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§1 Introduction.

The Big 3 Problems summarized by Behnke—Thullen in 1934:

1. Levi (Hartogs' Inverse) Problem (Chap. 1V).
2. Cousin I(/resp. Il) Problem (Chap. V).
3. Approximation Problem (Development of functions)
(Chap. VI).
Kiyoshi Oka solved all 3 in the opposite order (1936-'53).
Two comments on their difficulties from

“Kiyoshi Oka, Collected Papers”, ed. R. Remmert, translated by R.
Narasimhan, Springer 1984:



H. Cartan: ........ . il se fixa pour tache de résoudre ces probléemes

difficiles, tache quasi-surhumaine.

............... : he fixed himself to the task to solve these difficult

problems, the task quasi-superhumane.
R. Remmert: ..... Er loste Probleme, die als unangreifbar galten; ...

....... He solved problems which were believed to be unsolvable;



For the Big 3 Problems Oka wrote 9 papers, | (1936)-IX ('53).
They are classified into two groups:

[1] 1("36)-VI('42)+IX('53 ('43)) (essential part of IX was done
in '43 for the solutions of the Big 3 Problems for unramified

3

Riemann domains over C": in the ramified case, = counter

example, but why? --- open).
[2] VII('48)+VIII('51) written beyond the 3 Big Problems,
intending to solve the Levi (Hartogs' Inverse) Problem for

singular ramified Riemann domains over C".

Our “Introductory Lecture” covers the solutions of the Big 3
Problems solved in the first part [1] by a

“Weak Coherence Theorem”.



H. Cartan: .... But we must admit that the technical aspects of his
proofs and the mode of presentation of his results make it difficult
to read, and that it is possible only at the cost of a real effort to

grasp the scope of its results, which is considerable. .....
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N.B. The present lectures are mainly concerned with the univalent

domain case. In the end | will briefly mention the multivalent case.

Reference:

1. [AFT] N-, Analytic Function Theory of Several
Variables—Elements of Oka's Coherence, Springer, 2016.
Translated from: Analytic Function Theory in Several

Variables (in Japanese), Asakurashoten, Tokyo, 2013.

2. N—, A brief chronicle of the Levi (Hartogs' Inverse) Problem,
Coherence and an open problem, to appear in Notices Intern.
Cong. Chin. Math., 2019, Intern. Press.

3. N-, A weak coherence theorem and remarks to the Oka

theory, to appear in Kodai Math. J., 2019.

Point: No use of W-Prep. Thm., cohomology thry., nor L2-0.



§2. Domain of holomorphy and holomorphic convexity
Let

Q C C" be a domain, and

O(£2) denote the set of all holomorphic functions in €.

If @' 5 Qand O(Q)=0(Q), Q' is called an extension of
holomorphy of Q. If Q' 2 Q, such simultaneous analytic
continuation is called a Hartogs' phenomenon: The maximal
extension of holomorphy € of Q is called the envelope of
holomorphy of Q (not necessarily univalent, even if Q is).
Definition. 1f Q) = Q, then Q is called a domain of holomorphy.

For K C Q we define the holomorphic convex hull of K by

Ko = Ko@) = {z €Q:|f(z) <supl|f|, Vf e (D(Q)} .
K



Definition. € is said to be holomorphically convex if for all K € €,

RO(Q) e Q.

Theorem 2.1 (Cartan—Thullen, '32)
A domain is hol. convex if and only if it is a domain of hol.

Hartogs domains.

Letn>2,a=(a)cC",0<d <v,1<j<n v=(v) Set

PA(a,7) ={z=(3) € C": |z — aj| <, j},
Q= {2 = (5) € PAGY) 35— 3l < ) > 2),
Qo ={ze€PA(a,7) : 61 < |z1 —a1] < m},
Qu(a;v) = U, (Fig. 1).



|z —ajl
2<j<n

Vi

X/- 2

5 /}//

(a;) \ S on |21 —ay
21

Figure: 1. Hartogs domain Qg (a; )

Remark 2.2 (Example of Hartogs' phenomenon)

O(Qu(a;v)) = O(PA(a,v)); Qu(a;y) is not hol. convex, and

PA(a, ) is hol. convex or a domain of hol.



§3 Cousin I(/ I1) Problem:

Let

Q C C" be a domain,

Q = |J U, be an open covering, and

fo € M (Uy) () #*(Uy)) be (/ non-zero) merom. funct's. in U,.
Call {(Uq, fa)} a Cousin I(/ I1) data if

fo =3 € O(Ua N Up) (/ fo- 51 € O (Ua N Up)), Yo, .

Cousin I(/11) Problem: Assume that Q is a domain of hol. Find
F e #(Q) (/ #*(2)) such that

I:F—f,e0U) (JII:F-f;1e0*(Uy)), ‘e



e “Non-solvable Cousin I/ 1l data on Qu(a; 7).

i
3 -3
b,
2
Dl
1+
D
)
1 2 3 12|

Figure: 2. Hartogs domain with non-solv. C-data

Poles

— W|Q1 for | (/ Zeros (z — w)|q, for Il). If F is a solution,

think (z — w)F|zeuy (/ (2 = W)(Flzmwy) ™).



We consider (C*)?, which is a domain of holomorphy. With
n € C,3n # 0 we let D be a zero locus locally defined by

Then the Cousin data given by D is not solvable; i.e. there is no

holomorphic function on (C*)2, having zeros only on D.



Cousin Integral (Cousin decomposition)
Let E' x E1, E' x E; € C" be adjacent closed cuboids with open
neighborhoods U; and U, (cf. Fig. 3). Let
{(Uq, fa)}a=1,2 be a Cousin | data, and
g=h—FfeO(UnUy).

1 /
Cousin Integral: (', z,) = %/ggc(i’zi) dc.

By Cauchy, on E, (o =1,2),

oalZs20) = o2 20) = - L eZ.0) e,

2ri ¢ —zp

p1—p2=g="Ffh~—fon ELNE,

F=fA4+p1i=Ffh+4+p € %(El U EQ), Solution.

It is Oka's great idea to reduce the general case to the above
simple one by Joku-1kd (LZZ#1T): Ideal theoretic Joku-1koé =
Coherence (G#$%).



Cousin Integral with estimate:

v v,
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Figure: 3. Adjacent cuboid

With the notation above, let E, (o = 1,2) be as in Fig. 3. we have

length of ¢, C
< — = < ) = 1725
Sgplsoa\ e gl 3 s;ap\gl a

(o3 [e3

where § > 0 comes from the estimate of the Cauchy kernel and

C > 0 is a constant determined by the shape of the domain.



Theorem 3.1
The Cousin /1l Problem is always solvable on a polydisk PA.

Proof. C-l: Since PA = an open cuboid(C C"),

Iclosed cuboids E, /' PA,v=1,2,....

Using Cousin Integral inductively, we have solutions F, on E,,.
Using the Approximation (Function Development in PA),
modify F, so that

(sup-norm) ||F 11 — Fullg, < >

F=F + Z(F”H — F,), is a solution.
v=1
C-II: Similar with infinite product.

N.B. This is the prototype method to obtain a solution.



54 Weak Coherence

4.1 Weak Coherence Theorem. Let ac C”,
f be a holomorphic function about a
O, ={f,=>_c(z—a)”:conv. power series, germs} (a ring),
Q c C" be a domain,
Oq = |_| O, (sheaf as sets, no topology), O, = Ocn.
aeq
Consider: O = |_| 09 (g € N), naturally an Oq-module,

aeN
S, C 02, an O,-submodule.

S = |_| S C Og, an Ogq-submodule, an analytic submodule.

acQ
For an open subset U C Q, put

S(U) = {(@-) e O(U) - (g) e o, Yac U} (sections).



Definition 4.1
An analy. submodule .7 over Q is locally finite if for Ya € Q,
U 3 a, a nbd., and finitely many oy € .7(U),1 < k < ¢, such

that
¢

= 0:-0k,, "z€U.
k=1

{ok}1<k<e is called a finite generator system of . on U.
Let V C Q be an open subset, 74 € .#(V),1 < k < N(< 00),
A(11,...,7n) C O be the relation sheaf defined by

A(1j) = |_| (63) 0ol Z 6’3 "7, =0 (analy. submodule).
acv | i
For a subset S C Q, define the ideal sheaf of S by
I(S)=| | {f,€0.:fls=0}.

aeql



Theorem 4.2 (Weak Coherence)

Let S C Q be a complex submanifold, possibly non-connected.
1. The ideal sheaf .7 (S) is locally finite.
2. Let {oj € F(5)(Q) : 1 <j < N} be a finite generator system

of Z(S) on Q.
Then, the relation sheaf % (o1, ...,0n) is locally finite.

Remark. For the notion K. Oka used “idéal de domaines
indetérminées”, later termed “coherence” by H. Cartan.

What is the difference? | think:
“Idéal de domaines indetérminées” represents a way of thinking.

“Coherence” represents the formed object (concept).



Proof.
1. Locally, S={z1 =--- =24 =0} in U C Q. Then,

q
F(S)y=> 0y-z.
j=1

2. This is immediately reduced to the local finiteness of the

relation sheaf defined
(4.3) ﬁz'21+'~+ﬁz'zq20.

Induction on q: (1) g = 1: Trivially Z(z1) = 0, locally finite.
(2) Suppose it up to g — 1 (g > 2) valid. For g, write

f} :ZCVZV :gj(zlazl)zl +hj(zl)7 7= (227"'7Zn)'
v

Then, (4.3) is rewritten as



(4.4)
(At+gzt - +827g) z1+h(Z) 2o+ +he(z)) ~2g=0:

z

(4.5) fi=—g2z— " — g2
(4.6) h2(z')Z czp+ -+ hq(z’)z +2g =0
In (4.5), &, ...,8gq are finite number of free variables, i.e., f;

finitely generated.

(4.6) is the case “g — 1"; by the induction hypothesis
(has - ,ﬁz) is locally finitely generated.

Thus, %Z(z1,...,zq) is locally finite. O



4.2 Cartan's matrix decomposition.

Let A be an (N, N)-matrix with operator norm ||A||. If ||A]] < 1,
Ay —A =1y +A+ A+ ...
If A= A"+ A” with ||A'||,||A”|| < 1/2, we have by the above:

Iy — (A +A") =1y - A)
(v = A) Iy = (A + A")) (A — A) L (Iy — A7)

=y —A)- Iy - NAA)) -1y — AY).

Lemma 4.7

For | A]l, [IA"] < 1/2,

N(A', AT)|| < 4max{[|A']]2, | A"][%}.




Let Q c C" = C" 1 x C be a domain,
E',E" € Q be two closed cuboids as follows:
a closed cuboid F € C"~! and two adjacent closed rectangles

E], E] € C sharing a side ¢,

(48) E =FxE, E'=FxE'S (=ENE

F x E, |, El

Figure: 4. Adjacent closed cuboids



Lemma 4.9 (Cartan’s matrix decomposition)

Let

U be a neighborhood of F x ¢,

B(z) be an invertible (N, N)-matrix valued hol. function in U.
Then, e > 0, sufficiently small such that if |1y — Bl||y < €o,
IB/(z), B"(z), invertible (N, N)-matrix valued holomorphic

functions on E', E”, respectively, satisfying

B(z) = B'(z)B"(z) on F x ¢.



Proof.

o _______. .
1
3k 5l
2|2 (2|2
i i
! F 1 ~,
En 57 Eno £ ! En(k)g
a3 L
aing ]
4
N R
— 1 e — I P

Figure: 6. %—closed nbh. of cubes



Using Cousin Integ. with estimate, we have a totological sequence

B=(1-A)=(1-(A+A))
(1 — A7)(1 - N(A7, A7))(1 — A7)

(1= A (1= A = N(A, AL = A) -+ (1= A7)

such that: If ||A|| < € is sufficiently small, we have

C
([ AL AN < % €= C'eo.
Inductively,
C2 C
[ Ak lls Akl < C’2k+142— =16C'C oy
B 2 C C

where ¢g > 0 is taken so that 16C"%¢g < 1.



0o 1

B=(1-A)=][a-4) [[a-4)=58"B"

k=1 k=00
See Appendix of [AFT].



Lemma 4.10 (Generator merging, H. Cartan)

Let E' UE" be adjacent cuboids, and

S C O,’_}’,UE” be an analy. submodule,

o' ={o}}i_y (/ 0" = {0} }i—1) be a generator system of -7’ over
E’' (/ E") such that on E' N E”

o =Ad", o =Bo.
Then, 7 a generator system on E' U E".
Proof. Put ' = *(c’,0,1), 6" = *(0y,0"),

1, | A

A=
B |1, - BA



Then,

&/ — Z\&//
41 1, | -A\ (1, O
0 |1,) \ B |1,

Approximate A, B by polynomial elements and put them into the
right-hand-side of A1, resulting R, such that |1 — AR|| is

sufficiently small. By Cartan’s matrix decomp., AR = §’'S”; hence,

~ —1~ -1 —1~
5 =S'S"R 10_//’ S5 = S"R 101/.



4.3 Oka Syzygy

Consider a closed cuboid E C C", possibly degenerate with some
edges of length 0. Define

dim E = the # of edges of positive lengths: 0 < dim E < 2n.
Lemma 4.11 (Oka Syzygy)

Let E € C" be a closed cuboid.

1. Every locally finite submodule .#(C ON) defined on E (i.e., in

a neighborhood of E) has a finite generator system on E.
2. Let . be a submodule on E with a finite generator system

{oj}i<j<1L on E such that Z%(o1,...,01) is locally finite.
Then for Vo € .7(E), 3aj € O(E), 1 <j <L, such that

L
(4.12) c=> aj-0; (onE).
j=1



Proof.

Double Cuboid Induction on dim E: [14-1,24-1] = 15 = 2,
(a) dim E = 0: 1, 2 Trivial by definition.

(b) Suppose them up to dimE =q —1,q > 1, valid.

dimE = q:

1. 241+ Cartan’s matrix decomposition.

2. Write with T > 0,0 > 0:

E=Fx{zy=t+iy,:0<t < T,|yn| <6},

dimF—9"1 0=0
g—2, 6>0.



6 E, E-g Ea( E"(‘H EI-‘
F X | i
of |5 |t -+ b [l |- iy 16
-6

Figure: 7. E; C E

Apply the induction hypothesis 2,1 to
Ei =F x {t+iyn: |yal <0} with t € [0, T]. We then have



L
o= Z aj-oj (in anbd. of) E;.
j=1

Let

be such expressions in adjacent cuboids E’, E” with E' N E" = E;.
By 14, “a generator system {7y = (74;);}x of Z(01,...,0.) on E.
Since Z}Zl(a} —a/)-0; =0 on E;, we apply the induction
hypothesis 241 for Z(o1,...,01) to get

(3 — af) =) bi- (1) on Ex,, by € O(Ey).
k

Apply Cousin Integral to by = b} — bj/:



<a;. - Zb’mj) = <a - Zbk%> = (a]") € O(E' UE") .
k
o= Z aJ’-” - 0j, on E'UE".
J

Repeat this. O

N.B. We apply this for .#(S) of a complex submanifold S C PA.



§5 Oka's Joku-1ko

Let
P C C” be an open cuboid,
S C P be a complex submanifold.

Lemma 5.1 (Oka's J6ku—|k6)
Let E € P be a closed cuboid. Then for
Vg e O(ENS) (ENS eS), G € O(E) satisfying

Glens = glens-

Proof. By
Weak Coherence of .#(S)+0ka Syzygy + Cuboid Induction.



Approximation

An analytic polyhedron P @ Q is a finite union of relatively

compact connected components of

(zeQ:(2) <1, 1<) < L}, v € O@Q), L < oo,

Theorem 5.2 (Runge-Weil-Oka)

Every holomorphic function on P is uniformly approximated on P
by functions of O(12).

Proof. Let f € O(P). By Oka map,
V:zeP < (z2,91(2),...,¢.(2)) €e PA c C"L

P is a complex submanifold of PA.

By Oka's Joku-1kd, extend f to F € O(PA).



F is developed to a power series, and hence f is developed to a

power series in z and (1);). O

66 Continuous Cousin Problem

Let Q = J,, Ua be an open covering and ¢, € C(U,), continuous

functions.

Definition 6.1

{(Uqa, ¢a)} is a continuous Cousin data if

¢a - ¢ﬂ S O(Ua m/8)7 Vaaﬁ‘

Continuous Cousin Problem: Find a solution ® € C(Q2) such
that ® — ¢, € O(Uy), "«



The following 3 problems are deduced from Cont. Cousin Problem:

1. Cousin | Problem.
2. Cousin Il Problem.
3. Problem to solve du = f with f = 0 for functions u.
) 1. May assume {U,} locally finite.
Take open V,, C V,, C U,, covering Q, and xo € C(Q) such that
Xa > 0; Xa(2) >0,z € Vy; Xa(2) =0,z & Ua; >y Xa = 1.
For a Cousin | data (Uy, f,), set

ba = Z(fa — )Xy € C(Ua).

v



Then, qba—gf)ﬁ: fa—fﬁi fa_¢a: fﬁ_¢,8-
Let ® be a solution of {(Uy, ¢a)}. Then

fr—Go+ P = fz—dg+ .
N’ N—_———
hol. hol.

2. Oka Principle: Let {(fa, Uy)} be a Cousin Il data on Q.

Oka Principle: Assume the existence of a continuous solution

F € C(Q) satisfying
8o = F/fy € C(Uy), nowhere vanishing.

May assume that YU, is simply connected. Then,
ho == Tlog g, € C(U,), and

ho — hg = log fg/fa S O(Ua N Uﬁ);

the pairs (hq, Uy) form a Continuous Cousin data.



Let H € C(Q) be a solution of {(hq, Uy)}. Then,
G:=eh H. £, =eM=H. fic #*(Q) (solution).

3. Dolbeault’s Lemma: Let f =37, fidz; be a (0,1)-form of

Cl-class defined in a neighborhood of a closed polydisk PA such
that Of = 0. Then there is a C? function u in PA such that
du=f.

Let f be a (0,1)-form of C'-class in Q with Of = 0.

Locally there are solutions,

Uy € C®(Uy,), Oug = f, U U, =9Q.

Since O(uq — ug) = 0, (ua — ug) € O(Uy N Ug). The rest is the

same as in 1.



Theorem 6.2

On a holomorphically convex domain every Continuous Cousin
Problem is solvable.

Proof. Let Q C C" be a holomorphically convex domain, and
{(Uq; o)} be a Continuous Cousin data on €.

Take P, 7 Q, increasing analytic polyhedra, and

the Oka maps 1, : P, < PA,).

Step 1. Obtain a solution ®, on each P, — PA,).

By Cuboid Induction + Oka’s Joku-1ké + Cousin Integral.
E C nbd of PA(,), a closed cuboid with g = dim E.



Claim. # Continuous solution f in a nbd. of S =, (P,)NE in
Y (P,) =P, € Q.

N

Figure: 8. Cuboid Induction




Step 2. Since ®,,1 — &, € O(P,), applying the Approximation of
Runge-Weil-Oka, modify ¢, so that
1
||¢u+1 - (DI/HI_DD < 27, v=12....

We have a solution,

S = + Z(¢y+1 - ®,).

v=1



§7 Interpolation

In the same way as in the previous section we have
Theorem 7.1 (Interpolation)

Let Q C C" be a holomorphically convex domain and

S C Q be a complex submanifold.

Then, f € O(Q) — f|s € O(S) — 0 (surjective).

If particular, for ¥{a,}, a discrete sequence of Q and "¢, € C,

IF € O(Q) with F(a,) = ¢,,” v. Conversely, if it holds for Q, Q is

holomorphically convex.

Proof. Joku-1kd. O



8 Levi (Hartogs’ Inverse) Problem

Let PA C C" be any fixed polydisk with center at 0, and
Q C C" be a domain. Put

dpa(z,00) =sup{r>0:z+r-PACQ}, ze Q.

Theorem 8.1 (Oka)

If Q is holomorphically convex (domain of holomorphy),

—log dpa(z,09) is plurisubharmonic in z € Q.



We call Q a pseudoconvex domain if —log dpa(z,09) is

plurisubharmonic near 052.

Levi (Hartogs’ Inverse) Problem: Is a pseudoconvex domain

holomorphically convex?

A bounded domain © C C" is said to be strongly pseudoconvex
if for Ya € 9Q, FU > a, a neighborhood and ¢ € C?(U) such that
UnNnQ={p <0} and

i00p(z) >0, z€ U.

o If Q is pseudoconvex, 7Q,, 7 Q with strongly pseudoconvex €.



The 1st cohomology H!(Q, O) as a C-vector space.
Definition. Let Q = |J Uy, % = {U,}. Define
ZY (% ,0), 1-cycle space,
§: CY(%,0) — BY%,0), a boundary operator,
HY(%,0) = ZY(%,0)/BY %, 0),
HY(Q,0) = lim HY % ,0) « HY (% ,0).

4
e H(Q,0) = 0 <= "Cont. Cousin Problem is solvable on Q.

Theorem 8.2

1. IfQ is holomorphically convex, H(Q, O) = 0.
2. For % = {U,} an open covering of Q with ¥ U,,

holomorphically convex,

HY (% ,0)= HY(Q,0).



L. Schwartz Theorem

Let E be a Hausdorff topological complex vector space with at
most countably many semi-norms;
E is Fréchet, if the associated distance on E is complete;

E is Baire, if E satisfies Baire's Category Theorem.
Theorem 8.3 (Open Map)

Let E (resp. F) be a Fréchet (resp. Baire) vector space.
If A: E — F is a continuous linear surjection,

then A is an open map.



Theorem 8.4 (L. Schwartz's Finiteness Theorem)
Let E (resp. F) be a Fréchet (resp. Baire) vector space. Let
A: E — F be a continuous linear surjection, and
B: E — F be a compact operator. Then (A+ B)E is closed, and
dim Coker(A + B)(:= F/(A+ B)E) < .
Proof. Heuristic: With C := A+ B we have
CE+BE =F.
Taking a quotient by CE, one gets

BE/CE = F/CE = Coker C.

Since B is a compact operator, BE/CE is a locally compact

topological vector space: Hence it is finite dimensional.

But, the closedness of CE is not known.



All these are proved at once by showing
F=(A+B)E+7(by,...,by)c, bj € F, N < oo (algebraically).

So, how to find b;?

(Demailly’s idea) Let U be a neighborhood of 0 € E such that
B(U) is compact. Since A(U) is open (Open Map Thm.),

3b; € B(U), 1 <j < N < o0, such that
— 1
B i+ = .
(U) c U <b, - 2A(U)>
J
Modify {b;} so that b; are linearly independent and

(E/ker(A+B)) & (b1,....bn)c 2 ([X].y) = (A+B)x®y e F

is a topological isomorphism again by Open Map Thm. Therefore,
(A4 B)E is closed and dim Coker(A+ B) = N < co. O



Theorem 8.5 (Grauert)
Let Q2 be a strongly pseudoconvex domain. Then,
dim HY(Q, 0) < oc.

Proof (Grauert's bumping method).
Q=1 Usinite Vo with V4, hol. convex,

bumped open HUa 5 V,, with Ua, hol. convex,

Figure: Boundary bumping method



¥ ={V,}, bumped covering % = {U,} (2 Q), so that

UamUﬂ@ Vaﬂ\/lg,
V:i¢ane ZY(%,0)® COV,0) — pé) +dn e Z(V,0) =0,

where p is the restriction map from the bumped U to V.
Note that Z1(%,0) & Co(¥,©) and Z1(¥, ©) are Fréchet (in
particular, the latter is Baire).

Since p is compact (Montel), L. Schwartz applied to ¥ and —p
yields that Coker(V — p) = HY(¥,0) = HY(Q, O) is finite

dimensional. O



Theorem 8.6 (Oka)

A strongly pseudoconvex domain is holomorphically convex.

Proof. Let ¢ be a defining function of 9 such that Q = {¢ < 0},
 is strongly plurisubharmonic in a neighborhood of 9.

Take a point b € 992. By a translation, we may put b = 0. Set
" O 0
=23 " 22(0)z 2 F(0)zjz.
Qz) =23 50zt > 520z, D7
Jj=1 ik
e, 8 > 0 satisfying

p(2) = RQ(2) +ellz|?, lz]l <o,
inf{o(2); Q(z) =0, ||z|| = 6} > &6 > 0.



Figure: Q' ={p < c}, Uy

Let Q" = {¢ < ¢} with very small ¢ >0, U; = Q' \ {Q = 0}.
Then % = {Up, U1} is an open covering of Q', which is strongly

pseudoconvex.



We set

1
fbl(Z):@, Z € UOﬁU]_,
fio(z) = —fo1(2), z € U N Up.

Then, a 1-cocyle f = (fo1(2), f10(2)) € ZY(% , ©O) is obtained. For
k € N we define

9(2) = (fu(2)*, z€ Upn Uh,
filz) = -(z), ze Uin o

Then (fIKl) € ZY(%,0). Thus we obtain cohomology classes,
[F) e HY (% ,0) = HY(Q,0), keN.

Since Q' is strongly pseudoconvex, Grauert's Theorem implies
dim HY(Q', 0) < oo.



Therefore, for N large, there is a non-trivial linear relation,

N
> alffl=0e HY(%,0q) (a € 0).
k=1

We may suppose that ¢y # 0. Then there exists elements
gi € O(U;), i =0,1, such that

N
Ck
= — , € Upn Us.
; Qk(Z) g]_(Z) gO(Z) z 0 1

Therefore,

N
C
g0(2)+2 k =gi(z), zeUnU, cn#0.

(8.7) 3F € .# () with poles of order N on {Q = 0}.



Since {Q=0}NQ =10, Flg € O(RQ) and lim,_,o |F(z)| = cc.

Thus, © is holomorphically convex.
Theorem 8.8 (Oka)
A pseudoconvex domain is holomorphically convex.

Proof. There are strongly pseudoconvex domains €, Q. Since
Q, are holomorphically convex, so is the limit Q2 (Behnke-Stein).

O

Furthermore, we have
Theorem 8.9 (Oka)

A pseudoconvex unramified Riemann domain over C" is
holomorphically convex and holomorphically separable (i.e., a Stein
manifold).



Proof.

Let 7 : Q — C” be an unramified Riemann domain. Assume that
— log dpa(x,09) is plurisubharmonic near 0.

Step 1°: Construct a (continuous) plurisubharmonic exhaustion
A:Q— R

Step 2°: Show that Q. = {\ < c} with Yc € R is holomorphically
convex. We may enlarge a little bit Q. to a strongly pseudoconvex
domain Q.. Then apply the same argument as in the case of

univalent domains.



Step 3° (Hol. Separability): Take two distinct points Q1, Q> € QL.
We may assume: 7(Q1) = 7(Q2) =a € C".

Let ¢(t),t > 0, be any affine linear curve with ¢(0) = a.

Then lifting F1¢;(t) € QL of ¢(t) such that ¢;(0) = Q; (j = 1,2).

Since Q is relatively compact, ¢;(t) hits the boundary 0.

We may assume that ¢1(t) hits 92 first with t = T € R, so that
¢;([0, T]) € Q¢ (j =1,2) and 6:1(T) € 9.

Note that ¢1(T) # ¢2(T).

With setting b = ¢1(T) we have by (8.7) a meromorphic function
Fp in QL. © QL which is holomorphic in QL.



Consider the Taylor expansions of Fp at Q; and @z in (z1,...,2n).
Since Fp has a pole at ¢1(T) and no pole at ¢2(T), those two
expansions must be different. Therefore, there is some partial
differential operator 9% = 9l®! /9z" - .. 9z with a multi-index a
such that

0“Fp(Q1) # 0“Fp(Q2).

Since 9*Fp, is holomorphic in €, this finishes the proof of hol.
separation..

Step 4°: For every pair ¢ < ¢’(€ R), Q. € Q. is a Runge pair (by
Joku-1kd). Ol



