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Abstract

We study the supersingular locus of a reduction at an inert prime of the Shimura
variety attached to GU(2,n—2). More concretely, we realize irreducible components
of the supersingular locus as closed subschemes of flag schemes over Deligne—Lusztig
varieties defined by explicit conditions after taking perfections. Moreover we study
the intersections of the irreducible components. Stratifications of Deligne-Lusztig
varieties defined using powers of Frobenius action appear in the description of the
intersections.

1 Introduction

Shimura varieties play an important role in the study of number theory. One way to
approach the arithmetic of Shimura varieties is to construct integral models and study
their reductions. The geometry of the supersingular locus of the reduction of a Shimura
variety is especially useful information. One of the striking results in this direction is the
study of the supersingular locus of the reduction of the Shimura variety of GU(1,n — 1)
at an inert prime by Vollaard~Wedhorn in [VW11], where they give a description of the
supersingular locus and their intersections in terms of Deligne-Lusztig varieties. This
result is crucially used in [KR11].

A long standing problem since [VW11] is to extend such a result to unitary groups
of other signatures. The only result in this line is the work [HP14] of Howard-Pappas
on the GU(2, 2)-case, which relies on an exceptional isomorphism. A source of difficulty
is that the Shimura variety of GU(2,n — 2) is not fully Hodge-Newton decomposable in
the sense of [GHN19, Definition 3.1} if n > 5. In such a case, we can not expect that the
supersingular locus is a union of Deligne-Lusztig varieties by [GHN19, Theorem B].

On the other hand, the study of the perfection of the supersingular locus is essen-
tially reduced to a study of an affine Deligne-Lusztig variety via the Rapoport—Zink
uniformization. Further, a construction of irreducible components of an affine Deligne—
Lusztig variety under some unramified condition is given by Xiao—Zhu in [XZ17]. In their
construction, we can rephrase the source of difficulty in the following way: Even though
the affine Deligne-Lusztig variety related to the Shimura variety of GU(2,n—2) is defined
using a minuscule cocharacter, non-minuscule cocharacters appear in the construction of
its irreducible components if n > 5.
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The objective of this paper is to find an explicit description of the irreducible compo-
nents of the affine Deligne-Lusztig variety related to the Shimura variety of GU(2,n — 2)
in terms of Deligne-Lusztig varieties.

Let F' be a non-archimedean local field. We write L for the completion of the maximal
unramified extension of F'. Let G be the unramified general unitary group of degree n
over F. Let p be the cocharacter of G corresponding to z — (diag(z, z,1,...,1), z) under
an isomorphism G, ~ GL, XGy,. Let X« (w™!) denote the affine Deligne-Lusztig variety
for the dual pu* of u and w™' € G(L), where w is a uniformizer of F' and we regard ww*
as an element of G(L) by embedding it into the G,,-component. We put r = [n/2]. Then
X ,+(w™!) has r isomorphism classes of irreducible components, whose representatives are
given by X;’i’xo (17) for 1 <4 <r as explained in §8. If i = 1 or i = n/2, then Xﬁi’wo (1)
is isomorphic to the perfection of a Deligne-Lusztig variety as shown in Proposition 8.2
and Proposition 8.3.

Assume that 2 < ¢ < [(n — 1)/2]. Then the action of a hyperspecial subgroup

(Or) C G(F) on X l]i’i’xo (17) does not factor through the finite reductive quotient
J:,(Op/w) unlike the cases for i = 1,n/2. We construct a kind of Demazure resolution

X; of X;’i’mo(n*). We write X; and )O(Ei’mo (17) for the inverse images in X; and X;’i’mo (1)

J.

k3

of the Schubert cell (jr,,; of an affine Grassmannian Gr,» under natural morphisms X; —

Xbi’zo(ri*) — Gr,«. Explicitly, we construct a vector bundle ¥; of rank 2i — 1 over the

perfection Y; of a Deligne-Lusztig variety. We have a natural morphism
¢r: Vi — F (1Y)

by a Hermitian pairing related to the unitary group G, where F(¥;¥) is some Frobenius
twist of ;¥ (cf. (8.5)). Let Pary,(%4,) denote the flag scheme parametrizing subvector
bundles # C ¥; of rank 7 — 1.

Theorem 1.1 (Theorem 8.6, Proposition 8.7). The scheme X; is isomorphic to the closed

subscheme of Par, (%y,) defined by the condition ¢(#) C (W) on # . Further X; is
isomorphic to X" (7).

Let us summarize the situation in the following diagram:

XSf’CCO(TZ-*) ~ X C XC Pary, (%)
B
GOI'VZ,*C—> Gl“,,;ﬂ Y;

b;,xo

By Theorem 1.1 and the above diagram, X o 0(7)) is cut out in Pary, (%y;) by two explicit
conditions: one is a closed condition in Theorem 1.1 and another is an open condition
given by C‘iryi* C Grye.

It is important to describe X;, not only )O(i, in order to study the intersections of irre-
ducible components of X« (w™!), because we need to understand a closure of )O(S,f’m(n*).

We give a description of the intersections of the irreducible components in most cases in
§9. Here we state one of the results, which exhibits an interesting new phenomenon.

Proposition 1.2 (Proposition 9.4). The intersection X;’j’zo(ﬁ) N X;’E’IO (13) is isomor-
phic to the perfect closed subscheme of (P"~1)P! defined by two equations

n n

1 341
E I =0, g I =0.
i=1 i=1
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The perfect closed subscheme of (P"~1)Pf in Proposition 1.2 is the perfection of a
stratification of a Deligne-Lusztig variety with respect to relative positions of parabolic
subgroups and their twists by the third power of the Frobenius action. Such an inter-
section did not appear in the preceding research in fully Hodge-Newton decomposable
cases. Our study does not cover all the intersections in general because of some technical
difficulty which involves the study of vanishing of a ring with explicit generators and
relations, but it does cover all the cases if n < 6.

In the construction of irreducible components of an affine Deligne-Lusztig variety by
Xiao—Zhu, they actually first construct Xﬁi’xo (17), and then construct X;’i’xo (17) as a
closure of )O(Ei’xo (17). In the study of the unitary case in this paper, we clarify that this
step in the construction is really necessary, i.e. we can not construct X}fﬁ’xo (1) directly

by a fiber product that is similar to the one used to construct )%51“0 (77). This gives a
negative answer to a question of Xiao-Zhu (cf. Remark 7.4).

The method in this paper should work for unitary groups of other signatures since the
results in [XZ17] and equidimensionality of Satake cycle in §5 are available also for other
signatures. On the other hand, they will be more complicated for general signatures since
the number of isomorphism classes of irreducible components of the affine Deligne-Lusztig
varieties become larger. In this paper, we study the perfection of the supersingular locus
via affine Deligne—Lusztig varieties. However, once the geometry of the corresponding
affine Deligne-Lusztig varieties is understood using Demazure resolutions, we should be
able to write a similar moduli problem using p-divisible groups and study them without
taking perfections. That is a subject of [FHI23].

We explain the contents of each section. In §2, we recall a terminology on relative
positions in flag schemes. We also give some gluing constructions of reductive group
schemes. In §3, we recall Deligne-Lusztig varieties and their Bruhat stratifications. We
give also a new stratification using twists by a power of Frobenius map. We study the
irreducibility of the stratification in some unitary case. In §4, we recall affine Grass-
mannian and Satake cycles. In §5, we recall and generalize results on equidimensionality
of Satake cycles in [Hai06]. In §6, we recall a construction of irreducible components of
affine Deligne-Lusztig varieties in [XZ17]. In §7, we explain the setting of a unitary group
and apply the result in §5 to the unitary case. In §8, we give an explicit description of
irreducible components. In §9, we study the intersection of irreducible components. In
§10, we explain the results in the n = 6 case as an example. In §11, we explain a relation
between the affine Deligne-Lusztig varieties and the supersingular loci of reductions of
Shimura varieties in our case.
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2 Flag scheme

2.1 Relative position

Let ¢ be a reductive group scheme over a scheme .. Let Par(¥) be the .#-scheme of
parabolic subgroups of ¢. Let Dyn(¥) be the .-scheme of Dynkin for ¢ constructed in
[SGA3-3, XXIV, 3.3].

Remark 2.1. If (9, M, R) is a splitting of 4 in the sense of [SGA3-3, XXII, Définition
1.13] and A is a set of simple roots, then we have a canonical isomorphism

Dyn(¥4) ~ Ay. (2.1)

This is stated in [SGA3-3, XXIV, 3.4 (iii)] choosing a pinning, but the isomorphism
actually depends only on (7, M, R) and A.

Let Oc(Dyn(%)) be the .-scheme of sets of open and closed subschemes of Dyn(¥)
(cf. [SGA3-3, XX VI, 3.1]). We have a projective smooth morphism

t: Par(9) — Oc(Dyn(9))
of schemes as [SGA3-3, XXVI, Théoreme 3.3]. For .t € Oc(Dyn(9))(”), we put
Par,(9) =t '(t) C Par(¥4), Par(9) = (t xt)'(t,t') C Par(¥) x» Par(¥).

We recall results from [SGA3-3, XXVI. 4.5.3, 4.5.4]. Let Stand(¥) be the .#-scheme of
pairs of parabolic subgroups of ¢ in mutually standard positions. Let TypeStand(¥) be
the .#-scheme of types of mutually standard positions in ¢. The natural morphism

ty: Stand(¥) — TypeStand(¥),

which is the quotient morphism under the conjugacy action of ¢, is smooth. There is a
unique morphism

gy : TypeStand(¥) — Oc(Dyn(¥)) x.» Oc(Dyn(9))
such that the diagram

t2

Stand(¥) TypeStand(¥)

| |

Par(¥4) x » Par(¥) Oc(Dyn(¥¢)) x.» Oc(Dyn(¥))

is commutative. Let &2 be a parabolic subgroup scheme of ¢4. Let Par(¥4; %) be the
.#-scheme of parabolic subgroups of ¢ in standard positions relative to &. Let t €
Oc(Dyn(9¢))(-#). We put

Pary(¥; &) = Par(¥; &) N Par,(¥).
Then we have a morphism
ty: Pary(¥; 2) — q;' (t(2),1)
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induced by ty. For an .#-scheme .’ and r € (¢, (t(2),1))(7"), we define Par,(¥; 2),
by the fiber product
Par,(¥; 2), S’

| lr

Par,(¥; ) —Z> 4, ((2), 1).

Remark 2.2. Let 2 be a parabolic subgroup scheme of 4. Let ' be an .#-scheme. We
write 9', ', 2" for the base change of 4, &, 2 to ./'. Assume that a mazimal torus
T of 4" is contained in P’ N2'. Then we have a natural isomorphism

Wor( T N\Wiy(T") W (T') = a5 (4(2), $(2)) x5 7" (2.2)
over " as in [SGAS-3, XXVI. }.5.5], where Wai(T"), We (T") and W (T') are the
Weyl groups defined as [SGAS3-2, XII, 2].

Notation 2.3. Assume that 9 is split and . is connected. Let (T, M, R) be a splitting
of 4 and A be a set of simple roots. Let (W,S) be the Coxeter system of (M, R, A).
For I C S, let Wy be the subgroup of W generated by I, and let t(I) be the element of
Oc(Dyn(¥9))(.) corresponding to I under (2.1). Conversely, let 1(t) be the subset of S
corresponding to t under (2.1) for t € Oc(Dyn(9))(.). We simply write Wy for Wiq.

2.2 Inner gluing

Definition 2.4. Let ¥4, be a reductive group scheme over a scheme .%y. Let . be a
scheme over . An inner gluing over . of 9 is a pair (4, ), where 9 is a reductive
group scheme over . and ¢ is a global section of the Zariski sheaf

Isom o (% X .o, %, 9)/Inn o, (% X 5, &)
on <.

Remark 2.5. Let ¥ be a vector bundle of rank n on . We put 4 = Auto (7).
By taking Zariski local trivializations of ¥, we obtain an inner gluing (4,¢y) over .
of GL,z. This is independent of the choice of trivializations, because a difference of
trivializations induces an inner automorphism of GL,,.

Lemma 2.6. Let 7: . — % be a morphism of schemes. Let 9y be a reductive group
scheme over #y. Let (9, @) an inner gluing over . of 4.

(1) The section ¢ induces isomorphisms
Oc(Dyn(%)) x4, & = Oc(Dyn(9)),
TypeStand(%) X ., - — TypeStand(¥)
which are compatible with qg, and qg.

(2) Assume that %y is split and ¥ is connected. Let (F, M, R) be a splitting of %
and A be a set of simple roots. Let (W,S) be the Coxeter system of (M, R, A). Let
to, ty € Oc(Dyn(%))(F). Let t,t' € Oc(Dyn(9))(”) denote the pullbacks to .7 of
to, ty. Then ¢ induces an isomorphism

(Wi \W/Wy) o = a5 (t,1).

>



Proof. There is a Zariski covering { %\ }aea of - and a family of isomorphisms ¢y : % X #,
U — G x o U such that v, is compatible with ©|a,. Then the family of isomorphisms
) induce isomorphisms

Oc(Dyn(%)) x ., %, — Oc(Dyn(9 x.» %)).

These isomorphisms glue together to give the first isomorphism in the claim (1) by
[SGA3-3, XXIV, 3.4 (iv)].
The family of isomorphisms ¢, induce also isomorphisms

Stand(%4) X o, %, — Stand(¥ X o U).

By taking the quotients by the conjugacy actions of ¢ X g, %\ ~ ¥ X o %\, we obtain
isomorphisms
TypeStand(%) X .», % — TypeStand(¥ x o %).

These isomorphisms glue together to give the second isomorphism in the claim (1) because
we take quotients by conjugacy actions. By the constructions, two isomorphisms in the
claim (1) are compatible with gy, and gy.

By (1), we have an isomorphism

dgy (Lo, 1) X7, = g (4, 1) (2.3)

induced by ¢. The claim (2) follows from [SGA3-3, XXII, Proposition 3.4] and (2.3). [

3 Stratification of Deligne—Lusztig variety

3.1 Deligne—Lusztig variety

Let Gy be a connected reductive group over F,. We take a maximal torus and a Borel
subgroup Ty C By C Gy over F,. We write G, B and T for the base changes to Fq of
Gy, By and Ty. Let (W, S) be the Coxeter system of G with respect to T and B. For
I,J C S, we write Par;(G) and Par; ;(G) for Pary;)(G) and Pary ) (G).

For I,J C S and w € W, we put
Pary, (G = t5" (rw),

where 7, € (qg' (t(I),t(J)))(F,) corresponds to [w] € W;\W/W, by Lemma 2.6 (2). Let
Par; ;(G)<p be the closed reduced subscheme of Par; ;(G) determined by

U ParI,J(G)[w/].
[w]<[w]

Let F be the ¢-th power Frobenius endomorphism of G obtained from Gy. Let [ C S
and w € W. For * € {[w], <[w]} with [w] € W, \W/Wx(;), let X] (*) be the locally closed
subscheme of Par;(G) defined by the fiber product

X7 (%) Par; ) (G).

i (id,F) J’

Par;(G) —— Par;(G) x Parp)(G).
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If P; is a parabolic subgroup of G of type I containing B, then X7¥ (x) is identified with
{gP[ € G/P[ | g_l F(g) S P]\G/PF(]) = W[\W/WF([) 18 *}

under the isomorphism Par;(G) ~ G/P;. If there is no confusion, we simply write X (x)
for XT(x). See [VW11, §4.4] for general properties of X([w]).
For I C J C S, we have a natural morphism

w10t Xi([w]) = X ([w])

which sends a parabolic subgroup P of G of type I to a unique parabolic subgroup P’ of
G of type J containing P.

3.2 Bruhat stratification

Let I,J C S and w € W. Let P; be a parabolic subgroup of G of type J. For x €
{[w'], <[w'} with [w'] € WA\W/W,, we let X;([w])p, . be the locally closed subscheme
of X;([w]) defined by the fiber product

Xi([w])p, « Pary ;(G).

| e, o]

X ([w]) ——= Par;(G) x Par;(G).

If P; and P, are parabolic subgroups of G of type I and J containing B respectively,
then X ([w])p, . is identified with

{gP; € X;([w)) c G/P; | gt € P\G/P; ~ W A\W/Wj is *}.

3.3 Stratification relative to Frobenius twists

For 1 < 1 < m, let F; be a Frobenius endomorphism of G which descends it to an
algebraic group over a finite field. Let wy,...,w,, € W. For x; € {[w;], <[w;]} with
(w;] € Wi\W/Wg,y and 1 < i < m, let X7 F (%, ... %) be the locally closed

Xfl ..... Fm(*h'”’*m) ngigm Pal“[,Fi(I)<G)*i

|

[Ti<icm (id.Fs)

Par;(G) [Ticicm (Par;(G) x Parp,(1)(G)) .
Then X7 5" ([wn], . .., [wn]) for [wi] € WA\W/Wg,(;y and 2 < i < m give a stratification
of X¥'([wy]). Wenote that X" ([wy], ..., [wn]) = MNi<i<m X7 ([wy]) by the definition.

3.4 Unitary case

We put Vg = IE‘ZQ equipped with the hermitian form

d

Fo x Flo = Fo; ((ai)1<i<a, (a5)1<i<a) Za?aﬁm_r (3.1)
=1



We put Gy = GU(V)). By taking the first factor of the decomposition
qu Or, qu ~ qu X ]FQQ; a®b— (ab, abq),

we have an isomorphism

G ~ GLy xGyy. (3.2)

Let T C B C G be the maximal torus and the Borel subgroup determined by the diagonal
torus Ty and the upper triangular subgroup B, of GL, under (3.2). Let (Wgq, {s1,...,54-1})
be the Coxeter system of G with respect to T and B. where s; corresponds to the simple
root

Ty X Gy — Gyy,; (diag(xy, ..., 24),2) — xix;jl

of GLg xGy, under (3.2). For 1 <4y < --- <4, <d—1, we put

Example 3.1. By the correspondence between parabolic sugroups of GLqg of type I} and
lines in V, the scheme Xlé([l]) parametrizes lines L in Vo such that L C Vg is contained
in F(LY) C F(VY) under the identification Vo ~ F(Vy) given by the pairing (3.1).
Writing the coordinates of L € P41 as (x1,...24), we see that Xpi([1]) is isomorphic to
the Fermat hypersurface defined by

d

q _
E Tilg_; = 0
i=1

in P41,
Lemma 3.2. Assume that 2 < ¢ < d/2. The schemes XF’F2’F3([1],§[si_1],[1]) and

ot
XIFC;f([l], <[s4-:]) are irreducible.
d

Proof. The scheme X Icil—l,d—i([l]) is irreducible by [BR06, Theorem 1]|. Hence, it suffices
to show the following claims:

(1) The image of
7TIi—l,d—i7ICil—1 : Xli—l,d—i([l]) — XI(ii—l ([1])

d d

on F,-valued points is equal to XF’FQ’FB([l], <[si_1], [1])(F,).

-t
(2) The image of
WI;'—I,d—i’Icall—i : XI;'—l,d—i([l]) — X[j*i([”)

on F,-valued points is equal to XF’FQ([l], <[sa_i])(F,).

1970
We show the claim (1). We equip FZ with the pairing

d
Fy xF, = Fy; (@)1<ica, Wi)i<ica) = Y Titfasi—i. (3.3)

=1



— —d :
For an F-vector subspace V' C I, let V1 denote the orthogonal complement of V with
. . —d .
respect to the pairing (3.3). The g-th power Frobenius element F acts on IF,. A point of

X,i-1.a-:([1])(F,) corresponds to a filtration 0 C V4 C Vo C H_?Z such that dimV; =i — 1,
d
dimV, =d —17 and

Vi CF(V) € Vo C F(VD). (3.4)
The condition (3.4) implies
Vi+F (Vi) CF (V5. (3.5)
Therefore we have
F}(Vi) € F(Vi + F*(V1)) C F(V3) C F(Va) C Vs nFA(VH) C Vi (3.6)

The conditions (3.4), (3.5) and (3.6) imply that V; defines a point of

XEFSF (1], <[si-4], [1])(F,),

1—1
Id

because dim F(V;') = 4. To show the claim (1), it suffices to show that the image of
T pi-td=i gi-1 O F,-valued points contains
L

2 p3 —
X (] sieal, ) (Fy), (3.7)
because X I(z'ifl,d—i([l]) is proper. A point of (3.7) gives an F,-vector subspace Vi C Fj of
dimension 7 — 1 such that

Vi CF(Vi), dim(Vi+F*(W)) =4, F°(Vq) C Vi~ (3.8)
The condition implies
F(Vi+F* (W) € V" nFX(Vy)
and dim V;* NF*(ViH) = d — i. We take V, C FZ such that F(V3) = Vi N F*(V,Y). Then

Vi, V5) defines a point of X ,i-1.a-(|1 F,) whose image under m,i-1,a-: -1 is the point of
i q I Ny
(3.7) corresponding to V;. Therefore we obtain the claim (1).

The claim (2) is proved similarly. O

4 Affine Grassmannian

Let F' be a non-archimedean local field with residue field k¥ = F,. Let Or be the ring of
integers of F'. Let @ be a uniformizer of F. For a perfect k-algebra R, we put

Wo,(R) = Im W(R) @w) Op/@",

Dg = Spec(Wo,(R)) and D}, = Spec(Wo,(R)[£]). For an affine group scheme H of
finite type over O, we define the jet group LT H and the loop group LH by

L*H(R) = H(Wo,(R)), LH(R) = H(Wo, (R)[Z))

We put L = Wo,.(k)[£]. We note that LH (k) = H(L).
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Let G be a reductive group scheme over Op. Let T be the abstract Cartan subgroup of
G. Let ® C X*(T') denote the set of roots of G in the weight lattice, and X (T)* C X (T)
the semi-group of dominant coweights in the coweight lattice. Let p € X*(T)q be the
half sum of all positive roots. We fix a Borel subgroup B C G. Let U be the unipotent
radical of B. Then T is canonically identified with B/U.

Let Grg denote the affine Grassmannian over k of G defined by Grg = LG/LTG. For
a finite etale extension O of Op with residue field k', we have a natural isomorphism

(Gre)w ~ Grg,, (4.1)

by the construction. We simply write Gr for Grg if there is no confusion. Then Gr is
an ind-perfectly projective scheme by [BS17, Corollary 9.6]. Let £° denote the trivial
G-torsor over Op. For a perfect k-algebra R, we have

B £ is a G-torsor on Dpg,
Gr(R) = {(5,6) ‘ B: Elpy, ~ &% p, is a trivialization. } 42)
(¢f [Zhul7, Lemma 1.3]). We sometimes write §: & --» £° for §: E|p: =~ &£%p: in

(4.2), and call it a modification. Given a point (&, ), one can define a relative position
invariant inv(5) € X, (7).

Let pn € Xo(T')". The Schubert variety Gr,, is the closed subscheme of Gr; parametriz-
ing pairs (€, 3) such that inv(8) < p. The Schubert cell dru is the open subscheme of
Gr,, parametrizing pairs (£, ) such that inv(5) = p.

For a sequence po = (f11, .. ., ftn,) of dominant coweights, let Gr,, be the scheme over
k parametrizing sequences of modifications (5;: & --+ £1)1<i<n With & = &Y such that
inv(53;) < p; for each i. The open subscheme dru. C Gry, is defined by the condition
that inv(p;) = p; for each i. The convolution map m,, : Gr,, — Gry sends a sequence of
modifications to the composition (&,, 51 o+ 0 B,).

Let Ao = (A1, ..., A) and pe = (1, ..., ftn) be two sequences. We put

- 0 - o
0
Grk-lu. = Gr,, X Gry Gry, , Gr/\.w. = Gr,, X Gry Gr,,,

where the products are over the convolution maps my,: Gry, — Grg, m,,: Gr,, — Gry
and their restrictions respectively. We write

. 0 _
Mrg|e : Gr/\.m. — Grg

for the natural projection. We simply write m for m,,|,, if there is no confusion. For
1 <5 <, we define
pr;: Grg.m. — Grzy,0)
by sending ((cvi)1<i<i, (Bi)1<i<n) to (qi)1<i<;-
An irreducible component of Gr?\.‘ ... Of dimension (p, [Ae| + [1e]) is called a Satake

cycle. Let Sy,,, be the set of Satake cycles in Grg.‘ ue-  We sometimes write Gr?\’ju.
instead of a € Sy, for the Satake cycle. We put

° O,a 07a o 0
Gr)\olﬂo - GI‘)\"M' mGr)‘"“"

° 07 .
Lemma 4.1. For a € S),|,,, the scheme er.am. 15 not empty.
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Proof. The dimension of Gr?\.m. \C‘iri.m. is less than (p, | Ae| 4 |tte]) by [XZ17, Proposition
3.1.10 (1)]. Hence we obtain the claim. O

We fix an embedding 7 C B. Let pu € X,(T). Let O' be O = Wo, (k) or a finite
etale extension of O which splits G. For a € ®, let U, o denote the root subgroup of
Gor corresponding to a. Let P, o denote the parabolic subgroup of G generated by
Tor and U, o for o € ® such that (o, p) > 0.

We write @ for u(w) € G(L) = LG(k). Let ["] denote the point of Grz determined
by wh. For u € X (T)*, the Schubert cell Ciru is the LT G-orbit of [w*] by [Zhul7,
Proposition 1.23 (1)].

Lemma 4.2. For a € S,,|,, the natural morphism Gr?\’ju — Gr,, s surjective.

Proof. The natural morphism (jri’ju — dru is surjective, because the action of LTG on
(iru is transitive and driﬁu is a nonempty scheme stable under the action of LTG by
Lemma 4.1. Hence we obtain the claim because Gr§.| . — Gry is perfectly proper and
Gr, C Gr, is Zariski dense by [Zhul7, Proposition 1.23 (3)]. O

For A € X,(T), let Sy be the (LU )z-orbit of @ in Grz. For A € X,(T) and p € X, (7)™,
an irreducible component of Sy N Gr,, is called a Mirkovi¢-Vilonen cycle after [MV07].
Let MV ()\) be the set of the Mirkovi¢-Vilonen cycles in Sy N Gr,. We sometimes write
(SN Gru) instead of b € MV, () for the Mirkovi¢-Vilonen cycle.

Let (G, B, T) be the Langlands dual over Q, of (G, B ,T). For p € X,(T)" = X*(T)+,
let V), denote the irreducible algebraic representation of G of highest weight p. For an
algebraic representation V of G and A € Xe(T) = X'(f), let V(A) denote the A-weight

space of V. Then we have
MV, (A)] = dim V,,(\) (4.3)

by [GHKRO06, Proposition 5.4.2] and [Zhul7, Corollary 2.8].
For v, i € Xo(T)" and X € X(T) such that v+ A € X (T)*, there is an injective map
i Sir = MV,(A)

v

constructed by [XZ17, Lemma 3.2.7].

5 Equidimensionality of Satake cycles
Let pre = (f1,. ., pin) € (Xo(T)T)" and X € Xo(T)7.

Lemma 5.1. The morphism My, Gr,, — Grg is Zariski-locally trivial over Gry in the

sense that for any point y of Gr,\ there is a Zariski open subspace V' C Gry with yeV
and k-scheme Y such that my,, Y(V) — V is identified with the projection Y xz V — V.

Proof. Taking the base change to an unramified extension of O, we may assume that G
is split by (4.1). As in the proof of [Hai06, Lemma 2.1}, it suffices to show that

LG - LTG/(LTGNz* L TG ™)
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has a section Zariski-locally. Since LTU/(LTU N w*LtUw ™) is an open subscheme of
LT*G/(LTG N @*LTGw™), it suffices to show that

LU — LYU/(L"U N L U= ™)

has a section. We fix an identification G, ~ U, o, for a positive root a. For a positive
root «, let LJ<r<a /\>U017@F be the closed subscheme of L*U, o, defined by the condition

z; =0 for ¢ > (o, \) for a point > °  w'[z;] of LTU, 0,. Then the composition

[Tt Unor = LTU = LTU/(LU N &L Uz ™)

is an isomorphism. Hence we have a section. O

Lemma 5.2. Assume that p is a dominant minuscule cocharacter and w € W. We have
an isomorphism

Swu N Gr, ~ L U/(LTU) N @ (LU )z "").
In particular, S, N Gr, is the perfection of an affine space of dimension (p, i + wp).

Proof. The first claim follows from [XZ17, (3.2.3)]. The second claim follows from the
first one as in the proof of [Hai06, Lemma 3.2]. ]

Theorem 5.3. Assume that p; are minuscule. For a pointy ofGorr,\, the fiber of my,, : Gry,
Grg at y is equidimensional of dimension (p, |ie| — \).

Proof. This is proved in the same way as [Hai06, Theorem 3.1] using Lemma 5.1 and
Lemma 5.2 instead of [Hai06, Lemma 2.1 and Lemma 3.2] respectively. O]

Proposition 5.4. Assume that each p; is a sum of minuscule cocharacters. Then, for a
point y of Gry, any irreducible component of the fiber m;_l(y) whose generic point belongs

to Gorru. has dimension {(p, |pe| — A).
Proof. This follows from Theorem 5.3 in the same way as [Hai06, Proposition 4.1]. [

6 Affine Deligne-Lusztig variety

Recall that L = Wo,.(k)[L]. Let b € G(L) and p € Xo(T). Let o denote the g-th power
Frobenius element. We define the affine Deligne-Lusztig variety X, (b) by

X, (b) ={g(L*G); € Gry | g 'bo(g) € (LTG)pmw*(LTG)5}-

Let B(G) be the set of o-conjugacy classes of G(L). We define B(G,u) C B(G) as in
[Kot97, 6.2]. Then X, (b) is non-empty if and only if [b] € B(G, ) by [Gasl0, Theorem
5.1].

An element of B(G) is called unramified if it is contained in the image of the natural
map B(T) — B(G). Let B(G),, denote the set of unramified elements of B(G).

For y € X*(T'), we put



The natural pairing X,(7T') x X*(T') — Z induces a pairing ( , ): X;(T), x X*(T)g — Q.
We put
Xe(D)E ={[N € Xe(T), | {[\,@) >0 for every a € A}.

Then we have the bijection

as in [XZ17, Lemma 4.2.3].

For 7 € X,(T), we write X, (1) for X, (w”). We assume that b = w” for 7 € X((T)
such that [7] € X¢(T')}. We can define the twisted centralizer J, over O for w” as in
(X717, 4.2.13]. We note that J, = G if [b] € B(G),, is basic.

We assume [XZ17, Hypothesis 4.4.1] for J,. Further, we assume that Z; is connected.

Let A € X (T) such that [A\] = [7] € X,(T)f. We take §, € X, (T) such that
A= 7T+0y—0(). Let b € MV,()). Consider the condition Cy, for v € X (T')
that

A+ v — o(v) is dominant and b is in the image of 4, : S, e — MV, (N).

By [XZ17, Lemma 4.4.3], we take v, € X (7' such that v, satisfies Cp, and v — v is
dominant for any v € X (7') satisfying Cp. Such a 14, is unique up to X,(Zg) by the
same lemma. We put 7, = A + 15, — 0(vp). Then we have the isomorphism

JA(F) =~ J (F); g @ Tegm o,

We consider the isomorphism

X, (b) = X,\(7) ~ X\ (16); gLTG = gLt G, (6.1)
Let a € S(, u)a+1,, be the unique element such that b = 4, (a).

We define X, ,, (1) by the fiber product

0
Xﬂ»”b (Tb) Gr(Vb7H)|Tb+U(Vb)

l lpm

Ixw™o
Gryb - Gryb X GrTbJrO'(l/b) .

More concretely, we have

Xy (1) = {g(LTG); € Gr,, | g7'@w™0(g) € (LTG)zm*(LTG)5}-

Further, we define X7, (7) by the fiber product

X2 (1) Gr¥2

JTR7S (Vb,1) | To+0 (Vb))

| |

0
XHJ’b (Tb) Gr(r/b,u)lfb+0(l/b) :

Let zo denote [1] € J(F)/J-(OF). We put

XPo(ry) = X2, (1) N Gr,,.

o 2214+
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Let XP*°(7,) denote the closure of )O(l'j”””o (7o) in X3, (7). The scheme XP™(7y,) is
irreducible of dimension (p, u — 7,) by [XZ17, Theorem 4.4.5].
By [XZ17, Theorem 4.4.14], there is a bijection between the set

Ll MV.) x A0/ (0r)
AEXo(T), N=[r]€Xe(T)F
and the set of irreducible components of X, (b) given by

(b, [g]) = X,?’[g} (7b) = g X" (1),

where we regard X2 (rp,) as a subscheme of X,.(b) by (6.1).

7 Unitary group

7.1 Setting

Let F; be the quadratic unramified extension of F'. Let Op, denote the ring of integers
of Fy. Let @ be a uniformizer of F'. We put A = OF, equipped with the hermitian form

OF, x OF, = Opy; ((ai)1<i<n: (a))1<i<n) = > o(ai)al, ;. (7.1)
=1

We put G = GU(A). By taking the first factor of the decomposition
OFQ Rop OF2 ~ OF2 X OFQ; a®br— (ab, G,O'(b)),

we have an isomorphism

G0p2 ~ GLn XGm. (72)

Weput V = A®p, F. Let G = GL, xG,, denote the dual group over Q, with a maximal
torus 7 and a Borel subgroup B , which are the diagonal torus and the upper triangular
subgroup on the GL,-component. For u € X,(T)*, let p* € X¢(T)" be the element such
that V- = V.

For an index ¢ € {1,...,n}, we will use the notation i¥ = n + 1 —i. The group
X*(T) has a basis {;}",, where £, is the projection to the Gy-component and &; is
the character of T given by evaluating the (7,1) entry for ¢ > 1. In the following, all
cocharacters of T' (equivalently, characters of T\) will be written according to this basis.
We have o(gg) = Y i & and o(g;) = —gv for 1 < i <n. For p=>""  me; € Xo(T),
we have .

1= —mogg — Z Mpy1i8 € Xo(T)7T.

i=1

7.2 Satake cycle
Let p=¢9+e1+e2 € Xe(T). We put r = [n/2]. We put

Vi=ert ot &1 —&v— - —Ev, Tp=E¢o
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for 1 <i<|[(n—1)/2], and
vp=¢€1+--+¢&-1, Tr=¢+e1t--+e,

if niseven. We put \; = —¢g—¢; —gv for 1 <i <r.

Lemma 7.1. For A € —eo + (1 — 0)X.(T), we have MV - (X) # 0 if and only if X\ €
{A, .. A} Further, MV - (X;) is a singleton for 1 <i <.

Proof. For A € X,(T), we have dimV,«(A\) < 1, and V,-()) is nonzero if and only if
A=—gg—¢g;—¢jforsomel <i<j<n If—egy—¢ —¢; € —co+(1—0)X,(T) for some
1 <i<j <n,wemust have j =7". Hence the claim follows from (4.3). O

Let 1 <4 <r. Note that 7 +o(v)) = v; + \; = v; +7;. Let b; be the unique element
of MV - ();). There is a; € S, ;7)y,+-> such that iMV(a;) = b,. Since MV is injective by
[XZ17, Lemma 3.2.7], the set S(,x =), 1-+ is also a szingleton. Z

We study the Satake cycle Gr?l’/?iu*)

‘l/i—‘rTi*'
Lemma 7.2. (1) The scheme Gor((),//_*vw)‘yﬁﬂ is 1rreducible.

(2) We have
Gr%

<0
Wty = Ot ety
Proof. Since S,z )4+ 18 a singleton, by Lemma 4.1, we know that there is only one

. . 5. 0 . . . . .
irreducible component of Gr,: ,«,,+,+ Whose dimension is equal to the dimension of
17 K
0

dr(vi*,u*)lw 4+rs. For the claim (1), it remains to show that dr(()ui*,u*)lw 4+ Is equidimen-
sional. By the definition, C:}r((]l,;’ y*) v+ 15 equal to the inverse image of GOI'VZ._H—i* under the
convolution morphism

My p*) - GI‘(U;M*) — Gr.

Therefore the equidimensionality of dr(()u*,m)m 4 follows from Lemma 5.1 and Proposi-
tion 5.4. The claim (2) follows from (1). O

We do not use the following lemma in the sequel, but it shows that a study of inter-
sections of irreducible components of affine Deligne-Lusztig varieties is more subtle than
intersections of Satake cycles.

Lemma 7.3. Assume that n > 5.

5 0
(1) The actions of L*G on Gr,; . are transitive.

0
1* and Gr(”fvu*)‘V1+T1

|1+

(2) The Satake cycle Gr)22 contains Gr)2!

(V3% lva+rs (V1w +ry

Proof. We show (1). It suffices to show that the number of the orbits under the action
of L*G on Gr! is 2. Let (LTG),,4-+ be the stabilizer of [@”*7] € Gry 4. in

(3w v trf
L*@. Since the action of LTG on Gr,, ,» is transitive, it suffices to show that the number

of the orbits in m(’yl2 Y +Tl*([w”1+71* ]) under the action of (L*G),, 4+ is 2. These orbits

are in a bijection with (P, 1+ 0,)7\G%/(Puo, )z Hence the number of the orbits is 2.
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We show (2). By Lemma 4.2, the natural morphism Gr . = Gry, ey is

. and Gr

(3 u “Nv2t3

surjective. Hence the intersection of Gr(y a3 pi4r; 1S DOt empty.

0
If the intersection of Gro 2 Y v and Gr(y ) v 4rr 18 DOE empty, then Gr?VaQH S
contains Gr(l,g )t because L*G acts transitively on Gr )ty and Gr(y v
is stable under the action of LTG. Then Gr(() ) o Contams Gr Y prs s Since
: 0
Gr Hpatrr 18 dense in Griye o, re-

If the intersection of Gr(()VaQM Yvp+rs and Gr Y 1S empty, the intersection of
Grr0 9 Vjpiry a0 Gr(V u*)lwi4ry 18 TIOE empty. Then Gro ) sy Contains Gr(V T
because L*G acts transitively on Gr( ) grr and Gr watry 18 stable under the
action of LTG. 0

Remark 7.4. Lemma 7.5 (2) shows that X2 .(73) is not irreducible. This answers a
question in [XZ17, Remark 4.4.6 (3)].
8 Irreducible Components

We note that [w°] € B(G, *) is the basic class. Let X,E’E’IO(Ti*) be the closure in X« (")
of )%Ei’xo (7)) fitting in the cartesian diagram

v bi,zo [ _x 0 al
X(T)) Gr it}
\L \Lprl xm
S Ixw™i o g S
G, — =7 Grye x Gryypre.

By results in §6 and Lemma 7.1, we obtain the following proposition:

Proposition 8.1. The number of the G(F)-orbits of the irreducible components of X,,-(£})
is r. Representatives of r orbits are given by Xb H(rr) for 1 < i < r. The G(F)-
orbit of Xb“x“( ) is parametrized by G(F )/G(OF) The dimension of X;’i’mo(ri*) is
(pou* =713 = —2.

If i = 1, the above construction defines a Deligne-Lusztig variety. If ¢ = 2 and n > 5,

this defines a variety that is not a Deligne-Lusztig variety.
By (4.1) and (7.2), we have an isomorphism

GI’G ®Fqu2 ~ GrGLn X Gy - (81)

We put £° = Op, and L° = Op, and view them as trivial vector bundles on Dy ,. We
have an isomorphism

EY ~F((E°Y) (8.2)
given by (7.1). For any perfect F2-algebra R,

£ is a vector bundle on Dpg of rank n,
L is a line bundle on Dg,

GI"GL,L xGm(R> = (5,£7ﬁ,ﬁ/) ﬁ (c/’ . N(c;O Dy, and

B': Llps, ~ L°|p: are trivializations.
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by (4.2). Under the identification by (8.1), the Frobenius endomorphism of Grg ®r,F,2
sends (£, L, 5,0 in (8.3) to

(F(E) @ L LFB) ®pF,5)

where

F(B) " @ pf': (F(EY)® L)|py, = (F((E°)Y) ® L")

using (8.2) at the last isomorphism. We regard Grgp, as an open and closed sub-ind-
scheme of Grgy, xg,, by

p;, = &'y

(£,8) — (&,L° 8,id).

If A € Xo(T) is trivial on Gy-component under the identification (7.2), then we view
Grg.a as a subscheme of Grgr, C GrgL, xg,, under the identification (8.1). Under the
identification by (8.1), the Frobenius endomorphism of Grg ®p, Fp2 becomes

(&, 8) = (F(EY),F(BY) ™)

in Grgr,. When we compare the positions two vector bundles on Dpg equipped with
trivializatins over D7, they are compared through the trivializations. We put pgr =
g1+ €q.

8.1 Component for 14

The following proposition describes an analogue of a component studied in [VW11].

Proposition 8.2. The irreducible component X}}l’xo (1) is parametrized by €& --+ E°
bounded by v} such that wF(EY) C €. In particular, it is isomorphic to Xp ([1])P".

Proof. We have
0

0,a1 _ 0 A
Gr = Gl pnyvvry = G un)atry

(i )ity

since vy is minuscule. Hence we have X0 (7y) = )2'53’10(71* ) = Xy (7). By the
definition, X,- ,«(77) is parametrized by £ --» £° bounded by v} such that F(EY) --» £
is bounded by ug;. We note that the last condition is equivalent to that & --» F(€Y) is
bounded by pgr. If € --» €% is bounded by v = &1, then £ --» F(£Y) is also bounded
by €1. Therefore, when £ --+ £Y is bounded by v}, the condition that £ --+ £° --» F(&Y)
is bounded by puqr, is equivalent to £ C F(EY) C w'€. This is further equivalent to
wF(EY) C &, since we already have £ C £° C F(EY).

The last isomorphism in the claim is given by sending & to F(EY)/E° c L&°/&°,
where we have £ C F(EY) by £ C £° and (8.2). O

By Proposition 8.2 and Example 3.1, X,E’Q 0 (1) is isomorphic to the perfection of the
Fermat hypersurface defined by

n

4 _
E :xzxn+1—z’ =0
=1

in P11,
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8.2 Components for v, when n is even.

The following proposition describes a generalization of a component studied in [HP14].

Proposition 8.3. Assume that n is even. The irreducible component XEI’%(T:) i8

parametrized by & --+ E° bounded by v’ such that w& C F(EV). In particular, it is
isomorphic to X ([1])P".

Proof. We have
0,a, 0 s 0
G (I/* ‘l/ +7_ Gl"(u* /‘L*)|V JrT* - GI‘ l/* *)|l/ +‘I‘*

*

since v and v, + 7, are minuscule. Hence we have Xb* HO(r*) = Xb“””o( ¥) = Xy (7).

By the deﬁmtlon X+ 2 (1) is parametrized by 5 --» 50 bounded by v} such that
L F(EY) --» & is bounded by gy, because the GL,-component of 7*(w) is the scalar
matrix @w™'. The condition that = F(£Y) --» & is bounded by gy, is equivalent to
w& C F(EY).

The last isomorphism in the claim is given by sending & to £/E° ¢ L£°/&°. O

Example 8.4. Assume that n = 4. Then XEI"”O(T;) 15 isomorphic to the perfection of
the Fermat hypersurface defined by

12 + oxd + w3xd + x4xf =0

in 3. This is a component which appears in [HP14, p.1689].

8.3 Non-minuscule case

Let 2 <i <[(n—1)/2]. We put
Vig = €1t &1, Vi— = —&v — " —&v.

We put & = €1+ -+¢e9;,_1. For a description of £ parametrizing XS,Z’QCO(TZ-*), we introduce
an auxiliary space parametrizing modifications £_ --» £° and £° --s £, bounded by
minuscule cocharacters such that £ --+» £ and £ --» £, are bounded by minuscule
cocharacters. Let (Gr,z, x Gr,y )¢ be the subspace of Gr,:, X Gr,:  defined by the
condition that

g e, £,
is bounded by &; for a point (€, 2, EV.E L &Y of Grye, x Gr,; . Let
(Gres v ) Xar,: Gl v ))e

i,+

4+

be the subspace of Gr(,,i*y,,;f) X Gr, . Gr(,,;f,l,h) defined by the condition that

is bounded by &; for a point
8 2 ~
€ 5He Mene Dog g
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of Gr(,,;y,,;f) X Gr, . Gr(,,;i,l,h). We have a natural morphism
pr: (Grs wr ) Xan,: Gros o ))es = (Gryr X Gryy e,

Let 7; be the vector bundle of rank 2i — 1 over (Gr,;, x Gryr )¢, defined by &, /€,
where (£,,€_) is a point of (Grl, ><Gr,, e, We put & = Aut(¥). Let t;z €
Oc(Dyn(GLag;—12))(Z) be the image under

t(Z) Pal"(GLQZ'_Lz)(Z) — OC(Dyn(GLQi_Lz))(Z)

of the parabolic subgroup of GLy;_1 7 defined as the stabilizer of ZI~! C Z™'®Z = Z*~1.
Let
t € Oc(Dyn(%))((Gry;, x Gryr )e) (8.4)

be the element determined from ¢; 7 by Remark 2.5 and Lemma 2.6 (2).
We define a morphism

v (GY(V;«’+’V;’_) XGTVZ.* Gr(yz_’yz+)>£i — Parti (%)

by sending
B Bl _
€ e, Tere Se e

to the stabilizer of £/E_ C &£, /E_, where we have the inclusions €. C € C &, because
B and B° are bounded by v;_ and v}, respectively. Then W is an isomorphism. Note
that a natural morphism

Po: (Gl"(u;+,u;_) XGrV; Gl"(u;’_,u%))gi — Gl"u;

is an isomorphism over Gr,,
Recall that XZ{ () and X,- u= e (77°) are closed subspaces of Gr,-. The condition for
the subspace

Po (Xprwz (7)) € (Grz,wz ) X, Grs_wr e

is that £ C F(EY) C €.

For apoint (£,&4,E-) of (Grpe, vr ) Xar,. GIe:_wz,))e, weput W =E/E_ C &L /€,
which is a subvector bundle of rank i — 1 since 5 --» & is bounded by v;,. Let
W+ C EY/EY be the annihilator of #. Then we have #'+ = EY/EY.

Let Y; be the closed subscheme of (Gr,r, X Gr,; )¢, defined by the conditions
(1) & C F(&Y),
(2) & C F(EY).
(3) wF(&Y) C &
Then we have Y; = X i1 ([1])?' under the identification given by sending (£4,£-) to
0C w& /wE C & JwE® C £°%)wéEP.

Assume that (€,,&_) is a point of Y;. The condition £ C F(£Y) is equivalent to that
the image of #  under the natural morphism

b1: €4/ — F(£Y)/ F(EY) = F(£Y/€Y) (8.5)
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is contained in F(#*). The condition F(Y) C L& is equivalent to that the image of
F(w# ) under the natural morphism

Bo: E°)E® — £, /E_
is contained in #. We put
X; = pal(Xm,u; ()N pfl(n)'
Then X; is the subscheme of p;*(Y;) cut out by the conditions

o(W) CF(wh), (8.6)
oo (F(wW ) c .

Let pf, and p) be the restrictions of py and p; to X; respectively. We have

Po " (X (7)) =— Xi —pi (V)

7

Ny

Xﬂ*,uf () Y.

*

We note that py and pj, are isomorphisms over X Ei’xo (17).

Lemma 8.5. The inverse image pgl()o(l?i’mo(Ti*)) is contained in X;.

Proof. Let (€,€+,E_) be a point of pgl()%;’i’zo (77)). Then we have & = &N EY. By the
condition F(€Y) C L&, we have

wF(EY) = F(ENEY)Y) =m(F(EY)+ &%) C €.

Hence we have
wF(EY)CENE =€
This means that (€;,&_) is a point of Y;. O

Let 9y, denote the restriction of ¢; to Y;. We have an isomorphism
Wy, pi (V) = Par,, (%) (8.5)
induced by W.

Theorem 8.6. The closed subscheme X; C py '(Y;) ~ Pary, (%) is defined by the condi-
tion o1 (W) C F(#H).

Proof. Tt suffices to show that the condition (8.7) is automatic. The condition (8.7) is
equivalent to @ F(EY) C £ under (8.8). Let (£,&,,£_) be a point of p;*(Y;). Then we
have

wFHEY)CE CE.

By taking the dual, we have w F(EY) C £_. Hence the condition @ F(EY) C & is satisfied.
[
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Proposition 8.7. The scheme )O(EE’IO(TZ«*) is isomorphic to the subscheme of py*(Y;)

defined by the condition € C F(EY) and ENE = E_.
Proof. Let X; and )O(H*’V;(Ti*) be the inverse images of (iryf in X; and X ,«(77). By

7

Theorem 8.6, X; is equal to the subscheme of py ' (Y;) defined by the condition £ C F(£Y)
and ENEY = £_. The natural morphism pg_l(X;’i’zO (7)) — X;’,Z"IO (77) is an isomorphism.
Hence it suffices to show that p{fl()z'ﬁi’xo (7)) = X..

By Lemma 8.5, we have pg—l()%ﬁz@()(n*)) C X;. On the other hand, X; is contained in

py H(XD0 (7)), since XH*V,/:(T-*) — XP00 (1) by Lemma 7.2, O

2 i 7

9 Intersections

Let x,2" € J.(F)/J-(OF). Let A, and A, be the lattices of V' determined by = and z’.
We put
leo = lengthy  (Ap/(Ae N AL)).

We note that
low = lengthy  ((Ap + Aw)/A;) = lengthy | (A /(Ax N Ay))

by taking dual with respect to the hermitian pairing. We assume that @?A,, C A,. This
assumption is satisfied if X;’i’x(ri*) NnX ;i"xl (75) is non-empty for some ¢ and ', because
if £ is in the intersection we have w&, C £ C w&,.

Let &, and &, be the modifications of £Y corresponding to A, and A,,. Let P, . be
the parabolic subgroup of G that is the stabilizer of the filtration

wh, C @Ay + wh, C (A, NwAy) + A, C (A NAY) + A, CA,.
We note that wA, C A, if and only if wA,, C A, by taking dual with respect to the

hermitian pairing. We put
dy = dim((® Ay + wA,) /@A),
dy = dim(((A; NwAy) + wA,) /owAL).
We have
d1 + d2 = lm@/ (91)
since
Ax//(Ax/ N w_le) >~ ZDAz//(ZDAz/ N Ax) >~ (wa/ + Ax)/Ax
~ (A + wA,) /oA,
Ay N 'AL)/(Aw NA,) ~ (wAy NAL) /(A NwA,)
~ ((A; NwAy) + wA,)/wA,.

In the identification (6.1) for b;, we use dy, = —v if 1 <i <r —1 and 6§, = —&,41 if
L=7.

9.1 Intersection of components for v; and vy, where i,i’ # r if n
is even.

Let 1 <i,7 <r. Assume that ¢ # r and ¢/ # r if n is even.
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9.1.1 Different hyperspecial subgroups

We assume that x # z/. For a subscheme X of Xﬁi’w(ri*), let Xp_, @) be the inverse
image of Xlafl,nfi([l])%fz!zh[w] under X — X257 (77) — X i ([1])P".
We recall that o / )
X () = Xpt o () \ X ().

Assume that ¢ < ¢'. For j;,jo € Nsuchthat i — 1 —dy < jy <i—1land dy —i < jp <
n —1i —dy — ji, we define wj, ;, € S, by

(j+ i1 if i —ji <j <dy,
jti—g1—do—1 ifdo+1<j5<dy+ 71,

Wy 3o (7) = § J + J ifn—jo—i+1<j<n—d,
Jj4dy—i— o ifn—do+1<j<n—dy+ jo,
\j otherwise.

Weput £, = (E+E)NLE, and £, = (£,NEy)+wE,. Since X v ([1])5 |

Pz,cc/ ’[wjlaj2
parametrizes two subspaces of A,/wA, satisfying some conditions, there are universal
vector bundles V; C V_ C &,/w&, on XIi—l,nfi([l])pf |- We put

n 2

Px,z“[“ﬁbj

1 1
g+ = —71';1(]}4,_) C —51», E_ = 7r_1(V_) C gg;
w w

T

where 7,: €, — &,/w&, is the natural projection. Those are the same as the restrictions
of (£4,&-) in §8.3 under the identification Y; = X i-1..—:([1])P! in that subsection.
We note that

length((&€, + 5_,Zr,)/5;fw,) =Jj1, length((E- + &, .)/E, ) = Jo-
We put &~ =& N(E- + &) and dj, j, = jo — j1 + 2i — 1 — do. We note that
Eq-=E +ENE CFENNFE])+Ev)=F(E] ) (9.2)
using & C F(€Y) and £ C F(&Y).
Lemma 9.1. We have length(E, _/E_) = d;, j,. Further £ _/E_ is a vector bundle on

Xyimrmi([1])2F

In Pz,m”[wj17j2] ’

Proof. We have

length(&; /&4 —) = length((E4 + &)/ (E- + &)
= length((£4 + &) /(@& + Er)) — length((E- + Ex) /(@Es + Eur))
— length((E; + Ex)/(Ex + Ex) + length((€, + £1)/(@E, + Ex)) — jo
= j1 + length((&; Nw&y) /(W& N W) — j2 = J1 + da — Jo.

Hence we obtain the first claim. By the above equalities, length(&, /€, ) is constant on
£ . £
Xl'fl—l,n—i([1])%%9:“[1’”]'17]_2}. Hence £, /&, _ is a vector bundle on XI;';LTH'([1])%1’1,7[%173_2] by

[BS17, Lemma 7.3|. Therefore £, _/&_ is also a vector bundle. O
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Let ¢, ;, be the restriction of ¢ to Xﬂl—l,n—i([l])pf Let

Px,a:/ 7[wj17j2] ’

L2 € Oc(DYn(F, ) (X -1 ([1]) )

Pz,z”[wjl,jQ]

denote the restriction of ¢; in (8.4). Let &?;, ;, be the parabolic subgroup of ¥, ;, deter-

mined by
g_ C (C/'+ N (g_ ‘l’ g:v’) C g+.

We pllt ljl,jz =47 —-1- jg — dl. We define Si1.,42 € 521;1 by

J+ g if o =15, <Jj<dj;,
Sjnga(4) = +i—1—=dj, j, =l g it dj 5, +1 <5 < djy g, + 1y o,
J otherwise.

Let rj, j, be the element of

(g, (0P ) i) (X irn (1) )

1,1’7[wj17j2
corresponding to [sj, j,] by Lemma 2.6 (2).
Proposition 9.2. Assume that Xﬁm(ﬁ‘) ﬂ)zfi”x,(ﬁ?) is not empty. Then we have I, » <

i+i -1
The subscheme Xfi’z(Ti*)ﬂXEi"x (5) C X;’i’m(Tf") is the locus defined by the condition

)

that &, + wEy C €4 C £E,,,, W&, CE_CENLE,
length((E_ + 8;35,)/5;35,) <[ —i+4dy—dy)/2] (9.3)

and
length((€ + &1, )/&E, ) +length((E- + &, ,)/E, ) =7 —1—di. (9.4)

o o / o o /
In particular, Xl?f’$(7i*) N Xsi"m (13) is the union of (Xsi’w(Ti*) N X;’i"m (7’{'7)) .
Pz,z” wj17j2

for ji,j2 € N such that j, +ds —i < jo < j1 +do —i+1,

i—1—dy<ji<i—1-d,
' —i—dy < jo <min{[(i' —i+dy —di)/2];n —i—dy— ji}.

Further we have

o b', o b , / © b., .
(XK= n X @) = X ), ol ) VPt (G 0: 250000

1
p p Titgz”
z,z”[wjlij] ’

Proof. The intersection XEI(TZ*) ﬂ)o(;’i"xl (77) is parametrized by £ --» &£, which is equal
to v such that & C F(£Y) C £& and € --» & is equal to 1. Let £ be a point of

b, Obi’vx, *
X8 )n X 7 (737). We put

E,=E+E, £ =ENE,, 5; =E+ &, E =ENE,.
Then we have

length(&,/E-) =i, length(€/E-)=i—1,
length(E, /") =4, length(E/E") =4 — 1.
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Hence we have length(E_/(E- NE")) < ¢ — 1 and length(&,/(E-NE)) < i+ — 1.
Therefore the inclusion £ NE" C &€, N E, implies that

low <i+7i —1.

We have &, + w&,, C €, and wé’;m, =w&, + (E: Nw&y) C E_, since w&,y C E. We
have w&, C £, N (Ey + wE,) = Eppand E- C EN %gx/, since w&, C &, and w& C E,.
We put j; = length((€; + & ,,)/E, /) and jo = length((E- + &, ,,)/E, /). We have

length(€_/(E-NEL)) =length(E_/(E-NEw)) = jo +length((E-NE, )/ (E- NEw))
= Jo +length(E, /(€ N Ew)) = ja + di.

We have
jo+1—dy =length((E- + &) /E-) < 1+ length((F(EY) + &, ,,)/ F(EY))
since length(F(€Y)/€-) = 1. Further we have

length((F(EY) + &, )/ F(EY)) = length(€,/(E+ N E],)) < length(E, /(€L + &)
<length(E/(E-+&")) =i —1—length(E_/(E_-NE")) =i —1— jo —di.

Therefore we obtain jo < [(// — i+ dy — dy)/2].

Further, j; + ds — i < jo < ji + dy — i + 1 follows from length(F(EY)/Ey) = 1. This
implies i — 1 —dy < jpand dy — i < jo. We have j; <i—1—dyand jo <n—1t—dy — 1
by the inclusions &, + w€,y C &L NES, and &y + &, C E-NE_ . The equality

length((€ + &1, )/E, ) +length((E- + &, ,)/E ) =7 —1—di

and length((€ + &4 -)/&E+-) <i—1imply jo > —i—d;.
We have

length((€ + &4 -)/E+ ) =length(E/(ENE; ~)) = length(E/(EN (E- + &)
= length((€ + &) /(E- + &) = length((€ + E)/Ew) — length((E- + &) /Exr)
= length((£ 4+ &) /&) — length(E_/(E- N Ey)).

Hence, length((E+E&4 -)/E+ -) = —1—jo—d, if and only if length((E+E&,/) /&) = 7' —1.
This implies the last claim. Il

9.1.2 Same hyperspecial subgroup

Assume that x = 2. It suffices to consider the case where x = 2’ = xg, since all the
hyperspecial subgroups are conjugate.

Let 2 < i < [(n—1)/2]. Let (£,E4,E-) be a point of X;. Let s be the rank of
(ENEY/E.. We put V; = £/E_ and take Vo, C E°/E_ and V3 C &, /€ such that
projections induce isomorphisms V, ~ (€ + £%)/€ and V3 ~ &£, /(€ + £°). An open
neighbourhood of (€,&,,&_) in Gr(i — 1, %3;) under (8.8) is given by Hom(Vy, Vs & Vs)
sending f € Hom(Vy, V» @ V3) to the inverse image & of

{v+ flv) |[veV}C & /E
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in £&;. By Theorem 8.6, the condition that &£; belongs to X; is equivalent to

(v+ f(v), F(' + f(v)) =0 (9.5)

in @ 'Wo, (R)/Wo,(R) for v,v' € V;. We write f as fy + f3 for fo € Hom(V;,V,) and
f3 € Hom(Vy, V3) For v, 0" € (ENEY)/E_, the condition (9.5) is equivalent to

(v + f2(v), F(fs(0) + (f3(v), F (' + fo(v') + f5(v"))) = 0 (9.6)

in w_1W0F<R)/WoF(R).

Take a basis vy, ...,v;_1 of V; such that vy, ..., v, form a basis of (£ NE°)/E_. Take
a basis v;, ..., v9_s—1 of Vo and a basis vg;_g, . .., ve—1 of V3. Write f(v;) as zv; + -+ - +
%12i—1V2i—1. Then the condition (9.6) is equivalent to

2i—s5—1 2i—1 2i—1 2i—1
(v + Z 2505, F( Z Tk Vk)) + ( Z Ty Ok, F (U + Z T j0;)) =0
j=i k=2i—s k=2i—s j=i
for 1 <[,m < s. We can write this as
21—s—1 2i—1
(et Y 05 Fon)))is(@l Dkm = =@k (0 F(0m + Y Zm i) k-
=i J

Taking the determinant, we obtain

2i—s—1
det(ml,k)l,k < det((vl + Z X155, F(Uk»)l’k(det(ﬂfl,k)l’k)q_l
J=t
2i—1
— (1) det((vp, Flom + > xm,jvj»)k,m) — 0.
j=i

The condition £, NEY = £_ is equivalent to det(z ;) # 0. Hence, if (€, &4, E-) belongs
to the closure of pg_l(X;’i’xO(Ti*)), then we have det({vg, F(v;)))gm = 0. This means
F~1(&Y) C €. Hence we have obtained the following proposition:

Proposition 9.3. The intersection

— bi_s,I * — Obi,x *
o (X () np (X ()

is contained in the locus defined by the condition F~'(EY) C €.

Conversely, we assume that F~'(€Y) C €. Then we may assume that v; is a ba-
sis of F71(EY)/E-, v; is an element of (F(EY) N &£°)/&_ lifting a basis of (F(£Y) N
EYJ(E N E%) such that v; ¢ FH(EY)/E- and vy, is an element of F(EY)/E_ lift-
ing a basis of (F(&Y) + &%)/(E + £°). Further, we may assume that vy,...,v;_; and
V2i—1y -, V2—s11, V251, --,Vir1 form dual base with respect to the pairing

E/(FTHEY)) x E4/(F(EY)); (v,0) = (F(v), ).
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and that (v;, F(vg)) =0fori+1<j<2i—s—1andi <k <2i—1. Then the condition
(9.5) is equivalent to

2i—1 2i—1 %1 '
{ Z 505, F(Z Tt Uit )) + (vr + 1,03, F( S;Qf‘sx KUk)) fi<i<r,
<Ul + Ly, Vi, F(Zk’:i xm,k’vk’)> if s+1 < l <71-— 1’

j=2i—s k'=i
0 iftm=1,
+ L12i4+1—m if 2 <m< S, =0 (97)

T1,2i—m 1f8+1§m§2—17

for 1 <l,m<i—1.
We put
Y= det(l‘l,j)1gl§5,2ifs§j§21‘71'

We want to show that the quotient of k[[x;;]]1<i<i—1,i<j<2i—1 by the relation (9.7) is
nonzero after inverting y.

Proposition 9.4. (1) The intersection

- b1,z * — bo,x *
o (X)) Ny (X2 (73)

is equal to the locus defined by the condition F~(EY) = E.

(2) We have an isomorphism X/?,}’mo(ﬁ*) N Xﬁf’xo (13) =~ XIFI’FS([l], [1])PE given by €
EV/EC. Further, this intersection is irreducible.

Proof. In this case, (9.7) becomes
(w1 303, F (21,209 + 21 303)) + (v1 + 21,202, F(21 303)) = 0.

If the quotient of k[[x1 2, 21 3]] by this relation is zero after inverting x; 3, there is a positive
integer N such that 1’ is divisible by

(21,303, F (21,209 + 21 303)) + (U1 + 1,202, F(21,303))

in k[[z12,213]]. This does not happen because (vs, F(v2)) # 0, which follows from vy ¢
F~1(&Y)/&-. Hence we have (1). The claim (2) follows from (1) and Lemma 3.2, since
Xp" ([, < il (1) = X5 (1, 1)), a

By Proposition 9.4, Xp1™ (1) N X2 (73) is isomorphic to the perfect closed sub-
scheme of (P"~1)Pf defined by two equations

n n
3
q _ q —
E T =0, E Tidh = 0.
i—1 i=1

Since all non-degenerate hermitian forms on IE';"‘2 are isomorphic, the above scheme is
isomorphic to the perfect closed subscheme of (P"~1)Pf defined by two equations

n n

1 34+1
g it =0, E 2 =0.
i=1 i=1
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9.2 Intersection of components for v; and v, when n is even.

Assume that n is even in this subsection. We put g, = w7 = gg=Ervitten) A =
g\ and &, = g,&,.

Proposition 9.5. Let i # r. Assume that XSI(TZ*) N XEI’““J (1) is non-empty. Then we
have Ay C Ay, WAy, C @ Ay and

length(Ay /Ay N Ay) = length(Ay /AL, N Ay ) + 7 (9.8)
Let Py, be the parabolic subgroup of G that is the stabilizer of the filtration
Ey C ?Dgxﬂn + &y C EL,, N w_lé'x/ C w_lgﬂ.

We put j; = length((wA,, + Aw)/Aw), jo = length((A,, N @ *Ay)/Ay) and define
w, € .S, by

Jti—1 ifji+1<75< 7
we(j) =S J—Je—i+r fja+1<j<jot+i—1
j otherwise.

Then we have ) ) )
X () N X (7)) = Xpr (70)e, o)

Proof. By Proposition 8.3, X:fl ’II(T:) is parametrized by £ --+ £, bounded by v such

that @& C F(EY). By the identification (6.1), the subscheme X;’m(rz*) N Xbl’m/(rj) C
X (%) is given by the conditions

length((€ + &,,)/Es) =i — 1, length(E,,/ENEyy) = i (9.9)

and w&,, C £ C w '€, Let & € XSZ$(TZ*) N XEI’I/ (7). Since w&,, C &£, we have

F(&Y) C &, Hence &y C E C F(EY) C&,,. We also have @&, , C € C w'&,. By the
equality

length((€ + &) /Exr) + length(E, . /Exr N Ew)
= length((€ + &,,)/E) + length(E/E,) + length(Ey /€ N Ew),

length(£/€,) =r — 1 and (9.9), we have (9.8).

Since we have (9.8), by the above argument, for any £ parametrizing X;'I (7% the
condition (9.9) holds if and only if length((€ + &,,+)/E:.r) =@ — 1, which is equivalent to
length((E+ (ExpNw 1))/ (ExrNwE,)) = i —1. Therefore the subscheme )D(Ei’I(TZ»*) N

b2’/ _x br,x’' [ %\ - . .. .
X% (rr) € X0 (1) is given by the conditions length((€ + (&, N@w ™ 'Ew))/(Exr N

r

w'€y)) =i—1and w&,, + & C E. This implies the claim. O
Assume that x # 2’

Proposition 9.6. Assume that XEI’m(T:) ﬂXEI’z/ (1) is not empty. Then we have l, , <

T

r—1 and wlA, C Ay. The intersection XEI’I(T*) ﬂX,E’I’x/ (1) is parametrized by € --» &,

T T

bounded by v} such that w& C F(EY) and € --» €, is also bounded by v}. In particular,
it 1s isomorphic to

{HeG™(r—1—lp, o "(AsNAy)/(Ay + Ap)) | H C Frob(HH)} .
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Proof. Assume that £ is a point of XBI’x(T:) N XEI’x/ (17). Since w& C F(£Y) and both
E--+&, and £ --» &, are bounded by v, we have the following chain conditions:

ECECwF(EY) cw &,
Ey CECw 'F(EY) Ccw &

The inclusion follows from &, C € C w™&,,. Note that length(w ' F(£Y)/E) = 2, while
both length(£/&,) and length(£/E,) are r — 1. Then £, N E,» and & are related by

Eo+En CECTIF(E) Co H(E,NE).
Since 1, ,» = length((&€, + &€)/E:), we have
lyw =1 —1—length(E/(E, + Ev)).

Hence we have [, ,» <r — 1.
The isomorphism in the claim is given by sending & to £/(&, + E») C w Y& N
gx’)/(gm+gx’)- [l

10 Example

In this section, we study in details the case where n = 6. We identify the moduli
parametrizing modification £ C &, bounded by v} with (P?)Pf by taking a basis of A,
such that the Hermitian pairing is the standard one. Let P, ,» 1 be the projective subspace
of (P°)P! defined by the condition wé';f » C E. Let P, v _ be the projective subspace of
(IP’5)pf defined by the condition 5;’ » C €. We note that P, ,» . and P, ,» _ are isomorphic
to (P°~42)Pf and (P92~1)Pf respectively.

In the following, we freely use Proposition 9.2 to determine the range of j; and j,.

10.1 Intersection of components for 1,

We may assume that x # 2’. The intersection is not empty only if [, ,» = 1, since if £
is in the intersection we have & C £, N &, and € C &£, is bounded by vf. In this case,
di =0,dy =1, j1 = jo =0Dby (9.1) and d; < dy. The intersection is P, ,, _, which is a
point given by £, N &,

10.2 Intersection of components for v; and v,

If z = 2/, then the intersection is isomorphic to the perfect closed subscheme of (IP5)Pf
defined by two equations

6 6
3
A @ _
E x;xy_; =0, g xix7_; =0
i=1 =1

by Proposition 9.4.
We assume that = # z’. We can check claims in §10.2.1 and §10.2.2 using Proposition
9.2. Especially, the conditions (9.3) and (9.4) are automatically satisfied in these cases.
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10.2.1 dy=0,dy =1

In this case, 7; = 0 and j, = 1. The intersection is equal to the perfect closed subscheme
of P, ,» + defined by equation
5
Z zxg_, = 0.
i=1

1022 d1 = 0, d2 - 2
In this case, j; = 0 and jo = 1. The intersection is P, _, which is isomorphic to (P*)Pf,

Remark 10.1. If dy = dy = 1, then there is no jo € N satisfying the condition in
Proposition 9.2.

10.3 Intersection of components for s

Let (£4,&-) be a point of X 161,4([1])pf. The hermitian pairing on V' induces a pairing on
&,/ since we have £, C F(EY) and £- C F(&Y). We take a basis vy, vs,v3 of £, /€
such that v, € F7Y(EY)/E_, vy € E,/E_. Let & be a point of )%EE’”C(T;) in the fiber of
(€4, &) under ]

o X2 () = Xpa (1)

We can take a generator v = x1v; + x9ve + v3 of E/E_ for xq, 29 € k, since € ¢ E,. Then
we have

(v,F(v)) = 21 (v, F(v3)) + 2(va, F(v3)) + 25 (vs, F(va)) + (v3, F(v3))

because (w, F(w')) = 0 for w,w" € &,/E_ and (vs, F(v1)) = 0. Hence the fiber of (£,,E_)
under 7 is defined by

x1{v1, F(v3)) + x2(ve, F(v3)) + 23 (v3, F(v2)) + (v3, F(v3)) =0 (10.1)

in (A%)P'. We note that ({vy, F(v3)), (va, F(v3))) # (0,0) because vz ¢ E,/E_.
We describe the fiber of

. vbo,x/ %
T st X e <72)Pm,xu[w3‘1,j2] NPary, |, (

%IJQ; ‘@jl,h)pf - Xlé’4([1])pf

Ti1,32 Px,x/v[wjl»jz}
and determine its dimension when

(g2 (mg) X2 ()
Pz,z”[wjl 7j2}

is not empty. We recall that length(€; _/€_) = dj, ;, by Lemma 9.1. We note that
if &€ C £ _ the condition (10.1) is automatic by (9.2). In the following 5 cases, the
condition on the relation between £ and £, _ follows from (9.4).

10.3.1 d1 == 0, dg =1

In this case, 0 < 71 <1 and j, = 0. We have dj, ;, = 2 — ji. The fiber of 7; ¢ is given by
the condition £ ¢ £, _, where the dimension of the fiber is 1.
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10.3.2 dy=0,dy =2

In this case, 0 < j; <1 and 0 < j, < 1. We have d;, j, = 1 — ji + jo. The fiber of 7;,
is given by the condition £ ¢ &£, _, where the dimension of the fiber is 1. The fiber of
7,1 1s given by the condition & C &, _, where the dimension of the fiber is 1 — j; since
length(&L /&) =2 — ji.

10.3.3 dy=1,d, =1

In this case, j; = 0 and j, = 0. We have dj, ;, = 2. The fiber of m is given by the
condition £ C &; _, where the dimension of the fiber is 1 since length(&, _/E_) = 2.
1034 dl = 0, d2 - 3

In this case, j; = 0 and j, = 1. We have d;, ;j, = 1. The fiber of my; is given by the
condition & = &4 _, where the dimension of the fiber is 0.

10.3.5 dy=1,dy, =2

In this case, j; = 0 and j» = 0. We have d;, ;, = 1. The fiber of my( is given by the
condition & = £, _, where the dimension of the fiber is 0.

10.4 Intersection of components for v; (1 <i<2) and 13

In this case, the intersection is given by Xﬁf’x/(Tg‘)p ,.ws] as Proposition 9.5, and

x,3,x

XEE’Q:/(T:f) is isomorphic to X]g([l])pf by Proposition 8.3.

10.5 Intersection of components for v;

In the following two cases, the claims follow from Proposition 9.6.

10.5.1 [, =1
The intersection is isomorphic to the perfection of the Fermat hypersurface defined by
TG + Toxh + xyrd + x42f =0

in P3.

10.5.2 [, =2

The intersection is a point given by &, + &,.

11 Shimura variety

*

In this section, we explain how the study of X ;’i’zo (17) is related to the supersingular
locus of a Shimura variety, recalling previously known results.
Let E be a quadratic imaginary field, and let V be an n-dimensional Hermitian space

over E with signature (2,n — 2) at infinity. Fix a prime p # 2 inert in E. Further assume
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that V®gQ,2 contains a self-dual Z,2 lattice A. Let G = GU(V) be the general associated
unitary group. We put G = GU(A) as before.

We take a basis of V¢ =V ®g C over C such that the Hermitian form is given by the
matrix diag(ls, —1,-2). Let h: Resc/r Gue — Gr be the morphism of algebraic groups
over R such that h(z) corresponds to diag(z - 19,z - 1,,_9) for z € C* under

G(R) C Aute(Ve) ~ GL,(C),

where the last isomorphism is given by the basis taken above. Let X be the G(R)-
conjugacy class of h. Then (G, X) is a Shimura datum.
We have an isomorphism

(ReS(C/R Gm(C)(C = Gm(C X Gm(C

of algebraic groups over C induced by the isomorphism C®grC ~ CxC; a®b +— (ab,ab).
We define p, by the composition

he
Gm(C — Gm(c X Gm(C ~ (ReSC/]R Gm(C)(C — G(Cv

where the first morphism is the inclusion into the first factor. Let pu: Gnp — Gg be
the morphism of algebraic over F such that u(z) corresponds to (diag(z - 1o, 1,_2), 2) for
z € E* under the isomorphism

GE‘ ~ GLn(E) X GmE

given by taking a basis of V over E. Then p; and uc are in the same G(C)-conjugacy
class. We note that the reflex field E(G,X) of (G, X) is £ if n # 4 and Q if n = 4.

Let K? C G(AY}) be a sufficiently small open compact subgroup. Let K, C G(Q,) be
a hyperspecial subgroup. We put K = K?K, C G(A¢). Let Shi(G,X) be the canonical
model over E(G,X) of the Shimura variety attached to (G,X) and K. Let .#x (G, X) be
the canonical integral model of Sh (G, X) over Opcx), ) constructed in [Kis10].

Let Sk (G, X) be the perfection of % (G, X) @ F,. We have the Newton map

N: Sk(G,X)(F,) — B(G, i)

as in [XZ17, 7.2.7]. Let [b] € B(G, ") be the basic element. We write Sg (G, X)p for
the closed perfect subscheme of S (G, X) defined by N~([b]). We call Si(G,X); the
supersingular locus of Sk (G, X).

Remark 11.1. In [Kot92], a moduli space of abelian schemes with additional structures
1s constructed. It is isomorphic to a finite union of integral models of Shimura varieties.
Under the isomorphism, a point of Sk (G, X)) corresponds to a supersingular abelian
variety.

We take a point 2 € S (G, X)p(F,). We put L = W(Fp)[%]. Then we have a basic
element b, € G(L) and an algebraic group I, over Q as in [XZ17, 7.2.9]. We have
embeddings 1,(Q) C G(Af) and I,(Q) C J,, (Q,) as in [XZ17, 7.2.13]. Then we have the

isomorphism

L(Q)\ X, (by) x G(AF)/K? = Sk (G, X)p (11.1)
by [XZ17, Corollary 7.2.16]. We use notations in §8 for F' = Q,,.
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Proposition 11.2. We have dim S (G, X)) = n — 2. The irreducible components of
Sk (G, X)) are parametrized by

[ L@\G(@)/G(Z,)) x G(A})/ K.

1<i<r

For sufficiently small K?, a non-empty open subscheme of each irreducible component of
Sk (G, X)) is isomorphic to a non-empty open subscheme of X;’i’mo(Ti*) for some i, which
1s described in §8.

Proof. The first two claims follow from Proposition 8.1 and (11.1). The last claim is
proved in the same way as [Vol10, Theorem 6.1]. O
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