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Abstarct: Beginning with the motivation of
the value distribution theory, I will discuss the
recent results of the theory of holomorphic
curves, applications and some related reuslts.



§0. Introduction

Basic motivation.

e [0 study a holomorphic map f : M —
X between complex (algebraic) spaces:
for example, the shape of the image, the
Zariski closure of f(M)~

e To study the intersections of f(M) and
analytic (algebraic) cycles Z of X.

Fundamental cases

(i) Need to assume X to be compact.

(i) dimM =1, M = C.

(iii) dmM =dim X, f: M — X, differentiably
nondegenerate.



(iv) codim Z = 1.
(v) codim Z > 2.

Nevanlina-Cartan T heory.
Let f: C — P"(C) and D a divisor on P"*(C).

First Main Theorem (FMT). Assume that
f(C) ¢ D. Then

Second Main Theorem (SMT). Assume that
f is linearly nondegenerate, and that D =
>% | H; is a sum of ¢ hyperplanes in general
position.

Ty(r, L(D)) + Ty (r, Kpn(c))

q
leq >  N(r, f*H;) + Sy(r).
1=1

Here S;(r) = O(logr) + O(logT(r))|| is a
small term.



As typical applications we have the following.

Picard’'s Theorem. (i) If f(C)nN (szf HZ) =
0, then f is linearly degenerate.

(i) If £(C) N (X227 H;) = 0, then £ is con-
stant.

Unicity Theorem (Fujimoto). Let g : C —
P"(C) be a holomorphic curve. Assume that
f*H, = ¢g*H; fori=1,...,3n4+2. Then f = g.

§1. FMT for Z of codim Z > 1

Let X be a compact complex space.

Let Z be an effective analytic (algebraic) cy-
cleon X. Let 7, C Ox be the coherent ideal
sheaf associated to Z.

Let Z C Ox be a coherent ideal sheaf.

Let X = UU, be a finite open covering such
that there are local generators

0ni €T (Ua,T),1 <i <.



Set pa(z) = ¥ loail* € C®(Ua).

Take a particiton of unity {ca(x)} associated
with {U,}. Set

p(2) = Y ca(@)pa().

For a holomorphic curve f: C — X, define

o7 4(2) = —-03109 p(f()),

_qrdt
Trwn) =[5 [oons

Other choices of p,; and cq yields T'(r, w7 f)
and

T(r, wr f) — T(r,wr ) = O(1).

LLang’s Conjecture. If there is an embedding
k — C such that the obtained complex space

Xc is Kobayashi hyperbolic, then the car-
dinality

| X (k)| < oo.



Definition (S. Kobayashi 1967). For a con-
nected complex manifold or a space X and
its points z,y we take a chain of holomorphic
curves

fi: A={eC|(|<1}— X, 1<i<],
G € A,
f1(0) =z, f;(&) = fi4+1(0), fi(¢) = v.

Denoting the Poincaré distance of A by da (-, ),
we set

[

dx(z,y) =1inf }»  da(0,¢).
i=1

Then dx(x,y) is a pseudo-distance.

X is Kobayashi hyperbolic if dy(x,y) is a real
distance function.

An analogue over function fields was proposed
by S. Lang and dealt with by Nog-85, Nog-
92, and some others; the following finiteness
theorem was a result in a special case:



Theorem 1 (Nog-85, 92). (1) Let X — R
be a family of compact hyperbolic spaces over
R. Here R may be an open variety such that
X — R a hyperboliccally embedded compact-
ifications X — R relative over R.

Then, if there are infintely many meromrophic
Cross-sections, there is a constant subfamily
in X — R.

(2) (Specializing to constant family). Let X
be a Kobayashi hyperbolic compact complex
space. Let Y be another compact complex
space. Then there are only a finite humber
of surjective meromorphic mappings from Y
onto X.

So far Nevanlinna theory offers a most ef-
fective tool to the Kobayashi hyperbolicity
problem for complex algebraic varieties, as
Diophantine approximation theroy provides a
powerful method to the finiteness problem or
distributions of rational points.

T hese relations are described by the following
diagram:



Fig. 1
We recall

Kobayashi Conjecture. A ‘“generic’ hyper-
surface X C P"*(C) of high degree (> 2n+1)
IS Kobayashi hyperbolic.

Therefore such X defined over k should sat-
isfy

| X (k)| < oo

according to Lang's Conjecture.

For the existence of such hypersurfaces we
have

Theorem 2 (Masuda-Nog-96). Foreveryn €
N there is a number d(n) such that for an
arbitrary d > d(n) there is a Kobayashi hyper-
bolic projective hypersurface X C P"(C) of
degree d.



Examples: In P3(C) we set
X = {a§ 4+ of! (3)
+ t(zg - - - x3)* = 0},
t 0.

Then XC(ZQ) with d > 7 is Kobayashi hyper-
bolic.

In P4(C), X defined by

2+ 2 11 (2220) Y3 10 (2323) Y3 (4)
+ t3(2524)Y3 + ta(2321) %3
= 0, t; € C*,
d = 3e > 192.

is Kobayashi hyperbolic for generic (tj); in
fact, it is so for (¢;) = (—1,-1,1,1).

Note that abc----Conjecture would imply

XD <00,  tekti=2,3.

It is also noted that X%Q) is a Kummer K3
surface and there is a natural ramified cover-
ing XC(lQ) — X%Q).



Definition. Let X be an algebraic variety de-
fined over k. We say that X satisfies the
arithmetic finiteness property if | X(k')] < oo
for all finite extensions &k’ of k.

Let S C M;. be an arbitrarily fixed finite subset
of places of k containing all infinite places.
Let Ug denote the set of S-units.

Let Xc(ii)(US) denote the subset of all points

of Xc(li)(k) whose coordinates in (3) or in (4)
are S-units.

Then by making use of
Schmidt's Subspace Theorem

we deduce the following.

Proposition 5 (Nog-97). Let X; be as above.
Then |X§Z)(U5)| < 00.

By Masuda-Nog-96 there exist such examples
in P"(C) of arbitrary dimension.



Notice that abc- - --Conjecture implies the arith-
metic finiteness property of all such projective
hypersurfaces.

T herefore it is natural and interesting to ask
if there is a projective hypersurface satisfying
the arithmetic finiteness property.

In fact we have

Theorem 6 (Nog-03). There exists a hy-
persurface X C Pa satisfying the arithmetic
finiteness property.

We follow Shirosaki’'s construction of a
Kobayashi hyperbolic projective hypersurface
(Shirosaki-98).

Let d,e € N be co-prime, and assume d >
2e + 8. Set

d—
P(wg,wq1) = wg + w‘il + wfwi™°.



We define inductively

Py (wg,wy) = P(wy,wq)

Pn(wqg, ..., wp)

= P,—1(P(wg,w1), ..., P(wp—1,wn))
n=23,...

We set X, ; = {P, =0} C P"(C).

Theorem 7 (Shirosaki-98). If e > 2, then
Xe d Is Kobayashi hyperbolic.

The proofs of Theorems 6 and 7 are quite
analogous by virtue of Nevanlinna’s

Second Main Theorem for meromorphic func-
tions and Faltings’ Theorem for curves of higher
genus (Mordell’'s Conjecture).




Key Lemma (VYi-95, Shirosaki-98, Nog-03).
(i) Let o, € C and aa %= 0. Then the curve
Cpp = {lwo, w1, ws] € P?;
P(wg,w1) = aP(Bwy,ws)}

is hyperbolic fore > 2, so that ifa,3 € k, then
Caﬁ satisfies the arithmetic finiteness prop-
erty.

(i) Let f; = [fjo. fs1] : C — P! be two mero-
morphic functions satisfying

P(f10, f11) = exp(g)P(f20, f21)

with an entire function g. Then fo = f1.

Then the proof of Theorem 6 is done by the
induction on n (Nog-03 for the details).



(a) Analogue over algebraic function
fields.

It is interesting to consider the problem over
algebraic function fields. The case of al-
gberaic function fields is situated in the mid-
dle of the Nevnalinna theory and the number
theory.

Nevanlinna Theory B g B B Number Theory
AN /
Theory/F.F.

There are a number of works on this subject

for P" (n > 1) over algebraic function fields
(Voloch, Mason, Brownawell-Masser, J. T .-
Y. Wang, myself,... The problem for abelian
varieties was first dealt with by A. Buium.



Theorem 8 (Buium-98). Let

A = an abelian variety;

D = a reduced divisor on A which is Kobayashi
hyperbolic;

C' = a smooth compact curve.

Then AN € N depending on C, A and D such
that for every morphism f . C — A, either
f(C)cD or multzf*D<N ((VzxeO).

Corollary 9. Let the notation be as in
Theorem 8. If f(C) ¢ D, then

“height (f)” = deg(f) < N|f~1(D)|.
This is an estimate of type of abec-Conjecture.

His proof based on Kolchin’'s theory of differ-
ential algebra and he posed two problems:



e Find a proof by complex geometry.

e [ he Kobayashi hyperbolicity assumption
for D is too strong, and the ampleness
should suffice.

Theorem 10 (Nog-Winkelmann-04). Let
A = a semi-abelian variety with a smooth
equivariant algebraic compactification A;

D = an effective reduced ample divisor on A,
and D=DnNA:

C = a smooth algebraic curve with smooth
compactification C — C.

Then AN € N such that for every morphism
f . C — A either

f(C)cD or multzffD<N ((VxzeO).

Furthermore, the number N depends only on
the numerical data involved as follows:

(i) The genus of C and the number #(C\ C)
of the boundary (puncture) points of C,



(i)
(iii)

(iv)

the dimension of A,

the toric variety (or, equivalently, the as-
sociated “fan”) which occurs as closure
of the orbit in A of the maximal con-
nected linear algebraic subgroup T = (C*)?
of A,

all intersection numbers of the form D™ -
B;, -+ By, , where the Bz-j are closures of A-
orbits in A of dimension n; and h4>2in; =
dim A.

Corollary 11. If f(C) ¢ Supp D, then

deg f*D (height) < N - |Supp f*D|.

In particular, if we let A, A, C and D vary
within a flat connected family, then we can
find a uniform bound for N. For abelian va-
rieties this specializes to the following result:




Theorem 12 (Noguchi-Winkelmann-04).
There is a function N : N x N x N — N such
that the following statement holds. Let

C' = a smooth compact curve of genus g,

A = an abelian variety of dimension n, and
D = an ample effective divisor on A with in-
tersection number D" = d.

Then for an aribitrary morphism f . C — A,
either

f(C) c D or
multz f*D < N(g,n,d) (Vx € C).

As an application a finiteness theorem was
proved for morphisms from a non-compact
curve into an abelian variety omitting an am-
ple divisor.

(b) Nevanlinna Theory. Now we see what
is happening in Nevanlinna theory for a holo-
morphic curve f : C — A into a semi-abelian
variety A. We lately proved the next result.



Theorem 13 (Nog-Winkelmann-Yamanoi-04).
Let D be a reduced divisor on a semi-abelian
variety A.

T hen there is an equivariant compactification
A D A of A such that for an arbitrary alge-
braically non-degenerate holomorphic curve
f:C— A

(1 =Ty (r; L(D)) < N1(r; f*D)lle,  (14)
Ve > 0,

where D is the closure of D in A.

Here the order (height) function T(r; L(D))
with respect to L(D) is deined by

71D = [ [ e + o).

The counting function Ni(r; f*D) with trun-
cation level £ < co is defined by

Ny(ri D) = [

. > min{mult.f*D, k}.

CEA(1)



Remark. In Noguchi-Winkelmann-Yamanoi-
02 we proved (14) with a higher level trun-
cated counting function Ni(r; f*D) for some
special compactification of A. In the case of
abelian A (14) with truncation level one was
obtained by Yamanoi-04.

(c) Analogue in Diophantine approxima-
tion. Recall

abc-Conjecture. Let a,b,c € Z be co-prime
numbers satisfying

a+b=c. (15)

Then for an arbitrary € > 0 there is a number
C'e > 0 such that

max{lal,[bl,|c[} <Ce  J[  p'T"
prime p|(abc)

Notice that the order of abc at every prime p
is counted only by “1+¢€¢" (truncation) when
it is positive.



As in §1 we put z = [a,b] € P1(Q). After
Vojta's notational dictionary (1987), this is
equivalent to

(1 —e)h(xz) < Ni(x;0) + Ni(x;00)  (16)
+ Ni(z; 1) + Ce
for x € P1(Q) (cf. Nog-96, Vojta-98).

This is quite analogous to (14). Here we
follow the notation in Vojta-87 for number
theory and Nog-84 for the Nevanlinna theory
in particular,

h(x) = the height of x.
N1(x; *) = the counting function at x
truncated to level 1
(see below).

Motivated by the results in (a) and (b), we
formulate an analogue of abc-Conjecture for
semi-abelian varieties. Let k£ be an algerbaic
number field and let S C M; be an arbitrarily
fixed finite subset of places of k£ containing



all infinite places. Let

A = a semi-abelian variety over k,;

D = a reduced divisor on A;

A = an equivariant compactification of A such
that D(C A) contains no A-orbit;

o = a regular section of the line bundle L(D)

defining the divisor D.

abc-Conjecture for semi-abelian variety.
For Ve > 0, 3C¢ > such that Vo € A(k) \ D

(1 —e)hppy(z) < Ni(z; S, D)+ Ce. (17)

Here hp py(x) dentoes the height function
with respect to L(D) and Ny(z, D; S) denotes
the S-counting function truncated to level
one:

N1(z; S, D)
1

— log N v)-
[k : Q] UEJ%\S 29 Ni/q(pv)

Ordp,UO'D(x)Zl



It may be interesting to specialize the above
conjecture in two forms.

abc-Conjecture for S-units. We assume that
a and b are S-units in (15); that is, = in (16)
is an S-unit.

Then for Ve > 0, 3C< > 0 such that

(1 —e)h(x) < Ni(z; 5,1) + Ce. (18)

abc-Conjecture for elliptic curve. Let C be an
elliptic curve defined as a closure of an affine
curve,

v> =23+ ciz+cg, ¢ €k

In a neighborhood of oo € C o :% gives an
affine parameter with o (0c0) = 0.



For Ve > 0, 3C¢ > 0 such that for w € C(k)
(1 —e)h(w) < Ny(w; S,00) + C¢
1
= o Z log Ny, Q(pv)
TR vy /

ordp,ooo(w)>1

+ Ce.



