Errata to: Analytic Function Theory of Several Variables — Elements of Oka's Coherence, 2016

In the following numbered list, the first number is the page number; the second is the line number from above (the number with minus sign means the line number from the bottom), and : "A \Rightarrow B" means that text A is corrected to text B.

- 1) ix; 7: oppotuities \Rightarrow opportunities
- 2) ix; -11: opportunity \Rightarrow opportunity
- 3) 19; 6 (the first raw in the determinant): $\frac{\partial f_1}{\partial w_1} \frac{\partial f_1}{\partial w_1} \frac{\partial f_1}{\partial w_2} i \frac{\partial f_1}{\partial w_2} \cdots \Rightarrow \frac{\partial f_1}{\partial w_1} i \frac{\partial f_1}{\partial w_1} \frac{\partial f_1}{\partial w_2} i \frac{\partial f_1}{\partial w_2} \cdots$
- 4) 43; 10: $(\beta_1 \cdots \beta_n)^n \Rightarrow (\beta_1 \cdots \beta_n)^m$
- 5) 55; 15: $P\Delta \Rightarrow \Omega$
- 6) 57; -4: q. we $\Rightarrow q$, we

7) 58; 5:
$$\sum_{v=0}^{p'} \Rightarrow \sum_{v=0}^{p'-1}$$

- 8) 58; 14: $\mathcal{O}_{P\Delta_{n-1}}^{p+p'} \Rightarrow \mathcal{O}_{P\Delta_{n-1}}^{p+p'(q-1)}$
- 9) 59; 3: constants \Rightarrow constants in z_n

10) 60; -3, -1 (two places):
$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

- 11) 62; -14, -12 (two places): $a_j \Rightarrow t_j$
- 12) 62; -5: $w(w(z)) \Rightarrow w(z)$
- 13) 109; $-6: \eta(\xi_1, ..., \xi_q) \in \mathscr{E}^{(q)}(X) \times (\mathscr{X}(X))^q \to \mathscr{E}(X). \Rightarrow \eta: (\xi_1, ..., \xi_q) \in (\mathscr{X}(X))^q \to \eta(\xi_1, ..., \xi_q) \in \mathscr{E}(X).$
- 14) 110; 11: $C^0(\mathcal{U}, X) \Rightarrow C^0(\mathcal{U}, \mathcal{O}_X)$
- 15) 152; -4: \mathbb{N}^2 . $\Rightarrow \mathbb{N}^2$, where $|0|^k := 1$ and $|0|^l := 1$.

- 16) 199; $-2: F^{-2} \Rightarrow F^{-1}$
- 17) 201; -12: $(5.3.2) \Rightarrow (5.3.3)$
- 18) 204; $-6: \frac{z_n}{z_r} \Rightarrow \frac{z_n}{z_i}$
- 19) 229; $-7: \underline{\bar{X}}_a \Rightarrow \underline{X}_a$
- 20) 273; 1: $\mathscr{I}\langle Y\rangle_0 \Rightarrow \mathscr{I}\langle Y\rangle_a$
- 21) 279; $-4 \cdots -2$ (three lines): for $(u,v) \in P\Delta_2 \subset \mathbb{C}^2, \dots 0 \in P\Delta_2$. \Rightarrow for $(u,v) \in \mathbb{C}^2$. Show that $A \cap \{z_1 \neq 0\}$ is an analytic subset of $\{z_1 \neq 0\}$, but that A is not an analytic subset in any neighborhood of $0 \in \mathbb{C}^3$.
- 22) 279; $-1: \mathcal{O}_{2,0} \Rightarrow \mathcal{O}_{3,0}$
- 23) 318; 11: $(7.4.4) \Rightarrow (7.4.5)$
- 24) 325; -10: making \Rightarrow making use of
- 25) 325; $-8\cdots-4$ (five lines): The following ... (i) ... (ii) ... (iii) ... convex. \Rightarrow If a Riemann domain X is holomorphically convex, there is an element $f \in \mathcal{O}(X)$ whose domain of existence is X; in particular, X is a domain of holomorphy.

To obtain the converse of this theorem, we have to wait for Oka's Theorem 7.5.43.

- 26) 351; 9: $f \Rightarrow f_0$
- 27) 364; $-8: \alpha_1 \Rightarrow \alpha_1^n$
- 28) 364; $-8: \alpha_2 \Rightarrow \alpha_2^n$
- 29) 384; 384: Rossi Analytic ⇒ Rossi, Analytic