
Recent Advances of the Theory

of Holomorphic Curves

and Related Topics

Junjiro Noguchi

Hanoi 2005 September

Abstarct: Beginning with the motivation of

the value distribution theory, I will discuss the

recent results of the theory of holomorphic

curves, applications and some related reuslts.



§0. Introduction

Basic motivation.

• To study a holomorphic map f : M →
X between complex (algebraic) spaces:

for example, the shape of the image, the

Zariski closure of f(M)?

• To study the intersections of f(M) and

analytic (algebraic) cycles Z of X.

Fundamental cases

(i) Need to assume X to be compact.

(ii) dimM = 1, M ≡ C.

(iii) dimM = dimX, f : M → X, differentiably

nondegenerate.



(iv) codim Z = 1.

(v) codim Z ≥ 2.

Nevanlina-Cartan Theory.

Let f : C → Pn(C) and D a divisor on Pn(C).

First Main Theorem (FMT). Assume that

f(C) ̸⊂ D. Then

Tf(r, L(D)) = N(r, fD) + mf(r, D) + O(1).

Second Main Theorem (SMT). Assume that

f is linearly nondegenerate, and that D =∑q
i=1 Hi is a sum of q hyperplanes in general

position.

Tf(r, L(D)) + Tf(r, KPn(C))

leq
q∑

i=1

N(r, f∗Hi) + Sf(r).

Here Sf(r) = O(log r) + O(logTf(r))|| is a

small term.



As typical applications we have the following.

Picard’s Theorem. (i) If f(C) ∩
(∑n+2

i=1 Hi

)
=

∅, then f is linearly degenerate.

(ii) If f(C) ∩
(∑2n+1

i=1 Hi

)
= ∅, then f is con-

stant.

Unicity Theorem (Fujimoto). Let g : C →
Pn(C) be a holomorphic curve. Assume that

f∗Hi = g∗Hi for i = 1, . . . ,3n+2. Then f ≡ g.

§1. FMT for Z of codim Z ≥ 1

Let X be a compact complex space.

Let Z be an effective analytic (algebraic) cy-

cle on X. Let IZ ⊂ OX be the coherent ideal

sheaf associated to Z.

Let I ⊂ OX be a coherent ideal sheaf.

Let X = ∪Uα be a finite open covering such

that there are local generators

σαi ∈ Γ(Uα, I),1 ≤ i ≤ να.



Set ρα(x) =
∑

i |σαi|2 ∈ C∞(Uα).

Take a particiton of unity {cα(x)} associated
with {Uα}. Set

ρ(x) =
∑
α

cα(x)ρα(x).

For a holomorphic curve f : C → X, define

ωI,f(z) = −
i

2π
∂∂̄ log ρ(f(z)),

T (r, ωI,f) =
∫ r

1

dt

t

∫
|z|<t

ωI,f .

Other choices of ραi and cα yields T̃ (r, ωI,f)
and

T̃ (r, ωI,f) − T (r, ωI,f) = O(1).

Lang’s Conjecture . If there is an embedding
k ↪→ C such that the obtained complex space
XC is Kobayashi hyperbolic, then the car-
dinality

|X(k)| < ∞.



Definition (S. Kobayashi 1967). For a con-

nected complex manifold or a space X and

its points x, y we take a chain of holomorphic

curves

fi : ∆ = {ζ ∈ C; |ζ| < 1} → X, 1 ≤ i ≤ l,

ζi ∈ ∆,

f1(0) = x, fi(ζi) = fi+1(0), fl(ζl) = y.

Denoting the Poincaré distance of ∆ by d∆(·, ·),
we set

dX(x, y) = inf
l∑

i=1

d∆(0, ζi).

Then dX(x, y) is a pseudo-distance.

X is Kobayashi hyperbolic if dX(x, y) is a real

distance function.

An analogue over function fields was proposed

by S. Lang and dealt with by Nog-85, Nog-

92, and some others; the following finiteness

theorem was a result in a special case:



Theorem 1 (Nog-85, 92). (1) Let X → R
be a family of compact hyperbolic spaces over
R. Here R may be an open variety such that
X → R a hyperboliccally embedded compact-
ifications X̄ → R̄ relative over R̄.

Then, if there are infintely many meromrophic
cross-sections, there is a constant subfamily
in X → R.

(2) (Specializing to constant family). Let X
be a Kobayashi hyperbolic compact complex
space. Let Y be another compact complex
space. Then there are only a finite number
of surjective meromorphic mappings from Y
onto X.

So far Nevanlinna theory offers a most ef-
fective tool to the Kobayashi hyperbolicity
problem for complex algebraic varieties, as
Diophantine approximation theroy provides a
powerful method to the finiteness problem or
distributions of rational points.

These relations are described by the following
diagram:



Fig. 1

We recall

Kobayashi Conjecture . A “generic” hyper-

surface X ⊂ Pn(C) of high degree (≥ 2n+1)

is Kobayashi hyperbolic.

Therefore such X defined over k should sat-

isfy

|X(k)| < ∞

according to Lang’s Conjecture.

For the existence of such hypersurfaces we

have

Theorem 2 (Masuda-Nog-96). For every n ∈
N there is a number d(n) such that for an

arbitrary d ≥ d(n) there is a Kobayashi hyper-

bolic projective hypersurface X ⊂ Pn(C) of

degree d.



Examples: In P3(C) we set

X
(2)
d = {x4d

0 + · · · + x4d
3 (3)

+ t(x0 · · ·x3)
d = 0},

t ̸= 0.

Then X
(2)
d with d ≥ 7 is Kobayashi hyper-

bolic.

In P4(C), X
(3)
d defined by

zd
1 + · · · + zd

5 + t1(z
2
1z2)

d/3 + t2(z
2
2z3)

d/3 (4)

+ t3(z
2
3z4)

d/3 + t4(z
2
4z1)

d/3

= 0, tj ∈ C∗,

d = 3e ≥ 192.

is Kobayashi hyperbolic for generic (tj); in
fact, it is so for (tj) = (−1,−1,1,1).

Note that abc · · · -Conjecture would imply

|X(i)
d (k)| < ∞, t ∈ k∗, i = 2,3.

It is also noted that X
(2)
1 is a Kummer K3

surface and there is a natural ramified cover-
ing X

(2)
d → X

(2)
1 .



Definition. Let X be an algebraic variety de-

fined over k. We say that X satisfies the

arithmetic finiteness property if |X(k′)| < ∞
for all finite extensions k′ of k.

Let S ⊂ Mk be an arbitrarily fixed finite subset

of places of k containing all infinite places.

Let US denote the set of S-units.

Let X
(i)
d (US) denote the subset of all points

of X
(i)
d (k) whose coordinates in (3) or in (4)

are S-units.

Then by making use of

Schmidt’s Subspace Theorem

we deduce the following.

Proposition 5 (Nog-97). Let Xd be as above.

Then |X(i)
d (US)| < ∞.

By Masuda-Nog-96 there exist such examples

in Pn(C) of arbitrary dimension.



Notice that abc · · · -Conjecture implies the arith-

metic finiteness property of all such projective

hypersurfaces.

Therefore it is natural and interesting to ask

if there is a projective hypersurface satisfying

the arithmetic finiteness property.

In fact we have

Theorem 6 (Nog-03). There exists a hy-

persurface X ⊂ Pn
Q satisfying the arithmetic

finiteness property.

We follow Shirosaki’s construction of a

Kobayashi hyperbolic projective hypersurface

(Shirosaki-98).

Let d, e ∈ N be co-prime, and assume d ≥
2e + 8. Set

P (w0, w1) = wd
0 + wd

1 + we
0wd−e

1 .



We define inductively

P1(w0, w1) = P (w1, w1)

Pn(w0, . . . , wn)

= Pn−1(P (w0, w1), . . . , P (wn−1, wn))

n = 2,3, . . .

We set Xe,d = {Pn = 0} ⊂ Pn(C).

Theorem 7 (Shirosaki-98). If e ≥ 2, then

Xe,d is Kobayashi hyperbolic.

The proofs of Theorems 6 and 7 are quite

analogous by virtue of Nevanlinna’s

Second Main Theorem for meromorphic func-

tions and Faltings’ Theorem for curves of higher

genus (Mordell’s Conjecture).



Key Lemma (Yi-95, Shirosaki-98, Nog-03).

(i) Let α, β ∈ C and α ̸= 0. Then the curve

Cαβ = {[w0, w1, w2] ∈ P2;

P (w0, w1) = αP (βw1, w2)}

is hyperbolic for e ≥ 2, so that if α, β ∈ k, then

Cαβ satisfies the arithmetic finiteness prop-

erty.

(ii) Let fj = [fj0, fj1] : C → P1 be two mero-

morphic functions satisfying

P (f10, f11) = exp(g)P (f20, f21)

with an entire function g. Then f0 ≡ f1.

Then the proof of Theorem 6 is done by the

induction on n (Nog-03 for the details).



(a) Analogue over algebraic function

fields.

It is interesting to consider the problem over

algebraic function fields. The case of al-

gberaic function fields is situated in the mid-

dle of the Nevnalinna theory and the number

theory.

Nevanlinna Theory 　　　　
　　　　

Number Theory

� �
Theory/F.F.

There are a number of works on this subject

for Pn (n ≥ 1) over algebraic function fields

(Voloch, Mason, Brownawell-Masser, J. T.-

Y. Wang, myself,... The problem for abelian

varieties was first dealt with by A. Buium.



Theorem 8 (Buium-98). Let

A = an abelian variety;

D = a reduced divisor on A which is Kobayashi

hyperbolic;

C = a smooth compact curve.

Then ∃N ∈ N depending on C, A and D such

that for every morphism f : C → A, either

f(C) ⊂ D or multxf∗D ≤ N (∀x ∈ C).

Corollary 9. Let the notation be as in

Theorem 8. If f(C) ̸⊂ D, then

“ height (f)” = deg(f) ≤ N |f−1(D)|.

This is an estimate of type of abc-Conjecture.

His proof based on Kolchin’s theory of differ-

ential algebra and he posed two problems:



• Find a proof by complex geometry.

• The Kobayashi hyperbolicity assumption

for D is too strong, and the ampleness

should suffice.

Theorem 10 (Nog-Winkelmann-04). Let

A = a semi-abelian variety with a smooth

equivariant algebraic compactification Ā;

D̄ = an effective reduced ample divisor on Ā,

and D = D̄ ∩ A;

C = a smooth algebraic curve with smooth

compactification C ↪→ C̄.

Then ∃N ∈ N such that for every morphism

f : C → A either

f(C) ⊂ D or multxf∗D ≤ N (∀x ∈ C).

Furthermore, the number N depends only on

the numerical data involved as follows:

(i) The genus of C̄ and the number #(C̄ \C)

of the boundary (puncture) points of C,



(ii) the dimension of A,

(iii) the toric variety (or, equivalently, the as-

sociated “fan”) which occurs as closure

of the orbit in Ā of the maximal con-

nected linear algebraic subgroup T ∼= (C∗)t

of A,

(iv) all intersection numbers of the form D̄h ·
Bi1 · · ·Bik, where the Bij are closures of A-

orbits in Ā of dimension nj and h+
∑

j nj =

dimA.

Corollary 11. If f(C) ̸⊂ Supp D, then

deg f∗D (height) ≤ N · |Supp f∗D|.

In particular, if we let A, Ā, C and D vary

within a flat connected family, then we can

find a uniform bound for N . For abelian va-

rieties this specializes to the following result:



Theorem 12 (Noguchi-Winkelmann-04).

There is a function N : N × N × N → N such

that the following statement holds. Let

C = a smooth compact curve of genus g,

A = an abelian variety of dimension n, and

D = an ample effective divisor on A with in-

tersection number Dn = d.

Then for an aribitrary morphism f : C → A,

either

f(C) ⊂ D or

multxf∗D ≤ N(g, n, d) (∀x ∈ C).

As an application a finiteness theorem was

proved for morphisms from a non-compact

curve into an abelian variety omitting an am-

ple divisor.

(b) Nevanlinna Theory. Now we see what

is happening in Nevanlinna theory for a holo-

morphic curve f : C → A into a semi-abelian

variety A. We lately proved the next result.



Theorem 13 (Nog-Winkelmann-Yamanoi-04).

Let D be a reduced divisor on a semi-abelian

variety A.

Then there is an equivariant compactification

Ā ⊃ A of A such that for an arbitrary alge-

braically non-degenerate holomorphic curve

f : C → A

(1 − ϵ)Tf(r;L(D̄)) ≤ N1(r; f∗D)||ϵ, (14)

∀ϵ > 0,

where D̄ is the closure of D in Ā.

Here the order (height) function Tf(r;L(D̄))

with respect to L(D̄) is deined by

Tf(r;L(D̄)) =
∫ r

1

dt

t

∫
∆(t)

f∗c1(L(D̄)) + O(1).

The counting function Nk(r; f∗D) with trun-

cation level k ≤ ∞ is defined by

Nk(r; f∗D) =
∫ r

1

dt

t

∑
ζ∈∆(t)

min{multζf
∗D, k}.



Remark. In Noguchi-Winkelmann-Yamanoi-

02 we proved (14) with a higher level trun-

cated counting function Nk(r; f∗D) for some

special compactification of A. In the case of

abelian A (14) with truncation level one was

obtained by Yamanoi-04.

(c) Analogue in Diophantine approxima-

tion. Recall

abc-Conjecture. Let a, b, c ∈ Z be co-prime

numbers satisfying

a + b = c. (15)

Then for an arbitrary ϵ > 0 there is a number

Cϵ > 0 such that

max{|a|, |b|, |c|} ≤ Cϵ
∏

prime p|(abc)

p1+ϵ.

Notice that the order of abc at every prime p

is counted only by “1+ ϵ” (truncation) when

it is positive.



As in §1 we put x = [a, b] ∈ P1(Q). After

Vojta’s notational dictionary (1987), this is

equivalent to

(1 − ϵ)h(x) ≤ N1(x; 0) + N1(x;∞) (16)

+ N1(x; 1) + Cϵ

for x ∈ P1(Q) (cf. Nog-96, Vojta-98).

This is quite analogous to (14). Here we

follow the notation in Vojta-87 for number

theory and Nog-84 for the Nevanlinna theory

in particular,

h(x) = the height of x.

N1(x; ∗) = the counting function at ∗
truncated to level 1

(see below).

Motivated by the results in (a) and (b), we

formulate an analogue of abc-Conjecture for

semi-abelian varieties. Let k be an algerbaic

number field and let S ⊂ Mk be an arbitrarily

fixed finite subset of places of k containing



all infinite places. Let

A = a semi-abelian variety over k;

D = a reduced divisor on A;

Ā = an equivariant compactification of A such

that D̄(⊂ Ā) contains no A-orbit;

σD̄ = a regular section of the line bundle L(D̄)

defining the divisor D̄.

abc-Conjecture for semi-abelian variety.

For ∀ϵ > 0, ∃Cϵ > such that ∀x ∈ A(k) \ D

(1 − ϵ)hL(D̄)(x) ≤ N1(x;S, D̄) + Cϵ. (17)

Here hL(D̄)(x) dentoes the height function

with respect to L(D̄) and N1(x, D̄;S) denotes

the S-counting function truncated to level

one:

N1(x;S, D̄)

=
1

[k : Q]

∑
v∈Mk\S

ordpvσD̄(x)≥1

logNk/Q(pv).



It may be interesting to specialize the above

conjecture in two forms.

abc-Conjecture for S-units. We assume that

a and b are S-units in (15); that is, x in (16)

is an S-unit.

Then for ∀ϵ > 0, ∃Cϵ > 0 such that

(1 − ϵ)h(x) ≤ N1(x;S,1) + Cϵ. (18)

abc-Conjecture for elliptic curve. Let C be an

elliptic curve defined as a closure of an affine

curve,

y2 = x3 + c1x + c0, ci ∈ k∗.

In a neighborhood of ∞ ∈ C σ∞ = x
y gives an

affine parameter with σ∞(∞) = 0.



For ∀ϵ > 0, ∃Cϵ > 0 such that for w ∈ C(k)

(1 − ϵ)h(w) ≤ N1(w;S,∞) + Cϵ

=
1

[k : Q]

∑
v∈Mk\S

ordpvσ∞(w)≥1

logNk/Q(pv)

+ Cϵ.


