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§1 Introduction.

The Big 3 Problems summarized by Behnke–Thullen in 1934:

1. Levi (Hartogs’ Inverse) Problem (Chap. IV).

2. Cousin I(/resp. II) Problem (Chap. V).

3. Approximation Problem (Development of functions)

(Chap. VI).

Kiyoshi Oka solved all 3 in the opposite order (1936–’53).

Two comments on their difficulties from

“Kiyoshi Oka, Collected Papers”, ed. R. Remmert, translated by R.

Narasimhan, Springer 1984:



H. Cartan: ........ : il se fixa pour tâche de résoudre ces problèmes

difficiles, tâche quasi-surhumaine.

............... : he fixed himself to the task to solve these difficult

problems, the task quasi-superhumane.

R. Remmert: ..... Er löste Probleme, die als unangreifbar galten; ...

....... He solved problems which were believed to be unsolvable;

.......



▶ For the Big 3 Problems Oka wrote 9 papers, I (1936)–IX (’53).

▶ They are classified into two groups:

▶ [1] I(’36)–VI(’42)+IX(’53 (’43)) (essential part of IX was done

in ’43 for the solutions of the Big 3 Problems for unramified

Riemann domains over Cn; in the ramified case, ∃ counter

example, but why? · · · open).

▶ [2] VII(’48)+VIII(’51) written beyond the 3 Big Problems,

intending to solve the Levi (Hartogs’ Inverse) Problem for

singular ramified Riemann domains over Cn.

▶ Our “Introductory Lecture” covers the solutions of the Big 3

Problems solved in the first part [1] by a

“Weak
::::::::::::::::

Coherence
::::::::::::::::::::::::::

Theorem”
::::::::::::::::::::::

.



H. Cartan: .... But we must admit that the technical aspects of his

proofs and the mode of presentation of his results make it difficult

to read, and that it is possible only at the cost of a real effort to

grasp the scope of its results, which is considerable. .....



N.B. The present lectures are mainly concerned with the univalent

domain case. In the end I will briefly mention the multivalent case.

Reference:

1. [AFT] N–, Analytic Function Theory of Several

Variables—Elements of Oka’s Coherence, Springer, 2016.

Translated from: Analytic Function Theory in Several

Variables (in Japanese), Asakurashoten, Tokyo, 2013.

2. N–, A brief chronicle of the Levi (Hartogs’ Inverse) Problem,

Coherence and an open problem, to appear in Notices Intern.

Cong. Chin. Math., 2019, Intern. Press.

3. N–, A weak coherence theorem and remarks to the Oka

theory, to appear in Kodai Math. J., 2019.

Point: No use of W-
::::::::

Prep.
::::::::::::::

Thm.
::::::::::::

, cohomology
::::::::::::::::::::::::::::

thry.
::::::::::

, nor L2-∂̄
::::::::::

.



§2. Domain of holomorphy and holomorphic convexity

Let

Ω ⊂ Cn be a domain, and

O(Ω) denote the set of all holomorphic functions in Ω.

If Ω′ ⊃ Ω and O(Ω′)∼=O(Ω), Ω′ is called an extension
::::::::::::::::::::::

of
::::

holomorphy
::::::::::::::::::::::::::

of Ω. If Ω′ ⫌ Ω, such simultaneous analytic

continuation is called a Hartogs’ phenomenon: The maximal

extension of holomorphy Ω̂ of Ω is called the envelope
::::::::::::::::::::

of
::::

holomorphy
::::::::::::::::::::::::::

of Ω (not necessarily univalent, even if Ω is).

Definition. If Ω̂ = Ω, then Ω is called a domain of holomorphy.

For K ⊂ Ω we define the holomorphic convex hull of K by

K̂Ω = K̂O(Ω) =

{
z ∈ Ω : |f (z)| ≤ sup

K
|f |, ∀f ∈ O(Ω)

}
.



Definition. Ω is said to be holomorphically convex if for all K ⋐ Ω,

K̂O(Ω) ⋐ Ω.

Theorem 2.1 (Cartan–Thullen, ’32)

A domain is hol. convex if and only if it is a domain of hol.

Hartogs domains.

Let n ≥ 2, a = (aj) ∈ Cn, 0 < δj < γj , 1 ≤ j ≤ n, γ = (γj). Set

P∆(a, γ) = {z = (zj) ∈ Cn : |zj − aj | < γj ,
∀ j},

Ω1 = {z = (zj) ∈ P∆(a, γ) : |zj − aj | < δj , j ≥ 2},

Ω2 = {z ∈ P∆(a, γ) : δ1 < |z1 − a1| < γ1},

ΩH(a; γ) = Ω1 ∪ Ω2 (Fig. 1).



Figure: 1. Hartogs domain ΩH(a; γ)

Remark 2.2 (Example of Hartogs’ phenomenon)

O(ΩH(a; γ))∼=O(P∆(a, γ)); ΩH(a; γ) is not hol. convex, and

P∆(a, γ) is hol. convex or a domain of hol.



§3 Cousin I(/ II) Problem:

Let

Ω ⊂ Cn be a domain,

Ω =
∪

Uα be an open covering, and

fα ∈M (Uα) (/M ∗(Uα)) be (/ non-zero) merom. funct’s. in Uα.

Call {(Uα, fα)} a Cousin I(/ II) data if

fα − fβ ∈ O(Uα ∩ Uβ) (/ fα · f −1
β ∈ O∗(Uα ∩ Uβ)),

∀α, β.

Cousin I(/ II) Problem: Assume that Ω is a domain of hol. Find

F ∈M (Ω) (/M ∗(Ω)) such that

I : F − fα ∈ O(Uα)
(
/ II : F · f −1

α ∈ O∗(Uα)
)
, ∀α.



• ∃Non-solvable Cousin I/ II data on ΩH(a; γ).

Figure: 2. Hartogs domain with non-solv. C-data

Poles
1

z − w
|Ω1 for I (/ Zeros (z − w)|Ω1 for II). If F is a solution,

think (z − w)F |{z=w} (/ (z − w)(F |{z=w})
−1).



We consider (C∗)2, which is a domain of holomorphy. With

η ∈ C,ℑη ̸= 0 we let D be a zero locus locally defined by

w = zη, (z ,w) ∈ (C∗)2.

Then the Cousin data given by D is not solvable; i.e. there is no

holomorphic function on (C∗)2, having zeros only on D.



Cousin Integral (Cousin decomposition)

Let E ′ × E1,E
′ × E2 ⋐ Cn be adjacent closed cuboids with open

neighborhoods U1 and U2 (cf. Fig. 3). Let

{(Uα, fα)}α=1,2 be a Cousin I data, and

g = f2 − f1 ∈ O(U1 ∩ U2).

Cousin Integral: φ(z ′, zn) =
1

2πi

∫
ℓ

g(z ′, ζ)

ζ − zn
dζ.

By Cauchy, on Eα (α = 1, 2),

φα(z
′, zn) = φ(z ′, zn) =

1

2πi

∫
ℓα

g(z ′, ζ)

ζ − zn
dζ,

φ1 − φ2 = g = f2 − f1 on E1 ∩ E2,

F = f1 + φ1 = f2 + φ2 ∈M (E1 ∪ E2), Solution.

It is Oka’s great idea to reduce the general case to the above

simple one by Jôku-Ikô (上空移行): Ideal theoretic Jôku-Ikô =

Coherence (連接).



Cousin Integral with estimate:

Figure: 3. Adjacent cuboid

E ′×

With the notation above, let Eα (α = 1, 2) be as in Fig. 3. we have

sup
Eα

|φα| ≤
length of ℓα

2πδ
sup
ℓα

|g | = C

δ
sup
ℓα

|g |, α = 1, 2,

where δ > 0 comes from the estimate of the Cauchy kernel and

C > 0 is a constant determined by the shape of the domain.



Theorem 3.1

The Cousin I/ II Problem is always solvable on a polydisk P∆.

Proof. C-I: Since P∆∼=an open cuboid(⊂ Cn),

∃closed cuboids Eν ↗ P∆, ν = 1, 2, . . ..

Using Cousin Integral inductively, we have solutions Fν on Eν .

Using the Approximation (Function Development in P∆),

modify Fν so that

(sup-norm) ∥Fν+1 − Fν∥Eν <
1

2ν
.

F = F1 +
∞∑
ν=1

(Fν+1 − Fν), is a solution.

C-II: Similar with infinite product.

N.B. This is the prototype method to obtain a solution.



§4 Weak Coherence

4.1 Weak Coherence Theorem. Let a ∈ Cn,

f be a holomorphic function about a

Oa = {f a =
∑

cν(z − a)ν : conv. power series, germs} (a ring),

Ω ⊂ Cn be a domain,

OΩ =
⊔
a∈Ω
Oa (sheaf as sets, no topology), On = OCn .

Consider: Oq
Ω =

⊔
a∈Ω
Oq

a (q ∈ N), naturally an OΩ-module,

Sa ⊂ Oq
a , an Oa-submodule.

S =
⊔
a∈Ω

Sa ⊂ Oq
Ω, an OΩ-submodule, an analytic submodule.

For an open subset U ⊂ Ω, put

S (U) =
{
(fj) ∈ O(U)q :

(
fj
a

)
∈ Sa,

∀a ∈ U
}

(sections).



Definition 4.1

An analy. submodule S over Ω is locally finite if for ∀a ∈ Ω,

∃U ∋ a, a nbd., and finitely many σk ∈ S (U), 1 ≤ k ≤ ℓ, such
that

Sz =
ℓ∑

k=1

Oz · σkz ,
∀z ∈ U.

{σk}1≤k≤ℓ is called a finite generator system of S on U.

Let V ⊂ Ω be an open subset, τk ∈ S (V ), 1 ≤ k ≤ N(<∞),

R(τ1, . . . , τN) ⊂ ON
V be the relation sheaf defined by

R(τj) =
⊔
a∈V

(fj a) ∈ ON
a :
∑
j

fj
a
· τj

a
= 0

 (analy. submodule).

For a subset S ⊂ Ω, define the ideal sheaf of S by

I ⟨S⟩ =
⊔
a∈Ω
{f a ∈ Oa : f |S = 0} .



Theorem 4.2 (Weak Coherence)

Let S ⊂ Ω be a complex submanifold, possibly non-connected.

1. The ideal sheaf I ⟨S⟩ is locally finite.

2. Let {σj ∈ I ⟨S⟩(Ω) : 1 ≤ j ≤ N} be a finite generator system

of I ⟨S⟩ on Ω.

Then, the relation sheaf R(σ1, . . . , σN) is locally finite.

Remark. For the notion K. Oka used “idéal de domaines

indetérminées”, later termed “coherence” by H. Cartan.

What is the difference? I think:

“Idéal de domaines indetérminées” represents a way of thinking.

“Coherence” represents the formed object (concept).



Proof.

1. Locally, S = {z1 = · · · = zq = 0} in U ⊂ Ω. Then,

I ⟨S⟩ =
q∑

j=1

OU · zj .

2. This is immediately reduced to the local finiteness of the

relation sheaf defined

(4.3) f1z · z1 + · · ·+ fq
z
· zq = 0.

Induction on q: (1) q = 1: Trivially R(z1) = 0, locally finite.

(2) Suppose it up to q − 1 (q ≥ 2) valid. For q, write

fj =
∑
ν

cνz
ν = gj(z1, z

′)z1 + hj(z
′), z ′ = (z2, . . . , zn).

Then, (4.3) is rewritten as



(4.4)

(f1 + g2z2 + · · ·+ gqzq)
z
· z1 + h2(z

′)
z
· z2 + · · ·+ hq(z

′)
z
· zq = 0 :

f1 = −g2z2 − · · · − gqzq,(4.5)

h2(z
′)
z
· z2 + · · ·+ hq(z

′)
z
· zq = 0(4.6)

In (4.5), g2, . . . , gq are finite number of free variables, i.e., f1

finitely generated.

(4.6) is the case “q − 1”; by the induction hypothesis

(h2z , . . . , hqz
) is locally finitely generated.

Thus, R(z1, . . . , zq) is locally finite.



4.2 Cartan’s matrix decomposition.

Let A be an (N,N)-matrix with operator norm ∥A∥. If ∥A∥ < 1,

(1N − A)−1 = 1N + A+ A2 + · · · .

If A = A′ + A′′ with ∥A′∥, ∥A′′∥ < 1/2, we have by the above:

(1N − (A′ + A′′)) = (1N − A′)

· (1N − A′)−1(1N − (A′ + A′′))(1N − A′′)−1︸ ︷︷ ︸ ·(1N − A′′)

= (1N − A′) · (1N − N(A′,A′′)) · (1N − A′′).

Lemma 4.7

For ∥A′∥, ∥A′′∥ ≤ 1/2, ∥N(A′,A′′)∥ ≤ 4max{∥A′∥2, ∥A′′∥2}.



Let Ω ⊂ Cn = Cn−1 × C be a domain,

E ′,E ′′ ⋐ Ω be two closed cuboids as follows:

a closed cuboid F ⋐ Cn−1 and two adjacent closed rectangles

E ′
n,E

′′
n ⋐ C sharing a side ℓ,

E ′ = F × E ′
n, E ′′ = F × E ′′

n , ℓ = E ′
n ∩ E ′′

n .(4.8)

Figure: 4. Adjacent closed cuboids



Lemma 4.9 (Cartan’s matrix decomposition)

Let

U be a neighborhood of F × ℓ,
B(z) be an invertible (N,N)-matrix valued hol. function in U.

Then, ∃ϵ0 > 0, sufficiently small such that if ∥1N − B∥U < ϵ0,

∃B ′(z),B ′′(z), invertible (N,N)-matrix valued holomorphic

functions on E ′,E ′′, respectively, satisfying

B(z) = B ′(z)B ′′(z) on F × ℓ.



Proof.

Figure: 5. δ-closed nbh. of closed cubes

Figure: 6. δ
2k
-closed nbh. of cubes



Using Cousin Integ. with estimate, we have a totological sequence

B = (1− A) = (1− (A′
1 + A′′

1))

= (1− A′
1)(1− N(A′

1,A
′′
1))(1− A′′

1)

= (1− A′
1) · · · (1− A′

k)(1− N(A′
k ,A

′′
k))(1− A′′

k) · · · (1− A′′
1)

such that: If ∥A∥ ≤ ϵ0 is sufficiently small, we have

∥A′
k∥, ∥A′′

k∥ ≤
C

2k
, C = C ′ϵ0.

Inductively,

∥A′
k+1∥, ∥A′′

k+1∥ ≤ C ′2k+14
C 2

22k
= 16C ′C

C

2k+1

= 16C ′2ϵ0
C

2k+1
<

C

2k+1
,

where ϵ0 > 0 is taken so that 16C ′2ϵ0 < 1.



B = (1− A) =
∞∏
k=1

(1− A′
k) ·

1∏
k=∞

(1− A′′
k) = B ′ · B ′′.

See Appendix of [AFT].



Lemma 4.10 (Generator merging, H. Cartan)

Let E ′ ∪ E ′′ be adjacent cuboids, and

S ⊂ ON
E ′∪E ′′ be an analy. submodule,

σ′ = {σ′j}
p′

j=1 (/ σ′′ = {σ′′k}
p′′

k=1) be a generator system of S over

E ′ (/ E ′′) such that on E ′ ∩ E ′′

σ′ = Aσ′′, σ′′ = Bσ′.

Then, ∃ a generator system on E ′ ∪ E ′′.

Proof. Put σ̃′ = t(σ′, 0p′′), σ̃
′′ = t(0p′ , σ

′′),

Ã =

 1p′ A

−B 1p′′ − BA

 .



Then,

σ̃′ = Ãσ̃′′,

Ã−1 =

 1p′ −A

0 1p′′

 1p′ 0

B 1p′′

 .

Approximate A,B by polynomial elements and put them into the

right-hand-side of Ã−1, resulting R, such that ∥1− ÃR∥ is
sufficiently small. By Cartan’s matrix decomp., ÃR = S ′S ′′; hence,

σ̃′ = S ′S ′′R−1σ̃′′, S ′−1
σ̃′ = S ′′R−1σ̃′′.



4.3 Oka Syzygy

Consider a closed cuboid E ⊂ Cn, possibly degenerate with some

edges of length 0. Define

dimE = the # of edges of positive lengths: 0 ≤ dimE ≤ 2n.

Lemma 4.11 (Oka Syzygy)

Let E ⋐ Cn be a closed cuboid.

1. Every locally finite submodule S (⊂ ON
n ) defined on E (i.e., in

a neighborhood of E) has a finite generator system on E.

2. Let S be a submodule on E with a finite generator system

{σj}1≤j≤L on E such that R(σ1, . . . , σL) is locally finite.

Then for ∀σ ∈ S (E ), ∃aj ∈ O(E ), 1 ≤ j ≤ L, such that

(4.12) σ =
L∑

j=1

aj · σj (on E ).



Proof.

Double
::::::::::::::::::

Cuboid
::::::::::::::::::

Induction
::::::::::::::::::::::::

on dimE : [1q−1, 2q−1]⇒ 1q ⇒ 2q

(a) dimE = 0: 1, 2 Trivial by definition.

(b) Suppose them up to dimE = q − 1, q ≥ 1, valid.

dimE = q:

1. 2q−1+ Cartan’s matrix decomposition.

2. Write with T > 0, θ ≥ 0:

E = F × {zn = t + iyn : 0 ≤ t ≤ T , |yn| ≤ θ},

dimF =

{
q − 1, θ = 0;

q − 2, θ > 0.



Figure: 7. Et ⊂ E

Apply the induction hypothesis 2q−1 to

Et = F × {t + iyn : |yn| ≤ θ} with t ∈ [0,T ]. We then have



σ =
L∑

j=1

aj · σj (in a nbd. of) Et .

Let

σ =
L∑

j=1

a′j · σj , σ =
L∑

j=1

a′′j · σj

be such expressions in adjacent cuboids E ′,E ′′ with E ′ ∩ E ′′ = Et .

By 1q,
∃a generator system {τk = (τkj)j}k of R(σ1, . . . , σL) on E .

Since
∑L

j=1(a
′
j − a′′j ) · σj = 0 on Et , we apply the induction

hypothesis 2q−1 for R(σ1, . . . , σL) to get

(a′j − a′′j ) =
∑
k

bk · (τkj) on Exn , bk ∈ O(Et).

Apply Cousin Integral to bk = b′k − b′′k :



(
a′j −

∑
k

b′kτkj

)
=

(
a′′j −

∑
k

b′′kτkj

)
= (a′′′j ) ∈ O(E ′ ∪ E ′′)L.

σ =
∑
j

a′′′j · σj , on E ′ ∪ E ′′.

Repeat this.

N.B. We apply this for I ⟨S⟩ of a complex submanifold S ⊂ P∆.



§5 Oka’s Jôku-Ikô

Let

P ⊂ Cn be an open cuboid,

S ⊂ P be a complex submanifold.

Lemma 5.1 (Oka’s Jôku-Ikô)

Let E ⋐ P be a closed cuboid. Then for

∀g ∈ O(E ∩ S) (E ∩ S ⋐ S), ∃G ∈ O(E ) satisfying

G |E∩S = g |E∩S .

Proof. By

Weak Coherence of I ⟨S⟩+Oka Syzygy + Cuboid Induction.



Approximation

An analytic polyhedron P ⋐ Ω is a finite union of relatively

compact connected components of

{z ∈ Ω : |ψj(z)| < 1, 1 ≤ j ≤ L}, ψj ∈ O(Ω), L <∞.

Theorem 5.2 (Runge–Weil–Oka)

Every holomorphic function on P̄ is uniformly approximated on P̄

by functions of O(Ω).

Proof. Let f ∈ O(P̄). By Oka map,

Ψ : z ∈ P̄ ↪→ (z , ψ1(z), . . . , ψL(z)) ∈ P∆ ⊂ Cn+L,

P̄ is a complex submanifold of P∆.

By Oka’s Jôku-Ikô, extend f to F ∈ O(P∆).



F is developed to a power series, and hence f is developed to a

power series in z and (ψj).

§6 Continuous Cousin Problem

Let Ω =
∪

α Uα be an open covering and ϕα ∈ C (Uα), continuous

functions.

Definition 6.1

{(Uα, ϕα)} is a continuous Cousin data if

ϕα − ϕβ ∈ O(Uα ∩ β), ∀α, β.

Continuous Cousin Problem: Find a solution Φ ∈ C (Ω) such

that Φ− ϕα ∈ O(Uα),
∀α.



The following 3 problems are deduced from Cont. Cousin Problem:

1. Cousin I Problem.

2. Cousin II Problem.

3. Problem to solve ∂̄u = f with ∂̄f = 0 for functions u.

∵ ) 1. May assume {Uα} locally finite.

Take open Vα ⊂ V̄α ⊂ Uα, covering Ω, and χα ∈ C (Ω) such that

χα ≥ 0; χα(z) > 0, z ∈ Vα; χα(z) = 0, z ̸∈ Uα;
∑

α χα = 1.

For a Cousin I data (Uα, fα), set

ϕα =
∑
γ

(fα − fγ)χγ ∈ C (Uα).



Then, ϕα − ϕβ = fα − fβ: fα − ϕα = fβ − ϕβ.

Let Φ be a solution of {(Uα, ϕα)}. Then

fα−ϕα +Φ︸ ︷︷ ︸
hol.

= fβ −ϕβ +Φ︸ ︷︷ ︸
hol.

.

2. Oka Principle: Let {(fα,Uα)} be a Cousin II data on Ω.

Oka Principle: Assume the existence of a continuous
::::::::::::::::::::::::

solution
::::::::::::::::::

F ∈ C (Ω) satisfying

gα := F/fα ∈ C (Uα), nowhere vanishing.

May assume that ∀Uα is simply connected. Then,

hα := ∃ log gα ∈ C (Uα), and

hα − hβ = log fβ/fα ∈ O(Uα ∩ Uβ);

the pairs (hα,Uα) form a Continuous Cousin data.



Let H ∈ C (Ω) be a solution of {(hα,Uα)}. Then,

G := ehα−H · fα = ehβ−H · fβ ∈M ∗(Ω) (solution).

3. Dolbeault’s Lemma: Let f =
∑n

j=1 fjdz̄j be a (0, 1)-form of

C 1-class defined in a neighborhood of a closed polydisk P∆ such

that ∂̄f = 0. Then there is a C 2 function u in P∆ such that

∂̄u = f .

Let f be a (0, 1)-form of C 1-class in Ω with ∂̄f = 0.

Locally there are solutions,

uα ∈ C∞(Uα), ∂̄uα = f ,
∪
α

Uα = Ω.

Since ∂̄(uα − uβ) = 0, (uα − uβ) ∈ O(Uα ∩ Uβ). The rest is the

same as in 1.



Theorem 6.2

On a holomorphically convex domain every Continuous Cousin

Problem is solvable.

Proof. Let Ω ⊂ Cn be a holomorphically convex domain, and

{(Uα, ϕα)} be a Continuous Cousin data on Ω.

Take Pν ↗ Ω, increasing analytic polyhedra, and

the Oka maps ψν : P̄ν ↪→ P∆(ν).

Step 1. Obtain a solution Φν on each P̄ν ↪→ P∆(ν).

By Cuboid Induction + Oka’s Jôku-Ikô + Cousin Integral.

E ⊂ nbd of P∆(ν), a closed cuboid with q = dimE .



Claim. ∃ Continuous solution f in a nbd. of S = ψν(P̄ν) ∩ E in

ψν(P̄ν)∼= P̄ν ⋐ Ω.

Figure: 8. Cuboid Induction



Step 2. Since Φν+1 − Φν ∈ O(P̄ν), applying the Approximation of

Runge-Weil-Oka, modify Φν so that

∥Φν+1 − Φν∥P̄ν
<

1

2ν
, ν = 1, 2, . . . .

We have a solution,

Φ = Φ1 +
∞∑
ν=1

(Φν+1 − Φν).



§7 Interpolation

In the same way as in the previous section we have

Theorem 7.1 (Interpolation)

Let Ω ⊂ Cn be a holomorphically convex domain and

S ⊂ Ω be a complex submanifold.

Then, f ∈ O(Ω)→ f |S ∈ O(S)→ 0 (surjective).

If particular, for ∀{aν}, a discrete sequence of Ω and ∀cν ∈ C,
∃F ∈ O(Ω) with F (aν) = cν ,

∀ ν. Conversely, if it holds for Ω, Ω is

holomorphically convex.

Proof. Jôku-Ikô.



§8 Levi (Hartogs’ Inverse) Problem

Let P∆ ⊂ Cn be any fixed polydisk with center at 0, and

Ω ⊂ Cn be a domain. Put

δP∆(z , ∂Ω) = sup{r > 0 : z + r · P∆ ⊂ Ω}, z ∈ Ω.

Theorem 8.1 (Oka)

If Ω is holomorphically convex (domain of holomorphy),

− log δP∆(z , ∂Ω) is plurisubharmonic in z ∈ Ω.



We call Ω a pseudoconvex domain if − log δP∆(z , ∂Ω) is

plurisubharmonic near ∂Ω.

Levi (Hartogs’ Inverse) Problem: Is a pseudoconvex domain

holomorphically convex?

A bounded domain Ω ⊂ Cn is said to be strongly pseudoconvex

if for ∀a ∈ ∂Ω, ∃U ∋ a, a neighborhood and φ ∈ C 2(U) such that

U ∩ Ω = {φ < 0} and

i∂∂̄φ(z)≫ 0, z ∈ U.

• If Ω is pseudoconvex, ∃Ων ↗ Ω with strongly pseudoconvex Ων .



The 1st cohomology H1(Ω,O) as a C-vector space.

Definition. Let Ω =
∪

Uα, U = {Uα}. Define
Z 1(U ,O), 1-cycle space,

δ : C 0(U ,O)→ B1(U ,O), a boundary operator,

H1(U ,O) = Z 1(U ,O)/B1(U ,O),
H1(Ω,O) = lim

→
U

H1(U ,O)←↩ H1(U ,O).

• H1(Ω,O) = 0⇐⇒ ∀Cont. Cousin Problem is solvable on Ω.

Theorem 8.2

1. If Ω is holomorphically convex, H1(Ω,O) = 0.

2. For U = {Uα} an open covering of Ω with ∀Uα,

holomorphically convex,

H1(U ,O)∼=H1(Ω,O).



L. Schwartz Theorem

Let E be a Hausdorff topological complex vector space with at

most countably many semi-norms;

E is Fréchet, if the associated distance on E is complete;

E is Baire, if E satisfies Baire’s Category Theorem.

Theorem 8.3 (Open Map)

Let E (resp. F ) be a Fréchet (resp. Baire) vector space.

If A : E → F is a continuous linear surjection,

then A is an open map.



Theorem 8.4 (L. Schwartz’s Finiteness Theorem)

Let E (resp. F ) be a Fréchet (resp. Baire) vector space. Let

A : E → F be a continuous linear surjection, and

B : E → F be a compact operator. Then (A+ B)E is closed, and

dimCoker(A+ B)(:= F/(A+ B)E ) <∞.

Proof. Heuristic: With C := A+ B we have

CE + BE = F .

Taking a quotient by CE , one gets

BE/CE = F/CE = CokerC .

Since B is a compact operator, BE/CE is a locally compact

topological vector space: Hence it is finite dimensional.

But, the closedness of CE is not known.



All these are proved at once by showing

F = (A+ B)E + ∃⟨b1, . . . , bN⟩C, bj ∈ F , N <∞ (algebraically).

So, how to find bj?

(Demailly’s idea) Let U be a neighborhood of 0 ∈ E such that

B(U) is compact. Since A(U) is open (Open Map Thm.),

∃bj ∈ B(U), 1 ≤ j ≤ N <∞, such that

B(U) ⊂
∪
j

(
bj +

1

2
A(U)

)
.

Modify {bj} so that bj are linearly independent and

(E/ ker(A+ B))⊕ ⟨b1, . . . , bN⟩C ∋ ([x ], y) 7→ (A+ B)x ⊕ y ∈ F

is a topological isomorphism again by Open Map Thm. Therefore,

(A+ B)E is closed and dimCoker(A+ B) = N <∞.



Theorem 8.5 (Grauert)

Let Ω be a strongly pseudoconvex domain. Then,

dimH1(Ω,O) <∞.

Proof (Grauert’s bumping method).

Ω = ∃∪
finite Vα with Vα, hol. convex,

bumped open ∃Ũα ⋑ Vα with Ũα, hol. convex,

Figure: Boundary bumping method



V = {Vα}, bumped covering Ũ = {Ũα} (⋑ Ω), so that

Ũα ∩ Ũβ ⋑ Vα ∩ Vβ,

Ψ : ξ ⊕ η ∈ Z 1(Ũ ,O)⊕ C 0(V ,O)→ ρ(ξ) + δη ∈ Z 1(V ,O)→ 0,

where ρ is the restriction map from the bumped Ũ to V .

Note that Z 1(Ũ ,O)⊕ C 0(V ,O) and Z 1(V ,O) are Fréchet (in

particular, the latter is Baire).

Since ρ is compact (Montel), L. Schwartz applied to Ψ and −ρ
yields that Coker(Ψ− ρ)∼=H1(V ,O)∼=H1(Ω,O) is finite
dimensional.



Theorem 8.6 (Oka)

A strongly pseudoconvex domain is holomorphically convex.

Proof. Let φ be a defining function of ∂Ω such that Ω = {φ < 0},
φ is strongly plurisubharmonic in a neighborhood of ∂Ω.

Take a point b ∈ ∂Ω. By a translation, we may put b = 0. Set

Q(z) = 2
n∑

j=1

∂φ

∂zj
(0)zj +

∑
j ,k

∂2φ

∂zj∂zk
(0)zjzk .

∃ε, δ > 0 satisfying

φ(z) ≥ ℜQ(z) + ε∥z∥2, ∥z∥ ≤ δ,

inf{φ(z);Q(z) = 0, ∥z∥ = δ} ≥ εδ2 > 0.



Figure: Ω′ = {φ < c},U0

Let Ω′ = {φ < c} with very small c > 0, U1 = Ω′ \ {Q = 0}.
Then U = {U0,U1} is an open covering of Ω′, which is strongly

pseudoconvex.



We set

f01(z) =
1

Q(z)
, z ∈ U0 ∩ U1,

f10(z) = −f01(z), z ∈ U1 ∩ U0.

Then, a 1-cocyle f = (f01(z), f10(z)) ∈ Z 1(U ,O) is obtained. For
k ∈ N we define

f
[k]
01 (z) = (f01(z))

k , z ∈ U0 ∩ U1,

f
[k]
10 (z) = −f [k]01 (z), z ∈ U1 ∩ U0.

Then (f [k]) ∈ Z 1(U ,O). Thus we obtain cohomology classes,

[f [k]] ∈ H1(U ,O) ↪→ H1(Ω′,O), k ∈ N.

Since Ω′ is strongly pseudoconvex, Grauert’s Theorem implies

dimH1(Ω′,O) <∞.



Therefore, for N large, there is a non-trivial linear relation,

N∑
k=1

ck [f
[k]] = 0 ∈ H1(U ,OΩ′) (ck ∈ C).

We may suppose that cN ̸= 0. Then there exists elements

gi ∈ O(Ui ), i = 0, 1, such that

N∑
k=1

ck
Qk(z)

= g1(z)− g0(z), z ∈ U0 ∩ U1.

Therefore,

g0(z) +
N∑

k=1

ck
Qk(z)

= g1(z), z ∈ U0 ∩ U1, cN ̸= 0.

(8.7) ∃F ∈M (Ω′) with poles of order N on {Q = 0}.



Since {Q = 0} ∩ Ω = ∅, F |Ω ∈ O(Ω) and limz→0 |F (z)| =∞.
Thus, Ω is holomorphically convex.

Theorem 8.8 (Oka)

A pseudoconvex domain is holomorphically convex.

Proof. There are strongly pseudoconvex domains Ων ↗ Ω. Since

Ων are holomorphically convex, so is the limit Ω (Behnke–Stein).

Furthermore, we have

Theorem 8.9 (Oka)

A pseudoconvex unramified Riemann domain over Cn is

holomorphically convex and holomorphically separable (i.e., a Stein

manifold).



Proof.

Let π : Ω→ Cn be an unramified Riemann domain. Assume that

− log δP∆(x , ∂Ω) is plurisubharmonic near ∂Ω.

Step 1◦: Construct a (continuous) plurisubharmonic exhaustion

λ : Ω→ R.

Step 2◦: Show that Ωc = {λ < c} with ∀c ∈ R is holomorphically

convex. We may enlarge a little bit Ωc to a strongly pseudoconvex

domain Ω′
c . Then apply the same argument as in the case of

univalent domains.



Step 3◦ (Hol. Separability): Take two distinct points Q1,Q2 ∈ Ω′
c .

We may assume: π(Q1) = π(Q2) = a ∈ Cn.

Let ϕ(t), t ≥ 0, be any affine linear curve with ϕ(0) = a.

Then lifting ∃1ϕj(t) ∈ Ω′
c of ϕ(t) such that ϕj(0) = Qj (j = 1, 2).

Since Ω′
c is relatively compact, ϕj(t) hits the boundary ∂Ω′

c .

We may assume that ϕ1(t) hits ∂Ω
′
c first with t = T ∈ R, so that

ϕj([0,T ]) ⊂ Ω̄′
c (j = 1, 2) and ϕ1(T ) ∈ ∂Ω′

c .

Note that ϕ1(T ) ̸= ϕ2(T ).

With setting b = ϕ1(T ) we have by (8.7) a meromorphic function

Fb in Ω′
cϵ ⋑ Ω′

c which is holomorphic in Ω′
c .



Consider the Taylor expansions of Fb at Q1 and Q2 in (z1, . . . , zn).

Since Fb has a pole at ϕ1(T ) and no pole at ϕ2(T ), those two

expansions must be different. Therefore, there is some partial

differential operator ∂α = ∂|α|/∂zα1
1 · · · ∂zαn

n with a multi-index α

such that

∂αFb(Q1) ̸= ∂αFb(Q2).

Since ∂αFb is holomorphic in Ω′
c , this finishes the proof of hol.

separation..

Step 4◦: For every pair c < c ′(∈ R), Ωc ⋐ Ωc ′ is a Runge pair (by

Jôku-Ikô).


