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Tensors, Jet Bundles, Holomorphic Curves,
and (D, S)-Integral Point Sets*

Junjiro Noguchi

The Graduate School of Mathematical Sciences
The University of Tokyo, Meguro, Tokyo 153-8914

The above title was slightly modified from the original one. The purpose of this talk is
to report and discuss some new results on the subjects of the title. Some new results are
joint works with J. Winkelmann.

§1. Tensors and holomorphic mappings

We are interested in the following properties:

[Little Picard] Let f : C¥ — M be a holomorphic mapping from the k-dimensional complex
affine space into a compact complex manifold M. Assume that rank df = k, then the image
of f is not Zariski dense (algebraically degenerate).

[Big Picard] Let f : A* x A¥=!' — M be a holomorphic mapping. Assume that rank df =
k, and the image of f is Zariski dense in M. Then, f extends meromorphically over
A x AF-L

For instance, if £ = 1, Schwarz’ Lemma implies that

if the holomorphic tangent bundle T(M) carries a hermitian metric with negative cur-
vature, then M s Kobayashi hyperbolic; f : C — M is constant.

[Kobayashi, 75] If the cotangent bundle T*(M) is ample, then M is Kobayashi hyperbolic.

Hence, we have little and big Picard’s theorems for such M.

For k = m = dim M, it follows that
[Kobayashi-Ochiai, 71, 75] if the canonical bundle Ky is big, little and big Picard’s theo-
rems hold.

For general 1 < k < m, we have
[Carlson, 72] If A* T*(M) carries a hermitian metric with positive curvature in the sense
of Griffiths, then little and big Picard’s theorems hold.

Let L be a line bundle over M, and let E be a vector bundle over M. Let

m:P(E*)=(E*\{0})/C" > M
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be the projective bundle. Let H — P(E*) be the hyperplane bundle such that the sections
of H correspond to those of E. Let B(E, L) be the stable base locus for (H — 7~ 'L,1 =
1,2,.... Set
B(E,L) = n(B(E,L)).

Then it follows that the condition
(C1) B(E,L) # M for big L
is independent of the choice of L, and bimeromorphically invariant.
[Nog., 77] Assume (C1) for E = \* T*(M). Then little and big Picard’s theorems hold.

It is better to obtain a condition described only in terms of /\'c T*(M), which is equiv-
alent to (C1). For that purpose we need to look into a bit more detailed structure than
the stable base locus.

In general, let A : F' — M be a line bundle, and set

@ : M — P(HO(N,LF)").
Let B; be the base locus of [F', and set

C, =B, U{y € F\/\_IBZ;
y € ®;'(®(y)) is not an isolated point}.

Then Cj is an analytic subset. We call C; the critical locus of [F. We set
c(F) =\,
=1

and call it the stable critical locus of F.
Let 7 : E — M be a vector bundle, and H — P(E*) be the dual of the tautological
line bundle.
Definition. We say that E is fairly big if n(C(H)) # M.
Lemma 1.1. E is fairly big if and only if E satisfies (C1).
Theorem 1.2. If /\'C T*(M) is fairly big, then little and big Picard’s theorems hold.
In the proof we use the Stein factorization, and the fact that the pull-back of an ample
line bundle by a finite holomorphic mapping is again ample.
Remark. Let M be a surface of general type.
(1) [Bogomolov, 77] If ¢3(M) > co(M), then T*(M) is big.
(2) [Lu-Yau, 90] If ¢?(M) > 2¢3(M), then T*(M) is fairly big.
Lu and Yau proved (C1) for such M, and deduced little and big Picard’s theorems for
f:Cor A* — M. Write the ratio in order:
1< C—% <2< ﬁ < 3.
o Co



The last is Miyaoka’s inequality. These are all about 1-jets.

§2. Jet differentials

In this section we deal with the case of k = 1; f: C — M. Let 7y : Jy(M) — M be the
k-jet bundle over M. A holomorphic functional on J¢(M) which is a polynomial on every
fiber is called a (global) k-jet differential. Let JDy 4 denote the sheaf of k-jet differentials
which are polynomials of weighted degree d on fibers. Note that
[Nog., 86] if T Dk q is “fairly big” in a sense, then little and big Picard’s theorems hold for
holomorphic curves in M.

There is its logarithmic version. It is expected that JDy 4 carries more detailed infor-

mation than holomorphic tensors which are of jet-level 1.

[Basic Idea] It is the basic idea originally due to Bloch that if there are enough many
jet differentials ¢;,1 < j < N, so that the transcendental basis of the function
field of M (here M is assumed to be algebraic) is reproduced by them, then for a
non-degenerate (in a sense) holomorphic curve f : C — M, we have estimates of
p;joJif, where Ji f : C — Jp(M) denotes the k-jet lifting, so that the order function
T(r) is bounded as
Ty(r) < O(logrTy(r) ||

This implies the degeneracy of f. The problem is reduced to find enough good jet differ-

entials
®=(¢1,...,0n): Ju(M) = CV.

Definition. A jet differential ¢ : J,(M) — C is said to be “invariant” or “conformal’
if for a holomorphic mapping ¢ : z € A — g(z) € M and a change of variable, z = z((),

dz(¢)
ac

By taking a subspace of the k-jet bundle Jyx(M) and and its projectivization my :
P.(M) — M, which is called the Semple jet bundle, we have a line bundle L, — P(M)
such that a global section of L is equivalent to a conformal jet differential on Ji(M)
([Demailly, 97]). Let Cx C Px(M) be the stable critical locus of Ly. Assume that

(C2) Cro = 2y 7(Ci) # M.

Then we can apply the Basic Idea to a holomorphic curve f : C — M to conclude that it
has an image included in C; hence it is algebraically degenerate.

The following is an application of this Basic Idea.

[Demailly-Goul, preprint 98] Let M be a surface of general type. Assume the following:

¢(Jk<goz)(<)):( ) B(Jkg(2)).

1. Pic(M) =Z;
2. ¢t — 19—002 > 0;



3. HY(S'T*(M)) = {O},VI;
4. H(Epa @ (—tKp)) =0 for all t > 3/4 such that tK s is an integral divisor.

Then every holomorphic f : C — M 1is algebraically degenerate at the level of 2-jet.
[Demailly-Goul, preprint 98] Let M be a generic hypersurface of P* of degree d. Then we
have

1. Pie(M) = Z;

2.10¢2 — 9¢y = d(d? — 44d + 104) > 0 for d > 42;

8. HY(S'T*(M) ® O(k)) = {O},VI > 0,k < I;

4. H(Eea® (—tKp)) =0 for d 2 11 and t > 1/2 such that tKy is an integral divisor.

Then every holomorphic f : C — M 1is algebraically degenerate at the level of 2-jet.

This combined with McQuillan’s work [preprint, 1997] and G. Xu [X94] would imply
Theorem [Demailly-Goul, preprint 98]. A generic hypersurface of P* of degree = 42 is
Kobayashi hyperbolic.

Remarks. (1) ¢2 = d(d — 4)? < ¢y = d(d? — 4d + 6).

(2) Bogomolov’s result, the above 2 and 3 imply that

Thus, the hyperbolicity problem of hypersurfaces of P3 may be difficult.

Recall another application of the Basic Idea, which is older than the above.

Logarithmic Bloch-Ochiai’s Theorem [Nog., 77~81; cf., Dethloff-Lu, 98]. Let M be a
complex projective algebraic manifold, and let D be a hypersurface. Assume that q(M \
D) = dim HY(Q! (M log D)) > dim M. Then every entire holomorphic curve f : C —
M\ D has a non Zariski dense image.

In the case where D = (), it is easy to show that the same holds for a compact Kéhler
manifold M. Thus it is natural to ask the case of Kahler M with D # (.

Theorem [Nog.-Winkel., 99]. Let M be a compact Kdihler manifold and let D be a
hypersurface of M. If the logarithmic irregularity (M \ D) > dimM, then the image of
an entire holomorphic curve f : C — M \ D is contained in a proper analytic subset of
M.

For the proof, we first take the quasi-Albanese mapping o : M\ D — T. Then T is a

quasi-torus:
05 (C)}f=>T—->Ty—0,

where Tj is the Albanese torus of M. Let B be the maximal closed subgroup which leaves
the Zariski closure of «(M \ D) invariant. It is a point to show that
the quotient 7 /B is again a quasi-torus.
Then one may reduce it to the algebraic case.



In the Diophantine approximation, Vojta generalized Faltings’ theorem to

Theorem [Vojta, 96]. Let K be a number field and S be a finite set of a proper set
of inequivalent places (valuations) of K with product formula such that S contains all
archimedean places. Let V be an algebraic smooth variety defined over a number field K,
and let D be a hypersurface of V. If ¢(V \ D) > dim V, then any (D, S)-integral point set
A is not Zariski dense in V.

This is an analogue of logarithmic Bloch-Ochiai’s theorem. Here the counter objects

are

a non-constant holomorphic curve f: C -V \ D

<= an infinite (D, S)-integral point set of V.

To explain what is a (D, S)-integral point set, we take K = Q. Then S consists of the
ordinary absolute value | e | and finitely many primes, p;,1 £ i < ¢ < co. Then a rational
number of type

b
€q b7 e € Z

PPy
is called an S-integer. For the sake of simplicity, assume that D is very ample. Taking a
basis {o;}/L, of H*(V,[D]) with (g9) = D, we have an affine embedding

a

U= (ﬁ "—N> :V\D — AV,
o) o)

A subset A of the set V(K) of all K-rational points of V' is called a (D, S)-integral point

set if there is such ¥ that all points of W(A) are S-integral points; that is, its coordinates

are S-integers. Cf. S. Lang [L83, L87, L91].

Note that any finite set A is a (D, S)-integral point set, after multiplying large integers
to the coordinates; in particular, one point set is always a (D, S)-integral point set. Thus
the definition makes sense only for infinite A.

Let M be a compact Kihler manifold of dimension m and let {D;}!_, be a family of
hypersurfaces of M.

Definition. We say that {D;}._, is in general position if for any distinct indices 1 <
0, .. ik <1, the codimension of every irreducible component of the intersection ﬂ;?:l D;,
is k for k < m, and ﬂle D;, = 0 for k > m.

This notion is defined for singular M as well.

Let rankz{c;(D;)}!_, denote the Z-rank of the subgroup of H?(M,R) generated by
{cy(D;)}._,. Let NS(M) denote the Neron-Severi group of M; i.e., NS(M) = Pic(M)/Pic®(M).
We know that

rankz{c;(D;)}'_, < rankz NS(M).



Theorem [Nog.-Winkel., 98]. Let {D;}._; be a family of hypersurfaces of M in general
position. Let W C M be a subvariety such that there is a non-constant holomorphic curve
f:C—>WN\ U D, with Zariski dense image. Then we have that

DipW
2. Assume that all D; are ample. Then we have

(I —m)dimW < m (rankz{c;(D;)}iey — q(W))Jr :

Here (-)* stands for the maximum of 0 and the number. We have the following corollary

which provides also examples.
Corollary [Nog.-Winkel., 98]. Let the notation be as above.

1. Assume that all D; are ample and that | > m(rankz NS(M) +1). Then M\ U._, D;
is complete hyperbolic and hyperbolically imbedded into M.

2. Let X C P™(C) be an irreducible subvariety, and let D;;1 < i < [, be distinct
hypersurface cuts of X that are in general position as hypersurfaces of X. If | >
2dim X, then X'\ Ui:l D; is complete hyperbolic and hyperbolically imbedded into X .

3. Let {D;}'_, be a family of ample hypersurfaces of M in general position. Let f : C —
M be a holomorphic curve such that for every D;, either f(C) C D;, or f(C)ND; = 0.
Assume that I > m. Then f(C) is contained in an algebraic subspace W of M such

that
dimW < T rankg NS(M).
[—m
In special, if M = P™(C), then we have
dimW < _m_
[—-m

Remark. The above Corollary, (ii) for X = P™(C) was given by Babets [B84], but
his proof seems to carry some incompleteness and confusion. In the case of P™(C) and
hyperplanes D;, the above (ii) with X = P™(C) and (iii) for f : C — P™(C)\ U'_, D
were first proved by Fujimoto [F72] and Green [G72], where the linearity of W was also
proved, and by their examples the dimension estimate is best possible in general.

In the Diophantine approximation we have the following analogues.

Theorem [Nog.-Winkel., 98]. Assume that everything is defined over a number field K,
and S 1s a finite subset of a proper set M(K) of inequivalent places of K with product
formula such that S contains all infinite places. Let V' be a projective smooth variety of
dimension m. Let {D;}\_, be a family of ample hypersurfaces of V in general position. Let
W C V be a subvariety of V.. Assume that there ezists a Zariski dense (3_ 4w DinW, S)-
integral point set of W(K). Then we have

(I —m)dimW < m (rankz{ci(D:)}ie; — q(W))+ .
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Corollary [Nog.-Winkel., 98]. Let the notation be as above.

1. Assume that all D; are ample and that | > m(rankz NS(V')+1). Then any (Zﬁ:l D;, S)-
integral point set of V(K) is finite.

2. Let X C P be an irreducible subvariety, and let D;,1 < 1 < 1, be distinct hyper-
surface cuts of X that are in general position as hypersurfaces of X. Ifl > 2dim X,
then any (Eézl D;, S)-integral point set of X (K) is finite.

3. Let D;,1 < ¢ <1, be ample divisors of V in general position. Let A be a subset of
V(K) such that for every D;, either A C D;, or A is a (ZDJM D;, S)-integral point
set. Assume that l > m. Then A is contained in an algebraic subvariety W of V

such that
dimW < " rankg NS(V).
[—m
In special, if V = P, then we have
dimw <
[ —m

The dimension estimates obtained above are optimal. These generalize and improve
the result of M. Ru and P.-M. Wong [RW91], where they dealt with the case of V = P}
and hyperplanes D;. In fact, they proved that if A is a (Zézl D;, S)-integral point set,
then A is contained in a finite union W of linear subspaces such that

dimW < 2m+1-1)*.
Cf. dimW £ m/(l — m) of Corollary, 3.
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