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§1 Introduction.

The big 3 problems of Behnke–Thullen (1934):

1. Levi (Hartogs’ Inverse) Problem (Chap. IV).

2. Cousin I/II Problem (Chap. V).

3. Approximation (Development) Problem (Chap. VI).

Kiyoshi Oka solved all 3 in the opposite order (1936–1953).
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For Levi (Hartogs’ Inverse) Problem it generally referred as:

1. Univalent domains of dim = 2 by Oka VI (1942).

2.

3.

4. Unramified Riemann domains of dim ≥ 2 by Oka (1953).

5. Univalent domains of dim ≥ 2 by F. Norguet and

H.J. Bremermann (1954).

But, in fact, historically,
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1. Univalent domains of dim = 2 by Oka VI (1942).

2. Unramified Riemann domains of dim ≥ 2 by Oka’s

unpublished papers (1943).

3. Univalent domains of dim ≥ 2 by S. Hitotsumatsu (1949).

4. Unramified Riemann domains of dim ≥ 2 by Oka (1953).

5. Univalent domains of dim ≥ 2 by F. Norguet and

H.J. Bremermann (1954).

Used methods:

Weil’s integral to solve an
::::::::

integral
::::::::::::::::::

equation
::::::::::::::::::

in 1, 3 and 5:

Jôku-Ikô with estimate and Cousin Integral to solve an
::::::::

integral
::::::::::::::::

equation
::::::::::::::::::::

in 2, and 4 with Coherence.

The present approach was inspired by Oka’s unpublished papers 2.
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Cousin I(/II) Problem:

Let

Ω ⊂ Cn be a domain,

O(U) be the set of all holomorphic functions in an open U ⊂ Ω,

Ω =
∪
Uα be an open covering, and

fα ∈M (Uα) (/M ∗(Uα)) be (/non-zero) merom. funct’s. in Uα.

Call {(Uα, fα)} a Cousin I(/II) data if

fα − fβ ∈ O(Uα ∩ Uβ) (/fα · f −1
β ∈ O∗(Uα ∩ Uβ)),

∀α, β.

Find F ∈M (Ω) (/M ∗(Ω)) such that

F − fα ∈ O(Uα) (/F · f −1
α ∈ O∗(Uα)),

∀α.
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Cousin Integral (Cousin decomposition)

Let E ′ × E1 and E ′ × E2 be adjacent cuboids with open

neighborhoods U1 and U2. Let

{(Uj , fj)}j=1,2 be a Cousin data, and

g = f2 − f1 ∈ O(U1 ∩ U2).

Cousin Integral: φ(z ′, zn) =
1

2πi

∫
ℓ

g(z ′, ζ)

ζ − zn
dζ.

On Eα (α = 1, 2), φα(z
′, zn) = φ(z ′, zn) =

1

2πi

∫
ℓα

g(z ′, ζ)

ζ − zn
dζ.

By Cauchy,

φ1 − φ2 = g = f2 − f1 on E1 ∩ E2.

F = f1 + φ1 = f2 + φ2 ∈M (E1 ∪ E2), Solution.

It was Oka’s great idea to reduce the general case to the above

simple one by Jôku-Ikô: Ideal theoretic Jôku-Ikô = Coherence.
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Theorem 1.1

The Cousin I/II Problems are always solvable on a polydisk P∆.

Proof. Since P∆∼=an open cuboid(⊂ Cn),

∃closed cuboids Eν ↗ P∆, ν = 1, 2, . . ..

Using Cousin Integral inductively, we have solutions Fν on Eν .

Using the Approximation (Function Developement in P∆),

modify Fν so that

(sup-norm) ∥Fν+1 − Fν∥Eν <
1

2ν
.

F = F1 +
∞∑
ν=1

(Fν+1 − Fν), a solution.

N.B. This is the prototype method to obtain a solution.
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§2 Hartogs domains

Let n ≥ 2, a = (aj) ∈ Cn, 0 < δj < γj , 1 ≤ j ≤ n, γ = (γj). Set

P∆(a, γ) = {z = (zj) ∈ Cn : |zj | < γj ,
∀ j},

Ω1 = {z = (zj) ∈ P∆(a, γ) : |zj − aj | < δj , j ≥ 2},

Ω2 = {z ∈ P∆(a, γ) : δ1 < |z1 − a1| < γ1},

ΩH(a; γ) = Ω1 ∪ Ω2 (Fig. 11).

Figure: Hartogs’ domain ΩH(a; γ)
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Hartogs’s phenomenon:

O(ΩH(a; γ))∼=O(P∆(a, γ)).

• ∃Non-solvable Cousin I/II data on ΩH(a; γ).

Poles
1

z − w
|Ω1 for I (/ Zeros (z − w)|Ω1 for II). If F is a solution,

think (z − w)F |{z=w} (/ F |{z=w}).
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Holomorphic Convexity

For K ⊂ Ω we define the holomorphic convex hull of K by

K̂Ω = K̂O(Ω) =

{
z ∈ Ω : |f (z)| ≤ sup

K
|f |, ∀f ∈ O(Ω)

}
.

Ω is said to be holomorphically convex if for all K ⋐ Ω,

K̂O(Ω) ⋐ Ω.

N.B. Hartogs domains are not
::::::::

holomorphically convex.

Problem: Is Cousin I/II Problem solvable on holomorphically

convex domains?
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§3 Weak Coherence

Let Ω ⊂ Cn be a domain, a ∈ Ω,

f be a holomorphic function about a

Oa = {f a =
∑

cν(z − a)ν : conv. power series, germs} (a ring),

OΩ =
∪
a∈Ω
Oa (sheaf as sets), On = OCn .

Consider:

Oq
Ω (q ∈ N), naturally an OΩ-module,

S ⊂ Oq
Ω, an OΩ-submodule.

For an open subset U ⊂ Ω, put

S (U) =
{
(fj) ∈ O(U)q :

(
fj
a

)
∈ Sa,

∀a ∈ U
}
(sections).
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Definition 3.1

An OΩ-submodule S is locally finite if for ∀a ∈ Ω, ∃U ∋ a, a

neighborhood, and finitely many σk ∈ S (U), 1 ≤ k ≤ ℓ such
that

Sz =
ℓ∑

k=1

Oz · σkz ,
∀z ∈ U.

{σk}1≤k≤ℓ is called a finite generator system of S on U.

Let V ⊂ Ω be an open subset, τk ∈ S (V ), 1 ≤ k ≤ N(<∞),

R(τ1, . . . , τN) ⊂ ON
V be the relation sheaf defined by

R(τj) =
∪
a∈V

(fj a) ∈ ON
a :
∑
j

fj
a
· τj

a
= 0

 .

For a subset S ⊂ Ω, define the ideal sheaf of S by

I ⟨S⟩ =
∪
a∈Ω
{f a ∈ Oa : f |S = 0} .
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Theorem 3.2 (Weak Coherence)

Let S ⊂ Ω be a complex submanifold, possibly non-connected.

1. The ideal sheaf I ⟨S⟩ is locally finite.

2. Let {σj ∈ I ⟨S⟩(Ω) : 1 ≤ j ≤ N} be a finite generator system

of I ⟨S⟩ on Ω.

Then, the relation sheaf R(σ1, . . . , σN) is locally finite.

Proof.

1. Locally, S = {z1 = · · · = zq = 0} in U ⊂ Ω. Then,

I ⟨S⟩ =
q∑

j=1

OU · zj .
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2. This is immediately reduced to the local finiteness of the

relation sheaf defined

(3.3) f1z · z1 + · · ·+ fq
z
· zq = 0.

Induction on q:

q = 1: Trivially R(z1) = 0, locally finite.

Suppose it up to q − 1 (q ≥ 2) valid. For q, write

fj =
∑
ν

cνz
ν = gj(z1, z

′)z1 + hj(z
′), z ′ = (z2, . . . , zn).

Then, (3.3) is rewritten as

(3.4)

(f1 + g2z2 + · · ·+ gqzq)
z
· z1 + h2(z

′)
z
· z2 + · · ·+ hq(z

′)
z
· zq = 0 :
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f1 = −g2z2 − · · · − gqzq,(3.5)

h2(z
′)
z
· z2 + · · ·+ hq(z

′)
z
· zq = 0(3.6)

In (3.5), g2, . . . , gq are finite number of free variables, i.e., locally

finite.

(3.6) is the case “q − 1”; by the induction hypothesis it is locally

finite.

Thus, R(z1, . . . , zq) is locally finite.
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Let Ω ⊂ Cn = Cn−1 × C be a domain,

E ′,E ′′ ⋐ Ω be two closed cuboids as follows:

a closed cuboid F ⋐ Cn−1 and two adjacent closed rectangles

E ′
n,E

′′
n ⋐ C sharing a side ℓ,

E ′ = F × E ′
n, E ′′ = F × E ′′

n , ℓ = E ′
n ∩ E ′′

n .(3.7)

Figure: Adjacent closed cuboids
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Lemma 3.8 (Cartan’s matrix decomposition)

Let

U be a neighborhood of F × ℓ,
A(z) be an invertible (N,N)-matrix valued holomorphic function in

U.

Then, ∃δ > 0, sufficiently small such that if ∥A∥U < δ,

∃A′(z),A′′(z), invertible (N,N)-matrix valued holomorphic

functions on E ′,E ′′, respectively, satisfying

A(z) = A′(z)A′′(z) on F × ℓ.

Proof. By Cousin Integral with estimate. See Appendix of [AFT].
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Consider a closed cuboid E ⊂ Cn, possibly degenerate with some

edges of length 0. Define

dimE = the number of edges of positive lengths:

0 ≤ dimE ≤ 2n.

Lemma 3.9 (Oka Syzygy)

Let E ⋐ Cn be a closed cuboid.

1. Every locally finite submodule S (⊂ ON
n ) defined on E (i.e., in

a neighborhood of E) has a finite generator system on E.

2. Let S be a submodule on E with a finite generator system

{σj}1≤j≤N on E such that R(σ1, . . . , σN) is locally finite.

Then for ∀σ ∈ S (E ), ∃aj ∈ O(E ), 1 ≤ j ≤ N, such that

(3.10) σ =
N∑
j=1

aj · σj (on E ).
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Proof.

Double
::::::::::::::::::

Cuboid
::::::::::::::::::

Induction
::::::::::::::::::::::::

on dimE : [1q−1, 2q−1]⇒ 1q ⇒ 2q

(a) dimE = 0: 1, 2 Trivial by definition.

(b) Suppose them up to dimE = q − 1, q ≥ 1, valid.

dimE = q:

1. 2q−1+ Cartan’s matrix decomposition.

2. Write with T > 0, θ ≥ 0:

E = F × {zn = t + iyn : 0 ≤ t ≤ T , |yn| ≤ θ},

dimF =

{
q − 1, θ = 0;

q − 2, θ > 0.

Apply the induction hypothesis 2q−1 to

Et = F × {t + iyn : |yn| ≤ θ} with t ∈ [0,T ]. We then have
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σ =
N∑
j=1

aj · σj (in a nbd. of) Et .

Let

σ =
N∑
j=1

a′j · σj , σ =
N∑
j=1

a′′j · σj

be such expressions in adjacent cubes E ′,E ′′ with E ′ ∩ E ′′ = Et .

By 1q,
∃a generator system {τk = (τkj)j}k of R(σ1, . . . , σN) on E .

Since
∑N

j=1(a
′
j − a′′j ) · σj = 0 on Et , we apply the induction

hypothesis 2q−1 for R(σ1, . . . , σN) to get

(a′j − a′′j ) =
∑
k

bk · (τkj) on Exn , bk ∈ O(Et).

Apply Cousin Integral to bk = b′k − b′′k :(
a′j −

∑
k

b′kτkj

)
=

(
a′′j −

∑
k

b′′kτkj

)
= (a′′′j ) ∈ O(E ′ ∪ E ′′)N .
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σ =
∑
j

a′′′j · σj , on E ′ ∪ E ′′.

Repeat this.

N.B. We apply this for I ⟨S⟩ of a complex submanifold S ⊂ P∆.
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§4 Oka’s Jôku-Ikô

Let

P ⊂ Cn be an open cuboid,

S ⊂ P be a complex submanifold.

Lemma 4.1 (Oka’s Jôku-Ikô)

Let E ⋐ P be a closed cuboid. Then for

∀g ∈ O(E ∩ S) (E ∩ S ⋐ S), ∃G ∈ O(E ) satisfying

G |E∩S = g |E∩S .

Proof. By

Weak Coherence of I ⟨S⟩+Oka Syzygy + Cuboid Induction.
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Approximation

An analytic polyhedron P ⋐ Ω is a finite union of relatively

compact connected components of

{z ∈ Ω : |ψj(z)| < 1, 1 ≤ j ≤ L}, ψj ∈ O(Ω), L <∞.

Theorem 4.2 (Runge–Weil–Oka)

Every holomorphic function on P̄ is uniformly approximated on P̄

by functions of O(Ω).

Proof. Let f ∈ O(P̄). By Oka map,

Ψ : z ∈ P̄ ↪→ (z , ψ1(z), . . . , ψL(z)) ∈ P∆ ⊂ Cn+L,

P̄ is a complex submanifold of P∆.

By Oka’s Jôku-Ikô, extend f to F ∈ O(P∆).



. . . . . .

F is developed to a power series, and hence f is developed to a

power series in z and (ψj).

§5 Continuous Cousin Problem

Let Ω =
∪

α Uα be an open covering and ϕα ∈ C (Uα), continuous

functions.

Definition 5.1

{(Uα, ϕα)} is continuous Cousin data if

ϕα − ϕβ ∈ O(Uα ∩ β), ∀α, β.

Continuous Cousin Problem: Find a solution Φ ∈ C (Ω) such

that Φ− ϕα ∈ O(Uα),
∀α.
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The following 3 problems are deduced from Continuous Cousin

Problem:

1. Cousin I Problem.

2. Cousin II Problem.

3. Problem of ∂̄u = f , ∂̄f = 0 for functions u.

(∵) 1. May assume {Uα} locally finite.

Take open Vα ⊂ V̄α ⊂ Uα, and χα ∈ C (Ω) such that χα ≥ 0;

χα(z) > 0, z ∈ Vα; χα(z) = 0, z ̸∈ Uα;
∑

α χα = 1.

For a Cousin I data (Uα, fα), set

ϕα =
∑
γ

(fα − fγ)χγ ∈ C (Uα).
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Then, ϕα − ϕβ = fα − fβ: fα − ϕα = fβ − ϕβ.

Let Φ be a solution of {(Uα, ϕα)}. Then

fα−ϕα +Φ︸ ︷︷ ︸
hol.

= fβ −ϕβ +Φ︸ ︷︷ ︸
hol.

.

2. By the assumption of the Oka principle.

3. By Dolbeault’s Lemma, locally there are solutions,

uα ∈ C∞(Uα), ∂̄uα = f ,
∪
α

Uα = Ω.

Since ∂̄(uα − uβ) = 0, (uα − uβ) ∈ O(Uα ∩ Uβ). The rest is the

same as in 1.
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Theorem 5.2

On a holomorphically convex domain every Continuous Cousin

Problem is solvable.

Proof. Let Ω ⊂ Cn be a holomorphically convex domain, and

{(Uα, ϕα)} be a continuous Cousin data on Ω.

Take Pν ↗ Ω, increasing analytic polyhedra, and

the Oka maps P̄ν ↪→ P∆(ν).

Step 1. Obtain a solution Φν on each P̄ν ↪→ P∆(ν).

By Cuboid Induction + Oka’s Jôku-Ikô + Cousin Integral.
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Step 2. Since Φν+1 − Φν ∈ O(P̄ν), applying the Approximation of

Runge-Weil-Oka, modify Φν so that

∥Φν+1 − Φν∥P̄ν
<

1

2ν
, ν = 1, 2, . . . .

We have a solution,

Φ = Φ1 +
∞∑
ν=1

(Φν+1 − Φν).
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§7 Interpolation

In the same way as in the previous section we have

Theorem 6.1 (Interpolation)

Let Ω ⊂ Cn be a holomorphically convex domain and

S ⊂ Ω be a complex submanifolds.

Then, f ∈ O(Ω)→ f |S ∈ O(S)→ 0 (surjective).

If particular, for ∀{aν}, a discrete sequence of Ω and ∀cν ∈ C,
∃F ∈ O(Ω) with F (aν) = cν ,

∀ ν. Conversely, if it holds for Ω, Ω is

holomorphically convex.

Proof. Excercise.
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§8 Levi (Hartogs’ Inverse) Problem

If a domain Ω ⊂ Cn is maximal with respect to Hartogs

phenomenon, Ω is called a domain of holomorphy.

Theorem 7.1 (Cartan–Thullen, 1932)

A domain is holomophically convex iff it is a domain of holomorphy.

Let P∆ ⊂ Cn be any fixed polydisk with center at 0, and

Ω ⊂ Cn be a domain. Put

δP∆(z , ∂Ω) = sup{r > 0 : z + r · P∆ ⊂ Ω}, z ∈ Ω.

Theorem 7.2 (Oka)

If Ω is holomorphically convex, − log δP∆(z , ∂Ω) is

plurisubharmonic in z ∈ Ω.
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We call Ω a pseudoconvex domain if − log δP∆(z , ∂Ω) is

plurisubharmonic near ∂Ω. Levi (Hartogs’ Inverse) Problem: Is a

pseudoconvex domain holomorphically convex?

A bounded domain Ω ⊂ Cn is said to be strongly pseudoconvex

if for ∀a ∈ ∂Ω, ∃U ∋ a, a neighborhood and φ ∈ C 2(U) such that

U ∩ Ω = {φ < 0} and

i∂∂̄φ(z)≫ 0, z ∈ U.

• If Ω is pseudoconvex, ∃Ων ↗ Ω with strongly pseudoconvex Ων .
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The 1st cohomology H1(Ω,O)
Let Ω =

∪
Uα, U = {Uα}. Define

Z 1(U ,O), 1-cycle space,

δ : C 0(U ,O)→ B1(U ,O), a boundary operator,

H1(U ,O) = Z 1(U ,O)/B1(U ,O),
H1(Ω,O) = lim

→
U

H1(U ,O)←↩ H1(U ,O).

• H1(Ω,O) = 0⇐⇒ ∀Cont. Cousin Problem is solvable on Ω.

Theorem 7.3

1. If Ω is holomorphically convex, H1(Ω,O) = 0.

2. For U = {Uα} an open covering of Ω with ∀Uα,

holomorphically convex,

H1(U ,O)∼=H1(Ω,O).
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L. Schwartz Theorem

Let E be a Hausdorff topological complex vector space with

countably many semi-norms. If the asoociated norm on E is

complete, E is called a Fréchet space.

If E satisfies Baire’s Category Theorem, E is called a Baire space.

Theorem 7.4 (Open Map)

Let E (resp. F ) be a Fréchet (resp. Baire) vector space. If

A : E → F is a continuous linear surjection, then A is an open map.

Theorem 7.5 (L. Schwartz’s Finiteness Theorem)

Let E (resp. F ) be a Fréchet (resp. Baire) vector space. Let

A : E → F be a continuous linear surjection, and

B : E → F be a compact operator. Then (A+ B)E is closed, and

dimCoker(A+ B)(:= F/(A+ B)E ) <∞.
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Proof. Let U be a neighborhood of 0 ∈ E such that B(U) is

compact. Since A(U) is oepn, ∃bj ∈ B(U), 1 ≤ j ≤ N <∞, such

that

B(U) ⊂
∪
j

(
bj +

1

2
A(U)

)
.

By the Open Map Theorem we have

F = (A+ B)E + ⟨b1, . . . , bN⟩C, algebraically.

Modify {bj} so that bj are linearly independent and

F = (A+ B)E ⊕ ⟨b1, . . . , bN⟩C.

(E/ ker(A+ B))⊕ ⟨b1, . . . , bN⟩C ∋ ([x ], y) 7→ (A+ B)x ⊕ y ∈ F

is a topological isomorphism again by Open Map Theorem.

Therefore, (A+ B)E is closed and dimCoker(A+ B) = N <∞.
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Theorem 7.6 (Grauert)

Let Ω be a strongly pseudoconvex domain. Then,

dimH1(Ω,O) <∞.

Proof (Grauert’s bumping method).

Ω = ∃∪
finite Vα with Vα, hol. convex,

bumped open ∃Ũα ⋑ Vα with Ũα, hol. convex,

Figure: Boundary bumping method
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V = {Vα}, bumped covering Ũ = {Ũα} (⋑ Ω), so that

Ũα ∩ Ũβ ⋑ Vα ∩ Vβ,

Ψ : ξ ⊕ η ∈ Z 1(Ũ ,O)⊕ C 0(V ,O)→ ρ(ξ) + δη ∈ Z 1(V ,O)→ 0,

where ρ is the restriction map from the bumped Ũ to V .

Note that Z 1(Ũ ,O)⊕ C 0(V ,O) and Z 1(V ,O) are Fréchet (in

particular, the latter is Baire).

Since ρ is compact (Montel), L. Schwartz applied to Ψ− ρ yields

that Coker(Ψ− ρ)∼=H1(V ,O)∼=H1(Ω,O) is finite
dimensional.
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Theorem 7.7 (Oka)

A strongly pseudoconvex domain is holomorphically convex.

Proof. Let φ be a defining function of ∂Ω such that Ω = {φ < 0},
φ is strongly plurisubharmonic in a neighborhood of ∂Ω.

Take a point b ∈ ∂Ω. By a translation, we may put b = 0. Set

Q(z) = 2
n∑

j=1

∂φ

∂zj
(0)zj +

∑
j ,k

∂2φ

∂zj∂zk
(0)zjzk .

∃ε, δ > 0 satisfying

φ(z) ≥ ℜQ(z) + ε∥z∥2, ∥z∥ ≤ δ,

inf{φ(z);Q(z) = 0, ∥z∥ = δ} ≥ εδ2 > 0.
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Figure: Ω′ = {φ < c},U0

Let U1 = Ω′ \ {Q = 0}. Then U = {U0,U1} is an open covering

of Ω′, which is stronglly pseudoconvex.
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We set

f01(z) =
1

Q(z)
, z ∈ U0 ∩ U1,

f10(z) = −f01(z), z ∈ U1 ∩ U0.

Then, a 1-cocyle f = (f01(z), f10(z)) ∈ Z 1(U ,O) is obtained. For
k ∈ N we define

f
[k]
01 (z) = (f01(z))

k , z ∈ U0 ∩ U1,

f
[k]
10 (z) = −f [k]01 (z), z ∈ U1 ∩ U0.

Then (f [k]) ∈ Z 1(U ,O). Thus we obtain cohomology classes,

[f [k]] ∈ H1(U ,O) ↪→ H1(Ω′,O), k ∈ N.

Since Ω′ is strongly pseudoconvex, Grauert’s Theorem implies

dimH1(Ω′,O) <∞.
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Therefore, for N large, there is a non-trivial linear relation,

N∑
k=1

ck [f
[k]] = 0 ∈ H1(U ,OΩ′) (ck ∈ C).

We may suppose that cN ̸= 0. Then there exists elements

gi ∈ O(Ui ), i = 0, 1, such that

N∑
k=1

ck
Qk(z)

= g1(z)− g0(z), z ∈ U0 ∩ U1.

Therefore,

g0(z) +
N∑

k=1

ck
Qk(z)

= g1(z), z ∈ U0 ∩ U1, cN ̸= 0.

∃F ∈M (Ω′) with poles of order N on {Q = 0}.
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Since {Q = 0} ∩ Ω = ∅, F |Ω ∈ O(Ω) and limz→0 |F (z)| =∞.

Thus, Ω is holomorphically convex.

Theorem 7.8 (Oka)

A pseudoconvex domain is holomorphically convex.

Proof. There are strongly psudoconvex domains Ων ↗ Ω. Since

Ων are holomorphically convex, so is the limit Ω (Behnke–Stein).

Furthermore, we have

Theorem 7.9 (Oka)

A pseudoconvex unramified Riemann domain over Cn is

holomorphically convex and holomorphically separable; i.e., a Stein

manifold.


