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§1 Introduction.

The Big 3 Problems of Behnke-Thullen (1934):

1. Levi (Hartogs' Inverse) Problem (Chap. 1V).
2. Cousin I/Il Problem (Chap. V).

3. Approximation (Development) Problem (Chap. VI).

Kiyoshi Oka solved all 3 in the opposite order (1936-1953).

Their difficulties commented by H. Cartan:



From H. Cartan’s “Sur I'(Euvre de Kiyoshi Oka";
in KIYOSHI OKA COLLECTED PAPERS, Ed. R. Remmert,
translated by R. Narasimhan, Springer 1984:

La publication, en 1934, de la monographie de BEHNKE-THULLEN
faisant le point sur I'état de la théorie des fonctions analytiques de
plusieurs variables complexes a un moment crucial de son
développement, et mettant en évidence les principaux problémes
ouverts a cette époque, semble avoir joué un role déterminant dans
I'orientation des recherches d'Oka: il se fixa pour tache de résoudre
ces problemes difficiles, tdche quasi-surhumaine. On peut dire qu'’il
y réussit, surmontant I'un apres l'autre les obstacles redoutables

qui se trouvaient sur sa route.



Mais il faut avouer que les aspects techniques de ses
démonstrations et le mode de présentation de ses résultats rendent
difficile la tAche du lecteur, et que ce n'est qu'au prix d'un réel
effort que I'on parvient a saisir la portée de ses résultats, qui est
considérable. C'est pourquoi il est peut-étre encore utile
aujourd’hui, en hommage au grand créateur que fut Kiyoshi OKA,

de présenter |I'ensemble de son ceuvre.



[English translation]:

The publication in 1934 of the monograph of BEHNKE-THULLEN
surveying the point of the state of the theory of analytic functions
of several complex variables at a crucial moment of its
development, and highlighting the main open problems at the
time, seems to have played a determining role in the orientation of
Oka's researches: he settled his task to solve these difficult
problems, the task quasi-superhumane. One can say that he
succeeded there, surmounting one after the other the formidable

obstructions on his way.



But we must admit that the technical aspects of his proofs and the
mode of presentation of his results make it difficult to read, and
that it is possible only at the cost of a real effort to grasp the
scope of its results, which is considerable. That is why it may still
be useful today, in tribute to the great creator that was Kiyoshi
OKA, to present his cevre.

(translated by Noguchi, 2019)



Reference:

1. [AFT] N-, Analytic Function Theory of Several
Variables—Elements of Oka's Coherence, Springer, 2016.

2. N-, 22BN BEBGR—FMEANB 2 M 0HEEE R, #aH
JE, A, 2013:
Analytic Function Theory in Several Variables (in Japanese),

Asakurashoten, Tokyo, 2013.

3. N—, A brief chronicle of the Levi (Hartogs' Inverse) Problem,
Coherence and an open problem, to appear in Notices Intern.

Cong. Chin. Math., Intern. Press.

4. N—, A weak coherence theorem and remarks to the Oka

theory, to appear in Kodai Math. J.



For Levi (Hartogs' Inverse) Problem it is generally referred as:

1. Univalent domains of dim = 2 by Oka VI (1942).

2.

3.

4. Unramified Riemann domains of dim > 2 by Oka IX (1953).
5. Univalent domains of dim > 2 by F. Norguet and

H.J. Bremermann (1954).

But, in fact, historically,



1. Univalent domains of dim = 2 by Oka VI (1942):
Weil's integral.

2. Unramified Riemann domains of dim > 2 (in Japanese) by
Oka's unpublished papers, pp. 109 (1943): Semi-Coherence +

3. Univalent domains of dim > 2 (in Japanese) by
S. Hitotsumatsu (1949): Weil's Integral.

4. Unramified Riemann domains of dim > 2 by Oka IX (1953):
Coherence + Joku-1kd 4 Cauchy's (Cousin'’s) Integral.

5. Univalent domains of dim > 2 by F. Norguet and
H.J. Bremermann (1954): Weil's Integral.

The present approach was inspired by Oka's unpublished papers 2.



Cousin I(/Il1) Problem:

Let

Q c C" be a domain,

O(U) be the set of all holomorphic functions in an open U C Q,
Q = |J U, be an open covering, and

fo € M(Uy) (/A*(Uy)) be (/non-zero) merom. funct’s. in U,.
Call {(Uq, fa)} a Cousin I(/Il) data if

fo — 3 € O(Ua N Up) (/fo - 5+ € OF(Ua N Up)), ", B.
Find F € .#(Q) (/.#*(Q)) such that

F—f,eO(U) (JF-f1e 0*(U,)), "o



Cousin Integral (Cousin decomposition)

Let E' x E; and E’ x E; be adjacent cuboids with open
neighborhoods U; and U,. Let
{(U;j, )} j=1,2 be a Cousin data, and

g=f—fecOUnlb).

1 /
Cousin Integral: (2, z,) = %/gi(i’zi) dc.

g(Z,()
s dc.

1
On E, (0 =1.2), ¢l 2) = 9l zn) = 5 [
27TI Lo
By Cauchy,
<P1—<p2=g:f2—f1 on ElﬁEg.

F=Hf+y1=f+ygr e #(E1UE), Solution.

It was Oka's great idea to reduce the general case to the above

simple one by Joku-1kd: Ideal theoretic J6ku-1kd = Coherence.



Theorem 1.1

The Cousin /Il Problems are always solvable on a polydisk PA.

Proof. Since PA = an open cuboid(C C"),

Iclosed cuboids E, *PA,v=1,2,....

Using Cousin Integral inductively, we have solutions F, on E,.
Using the Approximation (Function Developement in PA),
modify F, so that

1
(sup-norm) ||F,41 — Fullg, < o

F=F+ Z(FVH — F,), is a solution.

v=1

N.B. This is the prototype method to obtain a solution.



§2 Hartogs domains
Let n>2,a=(a)eC",0<d; <7, 1<j<n v=/(y) Set
PA(a,7) ={z= () € C": |z — | <. j},
M ={z=(z) €PA(a,7) : |z — aj| < 9j, j > 2},
D ={zePA(a,y): 61 < |z1 — a1l <},
Qu(a;y) =0 UQ (Fig. 16).
2 —ajl

2<j<n

Vi

(aj) \ Ssion |21 —ay
2



Hartogs's phenomenon:

O(Qmu(a;7)) = O(PA(a,7)).
e Non-solvable Cousin 1/Il data on Q(a;~).

lwl
3 -+
b,
2
| 0,
14 .
D
0
1 2 3 12|

Poles

|, for | (/ Zeros (z — w)]|q, for Il). If F is a solution,
zZ—w

think (z — w)F[,—w) (/ Fliz=w})-



Holomorphic Convexity

For K C Q we define the holomorphic convex hull of K by

A A

Ka = Koq) = {z €Q:|f(2)| <suplf], 'f € (’)(Q)}.
K
Q is said to be holomorphically convex if for all K € €,
I’A(O(Q) € Q.

N.B. Hartogs domains are not holomorphically convex.

Problem: Is Cousin I/1l Problem solvable on holomorphically

convex domains?



§3 Weak Coherence

Let 2 C C" be a domain, a € €,

f be a holomorphic function about a

O, ={f,=>c(z—a)”: conv. power series, germs} (a ring),
Oq = |_| O, (sheaf as sets), O, = Ocn.

aeN

Consider:

0d = |_| 0Of (g € N), naturally an Og-module,
aeN

S = |_| S C Og, an Ogq-submodule.
ac)

For an open subset U C Q, put
Z(U) = {(f,) e O(U)9: <f,a> €7, Yac U} (sections).



Definition 3.1
An Og-submodule .7 is locally finite if for Ya € Q, U 3 a, a
nbd., and finitely many oy € .#(U),1 < k < ¢, such that

L
yz:ZOz‘ﬁz, vZGU.

k=1
{ok}1<k<e is called a finite generator system of . on U.

Let V C Q be an open subset, 74 € .(V),1 < k < N(< 00),
A(11,...,7n) C O be the relation sheaf defined by

#m)= L { (8,) €08 2, m, =0

aeVv J
For a subset S C QQ, define the ideal sheaf of S by

I(S)=| | {f,€0.:fls=0}.

aeql



Theorem 3.2 (Weak Coherence)

Let S C Q be a complex submanifold, possibly non-connected.

1. The ideal sheaf .7 (S) is locally finite.
2. Let {oj € F7(5)(Q) : 1 <j < N} be a finite generator system

of #(S) on Q.

Then, the relation sheaf #Z(o1,...,0n) is locally finite.
Proof.
1. Locally, S={z1 =--- =2, =0} in U C Q. Then,

q
F(S)y=> 0y-z.
j=1



2. This is immediately reduced to the local finiteness of the

relation sheaf defined

(3.3) f

—Z

'Zl+"'+ﬁz'zq:0'

Induction on g:
q = 1: Trivially Z(z1) = 0, locally finite.
Suppose it up to g — 1 (g > 2) valid. For g, write

(=Y a2 =gz a+ @), 2= (. z)
v

Then, (3.3) is rewritten as
(3.4)
(h+ g+ -+ 8gq2zq) -21—|—h2(2')z-22—|—---+hq(z’)z-zq =0:




(3.5) f=—8gz— " —8q2q,

(3.6) hz(z')z czp+ -+ hq(z’)z +2g =0
In (3.5), &2, ... , 8q are finite number of free variables, i.e., locally
finite.

(3.6) is the case “g — 1"; by the induction hypothesis it is locally
finite.

Thus, %Z(z1,...,zq) is locally finite. O



Let Q c C" = C" 1 x C be a domain,

E',E" € Q be two closed cuboids as follows:

a closed cuboid F € C"! and two adjacent closed rectangles
E], E] € C sharing a side ¢,

(37) E'=FxE, E'=FxE'S (=EnNE"

F x E, |, El

Figure: Adjacent closed cuboids



Lemma 3.8 (Cartan's matrix decomposition)

Let
U be a neighborhood of F x £,
A(z) be an invertible (N, N)-matrix valued hol. function in U.

Then, 36 > 0, sufficiently small such that if ||Al|y < 0,
IA(2), A(z), invertible (N, N)-matrix valued holomorphic

functions on E', E", respectively, satisfying

A(z) = A(2)A"(z) onF x (.

Proof. H. Cartan used (1y + A)—1 — o log(1n+A)
We simply use
(]-N—A)_1 = 1N+A+A2+... ,

and Cousin Integral with estimate. See Appendix of [AFT]. O]



Consider a closed cuboid E C C", possibly degenerate with some
edges of length 0. Define

dim E = the number of edges of positive lengths:

0<dimE < 2n.

Lemma 3.9 (Oka Syzygy)
Let E € C" be a closed cuboid.

1. Every locally finite submodule #(C ON) defined on E (i.e., in

a neighborhood of E) has a finite generator system on E.
2. Let . be a submodule on E with a finite generator system

{oj}1<j<n on E such that Z (o1, ... ,on) is locally finite.
Then for Yo € #(E), 2a; € O(E), 1 < j < N, such that

N
(3.10) o= Z aj-oj (onE).
=1



Proof.

Double Cuboid Induction on dim E: [15-1,24-1] = 15 = 24
(a) dim E = 0: 1, 2 Trivial by definition.

(b) Suppose them up to dimE =g —1,q > 1, valid.

dim E = q:

1. 241+ Cartan’s matrix decomposition.

2. Write with T > 0,0 > 0:

E=Fx{zg=t+iy:0<t<T,lyl <6},

dimF—19"1 0=0
g—2, 6>0.

Apply the induction hypothesis 2,1 to
Ei = F x {t+iyn: |yn| <0} with t € [0, T]. We then have



U:Z aj-oj (in anbd. of) E

Let
N N
S R o
=1 j=1

be such expressions in adjacent cuboids E’, E” with E' N E" = E;.
By 14, “a generator system {74 = (74;);}x of #(01,...,0n) on E.
Since Zszl(aj- —a/)-0; =0 on E;, we apply the induction
hypothesis 241 for Z(o1,...,0n) to get

() — &) =) bi- (1) on Ex,, by € O(Ey).
k

Apply Cousin Integral to by, = b} — bj/:

(aj’- — Z b;(’i'kj> = (a — Z bkﬂg) = ”/) € O(E/ U E”)N.
k



o= Z aJ’-” - 0j, on E'UE".
J
Repeat this. []

N.B. We apply this for .#(S) of a complex submanifold S C PA.



§4 Oka's Joku-1ko

Let
P C C” be an open cuboid,
S C P be a complex submanifold.

Lemma 4.1 (Oka's Joku-1kd)
Let E € P be a closed cuboid. Then for
Vg e O(ENS) (ENS eS), 3G € O(E) satisfying

Glens = glens-

Proof. By
Weak Coherence of .#(S)+0ka Syzygy + Cuboid Induction.



Approximation

An analytic polyhedron P € Q is a finite union of relatively

compact connected components of

(zeQ:(2) <1, 1<) < L}, v € O@Q), L < oo,

Theorem 4.2 (Runge-Weil-Oka)

Every holomorphic function on P is uniformly approximated on P
by functions of O(12).

Proof. Let f € O(P). By Oka map,
V:zeP < (z2,91(2),...,¢.(2)) €e PA c C"L

P is a complex submanifold of PA.

By Oka's Joku-lkd, extend f to F € O(PA).



F is developed to a power series, and hence f is developed to a

power series in z and (1);). O

65 Continuous Cousin Problem

Let Q = J,, Ua be an open covering and ¢, € C(U,), continuous

functions.

Definition 5.1

{(Uqn, ¢a)} is continuous Cousin data if

¢a - ¢ﬂ S O(Ua mﬁ)v Vaaﬁ‘

Continuous Cousin Problem: Find a solution ® € C(Q2) such
that ® — ¢, € O(Uy), "«



The following 3 problems are deduced from Cont. Cousin Problem:

1. Cousin | Problem.
2. Cousin Il Problem.
3. Problem of Qu = f,0f = 0 for functions u.
) 1. May assume {U,} locally finite.
Take open V,, C V,, C U,, covering Q, and o € C(Q) such that
Xa > 0; Xa(2) >0,z€ Vy; Xa(2) =0,z & Ua; >y Xa = 1.
For a Cousin | data (Uy, f,), set

ba = Z(fa — )Xy € C(Ua).

v



Then, ¢a_¢6: fa—f@: fa—qf)a: fg—qbﬂ.
Let ® be a solution of {(Uy, ¢a)}. Then

fo —a +® =1z —¢g+ .
N’ N—_——
hol. hol.
2. By the assumption of the Oka principle.

3. By Dolbeault's Lemma, locally there are solutions,

ug € C(U,), duy = T, U U, =Q.

Since O(uq — ug) = 0, (ua — ug) € O(Uy N Ug). The rest is the

same as in 1.



Theorem 5.2

On a holomorphically convex domain every Continuous Cousin
Problem is solvable.

Proof. Let Q2 C C" be a holomorphically convex domain, and
{(Uqa, o)} be a continuous Cousin data on .

Take P, " Q, increasing analytic polyhedra, and

the Oka maps P, — ﬁ(y).

Step 1. Obtain a solution ®,, on each P, — ﬁ(y).

By Cuboid Induction + Oka’s J6ku-1kd + Cousin Integral.



Step 2. Since ®,,1 — ®, € O(P,), applying the Approximation of
Runge-Weil-Oka, modify ¢, so that
1
||¢u+1 - (DVHI_DD < 27, V= 1,2, e

We have a solution,

O=01+) (P11 —P,).

v=1



§7 Interpolation

In the same way as in the previous section we have
Theorem 6.1 (Interpolation)

Let Q C C" be a holomorphically convex domain and

S C Q be a complex submanifold.

Then, f € O(Q) — f|s € O(S) — 0 (surjective).

If particular, for ¥{a,}, a discrete sequence of Q and "¢, € C,

IF € O(Q) with F(a,) = ¢,,” v. Conversely, if it holds for Q, Q is

holomorphically convex.

Proof. Excercise. O



68 Levi (Hartogs’ Inverse) Problem
Let 2 C C" be a domain.

If Q@ C C" is maximal with respect to Hartogs phenomenon, Q is

called a domain of holomorphy.

Theorem 7.1 (Cartan—Thullen, 1932)

A domain is holomophically convex iff it is a domain of holomorphy.
Let PA C C” be any fixed polydisk with center at 0, and

Q C C" be a domain. Put

dpa(z,0Q) =sup{r>0:z+r-PACQ}, zeQ.

Theorem 7.2 (Oka)

If Q is holomorphically convex, —log dpa(z,00) is

plurisubharmonic in z € Q.



We call Q a pseudoconvex domain if —log dpa(z,09) is

plurisubharmonic near 052.

Levi (Hartogs’ Inverse) Problem: Is a pseudoconvex domain

holomorphically convex?

A bounded domain © C C" is said to be strongly pseudoconvex
if for Ya € 9Q, FU > a, a neighborhood and ¢ € C?(U) such that
UnQ={p <0} and

i00p(z) >0, z€ U.

e If Q is pseudoconvex, 7Q,, 7 Q with strongly pseudoconvex .



The 1st cohomology H(Q, O)
Let Q = Us, % = {U,}. Define
ZY (% ,0), 1-cycle space,
§:CY(%,0) — BY%,0), a boundary operator,
HY(%,0) = ZY(%,0)/BY %, 0),
HY(Q,0) = lim HY (% ,0) « HY(% ,0).

4
e H(Q,0) = 0 <= "Cont. Cousin Problem is solvable on Q.

Theorem 7.3

1. IfQ is holomorphically convex, H(Q, O) = 0.
2. For % = {U,} an open covering of Q with ¥ U,,

holomorphically convex,

HY % ,0) = HY(Q, 0).



L. Schwartz Theorem

Let E be a Hausdorff topological complex vector space with at
most countably many semi-norms;
E is Fréchet, if the asoociated norm on E is complete;

E is Baire, if E satisfies Baire's Category Theorem.
Theorem 7.4 (Open Map)

Let E (resp. F) be a Fréchet (resp. Baire) vector space.
If A: E — F is a continuous linear surjection,

then A is an open map.



Theorem 7.5 (L. Schwartz's Finiteness Theorem)
Let E (resp. F) be a Fréchet (resp. Baire) vector space. Let
A E — F be a continuous linear surjection, and
B: E — F be a compact operator. Then (A+ B)E is closed, and
dim Coker(A + B)(:= F/(A+ B)E) < .
Proof. Heurestic: With C := A+ B we have
CE+BE =F.
Taking a quotien by CE, one gets

BE/CE = F/CE = Coker C.

Since B is a copmact operaor, BE/CE is a locally compact

topological vector space: Hence it is finite dimensional.

But, the closedness of CE is not known.



All these are proved at once by showing
F=(A+B)E+ (b1,...,bn)c, bj € F, (alg'ly).

So, how to find b;?

(Demailly’s idea) Let U be a neighborhood of 0 € E such that
B(U) is compact. Since A(U) is open (Open Map Thm.),

3b; € B(U), 1 <j < N < o0, such that
—_— 1
B 4= :
(U) c U <b, - 2A(U)>
J
Modify {b;} so that b; are linearly independent and

(E/ker(A+ B)) @ (b1,....bn)c 2 ([x,y) = (A+ B)x®y e F

is a topological isomorphism again by Open Map Thm. Therefore,
(A+ B)E is closed and dim Coker(A+ B) = N < co. O



Theorem 7.6 (Grauert)
Let Q2 be a strongly pseudoconvex domain. Then,
dim HY(Q, 0) < ooc.

Proof (Grauert’s bumping method).
Q=1 Usinite Vo with V4, hol. convex,

bumped open 3[/& 5 V,, with Ua, hol. convex,

Figure: Boundary bumping method



¥ ={V,}, bumped covering % = {U,} (3 Q), so that

Uam%@ Vaﬂ\/ﬁ,
V:ane ZY%,0)® COV,0) — pé) +dne Z(V,0) =0,

where p is the restriction map from the bumped U to V.
Note that Z1(%,0) @ CO(¥,©) and ZX(¥,O) are Fréchet (in
particular, the latter is Baire).

Since p is compact (Montel), L. Schwartz applied to ¥ and —p
yields that Coker(V — p) = HY(¥,0) = HY(Q, O) is finite

dimensional. O



Theorem 7.7 (Oka)

A strongly pseudoconvex domain is holomorphically convex.

Proof. Let ¢ be a defining function of 9 such that Q = {¢ < 0},
@ is strongly plurisubharmonic in a neighborhood of 9.

Take a point b € 992. By a translation, we may put b = 0. Set
" O 0
=23 22(0)z 2 E(0)zjz.
Qz) =23 50zt > 520z, D7
Jj=1 Jsk
e, 8 > 0 satisfying

p(2) = RQ(2) +ellz|?, lz]l <o,
inf{o(2); Q(z) =0, ||z|| = 6} > &6 > 0.



Figure: Q' = {p < c}, Up

Let Q" = {¢ < ¢} with very small ¢ >0, U; = Q' \ {Q = 0}.
Then % = {Up, U1} is an open covering of Q', which is stronglly

pseudoconvex.



We set

1
fo]_(Z):@, Z € UOﬁU]_,
fio(z) = —fo1(2), z € U N Up.

Then, a 1-cocyle f = (fo1(2), fi0(2)) € ZY(% , ©O) is obtained. For
k € N we define

9(2) = (fu(2))*, z€ Upn Uh,
filz) = -(2), zeUtin o

Then (fIKl) € ZY(%,0). Thus we obtain cohomology classes,
[F) e HY (% ,0) = HY(Q,0), keN.

Since ' is strongly pseudoconvex, Grauert's Theorem implies
dim HY(Q', 0) < oo.



Therefore, for N large, there is a non-trivial linear relation,

N
S alf =0e H{(%,0q) (c € C).
k=1

We may suppose that ¢y # 0. Then there exists elements
gi € O(U;), i =0,1, such that

N
Ck
= — , € Upn Us.
;- Qk(Z) g]_(Z) gO(Z) 4 0 1

Therefore,

N
C
go(Z)+Z k =gi(z), ze UnU, cn#0.

(7.8) 3F € .# () with poles of order N on {Q = 0}.



Since {Q =0} NQ =10, Flg € O(Q) and lim,_,q |F(z)| = cc.

Thus, Q is holomorphically convex.
Theorem 7.9 (Oka)
A pseudoconvex domain is holomorphically convex.

Proof. There are strongly psudoconvex domains Q,, €. Since
Q, are holomorphically convex, so is the limit Q (Behnke-Stein).
L]

Furthermore, we have
Theorem 7.10 (Oka)

A pseudoconvex unramified Riemann domain over C" is
holomorphically convex and holomorphically separable; i.e., a Stein

manifold.



Proof.

Let 7 : Q — C” be an unramified Riemann domain. Assume that
— log dpa(x,09) is plurisubharmonic near 0.

Step 1°: Construct a (continuous) plurisubharmonic exhaustion
A:Q— R

Step 2°: Show that Q. = {\ < c} with Yc € R is holomorphically
convex. We may enlarge a little bit Q. to a strongly pseudoconvex
domain Q.. Then apply the same argument as in the case of

univalent domains.



Step 3° (Hol. Separability): Take two distinct points Q1, Q € QL.
We may assume: 7(Q;) = 7(Q2) = a € C".

Let ¢(t),t > 0, be any affine linear curve with ¢(0) = a.

Then lifting F1¢;(t) € QL of ¢(t) such that ¢;(0) = Q; (j = 1,2).

Since Q is relatively compact, ¢;(t) hits the boundary 0.

We may assume that ¢1(t) hits 9L first with t = T € R, so that
¢;([0, T]) € Q¢ (j =1,2) and 6:1(T) € 9.

Note that ¢1(T) # ¢2(T).

With setting b = ¢1(T) we have by (7.8) a meromorphic function
Fp in QL. © QL which is holomorphic in QL.



Consider the Taylor expansions of Fp at Q; and @ in (z1,...,2zn).
Since Fp has a pole at ¢1(T) and no pole at ¢o(T), those two
expansions must be different. Therefore, there is some partial
differential operator 9% = 9l®! /9z" - .. 9z with a multi-index a
such that

0“Fp(Q1) # 0“Fp(Q2).

Since 0*Fp, is holomorphic in €, this finishes the proof of hol.
separation..

Step 4°: For every pair ¢ < ¢’(€ R), Q. € Q. is a Runge pair (by
Joku-1kd). O





