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We will discuss some new results in the Nevanlinna theory of holomorphic curves into algebraic varieties.
The central problem is the following conjecture, strengthened from the original of Griffiths (1972):

Griffiths Conjecture 1 (1972). Let f : C → M be an algebraically non-degenerate holomorphic curve
into a complex projective manifold M . Let D be an effective reduced divisor of simple normal crossings.
Then we have

(0.1) Tf (r; L(D)) + Tf (r; KM ) ≤ N1(r; f∗D) + ϵTf (r)||ϵ, ∀ϵ > 0.

Here N1(r; f∗D) stands for the counting function truncated to level one.
Vojta formulated an analogue of this conjecture in Diophantine approximation theory with the non-

truncated counting function N(r; f∗D) and proposed Vojta’s dictionary, which has brought interesting
observations and motivations in the both theories.

Griffiths Conjecture 1 implies
Griffiths Conjecture 2 (1972). Let X be a (complex) algebraic variety of log general type. Then every

holomorphic curve f : C → X is algebraically degenerate.

1 Order function.

We need to define the order function of f in a more general form than those already known (cf., e.g.,
Stoll [21], Noguchi-Ochiai [8]).

In what follows X is a compact complex reduced space and a subspace is a closed one. Let OX denote
the structure sheaf of local holomorphic functions over X. Let Y be a subspace of X, not necessarily
reduced, and let I ⊂ OX be the defining coherent ideal sheaf of Y . Here one may begin with taking
a coherent ideal sheaf I ⊂ OX and take a subspace Y defined by I. In any case, there are a finite
open covering X =

∪
Uλ of X and holomorphic functions σλ1, . . . , σλlλ on Uλ such that at every point

x ∈ Uλ their germs σλ1x
, . . . , σλlλ x

generate the fiber Ix of I at x. Take relatively compact open covering
Vλ b Uλ, X =

∪
Vλ. We take ρλ ∈ C∞

0 (Uλ) with ρλ|Vλ
≡ 1 and set

(1.1) dY (x) = dI(x) =
∑

λ

ρλ(x)

 lλ∑
j=1

|σλj(x)|2
1/2

, x ∈ N

(cf. [11] Chap. 2 §3, [25] §2, [16]). Another finite open covering and another local generators of IY yield
a function d′Y by the same construction as above. Then there is a constant C > 0 such that

(1.2) | log dY (x) − log d′
Y (x)| ≤ C, x ∈ X.

The function dY (x) stands for “a sort of the distance” between x and the subspace Y . We call

ϕY (x) = ϕI(x) = − log dY (x), x ∈ X

the Weil function or the proximity (approximation) potential of Y .
For a holomorphic curve f : C → X with f(C) ̸⊂ Supp Y we define

ωY,f = ωI,f = −ddcϕY (z) = − i

2π
∂∂̄ϕY (z)(1.3)

= ddc log
1

dY ◦ f(z)
,



which is a smooth (1,1)-form on C. The order function of f for Y or I is defined by

(1.4) T (r; ωY,f ) = T (r; ωI,f ) =
∫ r

1

dt

t

∫
|z|<t

ωY,f .

When I defines a Cartier divisor D on M , we see that

T (r; ωI,f ) = Tf (r; L(D)) + O(1),

where Tf (r;L(D)) is the order function defined by the Chern class of L (cf. [8]).
Similarly taking a hermitian metric form ω on Xred, we define an order function of f with respect to

ω by

Tf (r) = T (r; f∗ω) =
∫ r

1

dt

t

∫
|z|<t

f∗ω.

Then in general we have
T (r; ωI,f ) = O(Tf (r)).

The proximity function (or approximation function) of f for Y is defined by

(1.5) mf (r, Y ) = mf (r, I) =
∫
|z|=r

ϕY ◦ f(z)
dθ

2π
.

It follows from (1.1) that the integral is finite, and from (1.2) that mf (r, Y ) is well-defined up to O(1)-
term.

Let Y , X =
∪

Uλ and σλ1, . . . , σλlλ be as above. Suppose that f(ζ) ∈ Uλ. Then σλj ◦ f(z) are local
holomorphic functions in a neighborhood of ζ vanishing at ζ with multiplicity multζ σλj ◦ f . We define
the intersection multiplicity of f with Y by

multζf
∗Y = min{multζσλj ◦ f ; 1 ≤ j ≤ lλ},

which is independent of the choice of local generators σλj . The counting function with truncation level
k ≤ ∞ is defined by

Nk(r; f∗Y ) = Nk(r; f∗I) =
∫ r

1

dt

t

∑
|ζ|<t

min{multζf
∗Y, k}.

We set N(r; f∗Y ) = N(r; f∗I) = N∞(r; f∗Y ).

Theorem 1.6 ([25], [17]) Let f : C → X and I be as above. Then we have the following:

(i) (First Main Theorem) T (r; ωI,f ) = N(r; f∗I) + mf (r; I) − mf (1; I).

(ii) Let Ii (i = 1, 2) be coherent ideal sheaves of OX and let Yi be the subspace defined by Ii. If I1 ⊂ I2

or equivalently Y1 ⊃ Y2, then
mf (r;Y2) ≤ mf (r; Y1) + O(1).

(iii) Let ϕ : X1 → X2 be a holomorphic mappings between compact complex manifolds. Let I2 ⊂ OX2 be
a coherent ideal sheaf and let I1 ⊂ OX1 be the coherent ideal sheaf generated by ϕ∗I2. Then

mf (r; I1) = mϕ◦f (r; I2) + O(1).

(iv) Let Ii, i = 1, 2, be two coherent ideal sheaves of OX . Suppose that f(C) ̸⊂ Supp (OX/I1 ⊗ I2).
Then we have

T (r; ωI1⊗I2,f ) = T (r; ωI1,f ) + T (r; ωI2,f ) + O(1).

(v) A holomorphic curve f : C → X is a rational curve if and only if Tf (r) = O(log r), provided that
X is algebraic.
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Here we recall the classical result for a holomorphic curve f : C → Pn(C) into the complex projective
space of dimension n. We set Tf (r) = T (r; Ω) with Fubini-Study metric form Ω.

Theorem 1.7 (Nevanlinna-Cartan) Let f : C → Pn(C) be a linearly non-degenerate holomorphic curve,
i.e., f(C) is not contained in a hyperplane. Let {Hj}q

j=1 be hyperplanes of Pn(C) in general position.
Then

(1.8) (q − n − 1)Tf (r) ≤
q∑

j=1

Nn(r, f∗Hj) + O(log r) + O(log Tf (r))||,

where the symbol “||” stands for the estimate to hold for r > 0 outside a Borel subset of finite total
Lebesgue measure.

2 Min Ru’s result.

In the Diophantine approximation theory, P. Corvaja and U. Zannier [1] generalized Schmidt’s Subspace
Theorem to the case of hypersurfaces in the projective space Pn, and then J.-H. Evertse and R.G. Feretti
[3], [4] generalized it to the case of subspace M ⊂ Pn.

Min Ru [18], [19] found their analogue to be valid in the theory of holomorphic curves and proved the
following:

Theorem 2.1 Let M ⊂ PN (C) be a smooth subvariety of dimension n. Let Di, 1 ≤ i ≤ q be hypersur-
faces of degree di in PN (C) which are in general position in M ; i.e.,

M ∩ Di1 ∩ · · · ∩ Din+1 = ∅

for all 1 ≤ i1 < · · · < in+1 ≤ q. Let f : C → M be an algebraically non-degenerate holomorphic curve.
Then

(q − n − 1 − ϵ)Tf (r; O(1)) ≤
q∑

i=1

1
di

N(r; f∗Di)||ϵ, ∀ϵ > 0.

In the proof the following approximation theorem due to H. Cartan is one key:

Theorem 2.2 Let Lj , j ∈ Q = {1, . . . , q} be linear forms on Pn(C) in general position. Let f : C →
Pn(C) be a linearly non-degenerate holomorphic curve. Then∫

|ζ|=r

max
K

∑
j∈K

log
∥f(ζ)∥∥Lj∥
|Lj(f(ζ))|

dθ

2π
≤ (n + 1 + ϵ)Tf (r; O(1))||ϵ,

where K ⊂ Q runs with |K| = n + 1.

This is showing the limit how much f(ζ) can approximate the divisor
∏

j∈Q Lj = 0 on Pn(C). They
apply a very elaborate combinatorial argument for Veronese embeddings of degree m as m → ∞ (ϵ → 0).

3 Dethloff-Lu’s result.

Theorem 3.1 (Log Bloch-Ochiai (N. ’77–’81, N.-Winkelmann [12])) Let X be a Zariski open subset of
a compact Kähler manifold X̄ such that the log irregularity q̄(X) > dimC X. Then no holomorphic curve
f : C → X has a Zariski dense image in X̄.

Problem. What happens in the case of q̄(X) = dimC X?
A holomorphic curve f : C → M into a compact hermitian manifold M is called a Brody curve if the

norm ∥f ′(z)∥ of the differential of f is bounded on C.
As for Griffiths Conjecture 2 G. Dethloff and S. Lu [2] dealt with Brody curves into algebraic surfaces.
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Theorem 3.2 Let X be a smooth algebraic surface of log general type with log irregularity q̄(X) = 2, and
let X̄ be a smooth compactification with s.n.c. ∂X = X̄ \X. Then every Brody curve f : C → X ⊂ X̄ is
algebraically degenerate.

Proposition 3.3 Let X be an algebraic surface with κ̄(X) = 1 and q̄(X) = 2. Assume that the quasi-
Albanese map αX : X → AX is proper (a bit more general assumption works). Then every holomorphic
curve f : C → X is algebraically degenerate.

By Kawamata’s theorem this is easily reduced to the case of dim X = q̄(X) = κ̄(X) = 1, and then
little Picard’s theorem is applied.

They gave an interesting example.

Remark 3.4 There is an algebraic surface X with κ̄(X) = 1 and q̄(X) = 2 which admits an algebraically
non-degenerate f : C → X.

On the other hand, J. Winkelmann gave another interesting example:

Remark 3.5 There is a compact projective threefold X such that

(i) κ(X) = 0 and q(X) = 3,

(ii) the Kobayashi hyperbolic pseudodistance dX ≡ 0,

(iii) there is a holomorphic curve f : C → X with the dense image in the sense of the differential
topology,

(iv) there is a proper subvariety Z ⊂ X satisfying that for every Brody g : C → X, g(C) ⊂ Z.

4 Semi-abelian varieties.

Let f : C → A be a holomorphic curve and let Jk(f) : C → Jk(A) denote the k-jet lift of f into the k-jet
space Jk(A) over A. Let Xk(f) denote the Zariski closure of the image of Jk(f).

Theorem 4.1 (N.-Winkelmann-Yamanoi [16]) Let A be a semi-abelian variety. Let f : C → A be a
holomorphic curve with Zariski dense image.

(i) Let Z be an algebraic reduced subvariety of Xk(f) (k ≥ 0). Then there exists a compactification
X̄k(f) of Xk(f) such that

(4.2) T (r; ωZ̄,Jk(f)) ≤ N1(r; Jk(f)∗Z) + ϵTf (r)||ϵ, ∀ϵ > 0,

where Z̄ is the closure of Z in X̄k(f).

(ii) Moreover, if codim Xk(f)Z ≥ 2, then

(4.3) T (r; ωZ̄,Jk(f)) ≤ ϵTf (r)||ϵ, ∀ϵ > 0.

(iii) In the case when k = 0 and Z is an effective divisor D on A, the compactification Ā of A can
be chosen as smooth, equivariant with respect to the A-action, and independent of f ; furthermore,
(4.2) takes the form

(4.4) Tf (r; L(D̄)) ≤ N1(r; f∗D) + ϵTf (r; L(D̄))||ϵ, ∀ϵ > 0.

Note that in the above estimate (4.2), (4.3) or (4.4) the error term “ϵTf (r)” cannot be replaced by
“O(log r) + O(log Tf (r))” (see [15] Example (5.36)).

Remark 4.5 (i) In N.-Winkelmann-Yamanoi [15] we proved (4.4) with a higher level truncated count-
ing function Nl(r; f∗D). In the case of abelian A (4.4) with truncation level one was obtained by
Yamanoi [26].

(ii) Theorem 4.1 is considered as the analogue of abc-Conjecture over semi-abelian varieties. Cf. Vojta
[24] for a result without order truncation.
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5 Application and conjecture.

As applications for Griffiths Conjecture 2 we have the following (see [17]).

Theorem 5.1 Let X be a complex algebraic variety and let π : X → A be a finite morphism onto a
semi-abelian variety A. Let f : C → X be an arbitrary entire holomorphic curve. If κ̄(X) > 0, then f is
algebraically degenerate.

Moreover, the normalization of the Zariski closure of f(C) is a semi-abelian variety which is a finite
étale cover of a translate of a proper semi-abelian subvariety of A.

Corollary 5.2 Let X be a complex algebraic variety whose quasi-Albanese map is a proper map. Assume
that κ̄(X) > 0 and q̄(X) ≥ dimX. Then every entire holomorphic curve f : C → X is algebraically
degenerate.

Theorem 5.3 Let Ei, 1 ≤ i ≤ q, be smooth hypersurfaces of the complex projective space Pn(C) of
dimension n such that E =

∑
Ei is a divisor of simple normal crossings. Assume that

(i) q ≥ n + 1.

(ii) deg E ≥ n + 2.

Then every holomorphic curve f : C → Pn(C) \ E is algebraically degenerate.

Remark 5.4 In Theorem 5.3 the case when n = 2, Ei, i = 1, 2, are lines and E3 is a quadric was a
conjecture of M. Green [5].

Let A be a semi-abelian variety and let D be an effective reduced divisor on A. Assume that the
stabilizer {a ∈ Aa + D = D}0 = {0}. Then there is an equivariant compactification Ā of A such that the
closure D̄ of D in Ā contains no A-orbit ([24], [16]). Let ∂A = Ā \A denote the boundary divisor, which
has only simple normal crossings.

Conjecture. Let f : C → Ā be an algebraically non-degenerate holomorphic curve. Then we have

(5.5) mf (r; D̄) + mf (r; ∂A) ≤ Tf (r; L(∂D)) + O(log r) + O(log Tf (r))||.

When f(C) ∩ ∂A = ∅, (5.5) was proved in [15].

6 Analogue in Diophantine approximation.

We first recall
Abc-Conjecture. Let a, b, c ∈ Z be co-prime numbers satisfying

(6.1) a + b = c.

Then for an arbitrary ϵ > 0 there is a number Cϵ > 0 such that

max{|a|, |b|, |c|} ≤ Cϵ

∏
prime p|(abc)

p1+ϵ.

Notice that the order of abc at every prime p is counted only by “1+ϵ” (truncation) when it is positive.
As in §1 we put x = [a, b] ∈ P1(Q). After Vojta’s notational dictionary ([22]), this is equivalent to

(6.2) (1 − ϵ)h(x) ≤ N1(x; 0) + N1(x;∞) + N1(x; 1) + Cϵ

for x ∈ P1(Q) (cf. [7], [23] for Pn). This is quite analogous to (1.8). Here we follow the notation in Vojta
[22] for number theory and Noguchi-Ochiai [8] for the Nevanlinna theory in particular,

h(x) = the height of x.

N1(x; ∗) = the counting function at ∗ truncated to level 1
(see below).
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Motivated by the results in sections 3 and 4, we formulate an analogue of abc-Conjecture over semi-
abelian varieties. Let k be an algebraic number field and let S ⊂ Mk be an arbitrarily fixed finite subset
of places of k containing all infinite places. Let A be a semi-abelian variety over k, let D be a reduced
divisor on A, let Ā be an equivariant compactification of A such that D̄(⊂ Ā) contains no A-orbit, and
let σD̄ be a regular section of the line bundle L(D̄) defining the divisor D̄.

Abc-Conjecture over semi-abelian variety. For an arbitrary ϵ > 0, there exits a constant Cϵ > 0 such
that for all x ∈ A(k) \ D

(6.3) (1 − ϵ)hL(D̄)(x) ≤ N1(x; S, D̄) + Cϵ.

Here hL(D̄)(x) denotes the height function with respect to L(D̄) and N1(x, D̄;S) denotes the S-counting
function truncated to level one:

N1(x; S, D̄) =
1

[k : Q]

∑
v∈Mk\S

ordpv σD̄(x)≥1

log Nk/Q(pv).

Remark. Cf. [14] for the analogue over algebraic function fields.
It may be interesting to specialize the above conjecture in dimension one.
Abc-Conjecture for S-units. We assume that a and b are S-units in (6.1); that is, x in (6.2) is an S-unit.

Then for arbitrary ϵ > 0, there exists Cϵ > 0 such that

(6.4) (1 − ϵ)h(x) ≤ N1(x; S, 1) + Cϵ.

Abc-Conjecture for elliptic curves. Let C be an elliptic curve defined as a closure of an affine curve,

y2 = x3 + c1x + c0, ci ∈ k∗.

In a neighborhood of ∞ ∈ C, σ∞ = x/y gives an affine parameter with σ∞(∞) = 0. Then for every ϵ > 0
there is a constant Cϵ > 0 such that for w ∈ C(k)

(1 − ϵ)h(w) ≤ N1(w; S,∞) + Cϵ

=
1

[k : Q]

∑
v∈Mk\S

ordpv σ∞(w)≥1

log Nk/Q(pv) + Cϵ.
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