Some open problems in the value distribution theory and Kobayashi hyperbolic manifolds

J. Noguchi

HAYAMA SYMP. 2008

15 July 2008

$\S1$ Kobayashi hyperbolic manifold

Theorem 1.1

Let X (resp. Y) be a Zariski open of a compact complex space \overline{X} (resp. \overline{Y}).

Assume that X is complete hyperbolic and hyperbolically imbedded into \bar{X} . (i) (N. 1988) If \bar{Y} is smooth and ∂Y is a s.n.c. divisor, then $\operatorname{Hol}(Y, X)$ is relatively compact in $\operatorname{Hol}(\bar{Y}, \bar{X})$.

(ii) (Makoto Suzuki 1994)

 $Mer_{dom}(Y, X) = \{f : Y \rightarrow X; meromorphic and dominant\}$ is finite.

S. Lang Conjecture (for compact X) 1974; Kobayashi-Ochiai 1975 for compact X of general type; N. 1985, smooth compact Kähler X with $c_1(X) \le 0$; C. Horst 1991, smooth compact Kähler X; N. 1992, general compact X; **N.B.** The result (i) has applications to Lang's conjecture and Parshin-Arakelov type theorems over function fields.

Note that $\operatorname{Hol}(Y, X) = \{f \in \operatorname{Hol}(\overline{Y}, \overline{X}); f^* \partial X \subset \partial Y\}$ as sets (after the extension). But, be careful that " $f^* \partial X \subset \partial Y$ " is not a closed condition. In a number of papers, it was mistreated as " $f(\partial Y) \subset \partial X$ " which is a closed condition. After all, the results hold because of the complete Kobayashi hyperbolicity of X.

For simplicity here, assume that X and Y are compact. The above finiteness theorem is only a part of de Franchis' theorem. There should be a part of Severi's theorem.

Conjecture 1.2

The set of pairs

 $Mer_{dom}(Y) = \{(f, X) : X, Kobayahi hyperbolic, f : Y \rightarrow X; meromorphic and dominant\}$

is finite.

For the non-equidimensional case we have

Theorem 1.3

(N.-Sunada 1982) If X is smooth and $\wedge^k T(X)$ is negative in the sense of Grauert, then there are only finitely many meromorphic mappings of rank k or more from Y into X.

The proof was based on

Lemma 1.4

(N. Hiroshima Math. J. 1977) For a section of $\omega \in H^0(S^I\Omega^k(X) \otimes [-D])$ with an ample divisor D on X we have "Schwarz' Lemma" for $f : \Delta^k \to X$. If $f : \mathbf{C}^k \to X$, then $f^*\omega \equiv 0$. A big Picard type theorem follows, and hence it implies an algebraic degeneracy of $f : \mathbf{C} \to X$ for such X under some more condition.

This lemma (idea) was generalized to jet differentials by Green-Griffiths, S. Lu, Y.-T. Siu, ...; and also to log orbifold varieties by Erwan Rousseua in his talk this time.

There are related finiteness results due to T. Urata,

Kalka-Shiffman-Wong. Thus it is a problem to investigate the moduli of maps in non-equidimensional case.

Specilaize X to be a locally symmetric space (quotient of a bounded symmetric domain).

The rigidity structure:

Theorem 1.5

(N. 1988; Miyano-N. 1991) Let $X = D/\Gamma$ be a torsion-free co-compact or arithmetic quotient of a bounded symmetric doamin D. Let $Hol(Y, X) = \{f : Y \to X, holomorphic\}$ (harmonic). Then

Hol(Y, X) is quasi-projective smooth, and for every connected component

$$f \in \operatorname{Hol}(Y, X) \to f(x_0) \in X(\forall x_0 \in Y, \operatorname{fixed})$$

is a totally geodesic immersion; hence, $\operatorname{Hol}(Y, X) \cong D_1/\Gamma_1$.

2 There is " $Y \rightarrow D_2/\Gamma_2$ " such that the natural map

$$D_1/\Gamma_1 imes D_2/\Gamma_2 o X$$

is a totally geodesic immersion.

N.B. If Γ has fixed points (resp. co-comppact), then so does Γ_i .

If Γ is co-compact, and $f: Y \to D/\Gamma$ is holomorphic, then the lifting $\tilde{f}: \tilde{Y} \to D$ is proper.

Question 1 (inspired by N.-M. Mok's recent talks). What can we say for the moduli of proper holomorphic mappings $\tilde{f} : \tilde{Y} \to D$?

Moreover, What for a bounded convex domain $D \subseteq \mathbb{C}^n$?

Question 2. Let $D \Subset \mathbb{C}^n$ be a convex domain. If $D \cong M_1 \times M_2$ as complex manifolds, then is $M_i \cong D_i \Subset \mathbb{C}^{n_i}$, convex?

This is used in S. Frankel, Acta 1989, in which the main result is "If $D \in \mathbf{C}^n$ is convex and admits a co-compact discrete $\Gamma \subset \operatorname{Aut}(D)$, then D is isomorphic to a bounded symmetric domain."

For such M_i we have

(Carathéodory) $C_{M_i}(x, y) = d_{M_i}(x, y)$ (Kobayashi) by Lempert's Theorem.

§2 Extension Problem.

Theorem 2.1

(Kwack 1969) Let X be a compact Kobayashi hyperbolic manifold, and $\Delta^* \subset \mathbf{C}$ be a punctured disk. Then every holomorphic $f : \Delta^* \to X$ has a holomorphic extension $\overline{f} : \Delta \to X$.

Theorem 2.2

(Nishino 1979) Let X be a compact hyperbolic Riemann surface, and $E \subset \Delta$ be a closed subset of capacity 0. Then every holomorphic $f : \Delta \setminus E \to X$ has a holomrophic extension $\overline{f} : \Delta \to X$.

Masakazu Suzuki gave a simpler proof and generaized it to higher diemsnion.

Theorem 2.3

(Masakazu Suzuki 1987/1989) Let X be a compact complex manifold whose universal covering is biholomorphic to a bounded polynomially convex domain of \mathbb{C}^n , and $E \subset \Delta$ be a closed subset of capacity 0. Then every holomorphic $f : \Delta \setminus E \to X$ has a holomrophic extension $\overline{f} : \Delta \to X$.

Conjecture 2.4

Let X be a compact Kobayashi hyperbolic manifold, and $E \subset \Delta$ a closed subset of capacity 0. Then every holomorphic $f : \Delta \setminus E \to X$ has a holomrophic extension $\overline{f} : \Delta \to X$.

$\S{3}$ Nevanlinna theory in higher dimension

(a) Order function and F.M.T.

Let X be a compact complex space, and $\mathcal{I} \subset \mathcal{O}_X$ a coherent ideal sheaf.

Taking a finite covering $\{U_{\mu}\}$ of X, and $\sigma_{\mu\nu}$, the generators of \mathcal{I} on U_{μ} , and $\{c_{\mu}\}$, a partition of unity, we set

$$\phi_\mathcal{I}(x) = -\log \sum_\mu c_\mu(x) \sum_
u |\sigma_{\mu
u}(x)|^2.$$

Then $\phi_{\mathcal{I}}(x)$ gives rise to a Weil function for a subscheme $\mathcal{O}_X/\mathcal{I}$; may be assumed $\phi_{\mathcal{I}}(x) \ge 0$.

For $z = (z_i) \in \mathbf{C}^m$ we set

$$\alpha = \left(dd^{c} ||z||^{2}\right)^{m-1} = \left(\frac{i}{2\pi} \partial \bar{\partial} ||z||^{2}\right)^{m-1},$$

$$\beta = d^{c} \log ||z||^{2} \wedge \left(dd^{c} \log ||z||^{2}\right)^{m-1}.$$

Let $f : \mathbf{C}^m \to X$ be a meromorphic mapping with $\phi_{\mathcal{I}}(f(z)) \not\equiv 0$. Set $\omega_{\mathcal{I},f} = dd^c \phi_{\mathcal{I}}(f),$

and

$$T(r; \omega_{\mathcal{I}, f}) = \int_{1}^{r} \frac{dt}{t^{2m-1}} \int_{\|z\| \le t} \omega_{\mathcal{I}, f} \wedge \alpha,$$

$$m_{f}(r; ; \mathcal{I}) = \frac{1}{2} \int_{\|z\| = t} -\log \phi_{\mathcal{I}}(f)\beta,$$

$$N_{k}(r; \mathcal{I}) = \int_{1}^{r} \frac{dt}{t^{2m-1}} \int_{(\operatorname{Supp} f^{*}\mathcal{O}/\mathcal{I}) \cap \{\|z\| \le t\}} \min\{k, \operatorname{ord} f^{*}\mathcal{I}\}\alpha,$$

$$1 \le k \le \infty.$$

NOGUCHI (HAYAMA)

Theorem 3.1

(F.M.T.)
$$T(r; \omega_{\mathcal{I},f}) = N_{\infty} + m_f(r; \mathcal{I}) - m_f(1; \mathcal{I}).$$

If O_X/\mathcal{I} is a divisor D, then $\omega_{\mathcal{I},f} = f^*c_1(L(D))$ (the Chern form), and write

$$T_f(r; L(D)) = T(r; \omega_{\mathcal{I},f}).$$

(b) S.M.T.

• "m = 1 or dim X is fundamental.

Two model theorems besides Nevanlinna's:

Theorem 3.2

(Cartan 1933; Ahlfors by Weyls' method 1941) Let $f : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ be holomorphic and linearly nondegenerate, $D = \sum_{i=1}^{q} H_i$ a sum of hyperplanes in general position. Then

$$T_r(r; L(D)) + T_f(r; K_{\mathbf{P}^n(\mathbf{C})}) \leq \sum_{i=1}^q N_n(r; f^*H_i) + S_f(r).$$

Here $S_f(r) = O(\log r + \log T_f(r; O(1)))||_E$, $E \subset [0, \infty)$ and $meas(E) < \infty$.

Theorem 3.3

(Griffiths et al. 1972/3, Shiffman, N.) Let X be smooth projective, and dim X = n. Let $D = \sum_i D_i$ be a s.n.c. divisor on X. Let $f : \mathbb{C}^n \to X$ be meromorphic and det $df \neq 0$. Then

$$T_f(r; L(D)) + T_f(r; K_X) \leq \sum_{i=1}^q N_1(r; f^*D_i) + S_f(r).$$

Conjecture 3.4

(Fundamental Conjecture for holomorphic curves) Let X be smooth projective, and $D = \sum_{i=1}^{q} D_i$ be a s.n.c. divisor on X. Let $f : \mathbf{C} \to X$ be holomorphic and algebraically nondegenerate. Then

$$T_f(r; L(D)) + T_f(r; K_X) \leq \sum_{i=1}^q N_1(r; f^*D_i) + \epsilon T_f(r) ||_{E(\epsilon)} \quad (\forall \epsilon > 0).$$

N.B. Open for $D = \sum H_i \subset \mathbf{P}^n(\mathbf{C})$ (sum of hyperplanes). Fund. Conj. for hol. curves implies *Green-Griffiths' Conjecture* and *Kobayashi Conjecture*.

Conjecture 3.5

(Green-Griffiths, log-versin) Let X be a variety of log general type. Then every holomorphic $f : \mathbf{C} \to X$ is algebraically degenerate.

Theorem 3.6

(Log Bloch-Ochiai; N.1997/81) If the log irregularity $\bar{q}(X) > \dim X$, then every holomorphic $f : \mathbf{C} \to X$ is algebraically degenerate.

This is a consequnce of the following S.M.T.-type inequality.

Theorem 3.7

(N. 1977)

• (Lemma on log derivative) Let ω be a logarithmic 1-form on X with poles on ∂X , and set $f^*\omega = \xi(z)dz$ for $f : \mathbf{C} \to \overline{X}$ ($f(\mathbf{C}) \not\subset \partial X$), holomorphic. Then

$$m_{\xi}(r;\infty)=S_f(r).$$

(S.M.T.-type) Let α_X : X → A_X be the quasi-Albanese map, and Z be the Zariski closure of α_X(X). Assume that dim Z = dimX, and St(Z) = {a ∈ A_X; a + Z = Z}⁰ = {0}. Then there is a constant λ > 0 such that for an algebracally non-degenerate f : C → X̄

$$\lambda T_f(r) \leq N_1(r; f^* \partial X) + S_f(r).$$

Question. What is $\lambda > 0$? Let A be a semi-abelian variety:

$$0 \to (\mathbf{C}^*)^t \to A \to A_0$$
 (abelian variety) $\to 0$.

The universal covering $\tilde{A} \cong \mathbf{C}^n$, $n = \dim A$.

Let $f : \mathbf{C} \to A$ be a holomorphic curve. Set

• $J_k(A)$: the *k*-jet bundle over *A*; $J_k(A) \cong A \times \mathbf{C}^{nk}$;

•
$$J_k(f) : \mathbf{C} \to J_k(A)$$
: the k-jet lift of f ;

• $X_k(f)$: the Zariski closure of the image $J_k(f)(\mathbf{C})$.

Theorem 3.8

(N.-Winkelmann-Yamanoi, Forum Math. 23(2008))

Let $f : \mathbf{C} \to A$ be algebraically non-degenerate. (i) Let Z be an algebraic reduced subvariety of $X_k(f)$ ($k \ge 0$). Then $\exists \overline{X}_k(f)$, compactification of $X_k(f)$ such that

(3.9)
$$T_{J_k(f)}(r;\omega_{\overline{Z}}) \leq N_1(r;J_k(f)^*Z) + \epsilon T_f(r)||_{\epsilon}, \quad \forall \epsilon > 0.$$

(ii) Moreover, if
$$\operatorname{codim}_{X_k(f)} Z \ge 2$$
, then
(3.10) $T_{J_k(f)}(r; \omega_{\overline{Z}}) \le \epsilon T_f(r)||_{\epsilon}, \quad \forall \epsilon > 0.$

(iii) If k = 0 and Z is an effective divisor D on A, then \overline{A} is smooth, equivariant, and independent of f; furthermore, (3.9) takes the form

$$(3.11) T_f(r; L(\bar{D})) \leq N_1(r; f^*D) + \epsilon T_f(r; L(\bar{D}))||_{\epsilon}, \quad \forall \epsilon > 0.$$

As an application for degeneracy problem of holomorphic curves we have

Theorem 3.12

(N.-Winkelmann-Yamanoi, J. Math. Pure. Appl. 2007) Let X be an algebraic variety such that (i) $\bar{q}(X) \ge \dim X$ (log. irregularity); (ii) $\bar{\kappa}(X) > 0$ (log. Kodaira dimension); (iii) the Albanese map $X \to A$ is proper. Then $\forall f : \mathbf{C} \to X$ is algebraically degenerate. Moreover, the normalization of $\overline{f(\mathbf{C})}^{Zar}$ is a semi-abelian variety which is finite étale over a translate of a proper semi-abelian subvariety of A.

N.B. There is a related result due to Dethloff-Lu for the surface and Brody curves.

Example.

Let $X = \mathbf{P}^n(\mathbf{C}) \setminus \sum_{i=1}^q D_i$ with distinct irreducible hypersurfaces D_i . Even restricting to this elementary example case, you can see steady advances in the value distribution theroy. The algebraic degeneracy of $f : \mathbf{C} \to X$ has been proved as follows:

•
$$q \ge n+2$$
; $q = n+2$, critical, and $\forall \deg D_i = 1$
... E. Borel (Acta 1897).

②
$$q = n + 2$$
 and deg $D_i \ge 1 \cdots$ M. Green (1975), ..., T. Nishino (1989?).

From the viewpoint of Log Bloch-Ochiai (N. (1977/81)), $\bar{q}(X) = q - 1 = n + 1 > n$.

③
$$\bar{q}(X) = q - 1 = n$$
, and $\bar{\kappa}(X) > 0$ or $X \cong (\mathbb{C}^*)^n$
(⇒ deg $\sum D_i \ge n + 2$) · · · Theorem 3.12.
If $\sum D_i$ has only s.n.c. and deg $\sum D_i \ge n + 2$, then $\bar{\kappa}(X) = n$.

Corollary 3.13

Assume $q \ge n+1$ and that $\sum_{i=1}^{q} D_i$ has only s.n.c. Then every $f : \mathbf{C} \to X$ is algebracally degenerate.

Question. Allow singularities for D_i , but assume $\sum_{i=1}^{q} D_i$ is in general position; i.e.,

every intersection of k number of D_i 's has pure codimension k. Then is $\bar{\kappa}(X) > 0$? In Theorem 3.8 (iii) we take an equivariant compactification \overline{A} such that the closure \overline{D} contains no A-orbit; this is a general position condition for the divisor $\overline{D} + \partial A$ in \overline{A} .

Conjecture 3.14

Let \overline{A} and $\overline{D} + \partial A$ be as above. Let $f : \mathbf{C} \to \overline{A}$ be algebraically nondegenerate.

Then

$$T_f(r; L(\bar{D} + \partial A)) + T_f(r; K_{\bar{A}}) = T_f(r; L(\bar{D}))$$

$$\leq N_1(r; f^*\bar{D}) + N_1(r; f^*\partial A) + \epsilon T_f(r) ||_{E(\epsilon)}.$$

Specializing the conjecure, we have

Conjecture 3.15

Let $D \subset (\mathbf{C}^*)^2 = A$ be irreducible such that $\operatorname{St}(D) = \{0\}$ and $\overline{D} \subset \overline{A}$ be in general position. Let $f : \mathbf{C} \to \overline{A}$ be algebraically nondegenerate. Then it is conjectured that

$$T_f(r; L(\bar{D} + \partial A)) + T_f(r; K_{\bar{A}}) = T_f(r; L(\bar{D}))$$

$$\leq N_1(r; f^*\bar{D}) + N_1(r; f^*\partial A) + \epsilon T_f(r) ||_{E(\epsilon)}.$$

Example. With $(z, w) \in (\mathbf{C}^*)^2$ we set

$$D = \left\{z + \frac{1}{z} + w + \frac{1}{w} - \frac{1}{zw} = 0\right\}$$

Then $\overline{D} \subset (\mathbf{P}^1)^2 = \overline{A}$ is in general position. Let $f = (f_1, f_2) : \mathbf{C} \to (\mathbf{P}^1)^2$ be algebraically nondegenerate. Then

 $(3.16) \quad 2T_f(r) + 2T_f(r) \leq N_1(r; f^*\bar{D}) + N_1(r; (f_1)_0) + N_1(r; (f_1)_\infty)$ $+ N_1(r; (f_2)_0) + N_1(r; (f_2)_\infty) + \epsilon T_f(r) ||_{E(\epsilon)}.$ There is some evidence:

Proposition 3.17

In the above Example, assume that one of f_i , say f_2 satisfies $T_{f_2}(r) \leq \epsilon T_f(r)||_{E(\epsilon)}$. Then (3.16) holds.

This follows from Yamanoi's abc-Theorem, which we recall.

Let $p: X \to S$ be a surjective morphism between smooth projective algebraic varieties with relative canonical bundle $K_{X/S}$.

Theorem 3.18

(Yamanoi's abc, 2004, 2006) Assume that

- dim X/S = 1 ;
- $D \subset X$ is a reduced divisor ;
- $f : \mathbf{C} \to X$ is algebraically nondegenerate ;
- $g = p \circ f : \mathbf{C} \to S$.

Then for $\forall \epsilon > 0$, $\exists C(\epsilon) > 0$ such that

 $(3.19) \ T_f(r; L(D)) + T_f(r; K_{X/S}) \le N_1(r; f^*D) + \epsilon T_f(r) + C(\epsilon) T_g(r) ||_{E(\epsilon)}.$

Thank You Very Much!!