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This is a note of a trial to find a natural and comprehensive uniform definition of holomorphy
of functions of one and several complex variables (or n variables, in short).

There seem to be mainly the following types of the definition of holomorphy from (i) to (vi),
while (vii) based on total differentials (cf. P. Montel [Mon]) is rare to find, in particular at the
textbook level:

(i) In one variable, complex differentiability by lim
h→0

f(z0+h)−f(z0)
h ; [Ahl], [Car] in one variable,

[Con], [Nog1], [Nog2] in one variable.
(ii) The existence of a function ∆(z), continuous at z0 such that f(z) = f(z0)+ (z− z0) ·∆(z),

and the extended form in n variables by a vector-valued function; [FrGr], [Has] in one
variable, [Rem].

(iii) In n variables, f(z0 + h)− f(z0) =
∑n

j=1 αjhj + o(‖h‖); [Hit1], [Hit2] [SSST].
(iv) C1-regularity and df = ∂f or Cauchy–Riemann equations; [Car] in n variables, [Hör], [Has]

in n variable, [Nog2] in n variables,
(v) Development to convergent power series; [Hur] in one variable, [GuR] in n variables, .
(vi) In n variables, continuity and separate holomorphy; [Kod], [Nis], [Dem] in n variables.
(vii) The C-linearity of the (real) total differential; [Mon], [Dem] with C1, both in one variable,

[For] in n variables.

In one variable, it seems to be the most common to use (i) with mentioning (iii) with n = 1
(it is very rare to take (iii) with n = 1 for the definition), but in several variables there seems to
be no standard definition of holomorphy. The reason may be because there is no direct extension
of the expression (i) in several variables, in which (iv)—(vi) are mainly used.

P. Montel [Mon] discussed the holomorphy of functions of one complex variable in terms of
the total differentials of two real variables; it lead to the Looman–Menchoff Theorem (cf. [Nar]).

(v) is the strongest, but the disadvantage is that the Cauchy Integral Theorem is reduced
to a trivial statement because of the local existence of the primitive of a holomorphic function
everywhere it is defined. The C1-regularity of (iv) is also excessive for the Cauchy Integral The-
orem (Goursat’s proof). Hence the excellent flavor of the Cauchy Integral Theorem is dismissed.
In (ii) ∆(z) is unique in one variable, but in the case of n ≥ 2 the value of the n-vector-valued
function ∆(z) is not uniquely determined except for at z = z0. (vi) is very dependent on the co-
ordinate system and is not preserved even under linear changes of coordinates. The expressions
of (iii) and (vii) are very close, but there is yet a difference in using the real total differential in
(vii). It is an advantage of (vii) that the complex structure in the real structure is expilicitly
clarified in terms of complex linearity.

After all, they are equivalent, but the author finds that the definition by (vii) might be
the most reasonable and consistent in one and several complex variables. It is the point of the
present note to look at the complex structure of the tangent space of (the graph of) the given



function in terms of the total differential; also, it gives a smooth introduction from elementary
calculus.

Acknowledgment. The author is very grateful to Professor I. Wakabayashi for a number of
useful discussions, comments and remarks.

Key words: complex analysis, holomorphy, holomorphic functions. analytic functions, total
differential.

1 Differentiation in Real Variables

1.1 Partial Derivatives

Let U be an open set of Rn with the natural coordinate system x = (x1, . . . , xn). Let f : U → C
be a function. We consider the following limit at a = (aj) ∈ U :

(1.1) lim
h→0

f(a1, . . . , aj + h, . . . , an)− f(a1, . . . , aj , . . . , an)

h
.

If this limit exists, f(x) is said to be partially differentiable at a with respect to xj , and the limit

is denoted by ∂f
∂xj

(a), called the partial derivative of f(x) at a (with respect to xj). If it exists

at every point x ∈ U , f(x) is said to be partially differentiable on U with respect to xj , and the
function

∂f

∂xj
: x ∈ U −→ ∂f

∂xj
(x) ∈ C

is called the partial derivative of f(x) (with respect to xj); in particular, f(x1, . . . , xj , . . . , xn) is
continuous in xj with the other xk fixed.

In the case of n = 1, with x = x1 we write f ′(x) = df
dx(x) =

∂f
∂x (x), which is simply called

the derivative of f(x).

Theorem 1.2 Let U be a domain of Rn, and let f : U → C be a partially differentiable function
with respect to every xj in U . If ∂f

∂xj
(x) = 0 (1 ≤ ∀ j ≤ n) everywhere in U , then f(x) is a

constant function.

Proof. Assume ∂f
∂xj

(x) = 0 (x ∈ U, 1 ≤ j ≤ n). Let a ∈ U and set α = f(a). Set E = {x ∈
U : f(x) = α} 6= ∅. Let b = (b1, . . . , bn) ∈ E be an arbitrary point. Take a δ > 0 such that
V := {b + h : h = (hj) ∈ Rn, |hj | < δ} ⊂ U . Let b + h ∈ V with h = (h1, . . . , hn) ∈ Rn

be any point. By the assumption f(x1, b2, . . . , bn) is constant in x1 with |x1 − b1| < δ, and so
f(b1 + h1, b2, . . . , bn) = α. Similarly to x2, we have f(b1 + h1, b2 + h2, b3 . . . , bn) = α. Repeating
this, we have f(b+ h) = α, and b+ h ∈ E; hence, V ⊂ E. Therefore E is open.

Let c ∈ Ē be an accumulation point of E in U . There are a point b′ ∈ E and a δ > 0 such
that c ∈ {b′ + (hj) : |hj | < δ} ⊂ U . By the same arguments as above we see that f(c) = α, and
so c ∈ E; thus, E is closed. Since U is connected, E = U , and f(x) is constant in U . 　 □

1.2 Total Differential

Let f : U → C be as above. Even if f(x1, . . . , xn) is partially differentiable with respect all xj ,
f(x1, . . . , xn) is not necessarily continuous in general (n ≥ 2): A well-known example is:

f(x1, x2) =

 0, (x1, x2) = (0, 0),
x1x2

x21 + x22
, (x1, x2) 6= (0, 0).
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This f(x1, x2) is partially differentiable in R2 with respect to x1 and x2, but not continuous at
0.

We consider a little stronger differentiability for f(x1, . . . , xn):

Definition 1.3 (i) f(x) is totally differentiable at a ∈ U if there are constants αj ∈ C, 1 ≤
j ≤ n, such that as h = (h1, . . . , hn) (∈ Rn) → 0,

(1.4) f(a+ h)− f(a) =

n∑
j=1

αjhj + o(‖h‖), lim
h→0

o(‖h‖)
‖h‖

= 0.

(ii) If f(x) is totally differentiable at every point of U , f(x) is said to be totally differentiable
in U .

In some references of real calculus the total differentiability is referred to as the differentia-
bility.

Remark 1.5 Note that if f(x) is totally differentiable at a as above, then

(i) f(x) is continuous at a;
(ii) αj =

∂f
∂xj

(a), and so are uniquely determined.

We may consider (1.4) to be the first order approximation of f(x)− f(a) at a by a R-linear
function. Taking out the main part of the approximation, we define:

Definition 1.6 The first term of the right-hand side of (1.4),

(1.7) dfa : (h1, . . . , hn) ∈ Rn −→
n∑

j=1

∂f

∂xj
(a)hj ∈ C

is called the total differential of f(x) at a, which is R-linear.

Remark 1.8 Whereas in (1.4), h ∈ Rn is taken in a neighborhood of 0, h = (hj) of (1.7) is not
necessary near 0, but just an arbitrary point of the real vector space Rn. The real affine space

(a, f(a)) + {(h, dfa(h)) : h ∈ Rn} ⊂ Rn ×C

is a generalization of the tangent line of a real-valued differentiable function of real one variable:
Cf. Fig. 1, Fig. 2. Therefore, the total differential represents the tangent space of the graph of the
function f(x) at a given point, which is a real linear (or vector) space.

In some references, the total differential is also called the total derivative or simply the
differential.

Let f(x), g(x) be totally differentiable functions at a ∈ Rn, and let α, β ∈ C be constants.
Then

αf(x) + βg(x), f(x) · g(x)

are totally differentiable at a.
We consider a composed function of totally differentiable functions. Let fk(x) (1 ≤ k ≤ m)

be real-valued functions in an open set U ⊂ Rn, and let f = (fk) : U → V with an open set
V ⊂ Rm. Let G(y) be a complex-valued function in y ∈ V .
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Figure 1: Real 1 variable Figure 2: Real n variables

Theorem 1.9 Let the notation be as above. Assume that all fj(x) are totally differentiable at
a ∈ U , and that G(y) is totally differentiable at b = f(a) ∈ V . Then the composed function
G ◦ f(x) is totally differentiable at a and satisfies

(1.10) G ◦ f(a+ h)−G ◦ f(a) =
n∑

j=1

m∑
k=1

∂G

∂yk
(b) · ∂fk

∂xj
(a)hj + o(‖h‖)

for small h ∈ Rn. In particular,

(1.11)
∂(G ◦ f)

∂xj
(a) =

m∑
k=1

∂G

∂yk
(f(a)) · ∂fk

∂xj
(a).

Proof. For small η := (ηk) ∈ Rm and h := (hj) ∈ Rn we have by definition

G(b+ η)−G(b) =

m∑
k=1

∂G

∂yk
(b)ηk + ε(‖η‖), lim

∥η∥→0

ε(‖η‖)
‖η‖

= 0,(1.12)

fk(a+ h)− fk(a) =
n∑

j=1

∂fk
∂xj

(a)hj + εk(‖h‖), lim
∥h∥→0

εk(‖h‖)
‖h‖

= 0,

where ε(‖η‖) (resp. εk(‖h‖)) is in fact a function of η (resp. h), but the notation represents the
vanising order at 0 as described above. Set ηk = fk(a+ h)− fk(a) and η = (ηk). We substitute
these to (1.12). There is a constant C > 0 with ‖η‖ ≤ C‖h‖, so that ε(‖η‖) = o(‖h‖); moreover,

m∑
k=1

∂G

∂yk
(b)εk(‖h‖) = o(‖h‖).

Therefore we deduce (1.10). 　 □

Proposition 1.13 A function of C1-class is totally differentiable.

Proof. This derives from the following computation by making use of the Mean Value Theorem
and the continuity of the partial derivatives:

f(a+ h)− f(a) = f(a+ (h1, h2, . . . , hn))− f(a+ (0, h2, . . . , hn))
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+ f(a+ (0, h2, h3, . . . , hn))− f(a+ (0, 0, h3, . . . , hn))

...

+ f(a+ (0, , . . . , 0, hn))− f(a)

=
n∑

j=1

∂f

∂xj
(a+ (0, . . . , θjhj , hj+1, . . . , hn))hj (0 < ∃ θj < 1)

=

n∑
j=1

∂f

∂xj
(a)hj + o(‖h‖).　 □

Remark 1.14 The relation among the differentiability of functions of several variables is as fol-
lows:

C1-class ⇒ Totally differentiable ⇒ Partially differentiable.

2 Holomorphic Functions of One Variable

2.1 Total Differential in a Complex Coordinate

Let D ⊂ C be an open set. Let f(z) be a complex-valued function in D. With z = x+ iy ∈ C in
the real and imaginary parts we recall the total differentiability of f(z) = f(x, y) at z0 = x0+iy0,
which we rewrite in the complex coordinate (cf. Definition 1.3): There are complex constants
α1, α2 such that

(2.1) f(z0 + h)− f(z0) = α1h1 + α2h2 + o(|h|)

for h = h1 + ih2 with h1, h2 ∈ R. If they exist, α1 = ∂f
∂x (z0) and α2 = ∂f

∂y (z0) (cf. Remark 1.5).

Since h1 =
1
2(h+ h̄) and h2 =

1
2i(h− h̄), (2.1) is equivalent to

f(z0 + h)− f(z0) =
α1

2
(h+ h̄) +

α2

2i
(h− h̄) + o(|h|)(2.2)

=
1

2

(
α1 +

1

i
α2

)
h+

1

2

(
α1 −

1

i
α2

)
h̄+ o(|h|)

= βh+ γh̄+ o(|h|),

where β = 1
2

(
α1 +

1
iα2

)
and γ = 1

2

(
α1 − 1

iα2

)
. Therefore we have

Lemma 2.3 f(z) is totally differentiable at z0 if and only if there are constants β, γ such that

(2.4) f(z0 + h)− f(z0) = βh+ γh̄+ o(|h|).

We put

∂f

∂z
=

1

2

(
∂f

∂x
+

1

i

∂f

∂y

)
,

∂f

∂z̄
=

1

2

(
∂f

∂x
− 1

i

∂f

∂y

)
.(2.5)

Let f̄(z) := f(z) denote the complex conjugate. Note that(
∂f

∂z

)
=

∂f̄

∂z̄
,

(
∂f

∂z̄

)
=

∂f̄

∂z
,

∂z

∂z
= 1,

∂z

∂z̄
= 0.

(2.6)
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Then β, γ in (2.4) are unique (cf. Remark 1.5 (ii)) and given by

β =
∂f

∂z
(z0), γ =

∂f

∂z̄
(z0),

and so (2.4) takes the following form:

(2.7) f(z0 + h)− f(z0) =
∂f

∂z
(z0)h+

∂f

∂z̄
(z0)h̄+ o(|h|).

Remark 2.8 If f(z) is totally differentiable at z0 ∈ D, then f(z) is continuous at z0, and the
total differential of f(z) at z0 in the complex coordinate is written

(2.9) dfz0 : h ∈ C −→ ∂f

∂z
(z0)h+

∂f

∂z̄
(z0)h̄.

This is R-linear, but not C-linear in general; dfz0 is C-linear if and only if ∂f
∂z̄ (z0) = 0.

Let w0 = f(z0) and let G(w) be a function defined in a neighborhood of w0.

Proposition 2.10 Assume that f(z) (resp. G(w)) is totally differentiable at z0 (resp. w0). Then
the composed function G ◦ f(z) is totally differentiable at z0 and satisfies

∂(G ◦ f)
∂z

(z0) =
∂G

∂w
(f(z0))

∂f

∂z
(z0) +

∂G

∂w̄
(f(z0))

∂f̄

∂z
(z0),(2.11)

∂(G ◦ f)
∂z̄

(z0) =
∂G

∂w
(f(z0))

∂f

∂z̄
(z0) +

∂G

∂w̄
(f(z0))

∂f̄

∂z̄
(z0).(2.12)

Proof. This follows from Theorem 1.9, or rather from its poof combined with the expression of
(2.7). In fact we have for small h and η

f(z0 + h)− f(z0) =
∂f

∂z
(z0)h+

∂f

∂z̄
(z0)h̄+ o(|h|),

G(w0 + η)−G(w0) =
∂G

∂w
(w0)η +

∂G

∂w̄
(w0)η̄ + o(|η|).

With setting η = f(z0 + h)− f(z0) we obtain

G ◦ f(z0 + h)−G ◦ f(z0) =
(
∂G

∂w
(w0)

∂f

∂z
(z0) +

∂G

∂w̄
(w0)

∂f̄

∂z
(z0)

)
h

+

(
∂G

∂w
(w0)

∂f

∂z̄
(z0) +

∂G

∂w̄
(w0)

∂f̄

∂z̄
(z0)

)
h̄+ o(|h|).

We thus deduce (2.11) and (2.12). 　 □

2.2 Complex Differentiability and Holomorphic Functions of One Variable

We keep the notation above. Let D ⊂ C be a domain with the natural coordinate z = x + iy.
We define the complex total differentiability as a special case of the total differentiability, and
holomorphic functions:

Definition 2.13 (Holomorphic function) (i) A function f : D → C is complex differen-
tiable at z0 ∈ D if f(z) (= f(x, y)) is totally differentiable at z0 and the total differential
dfz0 : C → C is C-linear; i.e., dfz0(h) = αh with α := dfz0(1), or

f(z0 + h)− f(z0) = αh+ o(|h|) as h → 0.

In this case, f(z) is continuous at z0.
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Figure 3: Real 2 variables (x, y) = x+ iy,
w = f(x, y) totally differentiable

Figure 4: Complex 1 variable z = x+ iy,
w = f(z) holomorphic

(ii) f(z) is holomorphic in D if f(z) is complex differentiable at every point of D; then, the
function

f ′(z) =
df

dz
(z) =

d

dz
f(z), z ∈ D

is called the derivative of f(z) (or f).

Remark 2.14 (i) Note here that we do not assume the continuity of the derivative f ′(z), while
the infinite differentiability of f(z) is deduced from the Cauchy Integral Formula after
Goursat’s proof of Cauchy’s Integral Theorem.

(ii) The C-linearity of the total differential dfa means, in other words, that the tangent space
of the graph of f(z) is a complex plane; this is the point of the observation of the present
note. Cf. Fig. 3, Fig. 4, Remark 1.8.

Proposition 2.15 Let f : D → C be a function and let z0 ∈ D. The following are mutually
equivalent:

(i) f(z) is complex differentiable at z0.
(ii) f(z) is totally differentiable at z0 and satisfies the so-called Cauchy–Riemann equation

(2.16)
∂f

∂z̄
(z0) = 0.

(iii) lim
h→0

f(z0 + h)− f(z0)

h
exists.

Proof. Immediate by the definition and (2.9). 　 □

The above (iii) is formally the same as in the case of real one variable, but here h moves
around in the complex plane (the real two dimensional space); this is a great difference.

Remark 2.17 With f(z) = u(x, y)+ iv(x, y) in the real and imaginary parts and by the compar-
ison of the real and imaginary parts, (2.16) is equivalent to

∂u

∂x
(z0) =

∂v

∂y
(z0),

∂u

∂y
(z0) = −∂v

∂x
(z0).(2.18)

These are called the Cauchy–Riemann equations (or relations).
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Proposition 2.19 (Derivative of composed functions ) If G(w) and w = f(z) are two holo-
morphic functions such that a composition G ◦ f(z) = G(f(z)) is defined, then G ◦ f(z) is
holomorphic and satisfies

(2.20)
d

dz
G ◦ f(z) = dG

dw
(f(z)) · df

dz
(z).

Proof. This is immediate from Proposition 2.10. 　 □

Theorem 2.21 Let D be a domain, and let f : D → C be a holomorphic function. If f ′(z) = 0
everywhere in D, then f(z) is a constant.

Proof. Assume that f ′(z) = 0 in U . Since ∂f
∂x = ∂f

∂z +
∂f
∂z̄ and ∂f

∂y = i
(
∂f
∂z − ∂f

∂z̄

)
, the assumption

implies that ∂f
∂x (x, y) =

∂f
∂y (x, y) = 0 everywhere in D. By Theorem 1.2, f(x, y) is constant in

D. 　 □

Proposition 2.22 A function f(z) of C1-class is holomorphic if and only if ∂f
∂z̄ = 0.

Proof. Immediate by Proposition 1.13 and the definition. 　 □

Remark 2.23 One may take a C1 function satisfying ∂f
∂z̄ = 0 for the definition of holomorphic

functions. But it is an excellent point of Cauchy’s Integral Theorem which holds without the
continuity of the partial derivatives of the holomorphic function (Goursat’s proof). The C1

assumption dismisses the excellence of Cauchy’s Integral Theorem.

3 Holomorphic Functions of Several Variables

3.1 Total Differential in Complex Coordinates

We denote by Cn the complex vector space of n (∈ N) product of the complex plane C. For
the coordinates we write z = (z1, . . . , zn) ∈ Cn and zj = xj + iyj with real variables xj , yj . By
the natural correspondence

C 3 (z1, . . . , zn) 7→ (x1, y1, . . . , xn, yn) ∈ R2n

we identify Cn with R2n.
Let D ⊂ Cn be an open set. Let f(z) be a complex-valued function in D. With z =

(zj) = (xj + iyj) ∈ Cn in real and imaginary parts we recall the total differentiability of f(z) =
f(x1, y1, . . . , xn, yn) at z0 = (z0j) = (x0j + iy0j), which we rewrite in the complex coordinates as
in §2.1. By definition f(z) is totally differentiable at z0 if for h = (hj) = (hj1 + ihj2) with small
hj1, hj2 ∈ R

(3.1) f(z0 + h)− f(z0) =

n∑
j=1

(αj1hj1 + αj2hj2) + o(‖h‖),

where αj1 and αj2 are complex constants. If it is the case, αj1 =
∂f
∂xj

(z0) and αj2 =
∂f
∂yj

(z0). As

in the case of one variable (§2.1), (3.1) is written

f(z0 + h)− f(z0) =
n∑

j=1

βjhj +
n∑

j=1

γj h̄j + o(‖h‖),(3.2)

where βj =
1
2

(
αj1 +

1
iαj2

)
and γj =

1
2

(
αj1 − 1

iαj2

)
. Therefore we have
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Lemma 3.3 f(z) is totally differentiable at z0 if and only if there are constants βj , γj (1 ≤ j ≤
n) such that

(3.4) f(z0 + h)− f(z0) =

n∑
j=1

βjhj +

n∑
j=1

γj h̄j + o(‖h‖).

Here β, γ are uniquely determined if they exist.

We define partial differential operators as follows:

∂

∂zj
=

1

2

(
∂

∂xj
+

1

i

∂

∂yj

)
, 1 ≤ j ≤ n,(3.5)

∂

∂z̄j
=

1

2

(
∂

∂xj
− 1

i

∂

∂yj

)
, 1 ≤ j ≤ n.

Note that (2.6) holds for each zj .
Then βj , γj in (3.4) are given by

βj =
∂f

∂zj
(z0), γj =

∂f

∂z̄j
(z0),

and so (3.4) is reduced to

(3.6) f(z0 + h)− f(z0) =
n∑

j=1

∂f

∂zj
(z0)hj +

n∑
j=1

∂f

∂z̄j
(z0)h̄j + o(‖h‖).

If f(z) is totally differentiable at z0 ∈ D, the total differential of f(z) at z0 is written

(3.7) dfz0 : h ∈ Cn −→
n∑

j=1

∂f

∂zj
(z0)hj +

n∑
j=1

∂f

∂z̄j
(z0)h̄j .

This is R-linear, but not C-linear in general; dfz0 isC-linear if and only if ∂f
∂z̄j

(z0) = 0, 1 ≤ j ≤ n.

Let F (z) = (F1(z), . . . , Fm(z)) be an m-vector valued function in a neighborhood of z0 ∈ Cn,
and let w0 = F (z0) ∈ Cm. Let G(w) be a function defined in a neighborhood of w0.

Proposition 3.8 Assume that Fk(z) (1 ≤ k ≤ m) and G(w) are totally differentiable at z0
and at w0, respectively. Then the composed function G ◦ F (z) is totally differentiable at z0 and
satisfies

∂(G ◦ F )

∂zj
(z0) =

m∑
k=1

∂G

∂wk
(F (z0))

∂Fk

∂zj
(z0) +

m∑
k=1

∂G

∂w̄k
(F (z0))

∂F̄k

∂zj
(z0),(3.9)

∂(G ◦ F )

∂z̄j
(z0) =

m∑
k=1

∂G

∂wk
(F (z0))

∂Fk

∂z̄j
(z0) +

m∑
k=1

∂G

∂w̄k
(F (z0))

∂F̄k

∂z̄j
(z0).(3.10)

Proof. By making use of (3.6) the poof is similar to the one variable case (cf. Proof of Propo-
sition 2.10). 　 □
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Figure 5: Cn ∼=R2n, real 2n variables,
w = f(x1, . . . , yn) totally differentiable

Figure 6: Cn, complex n variables,
w = f(z1, . . . , zn) holomorphic

3.2 Complex Total Differentiability and Holomorphic Functions of Several
Variables

We keep the notation. Let D ⊂ Cn be a domain with the natural coordinate system z =
(z1, . . . , zn) as above. Let f : D → C be a function. We define the complex total differentiability
as a special case of the total differentiability, and holomorphic functions of several complex
variables:

Definition 3.11 (Holomorphic function) (i) f(z) is complex totally differentiable at z0 ∈
D if f(z) is totally differentiable at z0 and the total differential dfz0 : Cn → C is C-linear;
i.e.,

(3.12) dfz0(h) =
n∑

j=1

αjhj , h = (hj) ∈ Cn

with αj := dfz0(0, . . . ,
jth
1 , . . . , 0) (1 ≤ j ≤ n), or

f(z0 + h)− f(z0) =
n∑

j=1

αjhj + o(‖h‖) as h = (h1, . . . , hn) → 0

In this case, f(z) is continuous at z0.
(i) f(z) is holomorphic in D if f(z) is complex totally differentiable at every point of D.

Remark 3.13 (i) Note here that f(z) is not assumed to be of C1-class, while the infinite dif-
ferentiability of f(z) will be proved later.

(ii) As in the case of one variable (Remark 2.14 (ii)), the C-linearity of the total differential
dfa means that the tangent space of the graph of f(z) at z = a is a complex linear
space : Cf. Fig. 5, Fig. 6.

Proposition 3.14 (i) Let f(z) (z ∈ D) be totally differentiable at z0. Then dfz0 is C-linear
if and only if the so-called Cauchy–Riemann equations

∂f

∂z̄j
(z0) = 0, 1 ≤ j ≤ n,

are satisfied.
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(ii) A function f(z) of C1-class in D is holomorphic if and only if ∂f
∂z̄j

(z) = 0 (1 ≤ j ≤ n) in

D.

Proof. (i) By the definition and (3.7).
(ii) By Proposition 1.13 and (i) above. 　 □

We call ∂
∂zj

(resp. ∂
∂z̄j

) the (resp. anti-) holomorphic partial differential operator.

Theorem 3.15 Let D be a domain of Cn, and let f : D → C be a holomorphic function. If
∂f
∂zj

(z) = 0 (1 ≤ j ≤ n) everywhere in D, then f(z) is a constant.

Proof. Assume that ∂f
∂zj

= 0 (1 ≤ j ≤ n) in D. As in the proof of Theorem 2.21 we see that
∂f
∂xj

= ∂f
∂yj

= 0 (1 ≤ j ≤ n) in D. By Theorem 1.2, f(z) is constant in D. 　 □

For the composition of holomorphic functions we have:

Proposition 3.16 Let F (z) = (F1(z), . . . , Fm(z)) be an m-vector valued holomorphic function
in a neighborhood of z0 ∈ Cn, and let w0 = F (z0) ∈ Cm. Let G(w) be a holomorphic function
defined in a neighborhood of w0.

Then the composed function G ◦ F (z) is holomorphic and satisfies

∂(G ◦ F )

∂zj
(z0) =

m∑
k=1

∂G

∂wk
(F (z0))

∂Fk

∂zj
(z0).(3.17)

Proof. By Proposition 3.8. 　 □

Proposition 3.18 Let f(z) be a function in D. Then the following are equivalent:

(i) f(z) is holomorphic in D.
(ii) f(z) is continuous and separately holomorphic in D; i.e., (separate holomorphy) for an

arbitrarily fixed point a = (aj) ∈ D and j with 1 ≤ j ≤ n, the function f(a1, . . . , zj , . . . , an)
is a holomorphic function of one variable zj ∈ {zj ∈ C : (a1, . . . , zj , . . . , an) ∈ D}.

Proof. (i)⇒(ii): Clear.
(ii)⇒(i): Because of the condition, we have Cauchy’s Integral Formula for f(z) over closed

polydisks in D by multiple path integrals, with which the proof is immediate. 　 □

Remark 3.19 (i) One may take (ii) above for the definition of holomorphic functions, but the
separate holomorphy is very dependent on the coordinates. Even after a linear transfor-
mation of the coordinates (zj), the property of separate holomorphy is not preserved, so
that the definition by (ii) loses the sense. The above Definition 3.11 is preserved by linear
transformations of (zj), and more in deed by the changes of holomorphic local coordinates,
which is easily confirmed through the partial derivative formulae of composed functions
(Proposition 3.8).

(ii) If a function f(z) in an open set D (⊂ Cn) is continuous and separately holomorphic,
then f(z) is an analytic function, i.e., f(z) is developed to a convergent power series about
every point of D. There is a style to take this property for the definition of holomorphy
(K.T. Weierstrass); in this case, however as mentioned in [Car], it is non-tirivial and must
be proved that a power series convergent in a polydisk P∆(a; r) is a holomorphic function
there.
It is also noted that the definition of holomorphy by analyticity is so strong that Cauchy’s
Integral Theorem (in one variable) is reduced to an almost trivial statement by the existence
of the local primitives everywhere in the domain; here, in fact, there are many arguments
historically since Weierstrass.

The following are just samples:
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[Mon] P. Montel, Sur les différentielles totales et les fonctions monogènes, C.R. Acad. Sci. Paris 156
(1913), 1820–1822.

[Nar] R. Narasimhan, Complex Analysis in One Variable (Part I), 2nd edition with Y. Nievergelt,
Springer Sci.+Bus. Media, New York, 2001; Originally publ. by Birkh.user, Boston, 1985.

[Nis] T. Nishino, Function Theory in Several Complex Variables, transl. by N. Levenberg and H.
Yamaguchi, Amer. Math. Soc. Providence, R.I., 2001: the original Japanese ed., The University
of Tokyo Press, Tokyo, 1996.

[Nog1] J. Noguchi, Introduction to Complex Analysis, MMONO 168, Amer. Math. Soc. Rhode Island,
1997: The Japanese Ed., Sugakusensho 12, Shokabo, Tokyo, 1993.

[Nog2] J. Noguchi, Analytic Function Theory of Several Variables–Elements of Oka’s Coherence,
Springer, Singapore, 2016: The Japanese Ed., Asakura Shoten, Tokyo, 1st. 2013, 2nd. 2019.

[Rem] R. Remmert, Theory of Complex Functions, transl. by R.B. Burckel, GTM 122, Springer, New
York, 1991: the original ed. Funktionentheorie I, 2nd Ed., 1989.

[SSST] G. Della Sala, A. Saracco, A. Simioniuc and G. Tomassini, Lectures on complex analysis and
analytic geometry, Appunti, Scuola normale superiore 3, 2006.

12


