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§1 Introduction.

I would like to discuss the degeneracy problem of holomorphic curves into complex
projective varieties.

In this talk, algebraic varieties are those defined over C, and f : C → X stands for a
holomorphic curve into an algebraic variety X, unless otherwise mentioned. We say that
f : C → X is degenerate if it is algebraically degenerate; i.e., the image f(C) is contained
by a proper algebraic subset of X.

Green-Griffiths Conjecture (Log version). Let X be an algebraic variety of general
type. Then ∀f : C → X is degenerate.

Kobayashi Conjecture. Let V ⊂ Pn(C) be a “generic” hypersurface of deg V ≥
2n − 1. Then V is Kobayashi hyperbolic; equivalently by Brody’s Theorem ∀f : C → X
is constant.

Fundamental Conjecture for holomorphic curves. Let V be a smooth projec-
tive variety and let D be an s.n.c. (simple normal crossing) divisor on V . Then for a
nondegenerate f : C → V

Tf (r; [D]) + Tf (r; KV ) ≤ N1(r; f
∗D) + ϵTf (r)||, ∀ϵ > 0.

Here, “||ϵ” means that the stated estimate holds for r > 0 except for those of a Borel
subset of (0,∞) dependent on ϵ > 0 with finite measure.

This conjecture is modeled after a successful generalization of Nevanlinna’s theory to
the case of differentially nondegenerate holomorphic mappings f : Cn → V (n = dim V )
(Carlson, Griffiths, King, ...). Note that

Fundamental Conjecture for holomorphic curves

⇒ Green-Griffiths Conjecture (immediate),

and then
⇒ Kobayashi Conjecture (not so immediate).

§2 Notation and First Main Theorem.

Let E =
∑∞

µ=1 νµzµ be a divisor on C with distinct zµ ∈ C. Then we set

ordzE =

{
νµ, z = zµ,

0, z ̸∈ {zµ}.
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We define the counting functions of E truncated to l 5 ∞ by

nl(t; E) =
∑

{|zµ|<t}

min{νµ, l}, Nl(r; E) =

∫ r

1

nl(t; E)

t
dt.

When l = ∞, we write

n(t; E) = n∞(t; E), N(r; E) = N∞(r; E).

Let X be a compact reduced complex space with structure sheaf OX , and let I ⊂ OX be
a coherent ideal sheaf. For a holomorphic curve

f : C → X, f(C) ̸⊂ Supp OX/I

we are going to define 3 quantities, mf (r; ∗), Nl(r; ∗), T (r; ∗) as follows.

Let {Uj} be a finite open covering of X such that

(i) there are finitely many sections

σjk ∈ Γ(Uj, I), k = 1, 2, . . . ,

generating every fiber Ix over x ∈ Uj;

(ii) there is a partition of unity {cj} subordinate to {Uj}.

Setting

ρI(x) =

(∑
j

cj(x)
∑

k

|σjk(x)|2
)1/2

,

we take a constant C > 0 so that

ρ̂I(x) = CρI(x) 5 1, x ∈ M.

Using the compactness of X, one easily verifies that log ρ̂I (Weil function in arithmetic)
is well-defined up to a bounded function on X.

We define the approximation (proximity) function of f for I or for the subspace Y =
(Supp OX/I, O/I) (possibly non-reduced) by

mf (r; I) = mf (r; Y ) =

∫
|z|=r

log
1

ρ̂I(f(z))

dθ

2π
(= 0).

• ρ̂I ◦ f(z) is C∞ over C \ f−1(Supp Y ).

• For z0 ∈ f−1(Supp Y ), ∃ neighborhood U ∋ z0 and ∃ν ∈ Z>0 such that (f∗I)|U =
((z − z0)

ν).

2



Then
log ρ̂I ◦ f(z) = ν log |z − z0| + ψ(z), z ∈ U,

where ψ(z) is C∞ on U . We define the counting function

N(r; f ∗I), Nl(r; f
∗I)

by using ν in the same way as N(r; E) and Nl(r; E). Moreover we define

ωI,f = ωY,f = −ddcψ(z) = − i

2π
∂∂̄ψ(z)

= ddc log
1

ρ̂I ◦ f(z)
(z ∈ U),

which is well-defined on C as a smooth (1,1)-form. The order function of f for I or Y is
defined by

T (r; ωI,f ) = T (r; ωY,f ) =

∫ r

1

dt

t

∫
|z|<t

ωI,f .

If I is the ideal sheaf defined by a Cartier effective divisor D on X, in terms of commonly
used notation we have

mf (r; I) = mf (r; D) + O(1),

T (r; ωI,f ) = Tf (r; [D]) + O(1).

Fix a hermitian form ωX on X. We define a standard order function by

Tf (r) = T (r; ωX) =

∫ r

1

dt

t

∫
|z|<t

f ∗ωX .

Theorem 1 (First Main Theorem, N. ’03). Let f : C → X and let I be as above. Then

T (r; ωI,f ) = N(r; f∗I) + mf (r; I) − mf (1; I).

§3 Classical results.

E. Borel’s Theorem (1897). Let Hi ⊂ Pn(C), 1 ≤ i ≤ l, be hyperplanes in general
position. If l > n + 1, then ∀f : C → Pn(C) \ ∪l

i=1Hi is (linearly) degenerate.

N.B. The log irregularity

q̄(Pn(C) \ ∪q
1Hi) = l − 1 > n ⇐⇒ l > n + 1.

Bloch-Ochiai’s Theorem (’26-’77). Let V be an n-dimensional projective algebraic
variety. If the irregularity q(V ) > n, then ∀f : C → V is degenerate.

Log Bloch-Ochiai’s Theorem (N. ’77-’81). Let X be an algebraic variety of dimen-
sion n. If q̄(X) > n, then ∀f : C → X is degenerate.

N.B. Log Bloch-Ochiai’s theorem unifies Borel’s and Bloch-Ochiai’s Theorems in terms
of log irregularities.

3



The proof is reduced as follows: Let V be a smooth n-dimensional projective variety, let
D be a reduced divisor on V , and set X = V \D. Let α : X → AX be the quasi-Albanese
map.

Theorem (N. ’77-’81). If the log Kodaira dimension κ̄(α(X)
Zar

) = n, then ∃λ > 0
such that for ∀ nondegenerate f : C → V

λTf (r) ≤ N1(r; f
∗D) + O(δ log r + log Tf (r))||δ, ∀δ > 0.

Problem 1. What is the best λ?

The proof of Log Bloch-Ochiai’s Theorem is reduced to the case where X is of general
type. Therefore it is considered as a special case of Green-Griffiths’ Conjecture. Thus,
we may ask

Problem 2. Assuming κ̄(X) = dim X, can we decrease the lower bound “n < q̄(X)”
in Log Bloch-Ochiai’s Theorem?

E.g.: Given 4 lines Li ⊂ P2(1 ≤ i ≤ 4) in general position, we merge 2 lines L3 and L4

to a quadric D3, so that L1 + L2 + D3 has only s.n.c., and set

X = P2 \ (L1 ∪ L2 ∪ D3).

Then q̄(X) = κ̄(X) = 2.

M. Green’s Conjecture (’74). Is ∀f : C → X degenerate?

M. Green proved this for f of finite order.

N.B. κ̄(X) = q̄(X) = 2 and the quasi-Albanese αX : X → (C∗)2 is finite.

We proved M. Green’s Conjecture in much more general form (cf. §5). Note that in
the case of Diophantine approximation, the the analogous problem is open; Corvaja and
Zannier lately dealt with the problem over function fields in a preprint.

§4 Semi-abelian varieties.

Let A be a semi-abelian variety; i.e.,

0 → (C∗)t → A → A0 → 0,

where A0 is an abelian variety. Let Jk(A)(k ≥ 0) be the k-jet space over A, let f : C → A
be a holomorphic curve, let Jk(f) : C → Jk(X) be the k-jet lift, and set

Xk(f) = Jk(f)(C)
Zar

⊂ Jk(A).

As an answer to Problem 1 we have

Theorem 2 (N.-Winkelmann-Yamanoi [3]). Assume that f : C → A is nondegenerate.

(i) Let Z be an algebraic reduced subvariety of Xk(f). Then ∃X̄k(f), a compactification
of Xk(f) such that

T (r; ωZ̄,Jk(f)) 5 N1(r; Jk(f)∗Z) + ϵTf (r)||ϵ, ∀ϵ > 0,
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where Z̄ is the closure of Z in X̄k(f).

(ii) Moreover, if codim Xk(f)Z = 2, then

T (r; ωZ̄,Jk(f)) 5 ϵTf (r)||ϵ, ∀ϵ > 0.

(iii) When k = 0 and Z is an effective reduced divisor D on A, Ā can be chosen as smooth,
equivariant with respect to A-action, and independent of f , and we have

Tf (r; L(D̄)) 5 N1(r; f
∗D) + ϵTf (r; L(D̄))||ϵ, ∀ϵ > 0.

The above (iii) gives yet another proof of Lang’s conjecture:

Corollary 3 (Siu-Yeung ’96, N. ’98, McQuillan ’01). Let D be an effective reduced divisor
on A (semi-abelian). Then ∀f : C → A \ D is degenerate.

§5 Finite cover of semi-abelian variety.

As an application of Theorem 2 we give an answer to Problem 2.

Let X be a normal variety, not necessarily compact, and let A be a semi-abelian variety.

Theorem 4 (N.-Winkelmann-Yamanoi [1]). Assume that

(i) ∃a finite morphism π : X → A;

(ii) κ̄(X) > 0.

Then ∀f : C → X is degenerate.

N.B. (Kawamata ’81) Under condition (i),

κ̄(X) > 0 ⇔ X is not isomorphic to a semi-abelian variety.

Corollary 5 Assume that the quasi-Albanese map of X is proper, and moreover that

κ̄(X) > 0, q̄(X) ≥ dim X.

Then ∀f : C → X is degenerate.

For the proof of Theorem 4 we need the following precise resolution and compactification
of X.

Theorem 6 Let π : X → A be a finite morphism from a normal variety X of dim X = n
onto a semi-abelian variety A. Let Ā be a smooth equivariant compactification of A. Let
D denote the critical locus of π; i.e. the closure of the set of all π(z), where z ∈ Xreg and
rank dπ < n.

Then there exist
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(a) a desingularization τ : X̃ → X and a smooth compactification j : X̃ ↪→ X̂ such that

the boundary divisor ∂X̂ = X̂ \ j(X̃) has only s.n.c.;

(b) a proper holomorphic map ψ : X̂ → Ā such that ψ ◦ j = π ◦ τ with ψ−1(A) = X̃;

(c) an effective divisor Θ on X̂;

(d) a subvariety Ŝ ⊂ X̂

such that

(i) Θ ∼ KX̂ + ∂X̂, the log canonical divisor of X̃,

(ii) ψ(Supp Θ) ⊂ D̄,

(iii) codim Aψ(Ŝ) ≥ 2,

(iv) for ∀f : ∆ → A, holomorphic curve from a disk ∆ in C with lifting F : ∆ → X̃ and

for z ∈ F−1(Supp Θ \ Ŝ) we have

multzF
∗Θ ≤ multzf

∗D − 1. (7)

Proof of Theorem 4:

By some theorem of Kawamata the case is easily reduced to κ̄(X) = dim X. Then the
above Θ is big and hence so is D̄. Set

F = π ◦ f : C → A.

Then ∃C > 0 such that
C−1Tf (r) < TF (r) < CTf (r). (8)

In this case we write
Tf (r) ∼ TF (r).

By Theorem 2 (S.M.T.)

mF (r; Θ) ≤ mf (r; D̄) ≤ ϵTf (r)||ϵ, ∀ϵ > 0. (9)

Theorem 6 (iv) implies

N(r; F ∗Θ) ≤ N(r; F ∗Ŝ) + N(r; f ∗D) − N1(r; f
∗D). (10)

Now codim Aψ(Ŝ) ≥ 2. Therefore we can infer from Theorem 2 (S.M.T.) that

N(r; F ∗Ŝ) ≤ N(r; f ∗(ψ∗Ŝ)) ≤ ϵTf (r)||ϵ. (11)

By virtue of Theorems 1 (F.M.T.) and 2 (S.M.T.) we have

N(r; f ∗D) − N1(r; f
∗D) ≤ Tf (r; L(D̄)) − N1(r; f

∗D)

≤ ϵTf (r)||ϵ, ∀ϵ > 0. (12)
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Now one infers from (10)–(12) that

N(r; F ∗Θ) ≤ ϵTf (r)||ϵ, ∀ϵ > 0. (13)

Since Θ is big,
TF (r) ∼ T (r; F ∗Θ).

Thus
TF (r) ≤ ϵTf (r)||ϵ, ∀ϵ > 0,

and so by (8)
TF (r) ≤ ϵTF (r)||ϵ. ∀ϵ > 0.

This is a contradiction.

Example and Question. Let Di, 1 ≤ i ≤ q, be irreducible hypersurfaces of Pn(C) in
general position; i.e., for distinct 1 ≤ i1 < · · · < ik ≤ q,

codim Di1 ∩ · · · ∩ Dik =

{
k, k ≤ n

∅, k > n.

Assume that deg
∑q

i=1 Di > n + 1.

Then, if q > n + 1, then Log Bloch-Ochiai’s Theorem implies the degeneracy of ∀f :
C → Pn(C) \

∑q
i=1 Di.

Suppose q = n + 1. Then q̄ (Pn(C) \
∑q

i=1 Di) = n. If every Di are smooth, then
κ̄(Pn(C) \

∑q
i=1 Di) = n, and hence Theorem 4 implies the degeneracy of ∀f : C →

Pn(C) \
∑q

i=1 Di; with n = 2 and q = 3 this resolves M. Green’s Conjecture in §3.

Question. Without the smoothness condition for each Di, can we have

κ̄

(
Pn(C) \

n+1∑
i=1

Di

)
> 0?

§6 Kobayashi Conjecture.

There is a nice preparation from algebraic side:

Theorem 14 (Ein ’88 ’91, Xu ’94, Voisin ’96). Let V ⊂ Pn(C) be a general hypersurface
of deg V ≥ 2n − 1. Then all subvarieties of V whatsoever are of general type.

Therefore, Green-Griffiths’ Conjecture implies the Kobayashi Conjecture.

We consider a specialized Fundamental Conjecture: Let V be a projective manifold of
dimension n with embedding X ↪→ PN(C).

Let π : V → Pn(C) be a generic projection, let D be the ramification divisor of π on
V , and let E be the critical value divisor on Pn(C).

In the sequel we have this setting in mind. Note that if π moves, then D and E are
deformed. Thus we may consider the following conjectures only for a generic projection
π : X → Pn(C).
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We specialize the Fundamental Conjecture as follows:

Conjecture A. Let f : C → Pn(C) be nondegenerate, and let E be a reduced divisor
E on Pn(C), allowing singularities. Then we have

{deg E − n − 1}Tf (r) ≤ N1(r; f
∗E) + ϵTf (r)||ϵ, ∀ϵ > 0.

We consider a milder conjecture for general projective V :

Conjecture B. Let f : C → V be nondegenerate, let D be a reduced divisor on V ,
allowing singularities. Then we have

N(r; f ∗D) − N1(r; f
∗D) ≤ ϵTf (r)||ϵ, ∀ϵ > 0.

Conjectures A and B imply Kobayashi Conjecture:

For we assume that f : C → X is nondegenerate. Let π : X → Pn(C) be a projection
with the ramification divisor D on X and the critical value divisor E on Pn(C), for which
Conjectures A and B hold.

Conjecture A implies that

(deg E − n − 1)Tg(r) ≤ N1(r; g
∗E) + ϵTg(r)||ϵ.

Thus, by combining this with Theorem 1 we obtain

N(r; g∗E) − N1(r; g
∗E)

≤ (n + 1)Tg(r) − mg(r; E) + ϵTg(r)||ϵ.

Because of ramifications we get

N1(r; f
∗D) ≤ N(r; g∗E) − N1(r; g

∗E)

≤ (n + 1)Tg(r) − mg(r; E) + ϵTg(r)||ϵ.

Conjecture B implies that

Tf (r; [D]) ≤ N1(r; f
∗D) + mf (r, D) + ϵTf (r)||ϵ.

Combining the above two with mf (r; D) ≤ mg(r; E), we have

Tf (r; [D]) ≤ (n + 1)Tg(r) − mg(r; E) + ϵTg(r) + mf (r; D)

≤ (n + 1)Tg(r) + ϵTg(r)||ϵ.

Note that KX = π∗KPn(C) + D, so that

Tf (r; KX) = −(n + 1)Tg(r) + Tf (r; [D]).

Therefore,
Tf (r; KX) ≤ ϵTg(r)||ϵ.
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Since KX is big, Tf (r; KX) ∼ Tg(r), so that we have a contradiction:

Tg(r) ≤ ϵTg(r)||ϵ, ∀ϵ > 0.

N.B. Similar Conjectures A and B for a finite cover X over
a semi-abelian variety A, being replaced Pn(C) by A, are true by Theorem 2.
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