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B =
I gave the first talk under this title in the fall of 1997, and the second one
in the spring of 2013, coinciding with my retirement. In this third one I
would like to talk about some results and findings during the one round of
Eto since then. For example, I will discuss an application of a Big Picard
Theorem generalized for semi-abelian varieties to the proof of the Manin-
Mumford Conjecture (Raynaud’s Theorem) on the distribution of torsion
points on an abelian variety, combined with the o-minimal theory (2018);
here it is interesting to see the analogy relation between Nevanlinna theory
and Diophantine geometry not only at the statement level, but at the proof
level. Applying the value distribution theory, we discuss analytic and ratio-
nal sections of abelian varieties over function fields and Legendre’s elliptic
curves (Corvaja-N.-Zannier, 2022), and also the analytic Ax-Schanuel the-
orem from the view point of Nevanlinna theory (2024). If time allows, I
would like to discuss some late result due to Xie-Yuan on the finiteness of
rational sections in finite ramified covers of abelian varieties over function

fields from the view point of Kobayashi hyperbolic geometry.

1 &
AHE T IO D 23 L% Lz,

(1) /INFRTUHR B Z AR D P

(2) Nevanlinna FRas (7 RBIRGETHE) .

(3) AEEDOFRME - B7HRI (Diophantine geometry).
(4) A A DG X BEEEHT (Roth, Schmidt, 35 X BEEIA ).

HFAe B 203ROTHETH S .

e Lang P4 ([La60], [La74]): (1)«—(3). X ZREUA k LEFRI OB KL
T5. CLTAT X WM 51X, 20 kK FHEAES X (k) 3FRTH
%3.
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e Vojta 748 (Dictionary, [Vo87]) : (2)«—(4).
o BIRUA LD 7 F v Y — (Manin-Grauert, [Ma63], [Gr65], .....) : (1)+(2) & (3)+(4)
DHERINEICD 5.

%l 1.1 (Unit equation) (a) BB% f; € 0*(C) (1 < j < n) (units) & LRDIE

FRX%E#E 2 % (Borel [HEER)

L+ +fu=1

ZOrE, HBIC{l,...,n}, [[| 2 22FHELT, Y .., f;=0.
(b) z; €k (1 <j<n), S-unit (MZIXEk=Q, S ={p1,....p.} AREDORE) ¥

2e ph.. -plLL (I, € Z) 73 S-unit) WX LRDOFEREEZ 5.
T+ 4z, =1

B51C{1,...,n}, |I| > 25 LT, HREORERNT, . 25 = 0.

AlkPH
(a) - - Nevanlinna DA BIEGETA.

(b) -+ Schmidt O & < BT
ISR TFIuY—hH S (cf, eg., [NO3], [NW14]).

2 Manin—-Mumford-Raynaud (7 u >y —%82 )

EIE 2.1 ([N18], Manin-Mumford ¥f) A, X C A% k LOET —NLZERIKL 2

DERZERETE. X D= a VERIK X, OV RAF—HE%E XE v 55, Z
DrE, HERED (REW) 98B CA(1<j<N) ta € XiuB’H>T

N N
XZar — U(aj + Bj)a KXior = U(aj + Bjtor>'

tor
j=1 7=1

AWZRD &5 BEededbo !
0— (C' = A — Ay (7 —~LZHK) — 0.

A=(C dmX =1DEHAED Y. Thara, J.-P. Serre , J. Tate FFDERII 2 LH DK,

A = Ay %E&12 Raynaud [Ra83] A2 O FPEZFEHAL 72, 20#%Z < DHIEE : M. Hindry

’88, E. Hrushovski 95, ....., Pila-Zannier [PZ08]. JIIHJE [Ka21] 2, X bJAWEMD S

DHELVT—RA DD 3.
=TT Picard OAEIE ([N81a]) Z{#5 BUSEEA ([N18]) :
exp: C" — A R{58EB L T 5.
dim X 22OV TORHE. St°(X) = {0} 2IRELTEW. KDXSIIBL.

A :=exp 10 C C" (semi-lattice), Z :=exp ' X.



Q C C" % A FEARPATEE 5. EMHTINC Q 2 [0,1]¢ (d:=2n—t). RD LS IBXL.
Zior = exp™ ! Xioe = ZN(QA),  Zioro = Ziox N Q.
Pila—Wilkie [PWO06] (“o-minimal” ¥25§) {2 X D RO 73RN D % -
Zyoo = Zioty U Zi5 s,
(1) Zigiy = U (VN QN (QA)),

VcZcCnalg. dim V>0

(2) EED >0, HIEKC, >003H->T, HRNT UTD ZE, ODITOMHE
BNy (T) < CiT¢ (T — o0).
(a) Z&, : D. Masser [Ms84] @ F2» & o FTii:
NZééro(T) > YT, dp>0, 3Cy > 0.
Zhe (2) ZbbEs Y, TIRER LEN-T, 22, 136K
(b) Zigy -
BWE2.2 oxpV " =a+ B, W5 B OV
AERA. V C C" C P DRSOV X, RFTANCIERICHETZ 5 ©
(2.3) A* x A" S A* x {w} 2 A*, KRB EFR.
T 2.4(N8la]) f:A* - A% 0 CHMERSE L OEANGEL L, Y = f(AY) © C

ArBL. T3, dmSt(Y) >0T, ¢: A— A/SOY) 2@EHL T2, gof:
A — A/SEO(Y) C A/SE(Y) X, 0 2RI 2REME T 5.

E&E 25 —RIC, fA* 5 AP0 2BBERFREAL T2, H20VERHRBHENT
HBHrX, TEOEMEHIH B C ARNLT, HEBR%E : A~ A/BrT5rE,
ggo f:A* = A/Bl¥, 0 zEMREN L T20EEBRICKRS.

FIE 2.6 (N8la], [N18]) f:A* — A% 0 THFBEMBE T & O EAGRY T2
v, WABEB (E7 —~LBKEK) BT [(AY) " =a+ B

2.7 A% (23)DbDETBE, expla-: A* = AT 0 ZHBREMNFRERE 5.

L7zhioT, X2 i 3ERMEZERNTROBICZ S .

tor

tor

Xt =| J(@a + Ba), dimB, > 0.

7272 L, By ZEEEHABETHS. 22T, B, & LTHAREMTARL T E L 5TL
U, ZHoI3ERMET (Kawamata),
XZar U (ao + Ba).

a,finite



22T, BRMEZ B, = {0} IZiEDIAAT.
O

AR 28 MBHEMES > RE2EZX 5. —MRIZE, RZEYICENIT(R &) TR
{7e5d. —7, BEEEZS5 2% Legendre I EE 2 & 2 5 ©

Ey:y*=z(x—1)(z—)), M€ R:=C\{0,1}.

71U, B\, EREAENMZACay 7 MuLEDbOERT LT 2. &=, ,E\ b
BL. 328, T(R,EIFRDADD2 b= a VYW LW Z 235505 ([CNZ22]):

R x {(00,00)}, R x {(0,0)}, R x {(1,0)}, {(\,(\,0)) € Ex: X € R}.

oI, BN TR, BATHIYINIZE X T, Yamanoi 0% 2 EEEH [Ya0o]
EFWTHL C EARE RS ([ONZ22)).

3 fRHEY Ax—Schanuel

3.1 Ax—Schanuel
Schanuel ¥#8. ay,...,q, € Cl3 Q EiEHI T2 &,

tr.degg{ai, ..., an, ™, ... e} > n.

IERIEME. { } NDHIESDZ o € C" = Lie((CH)"), ®&AH¥0D% expa € (C*)" A5
¢, Q ERUEMIIOSEME, expa € B 728808 B C (C*)™ &, B = (C*)™ BHHC
BWZ e LRAETH .

FROZR. e IRBINTHIITDH S (/Q).

) trodegg{l,wi el e} > 2.

AR 31 7, e” ORBUISLMED Yu V. Nesterenko [Ne96] 12 & DRENTW3. 5B
B flis.
T 3.2 ([Ax71]))  f;(t) €tC[[t]], 1 <j<n, Q ML T2 L,

tr. dego{fi(t), ..., fu(t),e"® e} >pn 41,

AEAALE Kolchin O3 R E D Mm% FH v 5.
- (C*)! x Ap (Ap 137 —~LEZBRRK) D35E © Brownawell-Kubota [BK77] 12Xk 5. 7
X, Ax D751k (Kolchin) ZHR5REEH.

EE 3.3 AZUET—~OLEHE, LieA % %0 Lie REL, exp: Lied — A 2158 GG L
5. IEHIB/ f: C — LieA 2%B{b 2 1%, §58f B C A Texp f(C) C f(0)+ B &%
2ZL.



EIE 3.4 (fRHhH9 Ax—Schanuel, N. '24) A ZH7 —~OLEZFEIK, f: C — Lie(A) %
JEB LB AR 35, expf = (f,expf) : C— (LieA) x A& T 5L,

tr. degoexpf = dime &xpf(C) > n + 1.
fiRE 3.5 (#) tr.degeyC(f, (exp [)*C(A)) > 1.

. ¢y € C(A) (1<) <n) RBBILEY T5. ¢ = f'o; £B<.
i, tr.dege,C(f, (exp f)*C(A)) =0 32 &,

kD,
Texp £(1) = O(T4(1)).

—J7, FEMOOWE (NT7)“+ 0" XD
Ty (r) = O(log Texp (1))

ZZT, Y7 ki, (0,00) DRIEARZ Borel REDHD r > 0 128 LEHlizN23m37 3
52 EHET 5. fh,

Texp (1) = Olog Texp 5 (1))

LR DFE. O
EIE 3.4 OFEAA. LOFEET, ¢ = (¢],...,0") e BL. MmrEET 3L

tr. dege(f, 67) = n.

& 10 URBRA D 3 -

Pi(f;,¢%) = 0.
REE, i 3.5 X0 tr.degef < n. €-T, REBIR
Q(fla"'vfn) = 0.

IE f; #ET B rIckD

O(t,..., %) = 0.

Log Bloch Ochiai ([N81a]) £ D, exp f(C) " ZEHMABOTATHENL . ZiUL, |
DIBBALEAFITKT 5. 0

AR 36 AN LT, ot =14 ¢ 2DT,
tr. degg (¢, log(1 + 1), €', 810 = tr. degq (¢, log(1 +t),e') = 3

7203, TAUTIFER 3.4 3R,



2

7 3.7 (1) p(z) & Weierstrass DR—PIE T2 &, e, p(z) FHIThi 2 o
BT, REENITHLL (/C).

(2) p(2), p(=?) BREENIAT (/C).

(3) E; (j = 1,2) ZEMETHRVWEMEHRE L, ZOX—BEZE p;(z) T2,
01(2), p2(2) FREBENTHAL (/C). (B ZAUEEHK. 2> 7 MY —< VHD
—Btrodbits.)

(4) (Brownawell-Kubota [BK77]) y; € tC[[t]] (1 < j <n) %Z C E#IEMISL, ©;(2)
BT oL

tr. degc(yh <oy Yn, pl(yl)a S pn(fn)) Z n+ 1.

ZIT, yj€ O0C) ZIREFTHUR, p; AT 2EMMM E; OERMA=]]E,; =
C'"/AZzrbh, exp:C" = AL Ty=(y1,...,yn) DIFRILIR ST+ (T
34). BIZX, E; (j=1,2) ZHiH (3) OMMIIRE T2 L, vy =ty =t 3B
WETHZD, f:teC— (tt) € Lie(E, x Ey) 3IEBLTH 3.

3.2 (LieA) x A IZ¥9 % Nevanlinna 32§
ARYET —SAERK L T2, Tyos = Ta = LA (1 Yz v FER). 2 XD,
expA = A x LieA D expf OIEDIEAIERD Y = v M2ER-IE, Kl 3 .

Jk(A X LieA) =~ A x LieA x Jk,A-

FIE 3.8 ((N24]) LOHET, f:C — Lied 3IBBEHEGEL T2, 20k Vv
FD 7 b LS C = Ju(A x Licd) OROYP ) 2% —FI% X, (65pf) L5 5.

RE P EE Z C Xp(expf) M LT, #@Yiar 7 ML Z C Xu(expf) C
A x LieA x Jy 4 BDIELT,

TJk(&Bf)(T, wz) = Nl(Ta Jk(e/@f)*Z) + Sg,expf(r).

ZIT, Seop(r) WNERIT, A LO® 2 BELESK L 2EESL, EED > 0

WXL
Seexp (1) = €Texp £ (r, L)

b L codimZ > 2 %518, Ty @) (1 wz) = Se.oxp (1)
7. + “o-minimal” = ?
4 T—RIIVZEDDIRRERE

RZ2REMY —~ @, REZFDary 7 ML T 5.



BRE 41 n:A—= RE7—UERKDIERILT 7 A XN=ZERE LT, \: X - A%
GRRDIEHEZEE, m=nol: X = RIFHEE T 7 AN—ERTHZ LT 3.

(R, X) TZ0EMYINZMeRT. ME
FSSE 4.2 (Lang T48) Y RMMIHELEAT, DR, X)| < oo LR5H?

— M2, 7: X - RZEBEAEME 7 7 A NN—2ERTHZ T 5. LHTIOHEIZEDRD
KRBT TVWAZ BT hro>TW\W3,

(1) (T(R,X) > /INT bE] (IN85]) fEED t € RITHL X, = 1 13X TH
235, —iciE, ZOWHEELZFITIEHELL, ROBRNEZEEEZ S :
BREMS MY Lkar I MLX - REH->T, X - RIX, OR _FXWEhAICHE
DIAENTWVS.

INBDEMHFDORT, I(R,X) dar 7 FMERZERMOWEZ .

(2) BB Ty C T(R, X) WM LES 7 7 A N=28[ X' C X(/R) BH->T, %
DERLE X' v 558, X' 2 X x R=Tyx R, DTy DItiZZ D EHIULT
DEYIWIZ I > TN 3.

CHERT DI, ROARE (M) 2#5.

EIE 4.3 (N92])) —ficY,Z 2av 8y NMEREM, Z I TH3 2T
5. Y 5o Z NORFEHIEMRD 2 Mergy,; (Y, Z) FHRTH 5.
R 44 BREMEPTETH G565 5. HlziE, ROGEPHLATVS.

(1) dimp X = 1 2 5B AEMHITIHENICH 225 ([N85]; Manin-Grauert O
A .
(2) X > RIEAL-RLREL T, HURER TS 037 ¥ TV TH S ([N81b)).

BREZEMGZNTORERBRIBHIE LD TH 25, &E 4.1 D7 — VSR IED B
b 5561&, Mordell-Weil (Lang—Neron) O HR (EWK) M1 HEZ 2 XV v 23D 5.
Xie-Yuan 3FED 7L 7V v N TREGT-.

EIE 4.5 ([XY23]) RE4L1IDRMEEZD. RO2EMHZIET 5.

(2) Bty € RDBBH-T, Xy F/IRNEITH 3.

corE, DR X)| < oo

AEEA.  (a) [BRRAEM] L —R T 2IRED T, I'(R,A) BERERTD 3
(Lang—Neron). T'(R, A) = T(R, A)tor UT(R, X )free & b= a Y53 & HHERDITH T



28, T(R, Ao BEBRTH . LT, T(R, X)eo KOWTEZ 2. R ETHIUD,
Vi=T{RX)R2T(R, X)te ® R

FHRIOTEFILZERTH 5.
(b) UmArt] A(— R) RIZHIEET 7 7 £ N—J7HNIEfE7: Betti 845K & FEIXNL 2
(1,1) K wpg 3B > T, se'(R,A) D Tate "1 % hy(s) T DL

he(s) = [ o = [,

Isllg E RAEZEMV LD/ Vo252 5.
UCRZEBEDIFZEFESGL L,

Isl12,, 0 = / swn

5 < (partial height). [|s|f?,, ;) dV O/ VLZEFET S, VIFERIITLTH S5 5,
—fGEmIc LD

W 4.6 V EDO"oD VA |||, [Is]|wsr) BRMETH 2. $hbb, 2 C) > 0
Do T, .
5ﬂﬂ@mn§HﬂB§CMﬂwmm VseV.

() [2v527 MY A2 X — A BHRHTH B2, o€ T(R, X) 1cHtL, Tate ~A
N hr(Aoo) BERLESIX, T(R, X) EZay 7 MERZERONEE D D.

X W TH 2005, DNERFEABGEE A 3ty & 2 AUIHIE XA SN TH 5.
Fx|, % Kobayashi-Royden 7 4+ Y27 —gt& & L, Fa ZHIROKRT > h LETRETRE
274 VAT7—itEE TS FIRA eA2—D2DEETS. EHC,>00H-T

. 2
Nwsl x|, < C2Fx|A’X|A/-

IR ET B D REAEFE RIS £ D
O'*.F)('A S FA.

(b) DAF v FTU =N ¥ 3¢,

H)\OUHZBSCECQ/ F§20120203<OO, Cg Z:/ Fz
A/

’

B EXD, hp(hoo) (0 € T(R, X)) 3ERICARD, T(R X)) da > 7 MEHRZERIC
%5,

(d) CERMIT(R, X) BEREATH 722 T3, T2 dimc (R, X) > 0. T'(R, X)
GHEGHADEEZ DD, N\ X = ARERMNTH 256 NT(R,X)) (CT(R,A)) bk
REETHS. —8H, (R, A)BZ LERERTH 20 0@mAAIERBETHD, FE. O



AE 47 (1) LoFEHTREAME (partial height) @ 7 4 77 KA > b T, 2

Xie-Yuan [XY23] ik 3. 77 =h17kt T ATid Xie-Yuan OFEHD 520K

fEims{ L 7.
(2) Bartsch—Javanpeykar [BJ24] 121 A.N. Parshin @ 7 4 7 71230 < A AHAYRIE

Z W5 ARERD 5 5 .
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