On the Degeneracy of Holomorphic Curves
Junjiro Noguchi
(MSU-Tokyo)
Complex Geometry in Osaka
for Professor Fujiki’s KANREKI (60th birthday)
Osaka, 1-5 November 2007

§1 Introduction.
I would like to discuss the degeneracy problem of holomorphic curves into complex projective varieties.

In this talk, algebraic varieties are those defined over \mathbb{C}, and $f : \mathbb{C} \to X$ stands for a holomorphic curve into an algebraic variety X, unless otherwise mentioned. We say that $f : \mathbb{C} \to X$ is degenerate if it is algebraically degenerate; i.e., the image $f(\mathbb{C})$ is contained by a proper algebraic subset of X.

Green-Griffiths Conjecture (Log version). Let X be an algebraic variety of general type. Then $\forall f : \mathbb{C} \to X$ is degenerate.

Kobayashi Conjecture. Let $V \subset \mathbb{P}^n(\mathbb{C})$ be a “generic” hypersurface of $\deg V \geq 2n - 1$. Then V is Kobayashi hyperbolic; equivalently by Brody’s Theorem $\forall f : \mathbb{C} \to X$ is constant.

Fundamental Conjecture for holomorphic curves. Let V be a smooth projective variety and let D be an s.n.c. (simple normal crossing) divisor on V. Then for a nondegenerate $f : \mathbb{C} \to V$

$$T_f(r; [D]) + T_f(r; K_V) \leq N_1(r; f^*D) + \epsilon T_f(r)||, \forall \epsilon > 0.$$

Here, “$||\epsilon$” means that the stated estimate holds for $r > 0$ except for those of a Borel subset of $(0, \infty)$ dependent on $\epsilon > 0$ with finite measure.

This conjecture is modeled after a successful generalization of Nevanlinna’s theory to the case of differentially nondegenerate holomorphic mappings $f : \mathbb{C}^n \to V$ ($n = \dim V$) (Carlson, Griffiths, King, ...). Note that

Fundamental Conjecture for holomorphic curves
\Rightarrow Green-Griffiths Conjecture (immediate),

and then
\Rightarrow Kobayashi Conjecture (not so immediate).

§2 Notation and First Main Theorem.
Let $E = \sum_{\mu=1}^{\infty} \nu_\mu z_\mu$ be a divisor on \mathbb{C} with distinct $z_\mu \in \mathbb{C}$. Then we set

$$\text{ord}_z E = \begin{cases}
\nu_\mu, & z = z_\mu, \\
0, & z \notin \{z_\mu\}.
\end{cases}$$
We define the *counting functions* of E truncated to $l \leq \infty$ by

$$n_l(t; E) = \sum_{\{z_\mu \prec t\}} \min\{\nu_\mu, l\}, \quad N_l(r; E) = \int_1^r \frac{n_l(t; E)}{t} dt.$$

When $l = \infty$, we write

$$n(t; E) = n_\infty(t; E), \quad N(r; E) = N_\infty(r; E).$$

Let X be a compact reduced complex space with structure sheaf \mathcal{O}_X, and let $\mathcal{I} \subset \mathcal{O}_X$ be a coherent ideal sheaf. For a holomorphic curve $f : \mathbb{C} \to X$, $f(\mathbb{C}) \not\subset \text{Supp} \mathcal{O}_X/\mathcal{I}$ we are going to define 3 quantities, $m_f(r; \ast), N_l(r; \ast), T(r; \ast)$ as follows.

1. there are finitely many sections $\sigma_{jk} \in \Gamma(U_j, \mathcal{I}), k = 1, 2, \ldots,$ generating every fiber \mathcal{I}_x over $x \in U_j$;
2. there is a partition of unity $\{c_j\}$ subordinate to $\{U_j\}$.

Setting

$$\rho_{\mathcal{I}}(x) = \left(\sum_j c_j(x) \sum_k |\sigma_{jk}(x)|^2 \right)^{1/2},$$

we take a constant $C > 0$ so that

$$\hat{\rho}_{\mathcal{I}}(x) = C\rho_{\mathcal{I}}(x) \leq 1, \quad x \in M.$$

Using the compactness of X, one easily verifies that $\log \hat{\rho}_{\mathcal{I}}$ (Weil function in arithmetic) is well-defined up to a bounded function on X.

We define the *approximation (proximity)* function of f for \mathcal{I} or for the subspace $Y = (\text{Supp} \mathcal{O}_X/\mathcal{I}, \mathcal{O}/\mathcal{I})$ (possibly non-reduced) by

$$m_f(r; \mathcal{I}) = m_f(r; Y) = \int_{|z|=r} \log \frac{1}{\hat{\rho}_{\mathcal{I}}(f(z))} \frac{d\theta}{2\pi} \quad (\geq 0).$$

- $\hat{\rho}_{\mathcal{I}} \circ f(z)$ is C^∞ over $\mathbb{C} \setminus f^{-1}(\text{Supp} Y)$.
- For $z_0 \in f^{-1}(\text{Supp} Y)$, \exists neighborhood $U \ni z_0$ and $\exists \nu \in \mathbb{Z}_{>0}$ such that $(f^*\mathcal{I})|_U = ((z - z_0)^\nu)$.
Then
\[\log \hat{\rho}_\mathcal{I} \circ f(z) = \nu \log |z - z_0| + \psi(z), \quad z \in U, \]
where \(\psi(z) \) is \(C^\infty \) on \(U \). We define the counting function
\[N(r; f^*\mathcal{I}), \quad N_i(r; f^*\mathcal{I}) \]
by using \(\nu \) in the same way as \(N(r; E) \) and \(N_i(r; E) \). Moreover we define
\[\omega_{\mathcal{I}, f} = \omega_{Y, f} = -dd^c\psi(z) = -\frac{i}{2\pi} \partial \bar{\partial} \psi(z) \]
\[= dd^c \log \frac{1}{\hat{\rho}_\mathcal{I} \circ f(z)} \quad (z \in U), \]
which is well-defined on \(\mathbb{C} \) as a smooth \((1,1)\)-form. The order function of \(f \) for \(\mathcal{I} \) or \(Y \) is defined by
\[T(r; \omega_{\mathcal{I}, f}) = \int_1^r \frac{dt}{t} \int_{|z| < t} \omega_{\mathcal{I}, f}. \]

If \(\mathcal{I} \) is the ideal sheaf defined by a Cartier effective divisor \(D \) on \(X \), in terms of commonly used notation we have
\[m_f(r; \mathcal{I}) = m_f(r; D) + O(1), \]
\[T(r; \omega_{\mathcal{I}, f}) = T_f(r; [D]) + O(1). \]

Fix a hermitian form \(\omega_X \) on \(X \). We define a standard order function by
\[T_f(r) = T(r; \omega_X) = \int_1^r \frac{dt}{t} \int_{|z| < t} f^*\omega_X. \]

Theorem 1 (First Main Theorem, N. ’03). Let \(f : \mathbb{C} \to X \) and let \(\mathcal{I} \) be as above. Then
\[T(r; \omega_{\mathcal{I}, f}) = N(r; f^*\mathcal{I}) + m_f(r; \mathcal{I}) - m_f(1; \mathcal{I}). \]

§3 Classical results.

E. Borel’s Theorem (1897). Let \(H_i \subset \mathbb{P}^n(\mathbb{C}), 1 \leq i \leq l, \) be hyperplanes in general position. If \(l > n + 1 \), then \(\forall f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \setminus \bigcup_{i=1}^l H_i \) is (linearly) degenerate.

N.B. The log irregularity
\[\bar{q}(\mathbb{P}^n(\mathbb{C}) \setminus \bigcup_{i}^l H_i) = l - 1 > n \iff l > n + 1. \]

Bloch-Ochiai’s Theorem (’26-’77). Let \(V \) be an \(n \)-dimensional projective algebraic variety. If the irregularity \(q(V) > n \), then \(\forall f : \mathbb{C} \to V \) is degenerate.

Log Bloch-Ochiai’s Theorem (N. ’77-’81). Let \(X \) be an algebraic variety of dimension \(n \). If \(\bar{q}(X) > n \), then \(\forall f : \mathbb{C} \to X \) is degenerate.

N.B. Log Bloch-Ochiai’s theorem unifies Borel’s and Bloch-Ochiai’s Theorems in terms of log irregularities.
The proof is reduced as follows: Let V be a smooth n-dimensional projective variety, let D be a reduced divisor on V, and set $X = V \setminus D$. Let $\alpha : X \to A_X$ be the quasi-Albanese map.

Theorem (N. '77-'81). If the log Kodaira dimension $\tilde{\kappa}(\alpha(X)^{\text{Zar}}) = n$, then $\exists \lambda > 0$ such that for \forall nondegenerate $f : C \to V$

$$\lambda T_f(r) \leq N_1(r; f^*D) + O(\delta \log r + \log T_f(r))||\delta, \forall \delta > 0.$$

Problem 1. What is the best λ?

The proof of Log Bloch-Ochiai’s Theorem is reduced to the case where X is of general type. Therefore it is considered as a special case of Green-Griffiths’ Conjecture. Thus, we may ask

Problem 2. Assuming $\tilde{\kappa}(X) = \dim X$, can we decrease the lower bound “$n < \tilde{q}(X)$” in Log Bloch-Ochiai’s Theorem?

E.g.: Given 4 lines $L_i \subset P^2 (1 \leq i \leq 4)$ in general position, we merge 2 lines L_3 and L_4 to a quadric D_3, so that $L_1 + L_2 + D_3$ has only s.n.c., and set

$$X = P^2 \setminus (L_1 \cup L_2 \cup D_3).$$

Then $\tilde{q}(X) = \tilde{\kappa}(X) = 2$.

M. Green’s Conjecture (’74). Is $\forall f : C \to X$ degenerate?

M. Green proved this for f of finite order.

N.B. $\tilde{\kappa}(X) = \tilde{q}(X) = 2$ and the quasi-Albanese $\alpha_X : X \to (C^*)^2$ is finite.

We proved M. Green’s Conjecture in much more general form (cf. §5). Note that in the case of Diophantine approximation, the analogous problem is open; Corvaja and Zannier lately dealt with the problem over function fields in a preprint.

§4 Semi-abelian varieties.

Let A be a semi-abelian variety; i.e.,

$$0 \to (C^*)^t \to A \to A_0 \to 0,$$

where A_0 is an abelian variety. Let $J_k(A)(k \geq 0)$ be the k-jet space over A, let $f : C \to A$ be a holomorphic curve, let $J_k(f) : C \to J_k(X)$ be the k-jet lift, and set

$$X_k(f) = \overline{J_k(f)(C)^{\text{Zar}}} \subset J_k(A).$$

As an answer to Problem 1 we have

Theorem 2 (N.-Winkelmann-Yamanoi [3]). Assume that $f : C \to A$ is nondegenerate.

(i) Let Z be an algebraic reduced subvariety of $X_k(f)$. Then $\exists \tilde{X}_k(f), a compactification of X_k(f) such that

$$T(r; \omega_{Z,J_k(f)}^X) \leq N_1(r; J_k(f)^*Z) + \epsilon T_f(r)||\epsilon, \forall \epsilon > 0,$$

4
where \hat{Z} is the closure of Z in $\hat{X}_k(f)$.

(ii) Moreover, if $\text{codim}_{X_k(f)} Z \geq 2$, then

$$T(r; \omega_{\hat{Z}, X_k(f)}) \leq \epsilon T_f(r) \|_{\epsilon}, \quad \forall \epsilon > 0.$$

(iii) When $k = 0$ and Z is an effective reduced divisor D on A, \hat{A} can be chosen as smooth, equivariant with respect to A-action, and independent of f, and we have

$$T_f(r; L(\hat{D})) \leq N_1(r; f^* D) + \epsilon T_f(r; L(\hat{D})) \|_{\epsilon}, \quad \forall \epsilon > 0.$$

The above (iii) gives yet another proof of Lang’s conjecture:

Corollary 3 (Siu-Yeung ’96, N. ’98, McQuillan ’01). Let D be an effective reduced divisor on A (semi-abelian). Then $\forall f : C \to A \setminus D$ is degenerate.

§5 Finite cover of semi-abelian variety.

As an application of Theorem 2 we give an answer to Problem 2.

Let X be a normal variety, not necessarily compact, and let A be a semi-abelian variety.

Theorem 4 (N.-Winkelmann-Yamanoi [1]). Assume that

(i) $\exists a$ finite morphism $\pi : X \to A$;

(ii) $\bar{\kappa}(X) > 0$.

Then $\forall f : C \to X$ is degenerate.

N.B. (Kawamata ’81) Under condition (i),

$$\bar{\kappa}(X) > 0 \Leftrightarrow X \text{ is not isomorphic to a semi-abelian variety.}$$

Corollary 5 Assume that the quasi-Albanese map of X is proper, and moreover that

$$\bar{\kappa}(X) > 0, \quad \bar{q}(X) \geq \dim X.$$

Then $\forall f : C \to X$ is degenerate.

For the proof of Theorem 4 we need the following precise resolution and compactification of X.

Theorem 6 Let $\pi : X \to A$ be a finite morphism from a normal variety X of $\dim X = n$ onto a semi-abelian variety A. Let \hat{A} be a smooth equivariant compactification of A. Let D denote the critical locus of π; i.e. the closure of the set of all $\pi(z)$, where $z \in X_{\text{reg}}$ and $\text{rank } d\pi < n$.

Then there exist
(a) a desingularization \(\tau : \tilde{X} \to X \) and a smooth compactification \(j : \tilde{X} \hookrightarrow \hat{X} \) such that the boundary divisor \(\partial \hat{X} = \hat{X} \setminus j(\tilde{X}) \) has only s.n.c.;

(b) a proper holomorphic map \(\psi : \hat{X} \to \bar{A} \) such that \(\psi \circ j = \pi \circ \tau \) with \(\psi^{-1}(A) = \tilde{X} \);

(c) an effective divisor \(\Theta \) on \(\hat{X} \);

(d) a subvariety \(\hat{S} \subset \hat{X} \)

such that

(i) \(\Theta \sim K_{\tilde{X}} + \partial \hat{X} \), the log canonical divisor of \(\tilde{X} \),

(ii) \(\psi(\text{Supp} \Theta) \subset \bar{D} \),

(iii) \(\text{codim}_A \psi(\hat{S}) \geq 2 \),

(iv) for all \(f : \Delta \to A \), holomorphic curve from a disk \(\Delta \) in \(C \) with lifting \(F : \Delta \to \tilde{X} \) and for \(z \in F^{-1}(\text{Supp} \Theta \setminus \hat{S}) \) we have

\[
\text{mult}_z F^* \Theta \leq \text{mult}_z f^* D - 1. \tag{7}
\]

Proof of Theorem 4:

By some theorem of Kawamata the case is easily reduced to \(\kappa(X) = \dim X \). Then the above \(\Theta \) is big and hence so is \(\bar{D} \). Set

\[F = \pi \circ f : C \to A. \]

Then \(\exists \epsilon > 0 \) such that

\[
C^{-1} T_f(r) < T_F(r) < CT_f(r). \tag{8}
\]

In this case we write

\[T_f(r) \sim T_F(r). \]

By Theorem 2 (S.M.T.)

\[
m_F(r; \Theta) \leq m_f(r; \bar{D}) \leq \epsilon T_f(r)||_\epsilon, \quad \forall \epsilon > 0. \tag{9}
\]

Theorem 6 (iv) implies

\[
N(r; F^* \Theta) \leq N(r; F^* \hat{S}) + N(r; f^* D) - N_1(r; f^* D). \tag{10}
\]

Now \(\text{codim}_A \psi(\hat{S}) \geq 2 \). Therefore we can infer from Theorem 2 (S.M.T.) that

\[
N(r; F^* \hat{S}) \leq N(r; f^* (\psi_\ast \hat{S})) \leq \epsilon T_f(r)||_\epsilon. \tag{11}
\]

By virtue of Theorems 1 (F.M.T.) and 2 (S.M.T.) we have

\[
N(r; f^* D) - N_1(r; f^* D) \leq T_f(r; L(\bar{D})) - N_1(r; f^* D) \leq \epsilon T_f(r)||_\epsilon, \quad \forall \epsilon > 0. \tag{12}
\]
Now one infers from (10)–(12) that
\[N(r; F^* \Theta) \leq \epsilon T_f(r) ||\epsilon, \quad \forall \epsilon > 0. \]
(13)

Since \(\Theta \) is big,
\[T_F(r) \sim T(r; F^* \Theta). \]
Thus
\[T_F(r) \leq \epsilon T_f(r) ||\epsilon, \quad \forall \epsilon > 0, \]
and so by (8)
\[T_F(r) \leq \epsilon T_F(r) ||\epsilon, \quad \forall \epsilon > 0. \]
This is a contradiction.

Example and Question. Let \(D_i, 1 \leq i \leq q \), be irreducible hypersurfaces of \(\mathbb{P}^n(\mathbb{C}) \) in general position; i.e., for distinct \(1 \leq i_1 < \cdots < i_k \leq q \),

\[\text{codim } D_{i_1} \cap \cdots \cap D_{i_k} = \begin{cases} k, & k \leq n \\ \emptyset, & k > n. \end{cases} \]

Assume that \(\text{deg} \sum_{i=1}^q D_i > n + 1 \).

Then, if \(q > n + 1 \), then Log Bloch-Ochiai’s Theorem implies the degeneracy of \(\forall f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \setminus \sum_{i=1}^q D_i \).

Suppose \(q = n + 1 \). Then \(\bar{q}(\mathbb{P}^n(\mathbb{C}) \setminus \sum_{i=1}^q D_i) = n \). If every \(D_i \) are smooth, then \(\bar{\kappa}(\mathbb{P}^n(\mathbb{C}) \setminus \sum_{i=1}^q D_i) = n \), and hence Theorem 4 implies the degeneracy of \(\forall f : \mathbb{C} \to \mathbb{P}^n(\mathbb{C}) \setminus \sum_{i=1}^q D_i \); with \(n = 2 \) and \(q = 3 \) this resolves M. Green’s Conjecture in §3.

Question. Without the smoothness condition for each \(D_i \), can we have
\[\bar{\kappa}(\mathbb{P}^n(\mathbb{C}) \setminus \sum_{i=1}^{n+1} D_i) > 0? \]

§6 Kobayashi Conjecture.

There is a nice preparation from algebraic side:

Theorem 14 (Ein ’88 ’91, Xu ’94, Voisin ’96). Let \(V \subset \mathbb{P}^n(\mathbb{C}) \) be a general hypersurface of \(\text{deg} V \geq 2n - 1 \). Then all subvarieties of \(V \) whatsoever are of general type.

Therefore, Green-Griffiths’ Conjecture implies the Kobayashi Conjecture.

We consider a specialized Fundamental Conjecture: Let \(V \) be a projective manifold of dimension \(n \) with embedding \(X \hookrightarrow \mathbb{P}^N(\mathbb{C}) \).

Let \(\pi : V \to \mathbb{P}^n(\mathbb{C}) \) be a generic projection, let \(D \) be the ramification divisor of \(\pi \) on \(V \), and let \(E \) be the critical value divisor on \(\mathbb{P}^n(\mathbb{C}) \).

In the sequel we have this setting in mind. Note that if \(\pi \) moves, then \(D \) and \(E \) are deformed. Thus we may consider the following conjectures only for a generic projection \(\pi : X \to \mathbb{P}^n(\mathbb{C}) \).
We specialize the Fundamental Conjecture as follows:

Conjecture A. Let $f : C \to P^n(C)$ be nondegenerate, and let E be a reduced divisor E on $P^n(C)$, allowing singularities. Then we have
\[
\{\deg E - n - 1\}T_f(r) \leq N_1(r; f^*E) + \epsilon T_f(r)||\epsilon, \quad \forall \epsilon > 0.
\]

We consider a milder conjecture for general projective V:

Conjecture B. Let $f : C \to V$ be nondegenerate, let D be a reduced divisor on V, allowing singularities. Then we have
\[
N(r; f^*D) - N_1(r; f^*D) \leq \epsilon T_f(r)||\epsilon, \quad \forall \epsilon > 0.
\]

Conjectures A and B imply Kobayashi Conjecture:

For we assume that $f : C \to X$ is nondegenerate. Let $\pi : X \to P^n(C)$ be a projection with the ramification divisor D on X and the critical value divisor E on $P^n(C)$, for which Conjectures A and B hold.

Conjecture A implies that
\[
(\deg E - n - 1)T_g(r) \leq N_1(r; g^*E) + \epsilon T_g(r)||\epsilon.
\]
Thus, by combining this with Theorem 1 we obtain
\[
N(r; g^*E) - N_1(r; g^*E) \\
\leq (n + 1)T_g(r) - m_g(r; E) + \epsilon T_g(r)||\epsilon.
\]

Because of ramifications we get
\[
N_1(r; f^*D) \leq N(r; g^*E) - N_1(r; g^*E) \\
\leq (n + 1)T_g(r) - m_g(r; E) + \epsilon T_g(r)||\epsilon.
\]

Conjecture B implies that
\[
T_f(r; [D]) \leq N_1(r; f^*D) + m_f(r, D) + \epsilon T_f(r)||\epsilon.
\]
Combining the above two with $m_f(r; D) \leq m_g(r; E)$, we have
\[
T_f(r; [D]) \leq (n + 1)T_g(r) - m_g(r; E) + \epsilon T_g(r) + m_f(r; D) \\
\leq (n + 1)T_g(r) + \epsilon T_g(r)||\epsilon.
\]

Note that $K_X = \pi^*K_{P^n(C)} + D$, so that
\[
T_f(r; K_X) = -(n + 1)T_g(r) + T_f(r; [D]).
\]

Therefore,
\[
T_f(r; K_X) \leq \epsilon T_g(r)||\epsilon.
\]
Since K_X is big, $T_f(r; K_X) \sim T_g(r)$, so that we have a contradiction:

$$T_g(r) \leq \epsilon T_g(r) ||_\epsilon, \quad \forall \epsilon > 0.$$

N.B. Similar Conjectures A and B for a finite cover X over a semi-abelian variety A, being replaced $\mathbb{P}^n(\mathbb{C})$ by A, are true by Theorem 2.

References

1. 野口潤次郎, 多変数ネヴァンリンナ理論とディオファントス近似 (Nevanlinna Theory in Several Variables and Diophantine Approximation), viii+264 pp., 共立出版 (Kyoritsu Publ.), 2003.

See bibliographies of the above references for more.