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概 要
I gave the first talk under this title in the fall of 1997, and the second one

in the spring of 2013, coinciding with my retirement. In this third one I

would like to talk about some results and findings during the one round of

Eto since then. For example, I will discuss an application of a Big Picard

Theorem generalized for semi-abelian varieties to the proof of the Manin-

Mumford Conjecture (Raynaud’s Theorem) on the distribution of torsion

points on an abelian variety, combined with the o-minimal theory (2018);

here it is interesting to see the analogy relation between Nevanlinna theory

and Diophantine geometry not only at the statement level, but at the proof

level. Applying the value distribution theory, we discuss analytic and ratio-

nal sections of abelian varieties over function fields and Legendre’s elliptic

curves (Corvaja-N.-Zannier, 2022), and also the analytic Ax-Schanuel the-

orem from the view point of Nevanlinna theory (2024). If time allows, I

would like to discuss some late result due to Xie-Yuan on the finiteness of

rational sections in finite ramified covers of abelian varieties over function

fields from the view point of Kobayashi hyperbolic geometry.

1 序
本講演では次の話題に関わる話しをしたい．

(1) 小林双曲的多様体の理論．
(2) Nevanlinna理論（位数関数評価）．
(3) 有理点の有限性・幾何学的状況（Diophantine geometry）．
(4) 有理点の高さ関数評価 (Roth, Schmidt,および関数体上).

基調となるのは次の予想である：

• Lang予想 ([La60], [La74]): (1)←→(3). X を代数体 k 上定義された代数多様体と
する．C上でみて XC が小林双曲的ならば，その k 有理点集合 X(k)は有限であ
ろう．
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• Vojta予想 (Dictionary, [Vo87])：(2)←→(4).

• 関数体上のアナロジー (Manin–Grauert, [Ma63], [Gr65], .....)：(1)+(2)と (3)+(4)

の中間的位置にある．

例 1.1（Unit equation） (a) 整関数 fj ∈ O∗(C) (1 ≤ j ≤ n) (units)に対し次の恒
等式を考える (Borel恒等式)

f1 + · · ·+ fn = 1.

このとき，ある I ⊂ {1, . . . , n}, |I| ≥ 2が存在して，∑
j∈I fj = 0.

(b) xj ∈ k (1 ≤ j ≤ n), S-unit (例えば k = Q, S = {p1, . . . , pL} (有限個の素数)とす
ると pl11 · · · p

lL
L (lh ∈ Z)が S-unit)に対し次の方程式を考える．

x1 + · · ·+ xn = 1.

ある I ⊂ {1, . . . , n}, |I| ≥ 2が存在して，有限個の解を除いて，∑
j∈I xj = 0.

証明：
(a) · · · Nevanlinnaの位数関数評価．
(b) · · · Schmidtの高さ関数評価．

このようなアナロジーがある (cf., e.g., [N03], [NW14])．

2 Manin–Mumford–Raynaud (アナロジーを超えて)

定理 2.1（[N18], Manin–Mumford予想） A, X ⊂ Aを k 上の準アーベル多様体とそ
の部分多様体とする．X のトージョン点全体 Xtor のザリスキー閉包を X̄Zar

tor とする．こ
のとき，有限個の (代数的)部分群 Bj ⊂ A (1 ≤ j ≤ N) と aj ∈ Xtor があって

X̄Zar
tor =

N⋃
j=1

(aj +Bj), Xtor =
N⋃
j=1

(aj +Bjtor).

Aは次のような完全列をもつ：

0→ (C∗)t → A→ A0 (アーベル多様体)→ 0.

A = (C∗)t, dimX = 1の場合の Y. Ihara, J.-P. Serre , J. Tate 等の先駆的な仕事の後，
A = A0 場合に Raynaud [Ra83]がこの予想を証明した．その後多くの別証：M. Hindry

’88, E. Hrushovski ’95, ....., Pila–Zannier [PZ08]. 川口周 [Ka21]に，より広い見地から
の詳しいサーベイがある．
高次元 Picardの大定理 ([N81a])を使う別証明 ([N18])：
exp : Cn → Aを指数写像とする．
dimX についての帰納法．St0(X) = {0}と仮定してよい．次のようにおく．

Λ := exp−1 0 ⊂ Cn (semi-lattice), Z := exp−1 X.



Q ⊂ Cn を Λ基本閉領域とする．実解析的に Q ∼= [0, 1]d (d := 2n− t). 次のようにおく．

Ztor = exp−1 Xtor = Z ∩ (QΛ), Ztor0 = Ztor ∩Q.

Pila–Wilkie [PW06] (“o-minimal”理論)により次の分解がある：

Ztor0 = Zalg
tor0 ⊔ Ztr

tor0,

(1) Zalg
tor0 =

⋃
V⊂Z⊂Cn,alg. dimV >0

(V ∩Q ∩ (QΛ)),

(2) 任意の ε > 0に対し，ある定数 C1 > 0があって，分母が T 以下の Ztr
tor0 の元の個

数 NZtr
tor0

(T ) ≤ C1T
ε (T →∞).

(a) Ztr
tor0： D. Masser [Ms84]の下からの評価:

NZtr
tor0

(T ) ≥ C2T
ρ, ∃ ρ > 0, ∃C2 > 0.

これと (2)をあわせると，T は有界．したがって，Ztr
tor0 は有限．

(b) Zalg
tor0：

補題 2.2 expV
Zar

= a+B, 部分群 B の平行移動．

証明． V ⊂ Cn ⊂ Pn の境界 ∂V は，局所的には次に帰着できる：

(2.3) ∆∗ ×∆h ⊃ ∆∗ × {w} ∼= ∆∗, 穴あき円板．

定理 2.4（[N81a]） f : ∆∗ → Aを 0で真性特異点をもつ正則写像とし，Y = f(∆∗)
Zar
⊂

A とおく．すると，dimSt(Y ) > 0 で，q : A → A/St0(Y ) を商写像とすると，q ◦ f :

∆∗ → A/St0(Y ) ⊂ A/St0(Y )は，0を除ける特異点とする．

定義 2.5 一般に，f : ∆∗ → A が 0 を狭義真性特異点とする，あるいは狭義超越的で
あるとは，任意の連結部分群 B ⊂ A に対して，商写像を qB : A → A/B とするとき，
qB ◦ f : ∆∗ → A/B は，0を真性特異点とするか定写像になる．

定理 2.6（[N81a], [N18]） f : ∆∗ → Aを 0で狭義真性特異点をもつ正則写像とする
と，部分群 B（準アーベル多様体）があって f(∆∗)

Zar
= a+B.

補題 2.7 ∆∗ を (2.3)のものとすると，exp |∆∗ : ∆∗ → Aは 0を狭義真性特異点とする．

したがって，X̄Zar
tor は有限個を除いて次の形になる：

X̄Zar
tor =

⋃
α

(aα +Bα), dimBα > 0.

ただし，Bα は連結部分群である．ここで，Bα として極大な連結部分群だけをとってく
れば，それらは有限個で (Kawamata)，

X̄Zar
tor =

⋃
α,finite

(aα +Bα).



ここで，有限個は Bα = {0}に繰り込んだ．

注意 2.8 楕円曲線族 E → Rを考える．一般には，Rを適当にとれば Γ(R,E )は大き
くなる．一方，普遍族を与える Legendre標準形を考える：

Eλ : y2 = x(x− 1)(x− λ), λ ∈ R := C \ {0, 1}.

ただし，Eλは，無限遠点を加えてコンパクト化したものを表すとする．E =
⊔

λ∈R Eλと
おく．すると，Γ(R,E )は次の 4つの 2トージョン切断しかないことが分かる ([CNZ22])：

R× {(∞,∞)}, R× {(0, 0)}, R× {(1, 0)}, {(λ, (λ, 0)) ∈ Eλ : λ ∈ R}.

さらに，有理切断だけでなく，解析的切断を考えても，Yamanoiの第 2主要定理 [Ya06]

を用いて同じことが示される ([CNZ22])．

3 解析的 Ax–Schanuel

3.1 Ax–Schanuel

Schanuel予想． α1, . . . , αn ∈ CはQ上線形独立とすると，

tr. degQ{α1, . . . , αn, e
α1 , . . . , eαn} ≥ n.

非退化性． { }内の前半分を α ∈ Cn = Lie((C∗)n)，後ろ半分を expα ∈ (C∗)nとみる
と，Q上線形独立の条件は，expα ∈ B となる部分群 B ⊂ (C∗)n は，B = (C∗)n 以外に
ないことと同値である．
予想の系． e, π は代数的に独立である (/Q)．
∵ ) tr. degQ{1, πi, e1, eπi} ≥ 2.

注意 3.1 π, eπ の代数的独立性が Yu V. Nesterenko [Ne96] により示されている．j 関
数を使う．

定理 3.2（[Ax71]） fj(t) ∈ tC[[t]], 1 ≤ j ≤ n, Q上線形独立とすると，

tr. degC{f1(t), . . . , fn(t), ef1(t), . . . , efn(t)} ≥ n+ 1.

証明は Kolchinの微分代数の理論を用いる．
・(C∗)t×A0 (A0はアーベル多様体)の場合：Brownawell–Kubota [BK77]による．方
法は，Axの方法 (Kolchin)を拡張使用．

定義 3.3 Aを準アーベル多様体，LieA をその Lie代数，exp : LieA→ Aを指数写像と
する．正則写像 f : C→ LieAが退化とは，部分群 B ⊊ Aで exp f(C) ⊂ f(0) +B とな
ること．



定理 3.4（解析的 Ax–Schanuel, N. ’24） Aを準アーベル多様体，f : C→ Lie(A)を
非退化整曲線とする．êxpf = (f, exp f) : C→ (LieA)× Aとすると，

tr. degCêxpf = dimC êxpf(C)
Zar
≥ n+ 1.

補題 3.5（鍵） tr. degC(f)C(f, (exp f)∗C(A)) ≥ 1.

証明． ϕj ∈ C(A) (1 ≤ j ≤ n)を超越基底とする．ϕ∗
j = f ∗ϕj とおく．

仮に，tr. degC(f)C(f, (exp f)∗C(A)) = 0とすると，

Tϕ∗
j
(r) = O(Tf (r)), 1 ≤ j ≤ n.

これより，
Texp f (r) = O(Tf (r)).

一方，対数微分の補題 ([N77])“+“α”より

Tf (r) = O(log Texp f (r))||.

ここで，“||”とは，(0,∞)の測度有限な Borel集合の外の r > 0 に対し評価式が成立す
ることを意味する．結局，

Texp f (r) = O(log Texp f (r))||

となり矛盾．
定理 3.4の証明． 上の記号で，ϕ∗ = (ϕ∗

1, . . . , ϕ
∗
n)とおく．結論を否定すると

tr. degC(f, ϕ
∗) = n.

各 fj に対し代数関係がある：
Pj(fj, ϕ

∗) = 0.

仮定と，補題 3.5より tr. degCf < n. 従って，代数関係

Q(f1, . . . , fn) = 0.

順に fj を消去することにより

Q̃(ϕ∗
1, . . . , ϕ

∗
n) = 0.

Log Bloch–Ochiai ([N81a])より，exp f(C)
Zar は真部分群の平行移動になる．これは，f

の非退化条件に反する．

注意 3.6 型式的巾級数としては，elog(1+t) = 1 + tなので，

tr. degC(t, log(1 + t), et, elog(1+t)) = tr. degC(t, log(1 + t), et) = 3

だが，これには定理 3.4は使えない．



例 3.7 (1) ℘(z)をWeierstrassのペー関数とすると，ez
2
, ℘(z)は共に位数 2の超

越関数で，代数的に独立 (/C)．
(2) ℘(z), ℘(z2)は代数的に独立 (/C).

(3) Ej (j = 1, 2) を同種でない楕円曲線とし，そのペー関数を ℘j(z) とすると，
℘1(z), ℘2(z)は代数的に独立 (/C)．（多分これは古典的．コンパクトリーマン面の
一意化からも従う．）

(4) (Brownawell–Kubota [BK77]) yj ∈ tC[[t]] (1 ≤ j ≤ n) を C 上線形独立，℘j(z)

をペー関数とすると

tr. degC(y1, . . . , yn, ℘1(y1), . . . , ℘n(fn)) ≥ n+ 1.

ここで，yj ∈ O(C)を仮定すれば，℘j に対応する楕円曲線 Ej の直積 A =
∏

Ej =

Cn/Λをとり，exp : Cn → A として y = (y1, . . . , yn)が非退化ならば十分 (定理
3.4)．例えば，Ej (j = 1, 2)を前項 (3)の楕円曲線とすると，y1 = t, y2 = tは線形
従属であるが，f : t ∈ C→ (t, t) ∈ Lie(E1 × E2)は非退化である．

3.2 (LieA)× Aに対する Nevanlinna理論
A を準アーベル多様体とする．TLieA = TA = J1A (1 ジェット空間)．これより，

êxpA = A× LieAへの êxpf の形の正則写像のジェット空間は，特別な型になる：

Jk(A× LieA) ∼= A× LieA× Jk,A.

Jk,A は Jk(A)のジェット成分である．

定理 3.8（[N24]） 上の記号で，f : C → LieAは非退化整曲線とする．その k ジェッ
トリフト Jkêxpf : C→ Jk(A× LieA) の像のザリスキー閉包を Xk(êxpf)とする．
代数的な部分集合 Z ⊂ Xk(êxpf) に対して，適当なコンパクト化 Z̄ ⊂ X̄k(êxpf) ⊂

A× LieA× Jk,A が存在して，

TJk(êxpf)(r, ωZ̄) = N1(r, Jk(êxpf)
∗Z) + Sε,exp f (r).

ここで，Sε,exp f (r)は小さな項で，Ā上のある豊富な直線束 Lを固定すれば，任意の ε > 0

に対し
Sε,exp f (r) = εTexp f (r, L)||.

もし codimZ ≥ 2ならば，TJk(êxpf)(r, ωZ̄) = Sε,exp f (r).

?： ＋ “o-minimal” =⇒ ?

4 アーベル多様体の分岐被覆族
Rを代数的リーマン面，R̄をそのコンパクト化とする．



設定 4.1 η : A→ Rをアーベル多様体の非退化ファイバー空間として，λ : X → Aを
有限分岐被覆空間，π = η ◦ λ : X → Rは連結ファイバー空間であるとする．

Γ(R,X)でその有理切断空間を表す．問題は

問題 4.2 (Lang予想)適当な双曲性条件で，|Γ(R,X)| <∞となるか？

一般に，π : X → Rを固有連結ファイバー空間であるとする．以前の結果により次の
状況になっていることが分かっている．

(1)【Γ(R,X)のコンパクト性】([N85]) 任意の t ∈ Rに対しXt = π−1t は双曲的であ
るとする．一般には，この双曲条件だけでは難しく，次の境界双曲条件を考える：
境界条件：適当なコンパクト化 X̄ → R̄があって，X → Rは，∂R上双曲的に埋
め込まれている．
これらの条件の下で，Γ(R,X)はコンパクト複素空間の構造を持つ．

(2) 各既約成分 Γ0 ⊂ Γ(R,X)に対し部分ファイバー空間 X ′ ⊂ X(/R)があって，そ
の正規化を X̃ ′ とすると，X̃ ′ ∼= X̃ ′

0 × R ∼= Γ0 × R，かつ Γ0 の元はこの自明化で
の定切断になっている．
これを示すために，次の有限性（剛性）を使う．

定理 4.3（[N92]） 一般に Y, Z をコンパクト複素空間，Z は双曲的であるとす
る．Y から Z への全射有理型写像の全体Mersurj(Y, Z) は有限である．

注意 4.4 境界条件が不要である場合がある．例えば，次の場合が知られている．
(1) dimR X = 1 ならば境界条件は自動的に満たされる（[N85]; Manin–Grauert の
別証）．

(2) X → Rはスムースと仮定して，相対余接束 T ∗
X/R がアンプルである ([N81b])．

境界条件を外すのはなかなか難しいのであるが，設定 4.1 のアーベル多様体族が関
わる場合は，Mordell–Weil (Lang–Neron) の有限 (生成) 性が使えるメリットがある．
Xie-Yuan は最近のプレプリントで次を得た．

定理 4.5（[XY23]） 設定 4.1の状況を考える．次の２条件を仮定する．

(1) A→ Rの C(R)/C上のトレース AC(R)/C = 0.

(2) ある点 t0 ∈ Rがあって，Xt0 は小林双曲的である．

このとき，|Γ(R,X)| <∞.

証明． (a)【有限生成】トレースに関する仮定の下で，Γ(R,A) は有限生成である
(Lang–Neron)．Γ(R,A) = Γ(R,A)tor ⊔ Γ(R,X)free とトージョン部分と自由部分に分け



ると，Γ(R,A)tor は有限である．以下，Γ(R,X)free について考える．R上でみれば，

V := Γ(R,X)⊗R ∼= Γ(R,X)free ⊗R

は有限次元実線形空間である．
(b)【局所化】A (→ R) 上に半正値でファイバー方向へ正値な Betti 型式と呼ばれる

(1, 1)型式 ωB があって，s ∈ Γ(R,A)の Tateハイトを hT(s)とすると

hT(s) =

∫
R

s∗ωB =: ∥s∥2ωB
.

∥s∥B はR線形空間 V 上のノルムを与える．
U ⊂ Rを任意の非空開集合とし，

∥s∥2(ωB,U) =

∫
U

s∗ωB

とおく (partial height)．∥s∥2(ωB,U) も V のノルムを定義する．V は有限次元であるから，
一般論により：

命題 4.6 V 上の二つのノルム ∥s∥B, ∥s∥(ωB,U) は同値である．すなわち，ある C1 > 0

があって，
1

C1

∥s∥(ωB,U) ≤ ∥s∥B ≤ C1∥s∥(ωB,U), ∀ s ∈ V.

(c)【コンパクト性】λ : X → Aは有限射であるから，σ ∈ Γ(R,X)に対し，Tateハイ
ト hT(λ ◦ σ) が有界ならば，Γ(R,X)はコンパクト複素空間の構造をもつ．
Xt0 は双曲的であるから，小さな円板近傍 ∆ ∋ t0 をとれば制限 X|∆ は双曲的である．

FX|∆ を Kobayashi–Roydenフィンスラー計量とし，F∆ を円板のポアンカレ計量で決ま
るフィンスラー計量とする．円板 ∆′ ⋐ ∆を一つとり固定する．定数 C2 > 0があって

λ∗ωB|X|∆′ ≤ C2F
2
X|∆ |X|∆′ .

小林双曲計量の短縮原理により
σ∗FX|∆ ≤ F∆.

(b)のステップで U = ∆′ とすると，

∥λ ◦ σ∥2B ≤ C2
1C2

∫
∆′

F 2
∆ = C2

1C2C3 <∞, C3 :=

∫
∆′

F 2
∆.

以上より，hT(λ ◦ σ) (σ ∈ Γ(R,X)) は有界になり，Γ(R,X)) はコンパクト複素空間に
なる．
(d)【有限性】Γ(R,X)が無限集合であったとする．すると dimC Γ(R,X) > 0. Γ(R,X)

は連続体の濃度をもつ．λ : X → Aは有限射であるから λ(Γ(R,X)) (⊂ Γ(R,A))も連続
体濃度である．一方，Γ(R,A)は Z上有限生成であるから高々可算濃度であり，矛盾．



注意 4.7 (1) 上の証明で局所化 (partial height) のアイデアがポイントで，これは
Xie–Yuan [XY23]による．テクニカルなところでは Xie–Yuanの証明からだいぶ
簡略化した．

(2) Bartsch–Javanpeykar [BJ24] には A.N. Parshin のアイデアに基づく位相的剛性
を用いる別証明がある．
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[Ka21] 川口周, André–Oort予想の最近の進展（企画サーベイ），城崎シンポジウム，2021.

[Ko98] S. Kobayashi, Hyperbolic Complex Spaces, Grundl. der Math. Wissen. vol. 318,

Springer-Verlag, Berlin-Heidelberg, 1998.

[La60] S. Lang, Integral points on curves, Publ. Math. I.H.E.S. No. 6 (1960), 27–43.

[La71] ——, Transcendental numbers and Diophantine approximation, Bull. Amer. Math.

Soc. 77 (5) (1971), 635-677.

[La74] ——, Higher dimensional Diophantine problems, Bull. Amer. Math. Soc. 80 (1974),

779–787.

[Ma63] Yu. Manin, Rational points of algebraic curves over function fields, Izv. Akad. Nauk.

SSSR. Ser. Mat. 27 (1963), 1395-1440.

[Ms84] D. Masser, Small values of the quadratic part of the Néron-Tate height on an abelian
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