複素解析-一変数・多変数の関数 訂正表

相原義弘・野口潤次郎 2025 年 4 月 27 日

1. p.
$$6, \downarrow 14$$
: $\alpha = \lim a_n$ とおく. \Longrightarrow 削除

2. p. 23,
$$\downarrow$$
 9: $a \Longrightarrow a_{\nu}$

3. p. 25,
$$\downarrow$$
 15: $|z| + |w| \Longrightarrow |z - w|$

4. p. 52,
$$\downarrow$$
 2: $\frac{\partial f}{\partial \bar{z}_0} = 0 \Longrightarrow \frac{\partial f}{\partial \bar{z}}(z_0) = 0$

5. p. 66,
$$\uparrow$$
 10: $\Gamma_n \Longrightarrow \Gamma_{\nu}$

6. p. 66,
$$\uparrow$$
 6: D は.... $\Longrightarrow f \in \mathcal{O}(D)$ とする. D は....

7. p. 67,
$$\downarrow$$
 10: 領域とする. \Longrightarrow 領域, $f \in \mathcal{O}(D)$ とする.

8. p. 68,
$$\downarrow$$
 13: らば \Longrightarrow らば, $f \in \mathcal{O}(D)$ に対し

9. p. 69,
$$\downarrow$$
 12: 関数は \Longrightarrow 関数 $f(z)$ は

10. p. 75,
$$\downarrow$$
 4: より \Longrightarrow より, $f \in \mathcal{O}(D)$ に対し

11. p. 85,
$$\downarrow$$
 10: $\nu_0 \Longrightarrow z_0$

12. p. 87,
$$\downarrow$$
 8: $U \Longrightarrow \tilde{U}$

13. p. 89,
$$\downarrow$$
 14-16 (4ヵ所): $g(z) \Longrightarrow h(z)$

14. p. 90,
$$\uparrow$$
 8: $\lim_{\nu \to \infty} f_{\nu} = f \Longrightarrow \lim_{\nu \to \infty} f_{\nu}^{(k)} = f^{(k)}$

15. p. 115,
$$\downarrow$$
 7: $u(z) \Longrightarrow u(z)$ かつ $f(a) = 0$

16. p. 164,
$$\downarrow$$
 13: $\Omega \Longrightarrow Q$

17. p. 168,
$$\downarrow$$
 2: $z' \Longrightarrow$ 逆は, z'

18. p. 172,
$$\downarrow 8$$
 〔誤りではないが〕: $\sin 3\theta \Longrightarrow \cos 3\theta$

19. p. 210,
$$\uparrow$$
 7: $D_1 \Longrightarrow D$

22. p. 286,
$$\uparrow$$
 3: (i) \Longrightarrow (ii)

23. p. 289, ↑ 4: 行頭に追記:
$$\mathscr{F} \subset \mathscr{O}_D^q$$
 を D 上の解析層とする.

24. p. 324,
$$\downarrow$$
 11: 1950 \Longrightarrow 1951

- 25. p. 325, \downarrow 2-3: $(b;r) \Longrightarrow (b;s)$ (3ヶ所)
- 26. p. 361, \uparrow 4: $4 \ge |g(z)| \implies 4 \ge |h(z)|$
- 27. p. 361, ↑ 4: 4 個 ⇒ 3 個
- 28. p. 361, \uparrow 2: 128 \Longrightarrow 256
- 29. p. 361, \uparrow 1: (g) $\frac{\pi}{12} \Longrightarrow$ (g) 0 [18 の変更をすれば、ママ" $\frac{\pi}{12}$ "]
- 30. p. 361, \uparrow 1: (h) $\pi \Longrightarrow$ (h) $\frac{\pi}{2}$
- 31. p. 364, $\downarrow 6 \sim 8$: 8 の略解を次に差し換え: 定理 8.4.39 の証明中の $h_2(z)$ を \overline{P}_1 上 $g_2(z) \in \mathcal{O}(D)$ で一様近似し, $\|h_2-g_2\|_{\overline{P}_1} \leq 1/2$ とし, $h_2(z)$ の代わりに $\chi_2(z)h_2(z)$ は使わずに, $\tilde{h}_2(z):=h_2(z)-g_2(z)$ を使う.帰納的に得られる $h_{\mu}(z)$ に対し $g_{\mu}(z)\in \mathcal{O}(D)$ を $\|h_{\mu}-g_{\mu}\|_{\overline{P}_{\mu-1}} \leq 1/2^{\mu-1}$ ととり, $\tilde{h}_{\mu}(z)=h_{\mu}(z)-g_{\mu}(z)$ と おく.