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§1 Introduction.

The big 3 problems of Behnke—Thullen (1934):

1. Levi (Hartogs' Inverse) Problem (Chap. V).
2. Cousin I/Il Problem (Chap. V).
3. Approximation (Development) Problem (Chap. VI).

Kiyoshi Oka solved all 3 in the opposite order (1936-1953).



Reference:

1. [AFT] N-, Analytic Function Theory of Several
Variables—Elements of Oka's Coherence, Springer, 2016.

2. N-, 22BN BEBGR—FMEANB 2 M 0HEEE R, #aH
JE, A, 2013:
Analytic Function Theory in Several Variables (in Japanese),

Asakurashoten, Tokyo, 2013.

3. N—, A brief chronicle of the Levi (Hartogs' Inverse) Problem,
Coherence and an open problem, to appear in Notices Intern.

Cong. Chin. Math., Intern. Press.

4. N—, A weak coherence theorem and remarks to the Oka

theory, to appear in Kodai Math. J.



For Levi (Hartogs' Inverse) Problem it generally referred as:

1. Univalent domains of dim = 2 by Oka VI (1942).

2.

3.

4. Unramified Riemann domains of dim > 2 by Oka (1953).
5. Univalent domains of dim > 2 by F. Norguet and

H.J. Bremermann (1954).

But, in fact, historically,



1. Univalent domains of dim = 2 by Oka VI (1942).

2. Unramified Riemann domains of dim > 2 by Oka's
unpublished papers (1943).

3. Univalent domains of dim > 2 by S. Hitotsumatsu (1949).

4. Unramified Riemann domains of dim > 2 by Oka (1953).

5. Univalent domains of dim > 2 by F. Norguet and
H.J. Bremermann (1954).

Used methods:
Weil's integral to solve an integral equation in 1, 3 and 5:
Joku-1kd with estimate and Cousin Integral to solve an integral

min 2, and 4 with Coherence.

The present approach was inspired by Oka's unpublished papers 2.



Cousin I(/Il1) Problem:

Let

Q c C" be a domain,

O(U) be the set of all holomorphic functions in an open U C Q,
Q = |J U, be an open covering, and

fo € M(Uy) (/A*(Uy)) be (/non-zero) merom. funct’s. in U,.
Call {(Uq, fa)} a Cousin I(/Il) data if

fo — 3 € O(Ua N Up) (/fo - 5+ € OF(Ua N Up)), ", B.
Find F € .#(Q) (/.#*(Q)) such that

F—f,eO(U) (JF-f1e 0*(U,)), "o



Cousin Integral (Cousin decomposition)

Let E' x E; and E’ x E; be adjacent cuboids with open
neighborhoods U; and U,. Let
{(U;j, )} j=1,2 be a Cousin data, and

g=f—fecOUnlb).

1 /
Cousin Integral: (2, z,) = %/gi(i’zi) dc.

g(Z,()
s dc.

1
On E, (0 =1.2), ¢l 2) = 9l zn) = 5 [
27TI Lo
By Cauchy,
<P1—<p2=g:f2—f1 on ElﬁEg.

F=Hf+y1=f+ygr e #(E1UE), Solution.

It was Oka's great idea to reduce the general case to the above

simple one by Joku-1kd: Ideal theoretic J6ku-1kd = Coherence.



Theorem 1.1

The Cousin /Il Problems are always solvable on a polydisk PA.

Proof. Since PA = an open cuboid(C C"),

Iclosed cuboids E, *PA,v=1,2,....

Using Cousin Integral inductively, we have solutions F, on E,.
Using the Approximation (Function Developement in PA),
modify F, so that

1
(sup-norm) ||F,41 — Fullg, < o

F=F + Z(F”H — F,), a solution.

v=1

N.B. This is the prototype method to obtain a solution.



§2 Hartogs domains
Let n>2,a=(a)eC",0<d; <7, 1<j<n v=/(y) Set
PA(a,7) = {z=(z) € C": |z] <" j},
M ={z=(z) €PA(a,7) : |z — aj| < 9j, j > 2},
D ={zePA(a,y): 61 < |z1 — a1l <},
Qu(a;y) =0 UQ (Fig. 11).
2 —ajl

2<j<n

Vi

(aj) \ Ssion |21 —ay
2



Hartogs's phenomenon:

O(Qmu(a;7)) = O(PA(a,7)).
e Non-solvable Cousin 1/Il data on Q(a;~).

lwl
3 -+
b,
2
| 0,
14 .
D
0
1 2 3 12|

Poles

|, for | (/ Zeros (z — w)]|q, for Il). If F is a solution,
zZ—w

think (z — w)F[,—w) (/ Fliz=w})-



Holomorphic Convexity

For K C Q we define the holomorphic convex hull of K by

A A

Ka = Koq) = {z €Q:|f(2)| <suplf], 'f € (’)(Q)}.
K
Q is said to be holomorphically convex if for all K € €,
I’A(O(Q) € Q.

N.B. Hartogs domains are not holomorphically convex.

Problem: Is Cousin I/1l Problem solvable on holomorphically

convex domains?



§3 Weak Coherence

Let Q C C" be a domain, a € €,
f be a holomorphic function about a
O,={f,=>c(z—a)”: conv. power series, germs} (a ring),

Oq = U O, (sheaf as sets), O, = Ocn.

aef)
Consider:

Od (g € N), naturally an Og-module,

Z C O, an Og-submodule.

For an open subset U C Q, put

L (U) = {(f,) e O(U)9: <f,a> €.7, Yac U} (sections).



Definition 3.1
An Og-submodule .7 is locally finite if for Ya € Q, U 3 a, a
neighborhood, and finitely many o, € . (U),1 < k < ¢ such

that
¢

= 0z-0k,, "z€U.
k=1

{ok}1<k<e is called a finite generator system of . on U.
Let V C Q be an open subset, 74 € .(V),1 < k < N(< 00),
A(11,...,7n) C O be the relation sheaf defined by

2m)= U (8,) €08 21,5, =0

aeVv J
For a subset S C Q, define the ideal sheaf of S by

I(S) = {f,€0,:fls=0}.

aeql



Theorem 3.2 (Weak Coherence)

Let S C Q be a complex submanifold, possibly non-connected.

1. The ideal sheaf .7 (S) is locally finite.
2. Let {oj € F7(5)(Q) : 1 <j < N} be a finite generator system

of #(S) on Q.

Then, the relation sheaf #Z(o1,...,0n) is locally finite.
Proof.
1. Locally, S={z1 =--- =2, =0} in U C Q. Then,

q
F(S)y=> 0y-z.
j=1



2. This is immediately reduced to the local finiteness of the

relation sheaf defined

(3.3) f

—Z

'Zl+"'+ﬁz'zq:0'

Induction on g:
q = 1: Trivially Z(z1) = 0, locally finite.
Suppose it up to g — 1 (g > 2) valid. For g, write

(=Y a2 =gz a+ @), 2= (. z)
v

Then, (3.3) is rewritten as
(3.4)
(h+ g+ -+ 8gq2zq) -21—|—h2(2')z-22—|—---+hq(z’)z-zq =0:




(3.5) f=—8gz— " —8q2q,

(3.6) hz(z')z czp+ -+ hq(z’)z +2g =0
In (3.5), &2, ... , 8q are finite number of free variables, i.e., locally
finite.

(3.6) is the case “g — 1"; by the induction hypothesis it is locally
finite.

Thus, %Z(z1,...,zq) is locally finite. O



Let Q c C" = C" 1 x C be a domain,

E',E" € Q be two closed cuboids as follows:

a closed cuboid F € C"! and two adjacent closed rectangles
E], E] € C sharing a side ¢,

(37) E'=FxE, E'=FxE'S (=EnNE"

F x E, |, El

Figure: Adjacent closed cuboids



Lemma 3.8 (Cartan's matrix decomposition)

Let

U be a neighborhood of F x ¢,

A(z) be an invertible (N, N)-matrix valued holomorphic function in
U.

Then, 76 > 0, sufficiently small such that if ||Al|y < 0,

3A/(z), A"(z), invertible (N, N)-matrix valued holomorphic

functions on E', E", respectively, satisfying

A(z) = A(2)A"(z) on F x (.

Proof. By Cousin Integral with estimate. See Appendix of [AFT].
L]



Consider a closed cuboid E C C", possibly degenerate with some
edges of length 0. Define

dim E = the number of edges of positive lengths:

0<dimE < 2n.

Lemma 3.9 (Oka Syzygy)
Let E € C" be a closed cuboid.

1. Every locally finite submodule #(C ON) defined on E (i.e., in

a neighborhood of E) has a finite generator system on E.
2. Let . be a submodule on E with a finite generator system

{oj}1<j<n on E such that Z (o1, ... ,on) is locally finite.
Then for Yo € #(E), 2a; € O(E), 1 < j < N, such that

N
(3.10) o= Z aj-oj (onE).
=1



Proof.

Double Cuboid Induction on dim E: [15-1,24-1] = 15 = 24
(a) dim E = 0: 1, 2 Trivial by definition.

(b) Suppose them up to dimE =g —1,q > 1, valid.

dim E = q:

1. 241+ Cartan’s matrix decomposition.

2. Write with T > 0,0 > 0:

E=Fx{zg=t+iy:0<t<T,lyl <6},

dimF—19"1 0=0
g—2, 6>0.

Apply the induction hypothesis 2,1 to
Ei = F x {t+iyn: |yn| <0} with t € [0, T]. We then have



U:Z aj-oj (in anbd. of) E

Let
N N
S R o
=1 j=1

be such expressions in adjacent cubes E’, E” with E' N E" = E;.
By 14, “a generator system {74 = (74;);}x of Z(01,...,0n) on E.
Since Zszl(aj- —a/)-0; =0 on E;, we apply the induction
hypothesis 241 for Z(o1,...,0n) to get

() — &) =) bi- (1) on Ex,, by € O(Ey).
k

Apply Cousin Integral to by, = b} — bj/:

(aj’- — Z b;(’i'kj> = (a — Z bkﬂg) = ”/) € O(E/ U E”)N.
k



o= Z aJ’-” - 0j, on E'UE".
J
Repeat this. []

N.B. We apply this for .#(S) of a complex submanifold S C PA.



§4 Oka's Joku-1ko

Let
P C C” be an open cuboid,
S C P be a complex submanifold.

Lemma 4.1 (Oka's Joku-1kd)
Let E € P be a closed cuboid. Then for
Vg e O(ENS) (ENS eS), 3G € O(E) satisfying

Glens = glens-

Proof. By
Weak Coherence of .#(S)+0ka Syzygy + Cuboid Induction.



Approximation

An analytic polyhedron P € Q is a finite union of relatively

compact connected components of

(zeQ:(2) <1, 1<) < L}, v € O@Q), L < oo,

Theorem 4.2 (Runge-Weil-Oka)

Every holomorphic function on P is uniformly approximated on P
by functions of O(12).

Proof. Let f € O(P). By Oka map,
V:zeP < (z2,91(2),...,¢.(2)) €e PA c C"L

P is a complex submanifold of PA.

By Oka's Joku-lkd, extend f to F € O(PA).



F is developed to a power series, and hence f is developed to a

power series in z and (1);). O

65 Continuous Cousin Problem

Let Q = J,, Ua be an open covering and ¢, € C(U,), continuous

functions.

Definition 5.1

{(Uqn, ¢a)} is continuous Cousin data if

¢a - ¢ﬂ S O(Ua mﬁ)v Vaaﬁ‘

Continuous Cousin Problem: Find a solution ® € C(Q2) such
that ® — ¢, € O(Uy), "«



The following 3 problems are deduced from Continuous Cousin
Problem:

1. Cousin | Problem.

2. Cousin Il Problem.

3. Problem of u = f,df = 0 for functions wu.
(") 1. May assume {U,} locally finite.
Take open V,, C V,, C U,, and x4 € C(R) such that x, > 0;
Xa(2) >0,z€ Vo xa(2) =0,2¢ Us; >, Xa = 1.
For a Cousin | data (U,, fn), set

ba = (fa—F)xy € C(Ua).

Y



Then, ¢a_¢6: fa—f@: fa—qf)a: fg—qbﬂ.
Let ® be a solution of {(Uy, ¢a)}. Then

fo —a +® =1z —¢g+ .
N’ N—_——
hol. hol.
2. By the assumption of the Oka principle.

3. By Dolbeault's Lemma, locally there are solutions,

ug € C(U,), duy = T, U U, =Q.

Since O(uq — ug) = 0, (ua — ug) € O(Uy N Ug). The rest is the

same as in 1.



Theorem 5.2

On a holomorphically convex domain every Continuous Cousin
Problem is solvable.

Proof. Let Q2 C C" be a holomorphically convex domain, and
{(Uqa, o)} be a continuous Cousin data on .

Take P, " Q, increasing analytic polyhedra, and

the Oka maps P, — ﬁ(y).

Step 1. Obtain a solution ®,, on each P, — ﬁ(y).

By Cuboid Induction + Oka’s J6ku-1kd + Cousin Integral.



Step 2. Since ®,,1 — ®, € O(P,), applying the Approximation of
Runge-Weil-Oka, modify ¢, so that
1
||¢u+1 - (DVHI_DD < 27, V= 1,2, e

We have a solution,

O=01+) (P11 —P,).

v=1



§7 Interpolation

In the same way as in the previous section we have
Theorem 6.1 (Interpolation)

Let Q C C" be a holomorphically convex domain and

S C Q be a complex submanifolds.

Then, f € O(Q) — f|s € O(S) — 0 (surjective).

If particular, for ¥{a,}, a discrete sequence of Q and "¢, € C,

IF € O(Q) with F(a,) = ¢,,” v. Conversely, if it holds for Q, Q is

holomorphically convex.

Proof. Excercise. O



68 Levi (Hartogs’ Inverse) Problem

If a domain Q C C" is maximal with respect to Hartogs

phenomenon,  is called a domain of holomorphy.

Theorem 7.1 (Cartan—Thullen, 1932)

A domain is holomophically convex iff it is a domain of holomorphy.
Let PA C C” be any fixed polydisk with center at 0, and

Q C C" be a domain. Put

opa(z,0Q) =sup{r>0:z+r-PACQ}, z€Q.

Theorem 7.2 (Oka)

If Q is holomorphically convex, —log dpa(z,0R) is

plurisubharmonic in z € Q.



We call Q2 a pseudoconvex domain if —logdpa(z,0) is
plurisubharmonic near 99Q. Levi (Hartogs' Inverse) Problem: Is a

pseudoconvex domain holomorphically convex?

A bounded domain 2 C C" is said to be strongly pseudoconvex
if for Ya € 9Q, FU > a, a neighborhood and ¢ € C?(U) such that
UnNnQ={¢ <0} and

i00p(z) >0, z€ U.

e If Q is pseudoconvex, 7Q,, 7 Q with strongly pseudoconvex .



The 1st cohomology H(Q, O)
Let Q = Us, % = {U,}. Define
ZY (% ,0), 1-cycle space,
§:CY(%,0) — BY%,0), a boundary operator,
HY(%,0) = ZY(%,0)/BY %, 0),
HY(Q,0) = lim HY (% ,0) « HY(% ,0).

4
e H(Q,0) = 0 <= "Cont. Cousin Problem is solvable on Q.

Theorem 7.3

1. IfQ is holomorphically convex, H(Q, O) = 0.
2. For % = {U,} an open covering of Q with ¥ U,,

holomorphically convex,

HY % ,0) = HY(Q, 0).



L. Schwartz Theorem
Let £ be a Hausdorff topological complex vector space with
countably many semi-norms. If the asoociated norm on E is
complete, E is called a Fréchet space.

If E satisfies Baire's Category Theorem, E is called a Baire space.

Theorem 7.4 (Open Map)

Let E (resp. F) be a Fréchet (resp. Baire) vector space. If

A E — F is a continuous linear surjection, then A is an open map.

Theorem 7.5 (L. Schwartz's Finiteness Theorem)

Let E (resp. F) be a Fréchet (resp. Baire) vector space. Let

A: E — F be a continuous linear surjection, and

B : E — F be a compact operator. Then (A+ B)E is closed, and
dim Coker(A + B)(:= F/(A+ B)E) < .



Proof. Let U be a neighborhood of 0 € E such that B(U) is

compact. Since A(U) is oepn, 7b; € B(U), 1 <j < N < oo, such
that

B(U) U <bj + ;A(U)) .
By the Open Map Theorem vjve have
F =(A+ B)E + (bi,...,bn)¢, algebraically.
Modify {b;} so that b; are linearly independent and
F=(A+B)E® (b,..., by

(E/ker(A+B)) & (b1,....bn)c 2 ([X],y) = (A+B)x®y e F

is a topological isomorphism again by Open Map Theorem.
Therefore, (A+ B)E is closed and dim Coker(A + B) = N < .
L]



Theorem 7.6 (Grauert)
Let Q2 be a strongly pseudoconvex domain. Then,
dim HY(Q, 0) < ooc.

Proof (Grauert’s bumping method).
Q=1 Usinite Vo with V4, hol. convex,

bumped open 3[/& 5 V,, with Ua, hol. convex,

Figure: Boundary bumping method



¥ ={V,}, bumped covering % = {U,} (3 Q), so that

Uam%@ Vaﬂ\/ﬁ,
V:ane ZY%,0)® COV,0) — pé) +dne Z(V,0) =0,

where p is the restriction map from the bumped U to V.

Note that Z1(%,0) @ CO(¥,©) and ZX(¥,O) are Fréchet (in
particular, the latter is Baire).

Since p is compact (Montel), L. Schwartz applied to ¥ — p yields
that Coker(V — p) = HY(¥,0)= HY(Q, O) is finite

dimensional. O



Theorem 7.7 (Oka)

A strongly pseudoconvex domain is holomorphically convex.

Proof. Let ¢ be a defining function of 9 such that Q = {¢ < 0},
@ is strongly plurisubharmonic in a neighborhood of 9.

Take a point b € 992. By a translation, we may put b = 0. Set
" O 0
=23 22(0)z 2 E(0)zjz.
Qz) =23 50zt > 520z, D7
Jj=1 Jsk
e, 8 > 0 satisfying

p(2) = RQ(2) +ellz|?, lz]l <o,
inf{o(2); Q(z) =0, ||z|| = 6} > &6 > 0.



Figure: Q' = {¢p < c}, Uy

Let Up = Q' \ {Q =0}. Then % = {Up, U1} is an open covering

of Q', which is stronglly pseudoconvex.



We set

1
fo]_(Z):@, Z € UOﬁU]_,
fio(z) = —fo1(2), z € U N Up.

Then, a 1-cocyle f = (fo1(2), fi0(2)) € ZY(% , ©O) is obtained. For
k € N we define

9(2) = (fu(2))*, z€ Upn Uh,
filz) = -(2), zeUtin o

Then (fIKl) € ZY(%,0). Thus we obtain cohomology classes,
[F) e HY (% ,0) = HY(Q,0), keN.

Since ' is strongly pseudoconvex, Grauert's Theorem implies
dim HY(Q', 0) < oo.



Therefore, for N large, there is a non-trivial linear relation,

N
S alf =0e H{%,00) (c € C).
k=1

We may suppose that cy # 0. Then there exists elements
gi € O(U;), i =0,1, such that

N
Z Q/f,((z) =g1(z) —go(z), ze€ UgnUs.
k:1

Therefore,

N
C
go(Z)-f—Z K :gl(z), ze UynUy, cn#0.

=
[y

3F € .#(Q) with poles of order N on {Q = 0}.



Since {Q=0}NQ =10, Flg € O(RQ) and lim,_o |F(2)

Nl
8

Thus, Q is holomorphically convex. 0J
Theorem 7.8 (Oka)
A pseudoconvex domain is holomorphically convex.

Proof. There are strongly psudoconvex domains Q,, €. Since
Q, are holomorphically convex, so is the limit Q (Behnke-Stein).
L]

Furthermore, we have
Theorem 7.9 (Oka)

A pseudoconvex unramified Riemann domain over C" is
holomorphically convex and holomorphically separable; i.e., a Stein

manifold.



