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Abstract

Let A be a semi-abelian variety with an exponential map exp : Lie(A) → A. The
purpose of this paper is to explore Nevanlinna theory of the entire curve êxp f :=
(exp f, f) : C → A×Lie(A) associated with an entire curve f : C → Lie(A). Firstly
we give a Nevanlinna theoretic proof to the analytic Ax-Schanuel Theorem for semi-
abelian varieties, which was proved by J. Ax 1972 in the case of formal power series.
(Ax-Schanuel Theorem). We assume some non-degeneracy condition for f such that
the elements of the vector-valued function f(z)−f(0) ∈ Lie(A) ∼= Cn are Q-linearly
independent in the case of A = (C∗)n. Our proof is based on the Log Bloch-Ochiai
Theorem and a key estimate which we show.

Our next aim is to establish a 2nd Main Theorem for êxp f and its k-jet lifts with
truncated counting functions at level one. We give some applications to a problem of
a type raised by S. Lang and the unicity. The results clarify a relationship between
the problems of Ax-Schanuel type and Nevanlinna theory.

Keywords: analytic Ax-Schanuel; Nevanlinna theory; semi-abelian Schanuel; Log Bloch-
Ochiai; value distribution theory.
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1. Introduction
Let A be a semi-abelian variety of dimension n (> 0) with Lie algebra Lie(A) and an

exponential map exp : Lie(A) → A. Let f : C → Lie(A) be an entire curve (i.e., a
holomorphic map from C into Lie(A)), and set

(1.1) exp f := exp ◦f : C → A, êxp f := (exp f, f) : C → Â := A× Lie(A).

We denote by êxp f(C)
Zar

the Zariski closure of êxp f(C) in Â. Put

tr. degC êxp f := dimC êxp f(C)
Zar

.

We say that f is “A-(resp. non)degenerate” if
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1.2 (subgroup condition) there is a (resp. no) connected algebraic proper subgroup G ⊊
A such that G+ exp f(0) ⊃ exp f(C).

(1) It is our first aim to give a Nevanlinna theoretic proof to the analytic version of the
Ax-Schanuel Theorem for semi-abelian varieties.

Theorem 1.3 Let A be a semi-abelian variety with Lie(A) as above. If an entire curve
f : z ∈ C → Lie(A) is A-nondegenerate, then tr. degC êxp f ≥ n+ 1.

The present study is motivated by S. Lang [10], and J. Ax [1], [2], where Ax proved
the above statement for formally analytic maps f : C → Lie(A), i.e., f represented by a
vector of formal power series (Ax-Schanuel Theorem), where in the case of f : C → Cn

and exp(C∗)n : Cn 3 (wj) 7→ (ewj) ∈ (C∗)n, fj(z) − fj(0) (1 ≤ j ≤ n) are assumed to be
Q-linearly independent; he dealt with the case of formal power series of several variables.
The proof of Ax [1], [2] is based on Kolchin’s theory of differential algebra. It is noticed
that the above Q-linear independence of fj(z) − fj(0) (1 ≤ j ≤ n) is equivalent to
subgroup condition 1.2 with “no”.

Because of the nature of the statement, it is natural and interesting to look for an
analytic proof in the analytic setting. The present proof relies on the Log Bloch-Ochiai
Theorem [12], [13], and Nevanlinna theory of entire curves into semi-abelian varieties (cf.
Noguchi-Winkelmann [18] in general).

The above Ax-Schanuel Theorem was obtained as an analogue of the following attractive
conjecture:

1.4 Schanuel’s Conjecture (cf. Lang [10] p. 30). Let α = (αj) ∈ Cn be a vector such
that αj (1 ≤ j ≤ n) are Q-linearly independent, and set êxpα = ((eαj), α) ∈ (C∗)n×Cn.
Then, tr. degQ êxpα ≥ n.

This conjecture is known only for n = 1 (Gel’fond-Schneider ([10], [26]); Hilbert’s 7th
Problem), and even in n = 2 it implies the algebraic independence of e and π; cf., e.g.,
Waldschmidt [26] §1, Jones-Wilkie [9] for more.

(2) Our second aim is to establish a 2nd Main Theorem for êxp f : C → Â and its jet
lifts. Let Jk(êxp f) : C → Jk(Â) be the k-jet lift of êxp f and let Xk(êxp f) be the
Zariski closure of the image Jk(êxp f)(C) in Jk(Â)). Because of the flat structures of
Jk(A) ∼= A× Jk,A and Jk(Lie(A)) ∼= Lie(A)× Jk,Lie(A) we may write

Xk(êxp f) ⊂ A× Ĵk,A ⊂ Jk(A× Lie(A)), Ĵk,A := Lie(A)× Jk,A ∼= Cn ×Cnk(1.5)

after the natural identification Jk,A ∼= Jk,Lie(A) (see §4.4 for details). We have an A-action

on A× Ĵk,A by the group operation of the first factor.

Let Ĵk,A be a projective compactification of Ĵk,A; e.g., Ĵk,A = Pn(C)×Pnk(C).
The main result is as follows (cf. §§2, 4 for notation):

Theorem 1.6 (2nd Main Theorem) Let A be a semi-abelian variety. Let êxp f : C →
Â be the entire curve associated with an A-nondegenerate entire curve f : C → Lie(A).
Then we have:
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(i) Let Z be a reduced algebraic subset of Xk(êxp f) (⊂ A× Ĵk,A) (k ≧ 0). Then there
exists an equivariant projective smooth compactification Ā of A with the closure

X̄k(êxp f) (resp. Z̄) of Xk(êxp f) (resp. Z) in Ā× Ĵk,A such that

(1.7) TJk( êxp f)(r, ωZ̄) = N1(r, Jk(êxp f)
∗Z) + Sε,exp f (r).

(ii) Moreover, if codimXk( êxp f)Z ≧ 2, then

(1.8) TJk( êxp f)(r, ωZ̄) = Sε,exp f (r).

(iii) (k = 0) In particular, if D is a reduced effective algebraic divisor on Â such that
D 6⊃ X0(êxp f), then there is an equivariant projective smooth compactification Ā
of A such that

(1.9) T êxp f (r, L(D̄)) = N1(r, (êxp f)
∗D) + Sε, êxp f (r),

where D̄ ⊂ Â = Ā× Lie(A) with Lie(A) := Ĵ0,A.

As applications we obtain the following (cf. question 4.1 (ii), list 4.2 (6) in §4 below,
and Corvaja-Noguchi [4] for entire curves into semi-abelian varieties):

Theorem 1.10 Let êxp f : C → Â be as in Theorem 1.6 and let D be an A-big divisor
on X0(êxp f). Then there is an irreducible component E of D such that êxp f(C) ∩E is
Zariski dense in E; in particular, the cardinality | êxp f(C) ∩D| = ∞.

Here, D being A-big means roughly that D contains a big divisor in A-factor (see
Definition 4.17). The next theorem says that the distribution êxp f ∗D on C contains an
ample information of Â, D and f ; we have the following unicity theorem of the type of
H. Cartan–P. Erdös–K. Yamanoi (cf. Yamanoi [28], Corvaja-Noguchi [4]).

Theorem 1.11 Let Aj (j = 1, 2) be two semi-abelian varieties and let Dj (j = 1, 2) be

effective reduced Aj-big divisors on Âj with Ŝt(Dj) := {x ∈ Âj : x+Dj = Dj} = {0}. Let
êxp fj : C → Âj be entire curves induced from Aj-nondegenerate entire curves fj : C →
Lie(Aj).

Assume that Supp (êxp f1)
∗D1 = Supp (êxp f2)

∗D2 (as supports of divisors). Then
there is an isomorphism α : A1 → A2 with the naturally induced isomorphism α̂ : Â1 → Â2

such that α̂∗D2 = D1 and êxp f2 = α̂ ◦ êxp f1, up to translations of Âj.

The present paper is organized so that in §2 we prepare the notation from Nevanlinna
theory and prove a key estimate lemma (see Lemma 2.5). We give a proof of Theorem
1.3 in §3 and those of Theorems 1.6 and 1.10 in §4. In §5 we give the proofs of Theorems
1.10 and 1.11. In §6 we discuss some examples. In §7 we discuss the generalization of
the domain C to other cases, to say, a punctured disk (big Picard type), affine algebraic
curves, and others.

Remark 1.12 We would like to refer to some other results related to the present subject
and remarks.
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(i) J. Tsimerman [25] gave another proof to the above Ax-Schanuel Theorem [1] for
A = (C∗)n by means of the “o-minimal structure” theory, and similarly Y. Peterzil
and S. Starchenko [22] for semi-abelian varieties.

(ii) In Noguchi [16], there is a direct application of the Log Bloch-Ochiai Theorem to
the proof of Raynaud’s Theorem (Manin-Mumford Conjecture) through the aid of
the “o-minimal structure” theory.

(iii) In the analytic theory we can think of the “values”; it might be an advantage of the
analytic theory, compared with the formally analytic theory.

Acknowledgment. The author is grateful to Professors P. Corvaja and U. Zannier for
interesting discussions on topics related to Diophantine approximation.

2. Order functions and a key lemma

2.1. Order functions

In general for order functions, cf. Hayman [8] Chap’s. 1, 2, Noguchi-Ochiai [17] Chap.V,
and Noguchi-Winkelmann [18] Chap. 2.

Let X be a compact complex space with reduced structure sheaf OX , and let I ⊂ OX

be a coherent ideal sheaf. Let f : C → X be an entire curve. We are going to define
an order function Tf (r, ωI ) of f with respect to I (see [18] §2.4 for details: Note that
the projective algebraic condition on X is unnecessary because of 1-dimensionality of the
domain C).

The pull-back f ∗I is an effective divisor on C, unless f(C) ⊂ SuppI (:= {x ∈ X :
Ix 6= O(X)x}), which we assume. Denoting by ordzf

∗I the order of f ∗I at z ∈ C, we
define the counting functions of f ∗I truncated at level l ∈ N ∪ {∞} by

nl(t, f
∗I ) =

∑
|z|<t

min{ordzf
∗I , l}, Nl(t, f

∗I ) =

∫ r

1

nl(t, f
∗I )

t
dt, r > 1.

Let ϕI (x) (x ∈ X) be the proximity potential of I (see [18] §2.4). Then we have the
pull-back f ∗ϕI (z) such that it is of C∞-class outside the singular set f−1(SuppI ) and
at a singular point a ∈ f−1(SuppI ) it is written locally as

f ∗ϕI (z) = (ordaf
∗I ) log |z − a|+ C∞-term.

We set the proximity function of f for I by

mf (r,I ) =
1

2π

∫
|z|=r

−f ∗ϕI (reiθ)dθ.

With ωI := 1
πi
∂∂̄ϕI we define the order function of f with respect to ωI by

Tf (r, ωI ) =

∫ r

1

dt

t

∫
|z|<t

f ∗ωI (r > 1).

We have a so-called First Main Theorem for f and I (see [18] Theorem 2.4.9):

(2.1) Tf (r, ωI ) = N∞(r, f ∗I ) +mf (r,I )−mf (1,I ).
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In the case where I = I 〈Y 〉 is the ideal sheaf of an analytic subset Y possibly non-
reduced of X, we write

f ∗I 〈Y 〉 = f ∗Y, ωY = ωI ⟨Y ⟩, Tf (r, ωY ) = Tf (r, ωI ⟨Y ⟩).

If X is smooth and Y is a divisor D on X. Then we have the line bundle L(D) → X
associated with D, and the first Chern class c1(D). Then, ωD ∈ c1(D), and it is common
to write

Tf (r, ωD) = Tf (r, L(D)) = Tf (r, c1(D))

for the order functions.
Assume that X is projective algebraic. Let D and D′ be big divisors on X such that

f(C) 6⊂ SuppD ∪ SuppD′. Then we have

Tf (r, L(D)) = O (Tf (r, L(D
′))) , Tf (r, L(D

′)) = O (Tf (r, L(D))) .

Therefore in an estimate such as O (Tf (r, L(D))) the choice of of D or L(D) does not
matter; in such a case we simply write Tf (r) for Tf (r, L(D)) with respect to some ample
or big line bundle L(D) over X as far as f(C) 6⊂ SuppD; however, once it is chosen, it is
fixed.

Remark 2.2 The followings are equivalent for f : C → X:

(i) f is rational (not transcendental);

(ii) lim
r→∞

Tf (r)

log r
< ∞.

(iii) lim
r→∞

Tf (r)

log r
< ∞; i.e., Tf (r) = O(log r).

The order ρf of f : C → X is defined by

0 ≤ ρf = lim
r→∞

log Tf (r)

log r
≤ ∞.

If ρf < ∞, f is said to be of finite order and

Tf (r) = O(rρf+ε), ∀ε > 0.

2.2. Key lemma

Let A be a semi-abelian variety. Here we fix an isomorphism Lie(A) ∼= Cn with coor-
dinates (z1, . . . , zn). Let f = (f1, . . . , fn) : z ∈ C → f(z) ∈ Cn(∼= Lie(A)) be an entire
curve. In the present paper we assume that f is non-constant. We denote by T (r, fj)
Nevanlinna’s order function (see [8], [18] Chap. 1), and set

Tf (r) = max
1≤j≤n

T (r, fj).

Let Ā be an equivariant smooth projective compactification of A with boundary divisor
∂A = Ā \A of simple normal crossing type (cf. [18] Chap. 5), and let L → Ā be an ample
line bundle. We set the order function of exp f : C → A by

Texp f (r) = Texp f (r, L).

For êxp f = (exp f, f) : C → A×Cn (∼= Â) we set

T êxp f (r) := Texp f (r) + Tf (r).

By [18] Theorem 6.1.9 and Remark 2.2 we see
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Proposition 2.3 Let the notation be as above. The followings are equivalent:

(i) f : C → Cn is rational (i.e., fj are polynomials).
(ii) exp f is of finite order.
(iii) êxp f is of finite order.

As usual in Nevanlinna theory we use the symbol “Sexp f (r)” for a small term such that

(2.4) |Sexp f (r)| = O(log+ Texp f (r)) + O(log r) +O(1) ||,

where “||” stands for the validity of the estimate except for r in exceptional intervals with
finite total length, and for exp f of finite order there are no such exceptional intervals.
We use the notation through the paper.

The following is the key lemma for the estimates in the arguments henceforth.

Lemma 2.5 With the notation above, we have:

(i) Tf (r) = Sexp f (r).
(ii) T êxp f (r) = Texp f (r) + Sexp f (r).

Proof. It suffices to prove (i). When the order of exp f is finite, then f is rational, and
so Tf (r) = O(log r) without exceptional intervals.

In general, we take a representation of the semi-abelian variety A

0 → (C∗)p → A → A0 → 0,

where A0 is an abelian variety. Then A has a structure of locally flat (C∗)p-principal
bundle with transition transformation by (S1)p := {ζ ∈ C : |ζ| = 1}p-multiplication (cf.
[18] §6.1). After a change of indices of the coordinates (zj) and a linear transform of (zj)
we have the following expression of the order function Texp f (r) (cf. ibid.):

f(z) = (f1(z), . . . , fp(z), fp+1, . . . , fn(z)),(2.6)

T1(r) :=

p∑
j=1

T
(
r, efj

)
,

T2(r) :=
1

4π

∫
|z|=r

n∑
j=p+1

|fj(z)|2 dθ −
1

4π

∫
|z|=1

n∑
j=p+1

|fj(z)|2 dθ,

Texp f (r) = T1(r) + T2(r).

For fj (p+ 1 ≤ j ≤ n) we have

T (r, fj) =
1

2π

∫
|z|=r

log+ |fj| dθ ≤ 1

4π

∫
|z|=r

log(1 + |fj|2) dθ

=
1

2
log

(
1 +

1

2π

∫
|z|=r

|fj|2 dθ
)

≤ 1

2
log+ T2(r) +O(1)

= O(log+ Texp f (r)) + O(1).

For fj (1 ≤ j ≤ p) we have

T
(
r, efj

)
=

1

2π

∫
|z|=r

log+
∣∣efj(z)∣∣ dθ =

1

2π

∫
|z|=r

< +fj(z) dθ,
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where < +fj := max{< fj, 0} with the real part < fj. With the imaginary part = fj(0)
and the complex Poisson kernel we write

fj(z) =
1

2π

∫
|ζ|=R

ζ + z

ζ − z
< fj(ζ) dθ + = fj(0).

For |z| = r < R we get

|fj(z)| ≤
R + r

R− r
· 1

2π

∫
|ζ|=R

< +fj(ζ) dθ + |= fj(0)|.

Then we have

T (r, fj) ≤
1

2π

∫
|ζ|=r

log(1 + |fj(z)|) dθ ≤ log

(
1 +

1

2π

∫
|z|=r

|fj(z)| dθ
)

≤ log

(
1 +

R + r

R− r
· 1

2π

∫
|ζ|=R

< +fj(ζ) dθ +O(1)

)
≤ log

(
1 +

R + r

R− r
· T1(R) +O(1)

)
≤ log+

(
R + r

R− r
· T1(R)

)
+O(1)

Now we take R = r + 1/T1(r), so that

T (r, fj) ≤ log+
(
(2r + 1)T1(r) · T1

(
r +

1

T1(r)

))
+O(1)

Borel’s Lemma (cf. Hayman [8] Lemma 2.4) implies

T1

(
r +

1

T1(r)

)
≤ 2T1(r) ||.

Therefore it follows that

T (r, fj) = O(log+ T1(r)) + O(log r) +O(1)

= O(log+ Texp f (r)) + O(log r) +O(1) ||.

The proof is completed. □

3. Proof of Theorem 1.3

By [13] we see that the Zariski closure exp f(C)
Zar

in A is a translation of a connected
algebraic subgroup (a semi-abelian subvariety) of A. It follows from A-nondegeneracy (cf.

subgroup condition 1.2) that exp f(C)
Zar

= A, so that

(3.1) tr. degC exp f = n.

Let C(A) (resp. C(f)) be the rational function field of A (resp. the field generated by
fj (1 ≤ j ≤ n) over C), and let C(f, (exp f)∗C(A)) be the field generated by elements
of C(f) and the pull-backed field (exp f)∗C(A)) over C. We denote the transcendence
degree of the field C(f, (exp f)∗C(A)) over C(f) by tr. degC(f)C(f, (exp f)∗C(A)). We
prove:
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Lemma 3.2 With the notation above we have

(3.3) tr. degC(f) C(f, (exp f)∗C(A)) ≥ 1.

Proof. We take a transcendence basis {ϕj}nj=1 of C(A) over C such that ϕ̃j := ϕj ◦exp f
are defined as non-constant meromorphic functions, and

ϕ̃ :=
(
ϕ̃1, . . . , ϕ̃n

)
.

Assume contrarily that (3.3) is false; i.e.,

(3.4) tr. degC(f)ϕ̃ = 0 (regarded as ϕ̃ = {ϕ̃j}nj=1).

Then all ϕ̃j are algebraic over C(f). There are non-zero polynomials Pj(t) in one variable
with coefficients in C(f) such that

(3.5) Pj(ϕ̃j) = 0, 1 ≤ j ≤ n.

By [18] Lemma 2.5.15 we have

T (r, ϕ̃j) = O(Tf (r)) + O(1).

With setting T̃ (r) := max1≤j≤n T (r, ϕ̃j) we thus obtain

T̃ (r) = O(Tf (r)) + O(1).

On the other hand, it follows from [18] Theorem 2.5.18 that

Texp f (r) = O(T̃ (r)) + O(1).

Therefore we see that
Texp f (r) = O(Tf (r)) + O(1).

But this contradicts Lemma 2.5. □
Continuation of the proof of Theorem 1.3: By (3.1), tr. degC{f, ϕ̃} ≥ n. For proof by

contradiction we assume that
tr. degC {f, ϕ̃} = n.

Then all fj are algebraic over C(ϕ̃), so that there are non-trivial algebraic relations,

(3.6) Pj(fj, ϕ̃) = Pj(fj, ϕ̃1, . . . , ϕ̃n) = 0, 1 ≤ j ≤ n.

If tr. degC{fj}nj=1 = n, the assumption implies tr. degC(f){f, ϕ̃} = 0; this does not take
place by Lemma 3.2. Therefore tr. degC{fj}nj=1 < n, and hence there is a non-trivial
algebraic relation over C:

(3.7) Q(f1, . . . , fn) = 0.

If, to say, f1 is contained in (3.7), we take the resultant of (3.7) and (3.6) (j = 1) with
respect to f1, which yields a non-trivial algebraic relation

Q1(f2, . . . , fn, ϕ̃) = 0.
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After repeating this process at most n-times we eliminate f1, . . . , fn in (3.7) to obtain a
non-trivial algebraic relation

Q̃
(
ϕ̃1, . . . , ϕ̃n

)
= 0 ;

this again contradicts the algebraic independence of ϕ̃1, . . . , ϕ̃n.
The proof of Theorem 1.3 is completed. □

Remark 3.8 (i) It is noticed that the logarithmic function log(1 + t) ∈ C[[t]] can be
dealt with in the Ax-Schanuel Theorem as a formal power series, but cannot in our
Theorem 1.3. To deal with the case of a finite unit disk as a domain instead of C
we need some growth condition for Texp f (r) (cf. §7.3).

(ii) Let exp : Cn = Lie(A) → A be as above. We have a semi-lattice Λ = Ker exp ⊂ Cn

(the periods of A). Then an entire curve f : C → Cn is A-(resp. non)degenerate
if and only if there is a (resp. no) complex vector subspace E ⊊ Cn such that
E ⊃ (f(C) − f(0)) and E/(E ∩ Λ) is a semi-abelian variety. Therefore if Λ is
concerned, it would be better to say f being Λ-(non)degenerate.

4. Nevanlinna theory of entire curves êxpf

4.1. Back ground

In the same monograph [10] (p. 32) (1966) as Schanuel’s Conjecture 1.4 was mentioned,
S. Lang raised an interesting question:

4.1 (i) Let φ : C → A be a 1-parameter subgroup of an abelian variety A (say Zariski
dense), and let D be a hyperplane section of A. Then, is φ(C) ∩D 6= ∅?

(ii) And unless φ is algebraic, is the cardinality |φ(C) ∩D| = ∞?

It has developed roughly as the following list (far from completeness):

4.2 (1) J. Ax [2] (1972) gave an affirmative answer to question 4.1 (i) above.
(2) P.A. Griffiths [7] (Problem F, 1972) generalized question 4.1 (i) for entire curves into

A (so-called Lang’s Conjecture).
(3) At the Taniguchi Symposium “Geometric Function Theory in Katata 1978 organized

by S. Murakami (chair), the author formulated a 2nd main theorem for entire curves
f : C → A and a divisor D on A as a conjecture, which implies (2) above and
question 4.1 (i) as well; see Noguchi–Ochiai [17] (p. 248, 1984/’90).

(4) Siu and Yeung [24] (1996) solved Lang’s Conjecture (2) above for entire curves into
abelian varieties, and Noguchi [15] (1998) generalized it for entire curves into semi-
abelian varieties with another proof, which unifies the result for abelian varieties
and the classical E. Borel’s results for (C∗)n.

(5) Noguchi, Winkelmann and Yamanoi [19] (2000), [20] (2002) proved (3) above, the
2nd Main Theorem for entire curves into semi-abelian varieties, and finally in [21]
proved it with counting functions truncated at level one.

(6) P. Corvaja and J. Noguchi [4] (2012) solved affirmatively question 4.1 (ii) for entire
curves into semi-abelian varieties, f : C → A by making use of the 2nd Main
Theorem of (5) above. It is noticed that question 4.1 (ii) had been open even for
1-parameter subgroups of abelian varieties.

9



It is natural and interesting to ask questions similar to the above for

êxp f : z ∈ C → (exp f(z), f(z)) ∈ Â (= A× Lie(A))

in view of the analytic Ax-Schanuel Theorem 1.3 and Schanuel’s Conjecture 1.4.

4.2. 2nd Main Theorem

We denote by Sε,exp f (r) (≥ 0) a small term such that for every small ε > 0 (cf. (2.4))

|Sε,exp f (r)| ≤ εTexp f (r) +O(log r) ||ε,

where “||ε” stands for the exceptional intervals being dependent on ε > 0.
The main aim is to prove Theorem 1.6 for êxp f : C → Â, which is analogous to [18]

Theorem 6.5.1 (cf. [21]) for exp f : C → A. We prove Theorem 1.6 applying the arguments
in [18] Chap. 6 (cf. [20], [21]) by making use of the key Lemmata 2.5, 4.9. Henceforward
we will describe the key points.

The way to obtain the compactifications of Ā and Xk(êxp f) in Theorem 1.6 is not
written precisely in [18] Theorem 6.5.1, but it follows from the arguments of the proof
there.

4.3. Reduction

Let f : C → Lie(A) be an entire curve. By the Log Bloch–Ochiai Theorem ([18] Theo-

rem 6.2.1, [12], [13]) exp f(C)
Zar

is a translation of a subgroup B of A. By a translation

we may assume that exp f(C)
Zar

= B. Then f(C) ⊂ Lie(B) (⊂ Lie(A)), and

êxp f : C −→ B × Lie(B) = B̂ ⊂ Â.

Now, f : C → Lie(B) is B-nondegenerate. Therefore without loss of generality we may
assume that B = A, i.e, f is A-nondegenerate.

4.4. Jet bundles

We keep the same notation as in the previous subsections. Let f : C → Cn be an
A-nondegenerate entire curve. We would like to study the value distribution of êxp f :
C → A×Cn.

Let Jk(A) → A (resp. Jk(Lie(A)) → Lie(A)) be the k-th jet bundle over A (resp.
Lie(A)). Because of the flat structure of the logarithmic tangent (and cotangent, as well)
bundle over A (cf. [18] §4.6.3), we have the trivializations:

Jk(A) ∼= A× Jk,A, Jk,A ∼= Cnk,
Jk(Lie(A)) ∼= Lie(A)× Jk,Lie(A), Jk,Lie(A)

∼= Cnk,
(4.3)

where Jk,A and Jk,Lie(A) are the so-called jet-parts of A and Lie(A), respectively. Through
the exponential map exp : Lie(A) → A we have the natural isomorphism Jk,A ∼= Jk,Lie(A),
which are identified. Therefore we have

(4.4) Jk(Â) ∼= A× Lie(A)× Jk,A × Jk,A.

Let ∆k ⊂ Jk,A × Jk,A be the diagonal, and let Jk(êxp f) : C → Jk(Â) be the k-jet lift of
êxp f . Then we see that

(4.5) Jk(êxp f) : z ∈ C → (exp f(z), f(z), Jk,f (z), Jk,f (z)) ∈ A× Lie(A)×∆k,
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where Jk,f is the jet part of Jk(f) = (f, Jk,f ) ∈ Lie(A) × Jk,A. For the sake of simplicity
we identify ∆k = Jk,A and write
(4.6)
Jk(êxp f) : z ∈ C → (exp f(z), f(z), Jk,f (z)) ∈ A× Lie(A)× Jk,A(⊂ Jk(A× Lie(A))).

We put

Ĵk,A = Lie(A)× Jk,A ∼= Cn ×Cnk (extended jet part),(4.7)

Xk(êxp f) = Jk(êxp f)(C)
Zar

⊂ A× Ĵk,A.

We define the extended jet projection by

(4.8) Îk : Xk(êxp f) (⊂ A× Ĵk,A) −→ Ĵk,A,

which will play the role of the jet projection Ik (cf. [18] p. 151) for entire curves into
semi-abelian varieties in [18] Chap’s. 4–6.

Let LĀ → Ā be a big line bundle over a projective compactification Ā of A. We take a

compactification Ĵk,A of Ĵk,A, e.g.,

Ĵk,A = Cn ×Cnk = Pn(C)×Pnk(C),

and the ample line bundle H = OPn(C)(1)⊗OPnk(C)(1) → Ĵk,A, with which we define

TÎk◦Jk( êxp f)(r) = TÎk◦Jk( êxp f)(r,H).

Lemma 4.9 For Îk we have

(4.10) TÎk◦Jk( êxp f)(r) = Sexp f (r).

Proof. Since

Îk ◦ Jk(êxp f) : z ∈ C → (f(z), Jk,exp f (z)) ∈ Lie(A)× Jk,A,

it follows from Lemma on logarithmic derivative for exp f ([12], [18] §4.7) that

TJk,exp f
(r) = Sexp f (r).

This combined with Lemma 2.5 implies (4.10). □
4.5. A-action

We consider an A-action on A× Lie(A)× Jk,A ⊂ Jk(A× Lie(A)) by

(a, (x, v, w)) ∈ A× (A× Lie(A)× Jk,A) → (a+ x, v, w) ∈ A× Lie(A)× Jk,A.

We denote the stabilizer subgroup of Xk(êxp f) by

St(Xk(êxp f)) = StA(Xk(êxp f)) = {a ∈ A : a+Xk(êxp f) = Xk(êxp f)},

and by St(Xk(êxp f))
0 the identity component.

11



Lemma 4.11 With the notation above, St(Xk(êxp f))
0 6= {0}.

Proof. If otherwise, St(Xk(êxp f))
0 = {0}. We consider the l-jet space Jl(Xk(êxp f))

of Xk(êxp f) (“jet of jet”) with induced projection

dlÎk : Jl(Xk(êxp f)) (⊂ Jl(A× Lie(A)× Jk,A)) → Jl(Lie(A)× Jk,A).

By [18] Lemma 6.2.4, there is a large number l ∈ N such that the differential d(dlÎk) is
non-degenerate at general points of Jl(Xk(êxp f)). Therefore we have

Texp f (r) ≤ T êxp f (r) = O
(
TJl(Jk( êxp Af))(r)

)
= O

(
TdlÎk(Jk( êxp f))(r)

)
.

On the other hand, TdlÎk(Jk( êxp f))(r) = Sε,exp f (r) by Lemma 4.9; it is a contradiction. □

Proposition 4.12 (cf. [18] Theorem 6.2.6) Let B = St(Xk(êxp f))
0 and set the quo-

tient map

(4.13) qB : Xk(êxp f) → Xk(êxp f)/B (⊂ (A/B)× Lie(A)× Jk,A ).

Then TqB◦Jk( êxp f)(r) = Sexp f (r).

Proof. The semi-abelian variety A/B acts on (A/B)×Lie(A)×Jk,A by the translations
of the first factor and the identity for the other factors. Then StA/B(Xk(êxp f)/B)0 = {0}.
As in the proof of Lemma 4.11, with a large l the projection

ρl : Jl(Xk(êxp f)/B) → Jl(Lie(A)× Jk,A)

has a non-degenerate differential dρl at general points (see [18] Lemma 6.2.4). Therefore
we have

TdlqB◦Jk( êxp f)(r) = O
(
Tρl◦dlqB◦Jk( êxp f)(r)

)
,

where dlqB : Jl(Xk(êxp f)) → Jl(Xk(êxp f)/B) is the induced morphism from qB. It
follows from ρl ◦ dlqB = dlÎk and Lemma 4.9 that

TdlqB◦Jk( êxp f)(r) = Sexp f (r).

On the other hand we have by Lemma 2.5

TdlqB◦Jk( êxp f)(r) = TqB◦Jk( êxp f)(r) + Sexp f (r).

Thus we deduce that TqB◦Jk( êxp f)(r) = Sexp f (r). □
4.6. Proof of Theorem 1.6

Let the notation be as in Theorem 1.6. Through the arguments of the proof of [18]
Theorem 6.5.6 with replacing the jet projection Ik there by the extended jet projection
Îk (cf. (4.8)) and qBk by qB (cf. (4.13)), we deduce that there are a number l0 ∈ N and a
compactification Ā of A such that

(4.14) TJk( êxp f)(r, ωZ̄) = Nl0(r, Jk(êxp f)
∗Z) + Sexp f (r),
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where X̄k(êxp f) (resp. Z̄) is the closure of Xk(êxp f) (resp. Z) in Ā× Ĵk,A.
Next, we show (ii). It follows from (4.14) that

TJk( êxp f)(r, ωZ̄) ≤ l0N1(r, Jk(êxp f)
∗Z) + Sexp f (r).

Now, making use of the assumption codimXk( êxp f)Z ≧ 2 together with Lemmata 2.5 and
4.9, we deduce from the arguments of [18] §6.5.3, adapted for êxp f : C → A × Lie(A)
that

(4.15) N1(r, Jk(êxp f)
∗Z) = Sε,exp f (r).

Thus, (1.8) is deduced, and (ii) is finished.
Now, we go back to the proof of (i). It follows from the First Main Theorem 2.1 that

(4.16) N1(r, Jk(êxp f)
∗Z) ≤ N∞(r, Jk(êxp f)

∗Z) ≤ TJk( êxp f)(r, Z̄).

Note that (i) is finished in the case of codimXk( êxp f)Z ≥ 2. Thus we consider the case
where Z is an effective reduced divisor D on Xk(êxp f). Let D =

∑
Di be the irreducible

decomposition. We deduce from (4.14) that

TJk( êxp f)(r, ωD̄) ≤ Nl0(r, Jk(êxp f)
∗D) + Sexp f (r)

≤ N1(r, Jk(êxp f)
∗D) + l0

∑
i<j

N1(r, Jk(êxp f)
∗(Di ∩Dj))

+ l0
∑
i

N1(r, Jk+1(êxp f)
∗J1(Di)) + Sexp f (r)

(cf. [18] (6.5.51)). Since codimXk( êxp f)Di ∩Dj ≥ 2, (4.15) implies

N1(r, Jk(êxp f)
∗(Di ∩Dj)) = Sε,exp f (r).

We have Jk+1(êxp f) : C → Xk+1(êxp f) ⊂ Jk+1(A×Lie(A)) andB = St(Xk+1(êxp f))
0.

For each Di we have two cases: (1) B ⊂ St(Di)
0 and (2) B 6⊂ St(Di)

0. In the first case
(1) we have by using qB that

N1(r, Jk+1(êxp f)
∗J1(D)) = Sexp f (r)

(see [18] §6.5.4 (b)). In the second case (2), we have by [18] Lemma 6.5.50

codimXk+1( êxp f)(Xk+1(êxp f) ∩ J1(Di)) ≥ 2.

Then it is deduced from (4.15) with k + 1 that

N1(r, Jk+1(êxp f)
∗J1(D)) = Sε,exp f (r).

Thus, (1.7) follows.
(iii) The case of k = 0 is a special case of (i); the proof of Theorem 1.6 is completed. □
We consider the fundamental case where k = 0 and Z is a reduced divisor D on X0(f).

Let p1 : X0(f) (⊂ A× Lie(A)) → A be the projection to the first factor A.
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Definition 4.17 We say that D is A-big if for a big divisor E on A (i.e., the closure Ē

in a compactification Ā of A is big) the complete linear system |mD − p∗1E| with large
m ∈ N contains an effective divisor on X0(f).

If D is A-big, then

Texp f (r) = O(T êxp f (r, ωD̄)),(4.18)

T êxp f (r) = O(T êxp f (r, ωD̄)) ||.

Corollary 4.19 Let f : C → Lie(A) be an A-nondegenerate entire curve and let D be
a reduced divisor on X0(f). If ordz(êxp f)

∗D ≥ 2 for all z ∈ Supp (êxp f)∗D except for
finitely points of Supp (êxp f)∗D, then D is not A-big.

Proof. If D is A-big, it follows from the 2nd Main Theorem 1.6 and (4.18) that

T êxp f (r, ωD̄) = N1(r, (êxp f)
∗D) + Sε, êxp f

≤ 1

2
N∞(r, (êxp f)∗D) + Sε, êxp f

≤ 1

2
T êxp f (r, ωD̄) + εT êxp f (r, ωD̄) +O(log r) ||ε.

This implies a contradiction ‘1 ≤ 1
2
’. □

Remark 4.20 This corollary is motivated through a discussion with Corvaja and Zannier
on their related or analogous results in rational function fields of Corvaja and Zannier [6]
(see [14] too).

5. Applications
Here we give the proofs of two theorems stated in §1 as applications of Theorem 1.6.

5.1. Proof of Theorem 1.10

With the notation of the theorem we set

Z = êxp f(C) ∩D
Zar

⊂ D.

If codimX0( êxp f)Z ≥ 2, Theorem 1.6 (ii) would imply

N1(r, (êxp f)
∗D) = N1(r, (êxp f)

∗Z) = Sε,exp f (r).

It follows from Theorem 1.6 (i) and (4.18) that for every ε > 0

T êxp f (r, ωD̄) ≤ εT êxp f (r, ωD̄) +O(log r) ||ε :

This is a contradiction.
Therefore, Z has an irreducible component of codimension one in X0(êxp f), which is

an irreducible component of D. □
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5.2. Proof of Theorem 1.11

By the assumption there is a point z0 ∈ C such that fj(z0) ∈ Dj (j = 1, 2); by parallel
translations we may assume that fj(0) = 0 ∈ Dj (j = 1, 2). We first consider

f3 : z ∈ C → (f1(z), f2(z)) ∈ Lie(A1)× Lie(A2) ∼= Lie(A1 × A2).

By the Log Bloch-Ochiai Theorem, A3 := exp f3(C) is a semi-abelian subvariety of A1×A2,
so that f3 : C → Lie(A3) ⊂ Lie(A1 × A2). It follows that the projections

πj : Â3 −→ Âj (j = 1, 2)

are surjective, and that the entire curve f3 : C → Lie(A3) is A3-nondegenerate. We set
B̂j = ker πj ⊂ Â3, D

′
j = π−1

j Dj (j = 1, 2), and D3 = (D′
1 +D′

2) ∩ Â3. It follows from the
assumption that

µ(r) := N1(r, (êxp f3)
∗D3) = N1(r, (êxp fj)

∗Dj) = N1(r, (êxp f3)
∗D′

j), j = 1, 2.

We then have by Theorem 1.6

T êxp fj(r, ωD̄j
) = µ(r) + Sε(r), j = 1, 2.3 :

Here Sε(r) denotes a small term such as

|Sε(r)| ≤ εµ(r) +O(log r)||ε

for an arbitrarily small ε > 0.
Let E1 be any irreducible component of D′

1. Then there are finitely many elements
xh ∈ Â3 (1 ≤ h ≤ l) such that D′

1 =
⋃l

h=1(xh + E1). It follows that

N1(r, (êxp f3)
∗E1) =

1

l
µ(r) + Sε(r).

Suppose that E1 6⊂ D′
2. Then codimA3E1 ∩D′

2 ≥ 2. We deduce from Theorem 1.6 (ii)
that

N(r, (êxp f3)
∗(E1 ∩D′

2)) = Sε(r).

It follows from the assumption that Supp ( êxp f3)
∗(E1∩D′

2) = Supp (êxp f3)
∗E1). There-

fore, we have
µ(r) ≤ εµ(r) +O(log r)||ε, ∀ε > 0.

This is a contradiction. Thus E1 ⊂ D′
2, and hence D′

1 ⊂ D′
2. Similarly, D′

2 ⊂ D′
1, so that

D′ := D′
1 = D′

2. Note that Ŝt(D′
j) := {x ∈ Âj : x + D′

j = D′
j} = B̂j (j = 1, 2). Hence

B̂ := B̂1 = B̂2.
We see that Â1

∼= Â3/B̂ ∼= Â2, πj(D
′) = Dj, and êxp fj = πj ◦ êxp f3 (j = 1, 2). □

6. Examples

To discuss examples it is convenient to write Lie(A)× A for Â, so that in this section
we use the notation

êxp f = (f, exp f) : C −→ Lie(A)× A;
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there will be no confusion.
(a) The optimality of (3.1): Let A = (C∗)n and let αj, 1 ≤ j ≤ n, be complex numbers,

linearly independent over Q. Then the entire curve ϕ(z) = (α1z, . . . , αnz) (∈ Cn =
Lie(A)) is A-nondegenerate with the natural exponential map exp : Cn 3 (zj) 7→ (ezj) ∈
A, and so

tr. degC{z, eα1z, . . . eαnz} = n+ 1.

Let Pn(C) ⊃ Cn and Ā := P1(C)
n ⊃ A be the compactifications and let Texpϕ(r) and

T êxp ϕ(r) denote the order functions with respect to the products of point bundles. We
write êxpϕ = (ϕ, expϕ). Then,

T êxp ϕ(r) = Texpϕ(r) +O(log r) =

∑n
j=1 |αj|
π

r +O(log r).

Let P (z1, . . . , zn, w1, . . . , wn) be a polynomial of degree dj in wj (1 ≤ j ≤ n). We assume
the condition:

6.1 (i) The divisor on Pn(C)× Ā defined by the zero of P is reduced and equal to the
closure D̄P of the divisor DP defined by {P = 0} ∩ (Lie(A)× A).

(ii) DP is A-big (see Definition 4.17).

We need this condition; otherwise, to say, if P = z1, then DP = {z1 = 0} and DP is not
A-big; there is only one root z = 0 in P (êxpϕ(z)) = 0. We have

T êxp ϕ(r, L(D̄P )) =

∑n
j=1 dj|αj|

π
r +O(log r).

It is yet, in general, hard to find a root of P (êxpϕ(z)) = 0, but by Theorem 1.6 (iii)

T êxp ϕ(r, L(D̄P )) = N∞(r, (êxpϕ)∗DP ) +O(log r)(6.2)

= N1(r, (êxpϕ)
∗DP ) + Sε,expϕ(r).

The above estimate of N∞(r, (êxpϕ)∗DP ) is classical due to Borel-Nevanlinna, but that
of N1(r, (êxpϕ)

∗DP ) is new; moreover from Theorem 1.10 we obtain

(6.3) êxpϕ(C) ∩DP

Zar
= DP .

By Corollary 4.19 there is no entire function g(z) such that

(6.4) P (êxp f(z)) = (g(z))m (m ∈ N ≥ 2).

In view of the transcendence problem of π and e the above example in the case of n = 2
and complex vector ϖ0 = (1, 2πi) ∈ C2 is of a special interest. We consider the induced
1-parameter subgroup

ϕ0(z) = zϖ0 ∈ C2, z ∈ C,(6.5)

êxpϕ0(z) = (z, 2πiz, ez, e2πiz) = (z1, z2, w1, w2) ∈ C2 × (C∗)2.

Let P (z1, z2, w1, w2) be a polynomial with integral coefficients satisfying condition 6.1. If
P (êxpϕ0(ζ)) = 0, then

ζ, 2πiζ, eζ , e2πiζ
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are algebraically dependent, and there are infinitely many such points, for which (6.3)
and (6.2) hold.

(c) Let exp(j)(z) (j = 1, 2, . . .) denote the j-times iteration of the exponential function
ez. We set

f1(z) = z, fj(z) = exp(j−1)(z), 2 ≤ j ≤ n.

Then we have

tr. degC{f1, . . . , fn, ef1 , . . . , efn} = tr. degC{f1, . . . , fn, fn+1} = n+ 1.

In this case, exp f is of infinite order and Texp f (r) has a growth such that Texp f (r) ∼
exp(n)(r).
(d) (Cf. Brownawell-Kubota [3]) Let exp : Lie(A) ∼= Cn → A be an exponential map

of a semi-abelian variety A. In general if fj (1 ≤ j ≤ n) are entire functions, linearly
independent over C, then f = (fj) : C → Cn is A-nondegenerate. In particular, let
n = l +m and let ℘j(w) (1 ≤ j ≤ m) be Weierstrass’ pe-functions. Then

tr. degC{f1, . . . , fl+m, e
f1 , . . . , efl , ℘1(fl+1), . . . , ℘m(fl+m)} ≥ l +m+ 1.

(e) Let f1(z) = z, f2(z) = z. Then they are not linearly independent over C. Let
Ej (j = 1, 2) be elliptic curves which are not isogenous to each other. Let A = E1×E2 and
exp : C2 → A be an exponential map. Then f = (f1, f2) : C → C2 is A-nondegenerate,
and so

tr. degC{z, ℘1(z), ℘2(z)} = 3.

This should be known classically.
Let Lie(E1)× Lie(E2)×A = P2(C)×E1×E2 be the compactification with product line

bundle L (resp. L0) of the hyperplane bundle and the point-bundles over P2(C)×E1×E2

(resp. E1 × E2). Then, L is ample and the order functions satisfy

T êxp f (r, L) = Texp f (r, L0) + 2 log r +O(1) =
πr2

2

(
1

λ1

+
1

λ2

+ o(1)

)
,

where λj is the surface area of the fundamental domain of ℘j (j = 1, 2). Let P (z1, z2, w1, w2)
be an irreducible polynomial, involving w1 and w2, and of degree d1 (resp. d2) with respect
to w1 (resp. w2). We consider wj = ℘j (j = 1, 2) a rational function of Ej, and denote by
DP the divisor defined by the zeros of P on Lie(A)× A. Let ΞP denote the zero divisor
on C defined by P (z, z, ℘1(z), ℘2(z)) = 0. Then we have

N∞(r,ΞP ) = N1(r,ΞP ) + Sε,exp f (r) = πr2
(
d1
λ1

+
d2
λ2

+ o(1)

)
+ Sexp f (r).

It also follows from Theorem 1.10 that êxp f(C) ∩DP

Zar
contains an irreducible com-

ponent of DP . By Corollary 4.19 we see that there is no meromorphic function g(z) on
C satisfying

(6.6) P (êxp f(z)) = g(z)m (m ∈ N, ≥ 2).

(f) Set f1 = z, f2 = z2, f3 = z. Then these are not linearly independent over C. Let
expE : C → E be an exponential map of an elliptic curve E with Weierstrass’ ℘(w). Set
A = (C∗)2 × E with exp : C3 → A. Then f = (fj) : C → C3 is A-nondegenerate, and so

tr. degC{z, ez, ez
2

, ℘(z)} = 4.

The order function of êxp f has a growth, T êxp f (r) ∼ r2.
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7. Remarks to affine algebraic curves and other domains

7.1. Affine algebraic curves

In this section A denotes a semi-abelian variety.
Let R be a complex affine algebraic curve and let f : R → Lie(A) be a holomorphic

curve. We may consider exp f : R → A and êxp f : R → Â = A× Lie(A).
In general for a holomorphic curve g : R → A the arguments up to obtaining an

estimate such as (4.14) work (cf. [18] Chap. 6), but further to advance to the estimates of
the 2nd Main Theorem 1.6 with counting functions truncated at level one, we need to lift
g to g̃ : R → Lie(A), which does not exists in general, since R is not simply connected.
But in the present case we begin with a holomorphic curve f : R → Lie(A), which is a
lift of exp f : R → A. Therefore we can advance the arguments further there.

Let R̄ be the compactification of R by adding a finite number of points. To study
êxp f we may localize the problem about an infinite point a ∈ R̄ \ R; we take a disk
neighborhood ∆ of a in R̄. Then ∆∗ = ∆ \ {a} is a punctured disk, and the analysis of
transcendental properties of êxp f is reduced to that of the restriction êxp f |∆∗ (see the
next).

7.2. Punctured disk

Let ∆∗ be a punctured disk. As mentioned above, although ∆∗ is not simply connected,
it does not cause a difficulty here, since we give in first a holomorphic curve

(7.1) f : z ∈ ∆∗ −→ (f1(z), f2(z), . . . , fn(z)) ∈ Cn ∼= Lie(A).

For a notational convenience we put the puncture at infinity and introduce a coordinate
z such that

∆∗ = {|z| > 1}, ∆ = ∆∗ ∪ {∞}.

Let F (z) be one of fj(z). Then F (z) is expanded to a Laurent series

(7.2) F (z) =
∑
ν>0

cνz
ν +

∑
ν≤0

cνz
ν = Fm(z) + Fb(z).

Fix r0 > 1. Then Fb(z) and their derivatives are bounded in {|z| ≥ r0}, and Fm(z) is the
main part of the expansion:

(7.3)
dk

dzk
F (z) =

dk

dzk
Fm(z) +O(1), |z| ≥ r0, k ≥ 0.

Note that Fm(z) is holomorphic in C. Applying the key Lemma 2.5 for Fm(z), we
deduce the key Lemma 2.5 for f , exp f and r > r0. We can then deduce the 2nd
Main Theorem 1.6 for êxp f : ∆∗ → A × Lie(A) and Jk(êxp f) as well for r > r0. Cf.
Corvaja-Noguchi-Zannier [5] for related results.

7.3. Finite disk

We consider the case of a disk of C with finite radius, to say, the unit disk ∆. Let
f : ∆ → Lie(A) be a holomorphic curve. In this hyperbolic case, to make the proofs of
key Lemma 2.5 and Lemma on logarithmic derivatives to work at least for a sequence
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rν ↗ 1 (ν → ∞), we need a technical condition on the growth of the order function
Texp f (r) such that

(7.4) lim
r→1

Texp f (r)

log 1
1−r

= ∞

(cf. Nevanlinna [11] Chap. VI, Hayman [8] §2.3). Under this condition the 2nd Main
Theorem 1.6 for êxp f : ∆ → A× Lie(A) is deduced.

7.4. Open Riemann surfaces

Let R be an open Riemann surface. The generalizations of Nevanlinna theory for
meromorphic functions on R, holomorphic maps from R to another Riemann surface and
holomorphic curves from R into Pn(C) are classical (cf., e.g., Sario-Noshiro [23], Wu [27]).
There one uses a finite (hyperbolic case) or infinite (parabolic case) exhaustion function
τ : R → [0, r0) with r0 ≤ ∞ such that τ is harmonic outside a compact subset of R.

Similarly it is formally possible to extend the 2nd Main Theorem 1.6 for holomorphic
curves f : R → Lie(A) and êxp f : R → Â. There we use the differential ∂τ , holomorphic
where τ is harmonic. For a logarithmic 1-form ω on A we take the ratio F = (exp f)∗ω/∂τ ,
which may have poles at zeros of ∂τ . The counting functions of those zeros is the counting
function ER(r) of the Euler numbers of {τ < r}, which appears in the estimates (4.14)
and (1.7) under a growth assumption such as (7.4) with r0 = 1 in hyperbolic case (i.e.,
r0 < ∞):

TJk( êxp f)(r, ωZ̄) = Nl0(r, Jk(êxp f)
∗Z) + C(k, l0)ER(r)(7.5)

+O(log+ Texp f (r)) + O(log r) ||,

(1− ε)TJk( êxp f)(r, ωZ̄,Jk( êxp f)) ≤ N1(r, Jk(êxp f)
∗Z) + C ′(ε, k)ER(r)(7.6)

+O(log r) ||ε.

Here C(k, l0) and C ′(ε, k) are positive constants such that C(k, l0), C
′(ε, k) ↗ ∞ as

k, l0 ↗ ∞ and ε ↘ 0; there are no estimates for C(k, l0), C
′(ε, k). Therefore, in order to

obtain a meaningful consequence we need a technical condition (besides (7.4) in hyperbolic
case) such that

lim
r→r0

ER(r)

Texp f (r)
= 0.
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