On the Degeneracy of Holomorphic Curves

Junjiro Noguchi

(MSU-Tokyo) Complex Geometry in Osaka for Professor Fujiki's KANREKI (60th birthday) Osaka, 1-5 November 2007

§1 Introduction.

I would like to discuss the degeneracy problem of holomorphic curves into complex projective varieties.

In this talk, algebraic varieties are those defined over \mathbf{C} , and $f : \mathbf{C} \to X$ stands for a holomorphic curve into an algebraic variety X, unless otherwise mentioned. We say that $f : \mathbf{C} \to X$ is *degenerate* if it is algebraically degenerate; i.e., the image $f(\mathbf{C})$ is contained by a proper algebraic subset of X.

Green-Griffiths Conjecture (Log version). Let X be an algebraic variety of general type. Then $\forall f : \mathbf{C} \to X$ is degenerate.

Kobayashi Conjecture. Let $V \subset \mathbf{P}^n(\mathbf{C})$ be a "generic" hypersurface of deg $V \geq 2n-1$. Then V is Kobayashi hyperbolic; equivalently by Brody's Theorem $\forall f : \mathbf{C} \to X$ is constant.

Fundamental Conjecture for holomorphic curves. Let V be a smooth projective variety and let D be an s.n.c. (simple normal crossing) divisor on V. Then for a nondegenerate $f : \mathbf{C} \to V$

$$T_f(r; [D]) + T_f(r; K_V) \le N_1(r; f^*D) + \epsilon T_f(r) ||, \forall \epsilon > 0.$$

Here, " $||_{\epsilon}$ " means that the stated estimate holds for r > 0 except for those of a Borel subset of $(0, \infty)$ dependent on $\epsilon > 0$ with finite measure.

This conjecture is modeled after a successful generalization of Nevanlinna's theory to the case of differentially nondegenerate holomorphic mappings $f : \mathbb{C}^n \to V$ $(n = \dim V)$ (Carlson, Griffiths, King, ...). Note that

Fundamental Conjecture for holomorphic curves

 \Rightarrow Green-Griffiths Conjecture (immediate),

and then

 \Rightarrow Kobayashi Conjecture (not so immediate).

§2 Notation and First Main Theorem.

Let $E = \sum_{\mu=1}^{\infty} \nu_{\mu} z_{\mu}$ be a divisor on **C** with distinct $z_{\mu} \in \mathbf{C}$. Then we set

$$\operatorname{ord}_{z} E = \begin{cases} \nu_{\mu}, & z = z_{\mu}, \\ 0, & z \notin \{z_{\mu}\} \end{cases}$$

We define the *counting functions* of E truncated to $l \leq \infty$ by

$$n_l(t; E) = \sum_{\{|z_{\mu}| < t\}} \min\{\nu_{\mu}, l\}, \quad N_l(r; E) = \int_1^r \frac{n_l(t; E)}{t} dt.$$

When $l = \infty$, we write

$$n(t; E) = n_{\infty}(t; E), \quad N(r; E) = N_{\infty}(r; E).$$

Let X be a compact reduced complex space with structure sheaf \mathcal{O}_X , and let $\mathcal{I} \subset \mathcal{O}_X$ be a coherent ideal sheaf. For a holomorphic curve

$$f: \mathbf{C} \to X, \quad f(\mathbf{C}) \not\subset \operatorname{Supp} \mathcal{O}_X / \mathcal{I}$$

we are going to define 3 quantities, $m_f(r;*), N_l(r;*), T(r;*)$ as follows.

Let $\{U_j\}$ be a finite open covering of X such that

(i) there are finitely many sections

$$\sigma_{jk} \in \Gamma(U_j, \mathcal{I}), k = 1, 2, \dots,$$

generating every fiber \mathcal{I}_x over $x \in U_j$;

(ii) there is a partition of unity $\{c_j\}$ subordinate to $\{U_j\}$.

Setting

$$\rho_{\mathcal{I}}(x) = \left(\sum_{j} c_j(x) \sum_{k} |\sigma_{jk}(x)|^2\right)^{1/2},$$

we take a constant C > 0 so that

$$\hat{\rho}_{\mathcal{I}}(x) = C \rho_{\mathcal{I}}(x) \leq 1, \quad x \in M.$$

Using the compactness of X, one easily verifies that $\log \hat{\rho}_{\mathcal{I}}$ (Weil function in arithmetic) is well-defined up to a bounded function on X.

We define the approximation (proximity) function of f for \mathcal{I} or for the subspace $Y = (\text{Supp } \mathcal{O}_X/\mathcal{I}, \mathcal{O}/\mathcal{I})$ (possibly non-reduced) by

$$m_f(r;\mathcal{I}) = m_f(r;Y) = \int_{|z|=r} \log \frac{1}{\hat{\rho}_{\mathcal{I}}(f(z))} \frac{d\theta}{2\pi} \quad (\geqq 0).$$

- $\hat{\rho}_{\mathcal{I}} \circ f(z)$ is C^{∞} over $\mathbf{C} \setminus f^{-1}(\operatorname{Supp} Y)$.
- For $z_0 \in f^{-1}(\operatorname{Supp} Y)$, \exists neighborhood $U \ni z_0$ and $\exists \nu \in \mathbf{Z}_{>0}$ such that $(f^*\mathcal{I})|_U = ((z-z_0)^{\nu})$.

Then

$$\log \hat{\rho}_{\mathcal{I}} \circ f(z) = \nu \log |z - z_0| + \psi(z), \quad z \in U,$$

where $\psi(z)$ is C^{∞} on U. We define the *counting function*

$$N(r; f^*\mathcal{I}), \quad N_l(r; f^*\mathcal{I})$$

by using ν in the same way as N(r; E) and $N_l(r; E)$. Moreover we define

$$\omega_{\mathcal{I},f} = \omega_{Y,f} = -dd^c \psi(z) = -\frac{i}{2\pi} \partial \bar{\partial} \psi(z)$$
$$= dd^c \log \frac{1}{\hat{\rho}_{\mathcal{I}} \circ f(z)} \quad (z \in U),$$

which is well-defined on \mathbf{C} as a smooth (1,1)-form. The *order function* of f for \mathcal{I} or Y is defined by

$$T(r;\omega_{\mathcal{I},f}) = T(r;\omega_{Y,f}) = \int_{1}^{r} \frac{dt}{t} \int_{|z| < t} \omega_{\mathcal{I},f}.$$

If \mathcal{I} is the ideal sheaf defined by a Cartier effective divisor D on X, in terms of commonly used notation we have

$$m_f(r; \mathcal{I}) = m_f(r; D) + O(1),$$

$$T(r; \omega_{\mathcal{I}, f}) = T_f(r; [D]) + O(1).$$

Fix a hermitian form ω_X on X. We define a *standard* order function by

$$T_f(r) = T(r; \omega_X) = \int_1^r \frac{dt}{t} \int_{|z| < t} f^* \omega_X.$$

Theorem 1 (First Main Theorem, N. '03). Let $f : \mathbf{C} \to X$ and let \mathcal{I} be as above. Then

$$T(r; \omega_{\mathcal{I}, f}) = N(r; f^*\mathcal{I}) + m_f(r; \mathcal{I}) - m_f(1; \mathcal{I}).$$

§3 Classical results.

E. Borel's Theorem (1897). Let $H_i \subset \mathbf{P}^n(\mathbf{C})$, $1 \leq i \leq l$, be hyperplanes in general position. If l > n + 1, then $\forall f : \mathbf{C} \to \mathbf{P}^n(\mathbf{C}) \setminus \bigcup_{i=1}^l H_i$ is (linearly) degenerate.

N.B. The log irregularity

$$\bar{q}(\mathbf{P}^n(\mathbf{C})\setminus \cup_1^q H_i)=l-1>n \iff l>n+1.$$

Bloch-Ochiai's Theorem ('26-'77). Let V be an n-dimensional projective algebraic variety. If the irregularity q(V) > n, then $\forall f : \mathbf{C} \to V$ is degenerate.

Log Bloch-Ochiai's Theorem (N. '77-'81). Let X be an algebraic variety of dimension n. If $\bar{q}(X) > n$, then $\forall f : \mathbf{C} \to X$ is degenerate.

N.B. Log Bloch-Ochiai's theorem unifies Borel's and Bloch-Ochiai's Theorems in terms of log irregularities.

The proof is reduced as follows: Let V be a smooth n-dimensional projective variety, let D be a reduced divisor on V, and set $X = V \setminus D$. Let $\alpha : X \to A_X$ be the quasi-Albanese map.

Theorem (N. '77-'81). If the log Kodaira dimension $\bar{\kappa}(\overline{\alpha(X)}^{\text{Zar}}) = n$, then $\exists \lambda > 0$ such that for \forall nondegenerate $f : \mathbf{C} \to V$

$$\lambda T_f(r) \le N_1(r; f^*D) + O(\delta \log r + \log T_f(r)) ||_{\delta}, \, \forall \delta > 0.$$

Problem 1. What is the best λ ?

The proof of Log Bloch-Ochiai's Theorem is reduced to the case where X is of general type. Therefore it is considered as a special case of Green-Griffiths' Conjecture. Thus, we may ask

Problem 2. Assuming $\bar{\kappa}(X) = \dim X$, can we decrease the lower bound " $n < \bar{q}(X)$ " in Log Bloch-Ochiai's Theorem?

E.g.: Given 4 lines $L_i \subset \mathbf{P}^2 (1 \leq i \leq 4)$ in general position, we merge 2 lines L_3 and L_4 to a quadric D_3 , so that $L_1 + L_2 + D_3$ has only s.n.c., and set

$$X = \mathbf{P}^2 \setminus (L_1 \cup L_2 \cup D_3).$$

Then $\bar{q}(X) = \bar{\kappa}(X) = 2.$

M. Green's Conjecture ('74). Is $\forall f : \mathbf{C} \to X$ degenerate?

M. Green proved this for f of finite order.

N.B. $\bar{\kappa}(X) = \bar{q}(X) = 2$ and the quasi-Albanese $\alpha_X : X \to (\mathbf{C}^*)^2$ is finite.

We proved M. Green's Conjecture in much more general form (cf. §5). Note that in the case of Diophantine approximation, the the analogous problem is open; Corvaja and Zannier lately dealt with the problem over function fields in a preprint.

§4 Semi-abelian varieties.

Let A be a semi-abelian variety; i.e.,

$$0 \to (\mathbf{C}^*)^t \to A \to A_0 \to 0,$$

where A_0 is an abelian variety. Let $J_k(A)(k \ge 0)$ be the k-jet space over A, let $f : \mathbb{C} \to A$ be a holomorphic curve, let $J_k(f) : \mathbb{C} \to J_k(X)$ be the k-jet lift, and set

$$X_k(f) = \overline{J_k(f)(\mathbf{C})}^{\operatorname{Zar}} \subset J_k(A).$$

As an answer to Problem 1 we have

Theorem 2 (N.-Winkelmann-Yamanoi [3]). Assume that $f : \mathbb{C} \to A$ is nondegenerate.

(i) Let Z be an algebraic reduced subvariety of $X_k(f)$. Then $\exists X_k(f)$, a compactification of $X_k(f)$ such that

$$T(r; \omega_{\bar{Z}, J_k(f)}) \leq N_1(r; J_k(f)^*Z) + \epsilon T_f(r) ||_{\epsilon}, \quad \forall \epsilon > 0,$$

where \overline{Z} is the closure of Z in $\overline{X}_k(f)$.

(ii) Moreover, if codim $_{X_k(f)}Z \geq 2$, then

$$T(r; \omega_{\bar{Z}, J_k(f)}) \leq \epsilon T_f(r) ||_{\epsilon}, \quad \forall \epsilon > 0.$$

(iii) When k = 0 and Z is an effective reduced divisor D on A, \overline{A} can be chosen as smooth, equivariant with respect to A-action, and independent of f, and we have

$$T_f(r; L(\bar{D})) \leq N_1(r; f^*D) + \epsilon T_f(r; L(\bar{D})) ||_{\epsilon}, \ \forall \epsilon > 0.$$

The above (iii) gives yet another proof of Lang's conjecture:

Corollary 3 (Siu-Yeung '96, N. '98, McQuillan '01). Let D be an effective reduced divisor on A (semi-abelian). Then $\forall f : \mathbf{C} \to A \setminus D$ is degenerate.

§5 Finite cover of semi-abelian variety.

As an application of Theorem 2 we give an answer to Problem 2.

Let X be a normal variety, not necessarily compact, and let A be a semi-abelian variety.

Theorem 4 (N.-Winkelmann-Yamanoi [1]). Assume that

- (i) $\exists a \text{ finite morphism } \pi : X \to A;$
- (ii) $\bar{\kappa}(X) > 0.$

Then $\forall f : \mathbf{C} \to X$ is degenerate.

N.B. (Kawamata '81) Under condition (i),

 $\bar{\kappa}(X) > 0 \Leftrightarrow X$ is <u>not</u> isomorphic to a semi-abelian variety.

Corollary 5 Assume that the quasi-Albanese map of X is proper, and moreover that

$$\bar{\kappa}(X) > 0, \quad \bar{q}(X) \ge \dim X.$$

Then $\forall f : \mathbf{C} \to X$ is degenerate.

For the proof of Theorem 4 we need the following precise resolution and compactification of X.

Theorem 6 Let $\pi : X \to A$ be a finite morphism from a normal variety X of dim X = nonto a semi-abelian variety A. Let \overline{A} be a smooth equivariant compactification of A. Let D denote the critical locus of π ; i.e. the closure of the set of all $\pi(z)$, where $z \in X_{\text{reg}}$ and rank $d\pi < n$.

Then there exist

- (a) a desingularization $\tau: \tilde{X} \to X$ and a smooth compactification $j: \tilde{X} \hookrightarrow \hat{X}$ such that the boundary divisor $\partial \hat{X} = \hat{X} \setminus j(\tilde{X})$ has only s.n.c.;
- (b) a proper holomorphic map $\psi: \hat{X} \to \overline{A}$ such that $\psi \circ j = \pi \circ \tau$ with $\psi^{-1}(A) = \tilde{X}$;
- (c) an effective divisor Θ on \hat{X} ;
- (d) a subvariety $\hat{S} \subset \hat{X}$

such that

- (i) $\Theta \sim K_{\hat{X}} + \partial \hat{X}$, the log canonical divisor of \tilde{X} ,
- (ii) $\psi(\operatorname{Supp} \Theta) \subset \overline{D}$,
- (iii) codim $_A\psi(\hat{S}) \ge 2$,
- (iv) for $\forall f : \Delta \to A$, holomorphic curve from a disk Δ in \mathbb{C} with lifting $F : \Delta \to \tilde{X}$ and for $z \in F^{-1}(\operatorname{Supp} \Theta \setminus \hat{S})$ we have

$$\operatorname{mult}_{z} F^{*} \Theta \le \operatorname{mult}_{z} f^{*} D - 1.$$
 (7)

Proof of Theorem 4:

By some theorem of Kawamata the case is easily reduced to $\bar{\kappa}(X) = \dim X$. Then the above Θ is big and hence so is \bar{D} . Set

$$F = \pi \circ f : \mathbf{C} \to A.$$

$$C^{-1}T_f(r) < T_F(r) < CT_f(r).$$
(8)

In this case we write

Then $\exists C > 0$ such that

$$T_f(r) \sim T_F(r)$$

By Theorem 2 (S.M.T.)

$$m_F(r;\Theta) \le m_f(r;\bar{D}) \le \epsilon T_f(r)||_{\epsilon}, \ \forall \epsilon > 0.$$
 (9)

Theorem 6 (iv) implies

$$N(r; F^*\Theta) \le N(r; F^*\hat{S}) + N(r; f^*D) - N_1(r; f^*D).$$
(10)

Now codim $_A\psi(\hat{S}) \geq 2$. Therefore we can infer from Theorem 2 (S.M.T.) that

$$N(r; F^*\hat{S}) \le N(r; f^*(\psi_*\hat{S})) \le \epsilon T_f(r)||_{\epsilon}.$$
(11)

By virtue of Theorems 1 (F.M.T.) and 2 (S.M.T.) we have

$$N(r; f^*D) - N_1(r; f^*D) \le T_f(r; L(\bar{D})) - N_1(r; f^*D)$$

$$\le \epsilon T_f(r)||_{\epsilon}, \quad \forall \epsilon > 0.$$
(12)

Now one infers from (10)–(12) that

$$N(r; F^*\Theta) \le \epsilon T_f(r) ||_{\epsilon}, \quad \forall \epsilon > 0.$$
(13)

Since Θ is big,

$$T_F(r) \sim T(r; F^*\Theta)$$

Thus

$$T_F(r) \le \epsilon T_f(r) ||_{\epsilon}, \quad \forall \epsilon > 0,$$

and so by (8)

$$T_F(r) \le \epsilon T_F(r) ||_{\epsilon}. \quad \forall \epsilon > 0.$$

This is a contradiction.

Example and Question. Let $D_i, 1 \leq i \leq q$, be irreducible hypersurfaces of $\mathbf{P}^n(\mathbf{C})$ in general position; i.e., for distinct $1 \leq i_1 < \cdots < i_k \leq q$,

$$\operatorname{codim} D_{i_1} \cap \dots \cap D_{i_k} = \begin{cases} k, & k \leq n \\ \emptyset, & k > n. \end{cases}$$

Assume that deg $\sum_{i=1}^{q} D_i > n+1$.

Then, if q > n + 1, then Log Bloch-Ochiai's Theorem implies the degeneracy of $\forall f : \mathbf{C} \to \mathbf{P}^n(\mathbf{C}) \setminus \sum_{i=1}^q D_i$.

Suppose q = n + 1. Then $\bar{q} (\mathbf{P}^n(\mathbf{C}) \setminus \sum_{i=1}^q D_i) = n$. If every D_i are smooth, then $\bar{\kappa}(\mathbf{P}^n(\mathbf{C}) \setminus \sum_{i=1}^q D_i) = n$, and hence Theorem 4 implies the degeneracy of $\forall f : \mathbf{C} \to \mathbf{P}^n(\mathbf{C}) \setminus \sum_{i=1}^q D_i$; with n = 2 and q = 3 this resolves M. Green's Conjecture in §3.

Question. Without the smoothness condition for each D_i , can we have

$$\bar{\kappa}\left(\mathbf{P}^{n}(\mathbf{C})\setminus\sum_{i=1}^{n+1}D_{i}\right)>0?$$

§6 Kobayashi Conjecture.

There is a nice preparation from algebraic side:

Theorem 14 (Ein '88 '91, Xu '94, Voisin '96). Let $V \subset \mathbf{P}^n(\mathbf{C})$ be a general hypersurface of deg $V \ge 2n - 1$. Then all subvarieties of V whatsoever are of general type.

Therefore, Green-Griffiths' Conjecture implies the Kobayashi Conjecture.

We consider a specialized Fundamental Conjecture: Let V be a projective manifold of dimension n with embedding $X \hookrightarrow \mathbf{P}^{N}(\mathbf{C})$.

Let $\pi : V \to \mathbf{P}^n(\mathbf{C})$ be a generic projection, let D be the ramification divisor of π on V, and let E be the critical value divisor on $\mathbf{P}^n(\mathbf{C})$.

In the sequel we have this setting in mind. Note that if π moves, then D and E are *deformed*. Thus we may consider the following conjectures only for a generic projection $\pi: X \to \mathbf{P}^n(\mathbf{C})$.

We specialize the Fundamental Conjecture as follows:

Conjecture A. Let $f : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ be nondegenerate, and let E be a reduced divisor E on $\mathbf{P}^n(\mathbf{C})$, allowing singularities. Then we have

$$\{\deg E - n - 1\}T_f(r) \le N_1(r; f^*E) + \epsilon T_f(r)||_{\epsilon}, \quad \forall \epsilon > 0.$$

We consider a milder conjecture for general projective V:

Conjecture B. Let $f : \mathbf{C} \to V$ be nondegenerate, let D be a reduced divisor on V, allowing singularities. Then we have

$$N(r; f^*D) - N_1(r; f^*D) \le \epsilon T_f(r) ||_{\epsilon}, \ \forall \epsilon > 0.$$

Conjectures A and B imply Kobayashi Conjecture:

For we assume that $f : \mathbf{C} \to X$ is nondegenerate. Let $\pi : X \to \mathbf{P}^n(\mathbf{C})$ be a projection with the ramification divisor D on X and the critical value divisor E on $\mathbf{P}^n(\mathbf{C})$, for which Conjectures A and B hold.

Conjecture A implies that

$$(\deg E - n - 1)T_g(r) \le N_1(r; g^*E) + \epsilon T_g(r)||_{\epsilon}.$$

Thus, by combining this with Theorem 1 we obtain

$$N(r; g^*E) - N_1(r; g^*E)$$

$$\leq (n+1)T_g(r) - m_g(r; E) + \epsilon T_g(r)||_{\epsilon}.$$

Because of ramifications we get

$$N_1(r; f^*D) \le N(r; g^*E) - N_1(r; g^*E) \\ \le (n+1)T_g(r) - m_g(r; E) + \epsilon T_g(r)||_{\epsilon}.$$

Conjecture B implies that

$$T_f(r; [D]) \le N_1(r; f^*D) + m_f(r, D) + \epsilon T_f(r) ||_{\epsilon}.$$

Combining the above two with $m_f(r; D) \leq m_g(r; E)$, we have

$$T_f(r; [D]) \le (n+1)T_g(r) - m_g(r; E) + \epsilon T_g(r) + m_f(r; D)$$

$$\le (n+1)T_g(r) + \epsilon T_g(r)||_{\epsilon}.$$

Note that $K_X = \pi^* K_{\mathbf{P}^n(\mathbf{C})} + D$, so that

$$T_f(r; K_X) = -(n+1)T_g(r) + T_f(r; [D]).$$

Therefore,

$$T_f(r; K_X) \le \epsilon T_g(r) ||_{\epsilon}.$$

Since K_X is big, $T_f(r; K_X) \sim T_g(r)$, so that we have a contradiction:

$$T_g(r) \le \epsilon T_g(r) ||_{\epsilon}, \quad \forall \epsilon > 0.$$

N.B. Similar Conjectures A and B for a finite cover X over a semi-abelian variety A, being replaced $\mathbf{P}^{n}(\mathbf{C})$ by A, are true by Theorem 2.

References

- 野口潤次郎, 多変数ネヴァンリンナ理論とディオファントス近似 (Nevanlinna Theory in Several Variables and Diophantine Approximation), viii+264 pp., 共立出版社 (Kyoritsu Publ.), 2003.
- Noguchi, J., Winkelmann, J. and Yamanoi, K., Degeneracy of Holomorphic Curves into Algebraic Varieties, J. Math. Pures Appl. 88 Issue 3, (2007), 293–306.
- Noguchi, J., Winkelmann, J. and Yamanoi, K., The second main theorem for holomorphic curves into semi-abelian varieties II, preprint UTMS 2004-17, in Press, Forum Math.

See bibliographies of the above references for more.