D/T is smooth.
(i) The moduli space Hol(B, D/T) of all holomorphic maps from B into
D/T is a smooth quasi-projective algebraic variety.

For every component Zy of Hol(B, D/T'), the evaluation map at x € B

Oy €1 —y(x)€D/T

is a proper holomorphic immersion onto a totally geodesic submanifold of
D/T, and hence

Zy =2 Dy /Ty.
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§5 Analogue over algebraic function fields

(ii) There is a natural holomorphic map
n:x e B— &, eHol(D;/I1,D/T),
and the natural map (2nd evaluation map)
&, : (D1/T1) x (D2/T2) — DJT,

is a proper holomorphic embedding onto a totally geodesic submanifold of
D/T such that y(x) = ®2(y, n(x)) for (y,x) € (D1/T1) x B.

00 200 (2008) DOOOOO0O0 23/
EEGEEENGEEE)) 0000D000000D000000 41



§5 Analogue over algebraic function fields

(ii) There is a natural holomorphic map
n:x e B— &, eHol(D;/I1,D/T),
and the natural map (2nd evaluation map)
&, : (D1/T1) x (D2/T2) — DJT,

is a proper holomorphic embedding onto a totally geodesic submanifold of
D/T such that y(x) = ®2(y, n(x)) for (y,x) € (D1/'1) x B.

Corollary 5.2

If D/T admits no non-trivial product structure of totally geodesic
submanifolds, then every non-constant y : B — D/T s rigid, and hence
there are only finitely many such y.
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§5 Analogue over algebraic function fields

(c) A gap theorem. The problem for abelian varieties was first dealt with
by A. Buium.

Theorem 5.3

(Buium-98). Let

A = an abelian variety;

D = a reduced divisor on A which is Kobayashi hyperbolic;

C = a smooth compact curve.

Then AN € N depending on C, A and D such that for every morphism
f:C— A, eithermult,f*D <N (Vx e C), or f(C) C D.

Corollary 5.4
Let the notation be as in Theorem 5.3. If f(C) ¢ D, then

“height (f)” = deg(f) < N|f~}(D)|.
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This is a problem of type of abc-Conjecture. His proof based on
Kolchin's theory of differential algebra and he posed two problems:

@ Find a proof by complex geometry.
@ The Kobayashi hyperbolicity assumption for D is too strong, and the

ampleness should suffice.
Definition. A complex algebraic group A is semi-abelian if

0 — (C*)! — A — Ag (= abelian) — 0.
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This is a problem of type of abc-Conjecture. His proof based on
Kolchin's theory of differential algebra and he posed two problems:

@ Find a proof by complex geometry.
@ The Kobayashi hyperbolicity assumption for D is too strong, and the

ampleness should suffice.
Definition. A complex algebraic group A is semi-abelian if
0 — (C*)! — A — Ag (= abelian) — 0.
Theorem 5.5

(Nog.-Winkelmann (’04)). Let

A = a semi-abelian variety with a smooth equivariant algebraic
compactification A;

D = an effective reduced ample divisor on A, and D= DN A;

C = a smooth algebraic curve with smooth compactification C — C.
Then AN € N such that for every morphism f : C — A either

f(C)cD or mult,f*D<N (¥vxe ().
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Furthermore, the number N depends only on the numerical data
involved as follows:

© The genus of C and the number #(C \ C) of the boundary

(puncture) points of C (only the genus in compact case),
@ the dimension of A,
@ the toric variety (or, equivalently, the associated “fan”) which occurs

as closure of the orbit in A of the maximal connected linear algebraic

subgroup T = (C*)t of A, _
Q all intersection numbers of the form D" - Bi, -+ Bj,, where the B;, are

closures of A-orbits in A of dimension n; and h + >_;nj =dimA (only
D™ in compact case).
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Furthermore, the number N depends only on the numerical data
involved as follows:

© The genus of C and the number #(C \ C) of the boundary

(puncture) points of C (only the genus in compact case),
@ the dimension of A,
@ the toric variety (or, equivalently, the associated “fan”) which occurs

as closure of the orbit in A of the maximal connected linear algebraic

subgroup T = (C*)t of A, _
Q all intersection numbers of the form D" - Bi, -+ Bj,, where the B;, are

closures of A-orbits in A of dimension n; and h + >_;nj =dimA (only
D™ in compact case).

Corollary 5.6
If f(C) ¢ Supp D, then

deg *D (height) < N - |[Supp f*D|.

v
00 200 (2008) JOOOOO00 26/
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§5 Analogue over algebraic function fields

In particular, if we let A, A, C and D vary within a flat connected
family, then we can find a uniform bound for N.

As an application, a finiteness theorem was obtained for morphisms from
a non-compact curve into an abelian variety omitting an ample divisor.
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§6 abc- - - for semi-abelian varieties

56 abc--- Theorem for holomorphic curves
into semi-abelian varieties
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§6 abc- - - for semi-abelian varieties

56 abc--- Theorem for holomorphic curves
into semi-abelian varieties

Let A be a semi-abelian variety.
The universal covering A= C" n = dim A.

00 200 (2008) DOOOOO0O0 -~ 28/
EEGEEENGEEE)) 0000D000000D000000 41



§6 abc- - - for semi-abelian varieties

56 abc--- Theorem for holomorphic curves
into semi-abelian varieties

Let A be a semi—abelian~variety.

The universal covering A= C", n =dimA. Let

o f:C — A, be a holomorphic curve ;

o Jk(A) = k-jet bundle over A; Jx(A) = A x Ck ;
o Ji(f): C— Jk(A), k-jet lift of f;

o Xy (f) = Zariski closure of the image Jx(f)(C).
o I : J(A) = A x C"™ — C"k, jet projection.
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§6 abc- - - for semi-abelian varieties

Lemma 6.1

(N. 77)
(i) For f : C— A,

Tiou(r)(r) = O(log™ (rT¢(r))) |-

(ii) For f : C — A (compactification),

def

m(r; l o Ji(f))= /ll— log™ [|/j o Jk(f)(Z)ngﬁ = O(log™ (rT¢())) I

N.B. This is Lemma on logarithmic derivatives in higher dimension.
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§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)
Let f : C — A be non-degenerate.

v
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§6 abc- - - for semi-abelian varieties

Theorem 6.2

(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)
Let f : C — A be non-degenerate.

(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(6.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.

v
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§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)

Let f : C — A be non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(6.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.

(ii) Moreover, if codim x.(HZ > 2, then

(6.4) Thr(riwz) S eTe(r)lle, “e>0.

00 200 (2008) DOOO0O00
EEGEEENGEEE)) 0000D000000D000000

30
a1 /



§6 abc- - - for semi-abelian varieties

Theorem 6.2
(N.-Winkelmann-Yamanoi, Acta '02, Forum Math. '08)

Let f : C — A be non-degenerate.
(i) Let Z be an algebraic reduced subvariety of Xi(f) (k = 0).
Then X, (f), compactification of Xy(f) such that

(6.3) Ty r)(riwz) < Ni(ri Je(F)*Z) + €Te(r)|le,  Ye> 0.

(ii) Moreover, if codim x.(HZ > 2, then
(6.4) Thr(riwz) S eTe(r)lle, “e>0.

(iil) If k =0 and Z is an effective divisor D on A, then A is smooth,
equivariant, and independent of f; furthermore, (6.3) takes the form

(65)  Tr(r; L(D)) < Ny(r: F*D) + eT¢(r; L(D))||, Ye>oO.
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§6 abc- - - for semi-abelian varieties

N.B. (1) In N.-W.-Y. Acta '02, we proved (6.5) with a higher level
truncated counting function Ny (r; f*D) for some special compactification

of A and with a better error term “O(log™ (rT¢(r)))".

(2) For the truncation of level 1, the error term “eT¢(r)" cannot be
replaced by “O(log™ (rT¢(r)))".

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, '04.
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§6 abc- - - for semi-abelian varieties

N.B. (1) In N.-W.-Y. Acta '02, we proved (6.5) with a higher level
truncated counting function Ny (r; f*D) for some special compactification
of A and with a better error term “O(log™ (rT¢(r)))".

(2) For the truncation of level 1, the error term "eT¢(r)" cannot be
replaced by “O(log™ (rT¢(r)))".

(3) When A is an abelian vareity, (iii) was obtained by Yamanoi, '04.

Because of the trunction level 1, we have the following interesting
application.

Theorem 6.6

(Conjectured by M. Green, '74) Assume that f : C — P2(C) omits two
lines {x; = 0},i = 1,2, and the conic {x3 + x? + x3 = 0}. Then f is
degenerate.

Lately, Corvaja-Zannier obtained some corresponding result over
algebraic function fields (J.A.G. 2008).
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§6 abc- - - for semi-abelian varieties

87 Application
Theorem 7.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that

(i) g(X) = dim X (log. irregularity);
(i) R(X) > 0 (log. Kodaira dimension);
(i) the quasi- Albanese map X — A is proper.
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§6 abc- - - for semi-abelian varieties

§7 Application
Theorem 8.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that

(i) g(X) = dim X (log. irregularity);

(i) R(X) > 0 (log. Kodaira dimension);
(iii) the quasi- Albanese map X — A is proper.
Then Yf : C — X is degenerate.
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§6 abc- - - for semi-abelian varieties

§7 Application
Theorem 9.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that

(i) g(X) = dim X (log. irregularity);

(i) R(X) > 0 (log. Kodaira dimension);
(iii) the quasi- Albanese map X — A is proper.
Then Yf : C — X is degenerate.

Moreover, the normalization of f(C) " is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.
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§6 abc- - - for semi-abelian varieties

§7 Application
Theorem 10.1

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. '07)
Let X be an algebraic variety such that
(i) g(X) = dim X (log. irregularity);
(i) R(X) > 0 (log. Kodaira dimension);
(iii) the quasi- Albanese map X — A is proper.
Then Yf : C — X is degenerate.

Moreover, the normalization of f(C) " is a semi-abelian variety which is
finite étale over a translate of a proper semi-abelian subvariety of A.

N.B. The case “g(X) > dim X" was known as Log-Bloch-Ochiai’s
Theorem (N. '77-'81). The proof for the case “g(X) = dim X" requires
our new Theorem 6.2.
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§6 abc- - - for semi-abelian varieties

As a special case we have

Theorem 10.2

Let D=7, D; C P"(C) be an s.n.c. divisor.
Assume that g > n and deg D > n+ 1.
Then Vf : C — P"(C)\ D is degenerate.

Here are more applications:

Theorem 10.3

Let A be a semi-abelian variety and D a reduced divisor on A.
Let f : C — A be a holomorphic curve such that

deg. f*D =2, (e fD.

Then f is degenerate.

00 200 (2008) DOOOOO00
EEGEEENGEEE)) 0000D000000D000000

33
a1 /



§6 abc- - - for semi-abelian varieties

Theorem 10.4

Let D = " D; be an s.n.c. divisor on P"(C) and
Dp1» a reduced divisor not contained in D.
Let f : C — P"(C)\ D be a holomorphic curve such that

deg, f*Dpy2 = 2, V¢ € f 1 Dppo.

Then f is degenerate.
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§8 Yamanoi’'s abc Theorem

In Acta '04, K. Yamanoi proved a striking S.M.T. for meromorphic
functions with respect to moving targets, where the counting functions are
truncated to level 1; it gives the best answer to Nevanlinna's Conjecture
for moving targets, and more.
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§8 Yamanoi’'s abc Theorem

In Acta '04, K. Yamanoi proved a striking S.M.T. for meromorphic
functions with respect to moving targets, where the counting functions are
truncated to level 1; it gives the best answer to Nevanlinna's Conjecture
for moving targets, and more.

It is considered to be “abc Theorem” for fields of meromorphic
functions, which are transcendental in general.
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§8 Yamanoi's abc Theorem

§8 Yamanoi’'s abc Theorem

In Acta '04, K. Yamanoi proved a striking S.M.T. for meromorphic
functions with respect to moving targets, where the counting functions are
truncated to level 1; it gives the best answer to Nevanlinna's Conjecture
for moving targets, and more.

It is considered to be “abc Theorem” for fields of meromorphic
functions, which are transcendental in general.

His method:

@ Ahlfors' covering theory;

@ Mumford's theory of the compactification of curve moduli;

@ The tree theory for point configurations.
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§8 Yamanoi's abc Theorem

We recall his result in a form suitable to the present talk.

Let p: X — S be a surjective morphism between smooth projective
algebraic varieties with relative canonical bundle Kx/s.
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§8 Yamanoi's abc Theorem

We recall his result in a form suitable to the present talk.

Let p: X — S be a surjective morphism between smooth projective
algebraic varieties with relative canonical bundle Kx/s.
Theorem 11.1
(Yamanoi, ’04, '06) Assume that

e dmX/S=1;

e D C X is a reduced divisor ;

o f: C — X is nondegenerate ;

e g=pof:C—S.
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§8 Yamanoi's abc Theorem

We recall his result in a form suitable to the present talk.
Let p: X — S be a surjective morphism between smooth projective
algebraic varieties with relative canonical bundle Kx/s.
Theorem 11.1
(Yamanoi, ’04, '06) Assume that
e dmX/S=1;
e D C X is a reduced divisor ;
o f: C — X is nondegenerate ;
e g=pof:C—S.
Then for Ve > 0, C(€) > 0 such that

(11.2) T¢(r; [D]) + Te(r; KX/S) < Ni(r; f*D) 4+ €T¢(r) + C(€) Tg(r)|le.
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§8 Yamanoi's abc Theorem

Here we introduce a new notion of the
small-dimension, s-dim(f)

for f : C — X as follows.
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§8 Yamanoi's abc Theorem

Here we introduce a new notion of the
small-dimension, s-dim(f)

for f : C — X as follows.
Let C(X) be the rational function field of X. Then,

transc-degc C(X) = dim X.

Set §(f) = {¢ € C(X); Supp (¢)oo A F(C), Tpor(r) < €T¢(r)lle, Ve > 0}.
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§8 Yamanoi's abc Theorem

Here we introduce a new notion of the
small-dimension, s-dim(f)

for f : C — X as follows.
Let C(X) be the rational function field of X. Then,

transc-degc C(X) = dim X.

Set §(f) = {¢ € C(X); Supp (¢)oo A F(C), Tpor(r) < €T(r)lle, Ve > 0}.

Then S(f) is a subfield of C(X) by F.M.T., and we define
s-dim(f) = transc-degc S(f).

00 200 (2008) 00000000
EEGEEENGEEE)) 0000D000000D000000

37
Vi1 /



§8 Yamanoi's abc Theorem

Here we introduce a new notion of the
small-dimension, s-dim(f)

for f : C — X as follows.
Let C(X) be the rational function field of X. Then,

transc-degc C(X) = dim X.

Set S(f) = {¢ € C(X); Supp (¢)oo 2 f(C), Tyor(r) < eT(r)]]e, Ve > 0}.
Then S(f) is a subfield of C(X) by F.M.T., and we define

s-dim(f) = transc-degc S(f).

Proposition 11.3
If s-dim(f) = dim X, then f is degenerate. J

Otherwise, T¢(r) < eT¢(r)||; this is easily follows from the general
theory of F.M.T.
N.B. If dim X =1 and genus(X) > 2, then Lemma 6.1 (L.L.D.) &
F.M.T. imply s-dim(f) = 1 for non-constant f : C — X.

00 200 (2008) 00000000~ 37/
EEGEEENGEEE)) 0000D000000D000000 41



§8 Yamanoi's abc Theorem

The proofs of many important degeneracy theorems for holomorphic
curves rely on “s-dim(f) = dim X", at least in part.

As an application of Yamanoi's abc Theorem we have
Theorem 11.4

Assume that dim X = 2, and that X is of general type.

Let f : C — X be a holomorphic curve such that s-dim(f) = 1.
Then f is degenerate.
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§8 Yamanoi's abc Theorem

The proofs of many important degeneracy theorems for holomorphic
curves rely on “s-dim(f) = dim X", at least in part.

As an application of Yamanoi's abc Theorem we have
Theorem 11.4

Assume that dim X = 2, and that X is of general type.

Let f : C — X be a holomorphic curve such that s-dim(f) = 1.
Then f is degenerate.
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§9 Fundamental Conjecture for holomrophic curves

89 Fundamental Conjecture for holomrophic
curves

The titled conjecture is as follows:
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§9 Fundamental Conjecture for holomrophic curves

89 Fundamental Conjecture for holomrophic
curves

The titled conjecture is as follows:

Fund. Conj. for hol. curves.

Let X be a smooth algebraic variety, and let D = )", D; be a reduced
s.n.c. divisor on X with irreducible D;.

Then, for a non-degenerate f : C — X we have

(12.1)  Te(ri (D)) + T¢(r: Kx) < > Na(r; D7) + e Te(r)]], Ve > 0.

00 200 (2008) DOOOOO0O0 — 39/
EEGEEENGEEE)) 0000D000000D000000 41



§9 Fundamental Conjecture for holomrophic curves

89 Fundamental Conjecture for holomrophic
curves

The titled conjecture is as follows:

Fund. Conj. for hol. curves.

Let X be a smooth algebraic variety, and let D = )", D; be a reduced
s.n.c. divisor on X with irreducible D;.

Then, for a non-degenerate f : C — X we have

(12.1)  Te(ri (D)) + T¢(r: Kx) < > Na(r; D7) + e Te(r)]], Ve > 0.

Even in the case when X = P"(C) and D is allowed to have some
singularities, the fundamental conjecture implies Green-Griffiths’
Conjecture and Kobayashi's Conjecture.
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§9 Fundamental Conjecture for holomrophic curves

Green-Griffiths’ Conjecture. Let X be a variety of general type. Then
Vf : C — X is degenerate.
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§9 Fundamental Conjecture for holomrophic curves

Green-Griffiths’ Conjecture. Let X be a variety of general type. Then
Vf : C — X is degenerate.

Kobayashi's Conjecture. A generic hypersurface X C P"(C) of high
degree (> 2n — 1) is Kobayashi hyperbolic.
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§9 Fundamental Conjecture for holomrophic curves

Green-Griffiths’ Conjecture. Let X be a variety of general type. Then
Vf : C — X is degenerate.

Kobayashi's Conjecture. A generic hypersurface X C P"(C) of high
degree (> 2n — 1) is Kobayashi hyperbolic.

Even when X = P"(C) and D; are hyperplanes, the Fundamental
Conjecture is open; if Ny(r; D;) are replaced by N,(r; D;), this is Cartan's
Theorem 4.6, where f suffices to be linearly non-degenerate.
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§9 Fundamental Conjecture for holomrophic curves

Green-Gritfiths” Conjecture. Let X be a variety of general type. Then
Vf : C — X is degenerate.

Kobayashi's Conjecture. A generic hypersurface X C P"(C) of high
degree (> 2n — 1) is Kobayashi hyperbolic.

Even when X = P"(C) and D; are hyperplanes, the Fundamental
Conjecture is open; if Ny(r; D;) are replaced by N,(r; D;), this is Cartan's
Theorem 4.6, where f suffices to be linearly non-degenerate.

If f: C— P"(C) omits n+ 1 hyperplanes H;,1 < < n+1 in general
position, then P"(C )\Z"Jrl H; = (C*)". In this case, the Fundamental
Conjecture is true because of Theorem 6.2.
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§9 Fundamental Conjecture for holomrophic curves

After establishing the case of semi-abelian varieties, it is interesting to
deal with K3 surfaces.

Problem 1. Let X be a K3 surface. Does there exist a non-degenerate
holomorphic curve f : C — X7

Problem 2. Let X be a K3 surface and let D be a reduced non-zero
divisor on X. Is every f : C — X \ D degenerate?
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