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Abstract

We study the supersingular locus of a reduction at an inert prime of the Shimura
variety attached to GU(2, n−2). More concretely, we realize irreducible components
of the supersingular locus as closed subschemes of flag schemes over Deligne–Lusztig
varieties defined by explicit conditions after taking perfections. Moreover we study
the intersections of the irreducible components. Stratifications of Deligne–Lusztig
varieties defined using powers of Frobenius action appear in the description of the
intersections.

1 Introduction

Shimura varieties play an important role in the study of number theory. One way to
approach the arithmetic of Shimura varieties is to construct integral models and study
their reductions. The geometry of the supersingular locus of the reduction of a Shimura
variety is especially useful information. One of the striking results in this direction is the
study of the supersingular locus of the reduction of the Shimura variety of GU(1, n− 1)
at an inert prime by Vollaard–Wedhorn in [VW11], where they give a description of the
supersingular locus and their intersections in terms of Deligne–Lusztig varieties. This
result is crucially used in [KR11].

A long standing problem since [VW11] is to extend such a result to unitary groups
of other signatures. The only result in this line is the work [HP14] of Howard–Pappas
on the GU(2, 2)-case, which relies on an exceptional isomorphism. A source of difficulty
is that the Shimura variety of GU(2, n− 2) is not fully Hodge–Newton decomposable in
the sense of [GHN19, Definition 3.1] if n ≥ 5. In such a case, we can not expect that the
supersingular locus is a union of Deligne–Lusztig varieties by [GHN19, Theorem B].

On the other hand, the study of the perfection of the supersingular locus is essen-
tially reduced to a study of an affine Deligne–Lusztig variety via the Rapoport–Zink
uniformization. Further, a construction of irreducible components of an affine Deligne–
Lusztig variety under some unramified condition is given by Xiao–Zhu in [XZ17]. In their
construction, we can rephrase the source of difficulty in the following way: Even though
the affine Deligne–Lusztig variety related to the Shimura variety of GU(2, n−2) is defined
using a minuscule cocharacter, non-minuscule cocharacters appear in the construction of
its irreducible components if n ≥ 5.
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The objective of this paper is to find an explicit description of the irreducible compo-
nents of the affine Deligne–Lusztig variety related to the Shimura variety of GU(2, n− 2)
in terms of Deligne–Lusztig varieties.

Let F be a non-archimedean local field. We write L for the completion of the maximal
unramified extension of F . Let G be the unramified general unitary group of degree n
over F . Let µ be the cocharacter of G corresponding to z 7→ (diag(z, z, 1, . . . , 1), z) under
an isomorphism GL ' GLn×Gm. Let Xµ∗($−1) denote the affine Deligne–Lusztig variety
for the dual µ∗ of µ and $−1 ∈ G(L), where $ is a uniformizer of F and we regard $−1

as an element of G(L) by embedding it into the Gm-component. We put r = [n/2]. Then
Xµ∗($−1) has r isomorphism classes of irreducible components, whose representatives are

given by Xbi,x0
µ∗ (τ ∗i ) for 1 ≤ i ≤ r as explained in §8. If i = 1 or i = n/2, then Xbi,x0

µ∗ (τ ∗i )
is isomorphic to the perfection of a Deligne–Lusztig variety as shown in Proposition 8.2
and Proposition 8.3.

Assume that 2 ≤ i ≤ [(n − 1)/2]. Then the action of a hyperspecial subgroup
Jτi(OF ) ⊂ G(F ) on Xbi,x0

µ∗ (τ ∗i ) does not factor through the finite reductive quotient
Jτi(OF/$) unlike the cases for i = 1, n/2. We construct a kind of Demazure resolution
Xi of X

bi,x0
µ∗ (τ ∗i ). We write X̊i and X̊bi,x0

µ∗ (τ ∗i ) for the inverse images in Xi and Xbi,x0
µ∗ (τ ∗i )

of the Schubert cell G̊rν∗i of an affine Grassmannian Grν∗i under natural morphisms Xi →
Xbi,x0

µ∗ (τ ∗i ) → Grν∗i . Explicitly, we construct a vector bundle Vi of rank 2i − 1 over the
perfection Yi of a Deligne–Lusztig variety. We have a natural morphism

φ1 : Vi → F(V ∨
i )

by a Hermitian pairing related to the unitary group G, where F(V ∨
i ) is some Frobenius

twist of V ∨
i (cf. (8.5)). Let Parti(GYi

) denote the flag scheme parametrizing subvector
bundles W ⊂ Vi of rank i− 1.

Theorem 1.1 (Theorem 8.6, Proposition 8.7). The scheme Xi is isomorphic to the closed
subscheme of Parti(GYi

) defined by the condition φ1(W ) ⊂ F(W ⊥) on W . Further X̊i is
isomorphic to X̊bi,x0

µ∗ (τ ∗i ).

Let us summarize the situation in the following diagram:

X̊bi,x0
µ∗ (τ ∗i )

∼ // X̊i

��

� � //

�

Xi

��

� � // Parti(GYi
)

��
G̊rν∗i

� � // Grν∗i Yi.

By Theorem 1.1 and the above diagram, X̊bi,x0
µ∗ (τ ∗i ) is cut out in Parti(GYi

) by two explicit
conditions: one is a closed condition in Theorem 1.1 and another is an open condition
given by G̊rν∗i ⊂ Grν∗i .

It is important to describe Xi, not only X̊i, in order to study the intersections of irre-
ducible components of Xµ∗($−1), because we need to understand a closure of X̊bi,x0

µ∗ (τ ∗i ).
We give a description of the intersections of the irreducible components in most cases in
§9. Here we state one of the results, which exhibits an interesting new phenomenon.

Proposition 1.2 (Proposition 9.4). The intersection Xb1,x0
µ∗ (τ ∗1 ) ∩Xb2,x0

µ∗ (τ ∗2 ) is isomor-
phic to the perfect closed subscheme of (Pn−1)pf defined by two equations

n∑
i=1

xq+1
i = 0,

n∑
i=1

xq3+1
i = 0.
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The perfect closed subscheme of (Pn−1)pf in Proposition 1.2 is the perfection of a
stratification of a Deligne–Lusztig variety with respect to relative positions of parabolic
subgroups and their twists by the third power of the Frobenius action. Such an inter-
section did not appear in the preceding research in fully Hodge–Newton decomposable
cases. Our study does not cover all the intersections in general because of some technical
difficulty which involves the study of vanishing of a ring with explicit generators and
relations, but it does cover all the cases if n ≤ 6.

In the construction of irreducible components of an affine Deligne–Lusztig variety by
Xiao–Zhu, they actually first construct X̊bi,x0

µ∗ (τ ∗i ), and then construct Xbi,x0
µ∗ (τ ∗i ) as a

closure of X̊bi,x0
µ∗ (τ ∗i ). In the study of the unitary case in this paper, we clarify that this

step in the construction is really necessary, i.e. we can not construct Xbi,x0
µ∗ (τ ∗i ) directly

by a fiber product that is similar to the one used to construct X̊bi,x0
µ∗ (τ ∗i ). This gives a

negative answer to a question of Xiao–Zhu (cf. Remark 7.4).
The method in this paper should work for unitary groups of other signatures since the

results in [XZ17] and equidimensionality of Satake cycle in §5 are available also for other
signatures. On the other hand, they will be more complicated for general signatures since
the number of isomorphism classes of irreducible components of the affine Deligne–Lusztig
varieties become larger. In this paper, we study the perfection of the supersingular locus
via affine Deligne–Lusztig varieties. However, once the geometry of the corresponding
affine Deligne–Lusztig varieties is understood using Demazure resolutions, we should be
able to write a similar moduli problem using p-divisible groups and study them without
taking perfections. That is a subject of [FHI23].

We explain the contents of each section. In §2, we recall a terminology on relative
positions in flag schemes. We also give some gluing constructions of reductive group
schemes. In §3, we recall Deligne–Lusztig varieties and their Bruhat stratifications. We
give also a new stratification using twists by a power of Frobenius map. We study the
irreducibility of the stratification in some unitary case. In §4, we recall affine Grass-
mannian and Satake cycles. In §5, we recall and generalize results on equidimensionality
of Satake cycles in [Hai06]. In §6, we recall a construction of irreducible components of
affine Deligne–Lusztig varieties in [XZ17]. In §7, we explain the setting of a unitary group
and apply the result in §5 to the unitary case. In §8, we give an explicit description of
irreducible components. In §9, we study the intersection of irreducible components. In
§10, we explain the results in the n = 6 case as an example. In §11, we explain a relation
between the affine Deligne–Lusztig varieties and the supersingular loci of reductions of
Shimura varieties in our case.
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2 Flag scheme

2.1 Relative position

Let G be a reductive group scheme over a scheme S . Let Par(G ) be the S -scheme of
parabolic subgroups of G . Let Dyn(G ) be the S -scheme of Dynkin for G constructed in
[SGA3-3, XXIV, 3.3].

Remark 2.1. If (T ,M,R) is a splitting of G in the sense of [SGA3-3, XXII, Définition
1.13] and ∆ is a set of simple roots, then we have a canonical isomorphism

Dyn(G ) ' ∆S . (2.1)

This is stated in [SGA3-3, XXIV, 3.4 (iii)] choosing a pinning, but the isomorphism
actually depends only on (T ,M,R) and ∆.

Let Oc(Dyn(G )) be the S -scheme of sets of open and closed subschemes of Dyn(G )
(cf. [SGA3-3, XXVI, 3.1]). We have a projective smooth morphism

t : Par(G )→ Oc(Dyn(G ))

of schemes as [SGA3-3, XXVI, Théorème 3.3]. For t, t′ ∈ Oc(Dyn(G ))(S ), we put

Part(G ) = t−1(t) ⊂ Par(G ), Part,t′(G ) = (t× t)−1(t, t′) ⊂ Par(G )×S Par(G ).

We recall results from [SGA3-3, XXVI. 4.5.3, 4.5.4]. Let Stand(G ) be the S -scheme of
pairs of parabolic subgroups of G in mutually standard positions. Let TypeStand(G ) be
the S -scheme of types of mutually standard positions in G . The natural morphism

t2 : Stand(G )→ TypeStand(G ),

which is the quotient morphism under the conjugacy action of G , is smooth. There is a
unique morphism

qG : TypeStand(G )→ Oc(Dyn(G ))×S Oc(Dyn(G ))

such that the diagram

Stand(G )
t2 //

��

TypeStand(G )

qG

��
Par(G )×S Par(G )

t×t // Oc(Dyn(G ))×S Oc(Dyn(G ))

is commutative. Let P be a parabolic subgroup scheme of G . Let Par(G ;P) be the
S -scheme of parabolic subgroups of G in standard positions relative to P. Let t ∈
Oc(Dyn(G ))(S ). We put

Part(G ;P) = Par(G ;P) ∩ Part(G ).

Then we have a morphism

tP : Part(G ;P)→ q−1
G (t(P), t)
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induced by t2. For an S -scheme S ′ and r ∈ (q−1
G (t(P), t))(S ′), we define Part(G ;P)r

by the fiber product
Part(G ;P)r //

��

S ′

r
��

Part(G ;P)
tP // q−1

G (t(P), t).

Remark 2.2. Let Q be a parabolic subgroup scheme of G . Let S ′ be an S -scheme. We
write G ′, P ′, Q′ for the base change of G , P, Q to S ′. Assume that a maximal torus
T ′ of G ′ is contained in P ′ ∩Q′. Then we have a natural isomorphism

WP′(T ′)\WG ′(T ′)/WQ′(T ′) ' q−1
G (t(P), t(Q))×S S ′ (2.2)

over S ′ as in [SGA3-3, XXVI. 4.5.3], where WP′(T ′), WG ′(T ′) and WQ′(T ′) are the
Weyl groups defined as [SGA3-2, XII, 2].

Notation 2.3. Assume that G is split and S is connected. Let (T ,M,R) be a splitting
of G and ∆ be a set of simple roots. Let (W,S) be the Coxeter system of (M,R,∆).
For I ⊂ S, let WI be the subgroup of W generated by I, and let t(I) be the element of
Oc(Dyn(G ))(S ) corresponding to I under (2.1). Conversely, let I(t) be the subset of S
corresponding to t under (2.1) for t ∈ Oc(Dyn(G ))(S ). We simply write Wt for WI(t).

2.2 Inner gluing

Definition 2.4. Let G0 be a reductive group scheme over a scheme S0. Let S be a
scheme over S0. An inner gluing over S of G0 is a pair (G , ϕ), where G is a reductive
group scheme over S and ϕ is a global section of the Zariski sheaf

IsomS (G0 ×S0 S ,G )/InnS (G0 ×S0 S )

on S .

Remark 2.5. Let V be a vector bundle of rank n on S . We put G = AutS (V ).
By taking Zariski local trivializations of V , we obtain an inner gluing (G , ϕV ) over S
of GLn,Z. This is independent of the choice of trivializations, because a difference of
trivializations induces an inner automorphism of GLn.

Lemma 2.6. Let π : S → S0 be a morphism of schemes. Let G0 be a reductive group
scheme over S0. Let (G , ϕ) an inner gluing over S of G0.

(1) The section ϕ induces isomorphisms

Oc(Dyn(G0))×S0 S
∼−→ Oc(Dyn(G )),

TypeStand(G0)×S0 S
∼−→ TypeStand(G )

which are compatible with qG0 and qG .

(2) Assume that G0 is split and S0 is connected. Let (T0,M,R) be a splitting of G0

and ∆ be a set of simple roots. Let (W,S) be the Coxeter system of (M,R,∆). Let
t0, t

′
0 ∈ Oc(Dyn(G0))(S0). Let t, t

′ ∈ Oc(Dyn(G ))(S ) denote the pullbacks to S of
t0, t

′
0. Then ϕ induces an isomorphism

(Wt0\W/Wt′0
)S

∼−→ q−1
G (t, t′).
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Proof. There is a Zariski covering {Uλ}λ∈Λ of S and a family of isomorphisms ϕλ : G0×S0

Uλ
∼−→ G ×S Uλ such that ϕλ is compatible with ϕ|Uλ

. Then the family of isomorphisms
ϕλ induce isomorphisms

Oc(Dyn(G0))×S0 Uλ
∼−→ Oc(Dyn(G ×S Uλ)).

These isomorphisms glue together to give the first isomorphism in the claim (1) by
[SGA3-3, XXIV, 3.4 (iv)].

The family of isomorphisms ϕλ induce also isomorphisms

Stand(G0)×S0 Uλ
∼−→ Stand(G ×S Uλ).

By taking the quotients by the conjugacy actions of G0 ×S0 Uλ ' G ×S Uλ, we obtain
isomorphisms

TypeStand(G0)×S0 Uλ
∼−→ TypeStand(G ×S Uλ).

These isomorphisms glue together to give the second isomorphism in the claim (1) because
we take quotients by conjugacy actions. By the constructions, two isomorphisms in the
claim (1) are compatible with qG0 and qG .

By (1), we have an isomorphism

q−1
G0
(t0, t

′
0)×S0 S

∼−→ q−1
G (t, t′) (2.3)

induced by ϕ. The claim (2) follows from [SGA3-3, XXII, Proposition 3.4] and (2.3).

3 Stratification of Deligne–Lusztig variety

3.1 Deligne–Lusztig variety

Let G0 be a connected reductive group over Fq. We take a maximal torus and a Borel
subgroup T0 ⊂ B0 ⊂ G0 over Fq. We write G, B and T for the base changes to Fq of
G0, B0 and T0. Let (W,S) be the Coxeter system of G with respect to T and B. For
I, J ⊂ S, we write ParI(G) and ParI,J(G) for Part(I)(G) and Part(I),t(J)(G).

For I, J ⊂ S and w ∈ W , we put

ParI,J(G)[w] = t−1
2 (rw),

where rw ∈ (q−1
G (t(I), t(J)))(Fq) corresponds to [w] ∈ WI\W/WJ by Lemma 2.6 (2). Let

ParI,J(G)≤[w] be the closed reduced subscheme of ParI,J(G) determined by⋃
[w′]≤[w]

ParI,J(G)[w′].

Let F be the q-th power Frobenius endomorphism of G obtained from G0. Let I ⊂ S
and w ∈ W . For ∗ ∈ {[w],≤[w]} with [w] ∈ WI\W/WF(I), let X

F
I (∗) be the locally closed

subscheme of ParI(G) defined by the fiber product

XF
I (∗) //

��

ParI,F(I)(G)∗

��
ParI(G)

(id,F) // ParI(G)× ParF(I)(G).
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If PI is a parabolic subgroup of G of type I containing B, then XF
I (∗) is identified with

{gPI ∈ G/PI | g−1 F(g) ∈ PI\G/PF (I)
∼= WI\W/WF(I) is ∗}

under the isomorphism ParI(G) ' G/PI . If there is no confusion, we simply write XI(∗)
for XF

I (∗). See [VW11, §4.4] for general properties of XI([w]).
For I ⊂ J ⊂ S, we have a natural morphism

πI,J : XI([w])→ XJ([w])

which sends a parabolic subgroup P of G of type I to a unique parabolic subgroup P′ of
G of type J containing P.

3.2 Bruhat stratification

Let I, J ⊂ S and w ∈ W . Let PJ be a parabolic subgroup of G of type J . For ∗ ∈
{[w′],≤[w′]} with [w′] ∈ WI\W/WJ , we let XI([w])PJ ,∗ be the locally closed subscheme
of XI([w]) defined by the fiber product

XI([w])PJ ,∗
//

��

ParI,J(G)∗

��
XI([w])

(id,PJ ) // ParI(G)× ParJ(G).

If PI and PJ are parabolic subgroups of G of type I and J containing B respectively,
then XI([w])PJ ,∗ is identified with

{gPI ∈ XI([w]) ⊂ G/PI | g−1 ∈ PI\G/PJ ' WI\W/WJ is ∗}.

3.3 Stratification relative to Frobenius twists

For 1 ≤ i ≤ m, let Fi be a Frobenius endomorphism of G which descends it to an
algebraic group over a finite field. Let w1, . . . , wm ∈ W . For ∗i ∈ {[wi],≤[wi]} with
[wi] ∈ WI\W/WFi(I) and 1 ≤ i ≤ m, let XF1,...,Fm

I (∗1, . . . , ∗m) be the locally closed
subscheme of ParI defined by the fiber product

XF1,...,Fm

I (∗1, . . . , ∗m) //

��

∏
1≤i≤m ParI,Fi(I)(G)∗i

��
ParI(G)

∏
1≤i≤m(id,Fi)

//
∏

1≤i≤m

(
ParI(G)× ParFi(I)(G)

)
.

ThenXF1,...,Fm

I ([w1], . . . , [wm]) for [wi] ∈ WI\W/WFi(I) and 2 ≤ i ≤ m give a stratification

ofXF1
I ([w1]). We note thatXF1,...,Fm

I ([w1], . . . , [wm]) =
⋂

1≤i≤m XFi
I ([wi]) by the definition.

3.4 Unitary case

We put V0 = Fd
q2 equipped with the hermitian form

Fd
q2 × Fd

q2 → Fq2 ; ((ai)1≤i≤d, (a
′
i)1≤i≤d) 7→

d∑
i=1

aqia
′
d+1−i. (3.1)
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We put G0 = GU(V0). By taking the first factor of the decomposition

Fq2 ⊗Fq Fq2 ' Fq2 × Fq2 ; a⊗ b 7→ (ab, abq),

we have an isomorphism
G ' GLd×Gm. (3.2)

Let T ⊂ B ⊂ G be the maximal torus and the Borel subgroup determined by the diagonal
torus Td and the upper triangular subgroup Bd of GLd under (3.2). Let (WG, {s1, . . . , sd−1})
be the Coxeter system of G with respect to T and B. where si corresponds to the simple
root

Td ×Gm → Gm; (diag(x1, . . . , xd), z) 7→ xix
−1
i+1

of GLd×Gm under (3.2). For 1 ≤ i1 < · · · < il ≤ d− 1, we put

I i1,...,ild = {si}i∈{1,...,d−1}\{i1,...,il}.

Example 3.1. By the correspondence between parabolic sugroups of GLd of type I1d and
lines in V0, the scheme XI1d

([1]) parametrizes lines L in V0 such that L ⊂ V0 is contained

in F(L⊥) ⊂ F(V∨
0 ) under the identification V0 ' F(V∨

0 ) given by the pairing (3.1).
Writing the coordinates of L ∈ Pd−1 as (x1, . . . xd), we see that XI1d

([1]) is isomorphic to
the Fermat hypersurface defined by

d∑
i=1

xix
q
d+1−i = 0

in Pd−1.

Lemma 3.2. Assume that 2 ≤ i ≤ d/2. The schemes XF,F2,F3

Ii−1
d

([1],≤[si−1], [1]) and

XF,F2

Id−i
d

([1],≤[sd−i]) are irreducible.

Proof. The scheme XIi−1,d−i
d

([1]) is irreducible by [BR06, Theorem 1]. Hence, it suffices

to show the following claims:

(1) The image of
πIi−1,d−i

d ,Ii−1
d

: XIi−1,d−i
d

([1])→ XIi−1
d

([1])

on Fq-valued points is equal to XF,F2,F3

Ii−1
d

([1],≤[si−1], [1])(Fq).

(2) The image of
πIi−1,d−i

d ,Id−i
d

: XIi−1,d−i
d

([1])→ XId−i
d

([1])

on Fq-valued points is equal to XF,F2

Id−i
d

([1],≤[sd−i])(Fq).

We show the claim (1). We equip Fd

q with the pairing

Fd

q × Fd

q → Fq; ((xi)1≤i≤d, (yi)1≤i≤d) 7→
d∑

i=1

xiyd+1−i. (3.3)

8



For an Fq-vector subspace V ⊂ Fd

q , let V
⊥ denote the orthogonal complement of V with

respect to the pairing (3.3). The q-th power Frobenius element F acts on Fd

q . A point of

XIi−1,d−i
d

([1])(Fq) corresponds to a filtration 0 ⊂ V1 ⊂ V2 ⊂ Fd

q such that dim V1 = i − 1,

dimV2 = d− i and
V1 ⊂ F(V ⊥

2 ) ⊂ V2 ⊂ F(V ⊥
1 ). (3.4)

The condition (3.4) implies
V1 + F2(V1) ⊂ F(V ⊥

2 ). (3.5)

Therefore we have

F3(V1) ⊂ F(V1 + F2(V1)) ⊂ F2(V ⊥
2 ) ⊂ F(V2) ⊂ V ⊥

1 ∩ F2(V ⊥
1 ) ⊂ V ⊥

1 . (3.6)

The conditions (3.4), (3.5) and (3.6) imply that V1 defines a point of

XF,F2,F3

Ii−1
d

([1],≤[si−1], [1])(Fq),

because dimF(V ⊥
2 ) = i. To show the claim (1), it suffices to show that the image of

πIi−1,d−i
d ,Ii−1

d
on Fq-valued points contains

XF,F2,F3

Ii−1
d

([1], [si−1], [1])(Fq), (3.7)

because XIi−1,d−i
d

([1]) is proper. A point of (3.7) gives an Fq-vector subspace V1 ⊂ Fd

q of

dimension i− 1 such that

V1 ⊂ F(V ⊥
1 ), dim(V1 + F2(V1)) = i, F3(V1) ⊂ V ⊥

1 . (3.8)

The condition implies
F(V1 + F2(V1)) ⊂ V ⊥

1 ∩ F2(V ⊥
1 )

and dim V ⊥
1 ∩ F2(V ⊥

1 ) = d− i. We take V2 ⊂ Fd

q such that F(V2) = V ⊥
1 ∩ F2(V ⊥

1 ). Then

(V1, V2) defines a point of XIi−1,d−i
d

([1])(Fq) whose image under πIi−1,d−i
d ,Ii−1

d
is the point of

(3.7) corresponding to V1. Therefore we obtain the claim (1).
The claim (2) is proved similarly.

4 Affine Grassmannian

Let F be a non-archimedean local field with residue field k = Fq. Let OF be the ring of
integers of F . Let $ be a uniformizer of F . For a perfect k-algebra R, we put

WOF
(R) = lim←−

n

W (R)⊗W (k) OF/$
n,

DR = Spec(WOF
(R)) and D∗

R = Spec(WOF
(R)[ 1

ϖ
]). For an affine group scheme H of

finite type over OF , we define the jet group L+H and the loop group LH by

L+H(R) = H(WOF
(R)), LH(R) = H(WOF

(R)[
1

$
]).

We put L = WOF
(k)[ 1

ϖ
]. We note that LH(k) = H(L).
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Let G be a reductive group scheme over OF . Let T be the abstract Cartan subgroup of
G. Let Φ ⊂ X•(T ) denote the set of roots of G in the weight lattice, and X•(T )

+ ⊂ X•(T )
the semi-group of dominant coweights in the coweight lattice. Let ρ ∈ X•(T )Q be the
half sum of all positive roots. We fix a Borel subgroup B ⊂ G. Let U be the unipotent
radical of B. Then T is canonically identified with B/U .

Let GrG denote the affine Grassmannian over k of G defined by GrG = LG/L+G. For
a finite etale extension O′ of OF with residue field k′, we have a natural isomorphism

(GrG)k′ ' GrGO′ (4.1)

by the construction. We simply write Gr for GrG if there is no confusion. Then Gr is
an ind-perfectly projective scheme by [BS17, Corollary 9.6]. Let E0 denote the trivial
G-torsor over OF . For a perfect k-algebra R, we have

Gr(R) =

{
(E , β)

∣∣∣∣ E is a G-torsor on DR,
β : E|D∗

R
' E0|D∗

R
is a trivialization.

}
(4.2)

(cf. [Zhu17, Lemma 1.3]). We sometimes write β : E 99K E0 for β : E|D∗
R
' E0|D∗

R
in

(4.2), and call it a modification. Given a point (E , β), one can define a relative position
invariant inv(β) ∈ X•(T )

+.
Let µ ∈ X•(T )

+. The Schubert variety Grµ is the closed subscheme of Grk parametriz-

ing pairs (E , β) such that inv(β) � µ. The Schubert cell G̊rµ is the open subscheme of
Grµ parametrizing pairs (E , β) such that inv(β) = µ.

For a sequence µ• = (µ1, . . . , µn) of dominant coweights, let Grµ• be the scheme over
k parametrizing sequences of modifications (βi : Ei 99K Ei−1)1≤i≤n with E0 = E0 such that

inv(βi) � µi for each i. The open subscheme G̊rµ• ⊂ Grµ• is defined by the condition
that inv(βi) = µi for each i. The convolution map mµ• : Grµ• → Grk sends a sequence of
modifications to the composition (En, β1 ◦ · · · ◦ βn).

Let λ• = (λ1, . . . , λl) and µ• = (µ1, . . . , µn) be two sequences. We put

Gr0λ•|µ• = Grλ• ×Grk
Grµ• , G̊r

0

λ•|µ• = G̊rλ• ×Grk
G̊rµ• ,

where the products are over the convolution maps mλ• : Grλ• → Grk, mµ• : Grµ• → Grk
and their restrictions respectively. We write

mλ•|µ• : Gr0λ•|µ• → Grk

for the natural projection. We simply write m for mλ•|µ• if there is no confusion. For
1 ≤ j ≤ l, we define

prj : Gr0λ•|µ• → Gr(λ1,...,λj)

by sending ((αi)1≤i≤l, (βi)1≤i≤n) to (αi)1≤i≤j.
An irreducible component of Gr0λ•|µ• of dimension 〈ρ, |λ•| + |µ•|〉 is called a Satake

cycle. Let Sλ•|µ• be the set of Satake cycles in Gr0λ•|µ• . We sometimes write Gr0,aλ•|µ•
instead of a ∈ Sλ•|µ• for the Satake cycle. We put

G̊r
0,a

λ•|µ• = Gr0,aλ•|µ•
∩G̊r

0

λ•|µ• .

Lemma 4.1. For a ∈ Sλ•|µ•, the scheme G̊r
0,a

λ•|µ• is not empty.
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Proof. The dimension of Gr0λ•|µ• \G̊r
0

λ•|µ• is less than 〈ρ, |λ•|+ |µ•|〉 by [XZ17, Proposition
3.1.10 (1)]. Hence we obtain the claim.

We fix an embedding T ⊂ B. Let µ ∈ X•(T ). Let O′ be OL = WOF
(k) or a finite

etale extension of OF which splits G. For α ∈ Φ, let Uα,O′ denote the root subgroup of
GO′ corresponding to α. Let Pµ,O′ denote the parabolic subgroup of GO′ generated by
TO′ and Uα,O′ for α ∈ Φ such that 〈α, µ〉 ≥ 0.

We write $µ for µ($) ∈ G(L) = LG(k). Let [$µ] denote the point of Grk determined

by $µ. For µ ∈ X•(T )
+, the Schubert cell G̊rµ is the L+G-orbit of [$µ] by [Zhu17,

Proposition 1.23 (1)].

Lemma 4.2. For a ∈ Sλ•|µ, the natural morphism Gr0,aλ•|µ → Grµ is surjective.

Proof. The natural morphism G̊r
0,a

λ•|µ → G̊rµ is surjective, because the action of L+G on

G̊rµ is transitive and G̊r
0,a

λ•|µ is a nonempty scheme stable under the action of L+G by

Lemma 4.1. Hence we obtain the claim because Gr0λ•|µ → Grµ is perfectly proper and

G̊rµ ⊂ Grµ is Zariski dense by [Zhu17, Proposition 1.23 (3)].

For λ ∈ X•(T ), let Sλ be the (LU)k-orbit of$
λ in Grk. For λ ∈ X•(T ) and µ ∈ X•(T )

+,
an irreducible component of Sλ ∩ Grµ is called a Mirković–Vilonen cycle after [MV07].
Let MVµ(λ) be the set of the Mirković–Vilonen cycles in Sλ ∩Grµ. We sometimes write
(Sλ ∩Grµ)

b instead of b ∈MVµ(λ) for the Mirković–Vilonen cycle.

Let (Ĝ, B̂, T̂ ) be the Langlands dual over Qℓ of (G,B, T ). For µ ∈ X•(T )
+ = X•(T̂ )+,

let Vµ denote the irreducible algebraic representation of Ĝ of highest weight µ. For an

algebraic representation V of Ĝ and λ ∈ X•(T ) = X•(T̂ ), let V (λ) denote the λ-weight
space of V . Then we have

|MVµ(λ)| = dimVµ(λ) (4.3)

by [GHKR06, Proposition 5.4.2] and [Zhu17, Corollary 2.8].
For ν, µ ∈ X•(T )

+ and λ ∈ X•(T ) such that ν+λ ∈ X•(T )
+, there is an injective map

iMV
ν : S(ν,µ)|ν+λ →MVµ(λ)

constructed by [XZ17, Lemma 3.2.7].

5 Equidimensionality of Satake cycles

Let µ• = (µ1, . . . , µn) ∈ (X•(T )
+)n and λ ∈ X•(T )

+.

Lemma 5.1. The morphism mµ• : Grµ• → Grk is Zariski-locally trivial over G̊rλ in the

sense that for any point y of G̊rλ there is a Zariski open subspace V ⊂ G̊rλ with y ∈ V
and k-scheme Y such that m−1

µ• (V )→ V is identified with the projection Y ×k V → V .

Proof. Taking the base change to an unramified extension of OF , we may assume that G
is split by (4.1). As in the proof of [Hai06, Lemma 2.1], it suffices to show that

L+G→ L+G/(L+G ∩$λL+G$−λ)
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has a section Zariski-locally. Since L+U/(L+U ∩ $λL+U$−λ) is an open subscheme of
L+G/(L+G ∩$λL+G$−λ), it suffices to show that

L+U → L+U/(L+U ∩$λL+U$−λ)

has a section. We fix an identification Ga ' Uα,OF
for a positive root α. For a positive

root α, let L+
<⟨α,λ⟩Uα,OF

be the closed subscheme of L+Uα,OF
defined by the condition

xi = 0 for i ≥ 〈α, λ〉 for a point
∑∞

i=0 $
i[xi] of L

+Uα,OF
. Then the composition∏

α

L+
<⟨α,λ⟩Uα,OF

→ L+U → L+U/(L+U ∩$λL+U$−λ)

is an isomorphism. Hence we have a section.

Lemma 5.2. Assume that µ is a dominant minuscule cocharacter and w ∈ W . We have
an isomorphism

Swµ ∩Grµ ' L+Uk/((L
+U)k ∩$wµ(L+U)k$

−wµ).

In particular, Swµ ∩Grµ is the perfection of an affine space of dimension 〈ρ, µ+ wµ〉.

Proof. The first claim follows from [XZ17, (3.2.3)]. The second claim follows from the
first one as in the proof of [Hai06, Lemma 3.2].

Theorem 5.3. Assume that µi are minuscule. For a point y of G̊rλ, the fiber of mµ• : Grµ• →
Grk at y is equidimensional of dimension 〈ρ, |µ•| − λ〉.

Proof. This is proved in the same way as [Hai06, Theorem 3.1] using Lemma 5.1 and
Lemma 5.2 instead of [Hai06, Lemma 2.1 and Lemma 3.2] respectively.

Proposition 5.4. Assume that each µi is a sum of minuscule cocharacters. Then, for a
point y of G̊rλ, any irreducible component of the fiber m−1

µ• (y) whose generic point belongs

to G̊rµ• has dimension 〈ρ, |µ•| − λ〉.

Proof. This follows from Theorem 5.3 in the same way as [Hai06, Proposition 4.1].

6 Affine Deligne–Lusztig variety

Recall that L = WOF
(k)[ 1

ϖ
]. Let b ∈ G(L) and µ ∈ X•(T ). Let σ denote the q-th power

Frobenius element. We define the affine Deligne–Lusztig variety Xµ(b) by

Xµ(b) = {g(L+G)k ∈ Grk | g−1bσ(g) ∈ (L+G)k$
µ(L+G)k}.

Let B(G) be the set of σ-conjugacy classes of G(L). We define B(G,µ) ⊂ B(G) as in
[Kot97, 6.2]. Then Xµ(b) is non-empty if and only if [b] ∈ B(G,µ) by [Gas10, Theorem
5.1].

An element of B(G) is called unramified if it is contained in the image of the natural
map B(T )→ B(G). Let B(G)ur denote the set of unramified elements of B(G).

For χ ∈ X•(T ), we put

χ =
1

|〈σ〉χ|
∑

χ′∈⟨σ⟩χ

χ′ ∈ X•(T )σQ.
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The natural pairing X•(T )×X•(T )→ Z induces a pairing 〈 , 〉 : X•(T )σ ×X•(T )σQ → Q.
We put

X•(T )
+
σ = {[λ] ∈ X•(T )σ | 〈[λ], α〉 ≥ 0 for every α ∈ ∆}.

Then we have the bijection

X•(T )
+
σ ' B(G)ur; [λ] 7→ [$λ]

as in [XZ17, Lemma 4.2.3].
For τ ∈ X•(T ), we write Xµ(τ) for Xµ($

τ ). We assume that b = $τ for τ ∈ X•(T )
such that [τ ] ∈ X•(T )

+
σ . We can define the twisted centralizer Jτ over OF for $τ as in

[XZ17, 4.2.13]. We note that Jτ = G if [b] ∈ B(G)ur is basic.
We assume [XZ17, Hypothesis 4.4.1] for Jτ . Further, we assume that ZG is connected.
Let λ ∈ X•(T ) such that [λ] = [τ ] ∈ X•(T )

+
σ . We take δλ ∈ X•(T ) such that

λ = τ + δλ − σ(δλ). Let b ∈ MVµ(λ). Consider the condition Cb for ν ∈ X•(T )
that

λ+ ν − σ(ν) is dominant and b is in the image of iMV
ν : S(ν,µ)|λ+ν →MVµ(λ).

By [XZ17, Lemma 4.4.3], we take νb ∈ X•(T ) such that νb satisfies Cb and ν − νb is
dominant for any ν ∈ X•(T ) satisfying Cb. Such a νb is unique up to X•(ZG) by the
same lemma. We put τb = λ+ νb − σ(νb). Then we have the isomorphism

Jτ (F ) ' Jτb(F ); g 7→ $δλ+νbg$−δλ−νb .

We consider the isomorphism

Xµ(b) = Xµ(τ) ' Xµ(τb); gL+G 7→ $δλ+νbgL+G. (6.1)

Let a ∈ S(νb,µ)|λ+νb be the unique element such that b = iMV
νb

(a).
We define Xµ,νb(τb) by the fiber product

Xµ,νb(τb)
//

��

Gr0(νb,µ)|τb+σ(νb)

pr1×m

��
Grνb

1×ϖτbσ // Grνb ×Grτb+σ(νb) .

More concretely, we have

Xµ,νb(τb) = {g(L+G)k ∈ Grνb | g−1$τbσ(g) ∈ (L+G)k$
µ(L+G)k}.

Further, we define Xa
µ,νb

(τb) by the fiber product

Xa
µ,νb

(τb) //

��

Gr0,a(νb,µ)|τb+σ(νb)

��
Xµ,νb(τb)

// Gr0(νb,µ)|τb+σ(νb)
.

Let x0 denote [1] ∈ Jτ (F )/Jτ (OF ). We put

X̊b,x0
µ (τb) = Xa

µ,νb
(τb) ∩ G̊rνb .
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Let Xb,x0
µ (τb) denote the closure of X̊b,x0

µ (τb) in Xa
µ,νb

(τb). The scheme Xb,x0
µ (τb) is

irreducible of dimension 〈ρ, µ− τb〉 by [XZ17, Theorem 4.4.5].
By [XZ17, Theorem 4.4.14], there is a bijection between the set⊔

λ∈X•(T ), [λ]=[τ ]∈X•(T )+σ

MVµ(λ)× Jτ (F )/Jτ (OF )

and the set of irreducible components of Xµ(b) given by

(b, [g]) 7→ Xb,[g]
µ (τb) := gXb,x0

µ (τb),

where we regard X
b,[g]
µ (τb) as a subscheme of Xµ(b) by (6.1).

7 Unitary group

7.1 Setting

Let F2 be the quadratic unramified extension of F . Let OF2 denote the ring of integers
of F2. Let $ be a uniformizer of F . We put Λ = On

F2
equipped with the hermitian form

On
F2
×On

F2
→ OF2 ; ((ai)1≤i≤n, (a

′
i)1≤i≤n) 7→

n∑
i=1

σ(ai)a
′
n+1−i. (7.1)

We put G = GU(Λ). By taking the first factor of the decomposition

OF2 ⊗OF
OF2 ' OF2 ×OF2 ; a⊗ b 7→ (ab, aσ(b)),

we have an isomorphism
GOF2

' GLn×Gm. (7.2)

We put V = Λ⊗OF
F . Let Ĝ = GLn×Gm denote the dual group over Qℓ with a maximal

torus T̂ and a Borel subgroup B̂, which are the diagonal torus and the upper triangular
subgroup on the GLn-component. For µ ∈ X•(T )

+, let µ∗ ∈ X•(T )
+ be the element such

that Vµ∗ = V ∗
µ .

For an index i ∈ {1, . . . , n}, we will use the notation i∨ = n + 1 − i. The group

X•(T̂ ) has a basis {εi}ni=0, where ε0 is the projection to the Gm-component and εi is

the character of T̂ given by evaluating the (i, i) entry for i ≥ 1. In the following, all

cocharacters of T (equivalently, characters of T̂ ) will be written according to this basis.
We have σ(ε0) =

∑n
i=0 εi and σ(εi) = −εi∨ for 1 ≤ i ≤ n. For µ =

∑n
i=0 miεi ∈ X•(T )

+,
we have

µ∗ = −m0ε0 −
n∑

i=1

mn+1−iεi ∈ X•(T )
+.

7.2 Satake cycle

Let µ = ε0 + ε1 + ε2 ∈ X•(T ). We put r = [n/2]. We put

νi = ε1 + · · ·+ εi−1 − εi∨ − · · · − ε1∨ , τi = ε0
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for 1 ≤ i ≤ [(n− 1)/2], and

νr = ε1 + · · ·+ εr−1, τr = ε0 + ε1 + · · ·+ εn

if n is even. We put λi = −ε0 − εi − εi∨ for 1 ≤ i ≤ r.

Lemma 7.1. For λ ∈ −ε0 + (1 − σ)X•(T ), we have MVµ∗(λ) 6= ∅ if and only if λ ∈
{λ1, . . . , λr}. Further, MVµ∗(λi) is a singleton for 1 ≤ i ≤ r.

Proof. For λ ∈ X•(T ), we have dim Vµ∗(λ) ≤ 1, and Vµ∗(λ) is nonzero if and only if
λ = −ε0− εi− εj for some 1 ≤ i < j ≤ n. If −ε0− εi− εj ∈ −ε0+(1−σ)X•(T ) for some
1 ≤ i < j ≤ n, we must have j = i∨. Hence the claim follows from (4.3).

Let 1 ≤ i ≤ r. Note that τ ∗i +σ(ν∗
i ) = ν∗

i +λi = νi+ τ ∗i . Let bi be the unique element
of MVµ∗(λi). There is ai ∈ S(ν∗i ,µ

∗)|νi+τ∗i
such that iMV

ν∗i
(ai) = bi. Since iMV

ν∗i
is injective by

[XZ17, Lemma 3.2.7], the set S(ν∗i ,µ
∗)|νi+τ∗i

is also a singleton.

We study the Satake cycle Gr0,ai

(ν∗i ,µ
∗)|νi+τ∗i

.

Lemma 7.2. (1) The scheme G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

is irreducible.

(2) We have

Gr0,ai

(ν∗i ,µ
∗)|νi+τ∗i

= G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

.

Proof. Since S(ν∗i ,µ
∗)|νi+τ∗i

is a singleton, by Lemma 4.1, we know that there is only one

irreducible component of G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

whose dimension is equal to the dimension of

G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

. For the claim (1), it remains to show that G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

is equidimen-

sional. By the definition, G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

is equal to the inverse image of G̊rνi+τ∗i
under the

convolution morphism
m(ν∗i ,µ

∗) : Gr(ν∗i ,µ∗) → Gr .

Therefore the equidimensionality of G̊r
0

(ν∗i ,µ
∗)|νi+τ∗i

follows from Lemma 5.1 and Proposi-

tion 5.4. The claim (2) follows from (1).

We do not use the following lemma in the sequel, but it shows that a study of inter-
sections of irreducible components of affine Deligne–Lusztig varieties is more subtle than
intersections of Satake cycles.

Lemma 7.3. Assume that n ≥ 5.

(1) The actions of L+G on G̊r
0

(ν∗2 ,µ
∗)|ν1+τ∗1

and Gr0(ν∗1 ,µ∗)|ν1+τ∗1
are transitive.

(2) The Satake cycle Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

contains Gr0,a1

(ν∗1 ,µ
∗)|ν1+τ∗1

.

Proof. We show (1). It suffices to show that the number of the orbits under the action
of L+G on Gr0(ν∗2 ,µ∗)|ν1+τ∗1

is 2. Let (L+G)ν1+τ∗1
be the stabilizer of [$ν1+τ∗1 ] ∈ Grν1+τ∗1

in

L+G. Since the action of L+G on Grν1+τ∗1
is transitive, it suffices to show that the number

of the orbits in m−1
(ν∗2 ,µ

∗)|ν1+τ∗1
([$ν1+τ∗1 ]) under the action of (L+G)ν1+τ∗1

is 2. These orbits

are in a bijection with (Pν1+τ∗1 ,OL
)k\Gk/(Pµ,OL

)k. Hence the number of the orbits is 2.
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We show (2). By Lemma 4.2, the natural morphism Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

→ Grν2+τ∗2
is

surjective. Hence the intersection of Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

and Gr0(ν∗2 ,µ∗)|ν1+τ∗1
is not empty.

If the intersection of Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

and G̊r
0

(ν∗2 ,µ
∗)|ν1+τ∗1

is not empty, then Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

contains G̊r
0

(ν∗2 ,µ
∗)|ν1+τ∗1

because L+G acts transitively on G̊r
0

(ν∗2 ,µ
∗)|ν1+τ∗1

and G̊r
0

(ν∗2 ,µ
∗)|ν2+τ∗2

is stable under the action of L+G. Then Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

contains Gr0(ν∗1 ,µ∗)|ν1+τ∗1
, since

G̊r
0

(ν∗2 ,µ
∗)|ν1+τ∗1

is dense in Gr0(ν∗2 ,µ∗)|ν1+τ∗1
.

If the intersection of Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

and G̊r
0

(ν∗2 ,µ
∗)|ν1+τ∗1

is empty, the intersection of

Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

and Gr0(ν∗1 ,µ∗)|ν1+τ∗1
is not empty. Then Gr0,a2

(ν∗2 ,µ
∗)|ν2+τ∗2

contains Gr0(ν∗1 ,µ∗)|ν1+τ∗1

because L+G acts transitively on Gr0(ν∗1 ,µ∗)|ν1+τ∗1
and G̊r

0

(ν∗2 ,µ
∗)|ν2+τ∗2

is stable under the

action of L+G.

Remark 7.4. Lemma 7.3 (2) shows that Xa2
µ∗,ν∗2

(τ ∗2 ) is not irreducible. This answers a

question in [XZ17, Remark 4.4.6 (3)].

8 Irreducible Components

We note that [$−ε0 ] ∈ B(G,µ∗) is the basic class. Let Xbi,x0
µ∗ (τ ∗i ) be the closure in Xµ∗(τ ∗i )

of X̊bi,x0
µ∗ (τ ∗i ) fitting in the cartesian diagram

X̊bi,x0
µ∗ (τ ∗i ) //

��

G̊r
0,ai

(ν∗i ,µ
∗)|νi+τ∗i

pr1×m

��

G̊rν∗i
1×ϖτ∗i σ // G̊rν∗i × G̊rνi+τ∗i

.

By results in §6 and Lemma 7.1, we obtain the following proposition:

Proposition 8.1. The number of the G(F )-orbits of the irreducible components of Xµ∗(ε∗0)

is r. Representatives of r orbits are given by Xbi,x0
µ∗ (τ ∗i ) for 1 ≤ i ≤ r. The G(F )-

orbit of Xbi,x0
µ∗ (τ ∗i ) is parametrized by G(F )/G(OF ). The dimension of Xbi,x0

µ∗ (τ ∗i ) is
〈ρ, µ∗ − τ ∗i 〉 = n− 2.

If i = 1, the above construction defines a Deligne–Lusztig variety. If i = 2 and n ≥ 5,
this defines a variety that is not a Deligne–Lusztig variety.

By (4.1) and (7.2), we have an isomorphism

GrG⊗FqFq2 ' GrGLn ×Gm . (8.1)

We put E0 = On
F2

and L0 = OF2 and view them as trivial vector bundles on DFq2
. We

have an isomorphism
E0 ' F((E0)∨) (8.2)

given by (7.1). For any perfect Fq2-algebra R,

GrGLn ×Gm(R) =

(E ,L, β, β ′)

∣∣∣∣∣∣∣∣
E is a vector bundle on DR of rank n,
L is a line bundle on DR,
β : E|D∗

R
' E0|D∗

R
and

β′ : L|D∗
R
' L0|D∗

R
are trivializations.

 (8.3)
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by (4.2). Under the identification by (8.1), the Frobenius endomorphism of GrG⊗FqFq2

sends (E ,L, β, β ′) in (8.3) to

(F(E∨)⊗ L,L,F(β∨)−1 ⊗ β′, β′)

where
F(β∨)−1 ⊗ β′ : (F(E∨)⊗ L)|D∗

R
' (F((E0)∨)⊗ L0)|D∗

R
' E0|D∗

R

using (8.2) at the last isomorphism. We regard GrGLn as an open and closed sub-ind-
scheme of GrGLn ×Gm by

(E , β) 7→ (E ,L0, β, id).

If λ ∈ X•(T ) is trivial on Gm-component under the identification (7.2), then we view
GrG,λ as a subscheme of GrGLn ⊂ GrGLn ×Gm under the identification (8.1). Under the
identification by (8.1), the Frobenius endomorphism of GrG⊗FqFq2 becomes

(E , β) 7→ (F(E∨),F(β∨)−1)

in GrGLn . When we compare the positions two vector bundles on DR equipped with
trivializatins over D∗

R, they are compared through the trivializations. We put µGL =
ε1 + ε2.

8.1 Component for ν1

The following proposition describes an analogue of a component studied in [VW11].

Proposition 8.2. The irreducible component Xb1,x0
µ∗ (τ ∗1 ) is parametrized by E 99K E0

bounded by ν∗
1 such that $ F(E∨) ⊂ E . In particular, it is isomorphic to XI1n

([1])pf .

Proof. We have

Gr0,a1

(ν∗1 ,µ
∗)|ν1+τ∗1

= Gr0(ν∗1 ,µ∗)|ν1+τ∗1
= G̊r

0

(ν∗1 ,µ
∗)|ν1+τ∗1

since ν1 is minuscule. Hence we have Xb1,x0
µ∗ (τ ∗1 ) = X̊b1,x0

µ∗ (τ ∗1 ) = Xµ∗,ν∗1
(τ ∗1 ). By the

definition, Xµ∗,ν∗1
(τ ∗1 ) is parametrized by E 99K E0 bounded by ν∗

1 such that F(E∨) 99K E
is bounded by µ∗

GL. We note that the last condition is equivalent to that E 99K F(E∨) is
bounded by µGL. If E 99K E0 is bounded by ν∗

1 = ε1, then E0 99K F(E∨) is also bounded
by ε1. Therefore, when E 99K E0 is bounded by ν∗

1 , the condition that E 99K E0 99K F(E∨)
is bounded by µGL is equivalent to E ⊂ F(E∨) ⊂ $−1E . This is further equivalent to
$ F(E∨) ⊂ E , since we already have E ⊂ E0 ⊂ F(E∨).

The last isomorphism in the claim is given by sending E to F(E∨)/E0 ⊂ 1
ϖ
E0/E0,

where we have E0 ⊂ F(E∨) by E ⊂ E0 and (8.2).

By Proposition 8.2 and Example 3.1, Xb1,x0
µ∗ (τ ∗1 ) is isomorphic to the perfection of the

Fermat hypersurface defined by

n∑
i=1

xix
q
n+1−i = 0

in Pn−1.
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8.2 Components for νr when n is even.

The following proposition describes a generalization of a component studied in [HP14].

Proposition 8.3. Assume that n is even. The irreducible component Xbr,x0
µ∗ (τ ∗r ) is

parametrized by E 99K E0 bounded by ν∗
r such that $E ⊂ F(E∨). In particular, it is

isomorphic to XIr−1
n

([1])pf .

Proof. We have

Gr0,ar

(ν∗r ,µ
∗)|νr+τ∗r

= Gr0(ν∗r ,µ∗)|νr+τ∗r
= G̊r

0

(ν∗r ,µ
∗)|νr+τ∗r

since ν∗
r and νr + τ ∗r are minuscule. Hence we have Xbr,x0

µ∗ (τ ∗r ) = X̊br,x0
µ∗ (τ ∗r ) = Xµ∗,ν∗r (τ

∗
r ).

By the definition, Xµ∗,ν∗r (τ
∗
r ) is parametrized by E 99K E0 bounded by ν∗

r such that
1
ϖ
F(E∨) 99K E is bounded by µ∗

GL, because the GLn-component of τ ∗r ($) is the scalar
matrix $−1. The condition that 1

ϖ
F(E∨) 99K E is bounded by µ∗

GL is equivalent to
$E ⊂ F(E∨).

The last isomorphism in the claim is given by sending E to E/E0 ⊂ 1
ϖ
E0/E0.

Example 8.4. Assume that n = 4. Then Xbr,x0
µ∗ (τ ∗r ) is isomorphic to the perfection of

the Fermat hypersurface defined by

x1x
q
4 + x2x

q
3 + x3x

q
2 + x4x

q
1 = 0

in P3. This is a component which appears in [HP14, p.1689].

8.3 Non-minuscule case

Let 2 ≤ i ≤ [(n− 1)/2]. We put

νi,+ = ε1 + · · ·+ εi−1, νi,− = −εi∨ − · · · − ε1∨ .

We put ξi = ε1+ · · ·+ε2i−1. For a description of E parametrizing Xbi,x0
µ∗ (τ ∗i ), we introduce

an auxiliary space parametrizing modifications E− 99K E0 and E0 99K E+ bounded by
minuscule cocharacters such that E− 99K E and E 99K E+ are bounded by minuscule
cocharacters. Let (Grν∗i,+ ×Grν∗i,−)ξi be the subspace of Grν∗i,+ ×Grν∗i,− defined by the
condition that

E−
β−99K E0

β−1
+99K E+

is bounded by ξi for a point (E+
β+99K E0, E−

β−99K E0) of Grν∗i,+ ×Grν∗i,− . Let

(Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+))ξi

be the subspace of Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+) defined by the condition that

E−
β−99K E0

β−1
+99K E+

is bounded by ξi for a point

(E
β′
+99K E+

β+99K E0, E
β′
−99K E−

β−99K E0)

18



of Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+). We have a natural morphism

p1 : (Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+))ξi → (Grν∗i,+ ×Grν∗i,−)ξi .

Let Vi be the vector bundle of rank 2i − 1 over (Grν∗i,+ ×Grν∗i,−)ξi defined by E+/E−,
where (E+, E−) is a point of (Grν∗i,+ ×Grν∗i,−)ξi . We put Gi = Aut(Vi). Let ti,Z ∈
Oc(Dyn(GL2i−1,Z))(Z) be the image under

t(Z) : Par(GL2i−1,Z)(Z)→ Oc(Dyn(GL2i−1,Z))(Z)

of the parabolic subgroup of GL2i−1,Z defined as the stabilizer of Zi−1 ⊂ Zi−1⊕Zi = Z2i−1.
Let

ti ∈ Oc(Dyn(Gi))((Grν∗i,+ ×Grν∗i,−)ξi) (8.4)

be the element determined from ti,Z by Remark 2.5 and Lemma 2.6 (2).
We define a morphism

Ψ: (Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+))ξi → Parti(Gi)

by sending

(E
β′
+99K E+

β+99K E0, E
β′
−99K E−

β−99K E0)
to the stabilizer of E/E− ⊂ E+/E−, where we have the inclusions E− ⊂ E ⊂ E+ because
β′
+ and β′

− are bounded by ν∗
i,− and ν∗

i,+ respectively. Then Ψ is an isomorphism. Note
that a natural morphism

p0 : (Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+))ξi → Grν∗i

is an isomorphism over G̊rν∗i .
Recall that Xai

µ∗,ν∗i
(τ ∗i ) and Xµ∗,ν∗i

(τ ∗i ) are closed subspaces of Grν∗i . The condition for
the subspace

p−1
0 (Xµ∗,ν∗i

(τ ∗i )) ⊂ (Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+))ξi

is that E ⊂ F(E∨) ⊂ 1
ϖ
E .

For a point (E , E+, E−) of (Gr(ν∗i,+,ν∗i,−)×Grν∗
i
Gr(ν∗i,−,ν∗i,+))ξi , we put W = E/E− ⊂ E+/E−,

which is a subvector bundle of rank i − 1 since E 99K E− is bounded by ν∗
i,+. Let

W ⊥ ⊂ E∨−/E∨+ be the annihilator of W . Then we have W ⊥ = E∨/E∨+.
Let Yi be the closed subscheme of (Grν∗i,+ ×Grν∗i,−)ξi defined by the conditions

(1) E+ ⊂ F(E∨−),

(2) E− ⊂ F(E∨+),

(3) $ F(E∨−) ⊂ E−.

Then we have Yi = XIi−1,n−i
n

([1])pf under the identification given by sending (E+, E−) to

0 ⊂ $E+/$E0 ⊂ E−/$E0 ⊂ E0/$E0.

Assume that (E+, E−) is a point of Yi. The condition E ⊂ F(E∨) is equivalent to that
the image of W under the natural morphism

φ1 : E+/E− → F(E∨−)/F(E∨+) = F(E∨−/E∨+) (8.5)
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is contained in F(W ⊥). The condition F(E∨) ⊂ 1
ϖ
E is equivalent to that the image of

F($W ⊥) under the natural morphism

φ2 : E0/$E0 → E+/E−

is contained in W . We put

Xi = p−1
0 (Xµ∗,ν∗i

(τ ∗i )) ∩ p−1
1 (Yi).

Then Xi is the subscheme of p−1
1 (Yi) cut out by the conditions

φ1(W ) ⊂ F(W ⊥), (8.6)

φ2(F($W ⊥)) ⊂ W . (8.7)

Let p′0 and p′1 be the restrictions of p0 and p1 to Xi respectively. We have

p−1
0 (Xµ∗,ν∗i

(τ ∗i ))

p0

��

Xi
oo //

p′1 ""E
EE

EE
EE

EE
E

p′0xxrrr
rrr

rrr
rrr

p−1
1 (Yi)

p1

��
Xµ∗,ν∗i

(τ ∗i ) Yi.

We note that p0 and p′0 are isomorphisms over X̊bi,x0
µ∗ (τ ∗i ).

Lemma 8.5. The inverse image p−1
0 (X̊bi,x0

µ∗ (τ ∗i )) is contained in Xi.

Proof. Let (E , E+, E−) be a point of p−1
0 (X̊bi,x0

µ∗ (τ ∗i )). Then we have E− = E ∩ E0. By the
condition F(E∨) ⊂ 1

ϖ
E , we have

$ F(E∨−) = $ F((E ∩ E0)∨) = $(F(E∨) + E0) ⊂ E .

Hence we have
$ F(E∨−) ⊂ E ∩ E0 = E−.

This means that (E+, E−) is a point of Yi.

Let GYi
denote the restriction of Gi to Yi. We have an isomorphism

ΨYi
: p−1

1 (Yi) ' Parti(GYi
) (8.8)

induced by Ψ.

Theorem 8.6. The closed subscheme Xi ⊂ p−1
1 (Yi) ' Parti(GYi

) is defined by the condi-
tion φ1(W ) ⊂ F(W ⊥).

Proof. It suffices to show that the condition (8.7) is automatic. The condition (8.7) is
equivalent to $ F(E∨) ⊂ E under (8.8). Let (E , E+, E−) be a point of p−1

1 (Yi). Then we
have

$ F−1(E∨−) ⊂ E− ⊂ E .

By taking the dual, we have $ F(E∨) ⊂ E−. Hence the condition $ F(E∨) ⊂ E is satisfied.
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Proposition 8.7. The scheme X̊bi,x0
µ∗ (τ ∗i ) is isomorphic to the subscheme of p−1

1 (Yi)
defined by the condition E ⊂ F(E∨) and E ∩ E0 = E−.

Proof. Let X̊i and X̊µ∗,ν∗i
(τ ∗i ) be the inverse images of G̊rν∗i in Xi and Xµ∗,ν∗i

(τ ∗i ). By

Theorem 8.6, X̊i is equal to the subscheme of p−1
1 (Yi) defined by the condition E ⊂ F(E∨)

and E∩E0 = E−. The natural morphism p′−1
0 (X̊bi,x0

µ∗ (τ ∗i ))→ X̊bi,x0
µ∗ (τ ∗i ) is an isomorphism.

Hence it suffices to show that p′−1
0 (X̊bi,x0

µ∗ (τ ∗i )) = X̊i.

By Lemma 8.5, we have p′−1
0 (X̊bi,x0

µ∗ (τ ∗i )) ⊂ X̊i. On the other hand, X̊i is contained in

p−1
0 (X̊bi,x0

µ∗ (τ ∗i )), since X̊µ∗,ν∗i
(τ ∗i ) = X̊bi,x0

µ∗ (τ ∗i ) by Lemma 7.2.

9 Intersections

Let x, x′ ∈ Jτ (F )/Jτ (OF ). Let Λx and Λx′ be the lattices of V determined by x and x′.
We put

lx,x′ = lengthOF
(Λx/(Λx ∩ Λx′)) .

We note that

lx,x′ = lengthOF
((Λx + Λx′)/Λx) = lengthOF

(Λx′/(Λx ∩ Λx′))

by taking dual with respect to the hermitian pairing. We assume that $2Λx′ ⊂ Λx. This

assumption is satisfied if Xbi,x
µ∗ (τ ∗i ) ∩X

bi′ ,x
′

µ∗ (τ ∗i′) is non-empty for some i and i′, because
if E is in the intersection we have $Ex′ ⊂ E ⊂ $−1Ex.

Let Ex and Ex′ be the modifications of E0 corresponding to Λx and Λx′ . Let Px,x′ be
the parabolic subgroup of G that is the stabilizer of the filtration

$Λx ⊂ $2Λx′ +$Λx ⊂ (Λx ∩$Λx′) +$Λx ⊂ (Λx ∩ Λx′) +$Λx ⊂ Λx.

We note that $Λx ⊂ Λx′ if and only if $Λx′ ⊂ Λx by taking dual with respect to the
hermitian pairing. We put

d1 = dim(($2Λx′ +$Λx)/$Λx),

d2 = dim(((Λx ∩$Λx′) +$Λx)/$Λx).

We have
d1 + d2 = lx,x′ (9.1)

since

Λx′/(Λx′ ∩$−1Λx) ' $Λx′/($Λx′ ∩ Λx) ' ($Λx′ + Λx)/Λx

' ($2Λx′ +$Λx)/$Λx,

(Λx′ ∩$−1Λx)/(Λx′ ∩ Λx) ' ($Λx′ ∩ Λx)/($Λx′ ∩$Λx)

' ((Λx ∩$Λx′) +$Λx)/$Λx.

In the identification (6.1) for bi, we use δλi
= −ν∗

i if 1 ≤ i ≤ r − 1 and δλr = −εr+1 if
i = r.

9.1 Intersection of components for νi and νi′, where i, i′ 6= r if n
is even.

Let 1 ≤ i, i′ ≤ r. Assume that i 6= r and i′ 6= r if n is even.
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9.1.1 Different hyperspecial subgroups

We assume that x 6= x′. For a subscheme X of Xbi,x
µ∗ (τ ∗i ), let XPx,x′ ,[w] be the inverse

image of XIi−1,n−i
n

([1])pfPx,x′ ,[w] under X ↪→ Xbi,x
µ∗ (τ ∗i )→ XIi−1,n−i

n
([1])pf .

We recall that
X̊

bi′ ,x
′

µ∗ (τ ∗i′) = X
ai′ ,x

′

µ∗,ν∗
i′
(τ ∗i′) \X

bi′−1,x
′

µ∗ (τ ∗i′−1).

Assume that i ≤ i′. For j1, j2 ∈ N such that i− 1− d2 ≤ j1 ≤ i− 1 and d2− i ≤ j2 ≤
n− i− d2 − j1, we define wj1,j2 ∈ Sn by

wj1,j2(j) =



j + j1 if i− j1 ≤ j ≤ d2,

j + i− j1 − d2 − 1 if d2 + 1 ≤ j ≤ d2 + j1,

j + j2 if n− j2 − i+ 1 ≤ j ≤ n− d2,

j + d2 − i− j2 if n− d2 + 1 ≤ j ≤ n− d2 + j2,

j otherwise.

We put E+x,x′ = (Ex+Ex′)∩ 1
ϖ
Ex and E−x,x′ = (Ex∩Ex′)+$Ex. SinceXIi−1,n−i

n
([1])pfPx,x′ ,[wj1,j2

]

parametrizes two subspaces of Λx/$Λx satisfying some conditions, there are universal
vector bundles V+ ⊂ V− ⊂ Ex/$Ex on XIi−1,n−i

n
([1])pfPx,x′ ,[wj1,j2

]. We put

E+ =
1

$
π−1
x (V+) ⊂

1

$
Ex, E− = π−1

x (V−) ⊂ Ex

where πx : Ex → Ex/$Ex is the natural projection. Those are the same as the restrictions
of (E+, E−) in §8.3 under the identification Yi = XIi−1,n−i

n
([1])pf in that subsection.

We note that

length((E+ + E+x,x′)/E+x,x′) = j1, length((E− + E−x,x′)/E−x,x′) = j2.

We put E+,− = E+ ∩ (E− + Ex′) and dj1,j2 = j2 − j1 + 2i− 1− d2. We note that

E+,− = E− + E+ ∩ Ex′ ⊂ F(E∨−) ∩ (F(E∨+) + Ex′) = F(E∨+,−) (9.2)

using E+ ⊂ F(E∨−) and E− ⊂ F(E∨+).

Lemma 9.1. We have length(E+,−/E−) = dj1,j2. Further E+,−/E− is a vector bundle on

XIi−1,n−i
n

([1])pfPx,x′ ,[wj1,j2
].

Proof. We have

length(E+/E+,−) = length((E+ + Ex′)/(E− + Ex′))

= length((E+ + Ex′)/($Ex + Ex′))− length((E− + Ex′)/($Ex + Ex′))

= length((E+ + Ex′)/(Ex + Ex′)) + length((Ex + Ex′)/($Ex + Ex′))− j2

= j1 + length((Ex ∩$Ex′)/($Ex ∩$Ex′))− j2 = j1 + d2 − j2.

Hence we obtain the first claim. By the above equalities, length(E+/E+,−) is constant on

XIi−1,n−i
n

([1])pfPx,x′ ,[wj1,j2
]. Hence E+/E+,− is a vector bundle on XIi−1,n−i

n
([1])pfPx,x′ ,[wj1,j2

] by

[BS17, Lemma 7.3]. Therefore E+,−/E− is also a vector bundle.
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Let Gj1,j2 be the restriction of G to XIi−1,n−i
n

([1])pfPx,x′ ,[wj1,j2
]. Let

tj1,j2 ∈ Oc(Dyn(Gj1,j2))(XIi−1,n−i
n

([1])pfPx,x′ ,[wj1,j2
])

denote the restriction of ti in (8.4). Let Pj1,j2 be the parabolic subgroup of Gj1,j2 deter-
mined by

E− ⊂ E+ ∩ (E− + Ex′) ⊂ E+.
We put lj1,j2 = i′ − 1− j2 − d1. We define sj1,j2 ∈ S2i−1 by

sj1,j2(j) =


j + lj1,j2 if i− lj1,j2 ≤ j ≤ dj1,j2 ,

j + i− 1− dj1,j2 − lj1,j2 if dj1,j2 + 1 ≤ j ≤ dj1,j2 + lj1,j2 ,

j otherwise.

Let rj1,j2 be the element of

(q−1
Gj1,j2

(t(Pj1,j2), tj1,j2))(XIi−1,n−i
n

([1])pfPx,x′ ,[wj1,j2
])

corresponding to [sj1,j2 ] by Lemma 2.6 (2).

Proposition 9.2. Assume that X̊bi,x
µ∗ (τ ∗i )∩X̊

bi′ ,x
′

µ∗ (τ ∗i′) is not empty. Then we have lx,x′ ≤
i+ i′ − 1.

The subscheme X̊bi,x
µ∗ (τ ∗i )∩X̊

bi′ ,x
′

µ∗ (τ ∗i′) ⊂ X̊bi,x
µ∗ (τ ∗i ) is the locus defined by the condition

that Ex +$Ex′ ⊂ E+ ⊂ 1
ϖ
E−x,x′, $E+x,x′ ⊂ E− ⊂ Ex ∩ 1

ϖ
Ex′,

length((E− + E−x,x′)/E−x,x′) ≤ [(i′ − i+ d2 − d1)/2] (9.3)

and
length((E + E+,−)/E+,−) + length((E− + E−x,x′)/E−x,x′) = i′ − 1− d1. (9.4)

In particular, X̊bi,x
µ∗ (τ ∗i ) ∩ X̊

bi′ ,x
′

µ∗ (τ ∗i′) is the union of
(
X̊bi,x

µ∗ (τ ∗i ) ∩ X̊
bi′ ,x

′

µ∗ (τ ∗i′)
)
Px,x′ ,[wj1,j2

]

for j1, j2 ∈ N such that j1 + d2 − i ≤ j2 ≤ j1 + d2 − i+ 1,

i− 1− d2 ≤ j1 ≤ i− 1− d1,

i′ − i− d1 ≤ j2 ≤ min{[(i′ − i+ d2 − d1)/2], n− i− d2 − j1}.

Further we have(
X̊bi,x

µ∗ (τ ∗i ) ∩ X̊
bi′ ,x

′

µ∗ (τ ∗i′)
)
Px,x′ ,[wj1,j2

]
= X̊bi,x

µ∗ (τ ∗i )Px,x′ ,[wj1,j2
] ∩ Partj1,j2 (Gj1,j2 ;Pj1,j2)

pf
rj1,j2

.

Proof. The intersection X̊bi,x
µ∗ (τ ∗i )∩ X̊

bi′ ,x
′

µ∗ (τ ∗i′) is parametrized by E 99K Ex which is equal
to ν∗

i such that E ⊂ F(E∨) ⊂ 1
ϖ
E and E 99K Ex′ is equal to ν∗

i′ . Let E be a point of

X̊bi,x
µ∗ (τ ∗i ) ∩ X̊

bi′ ,x
′

µ∗ (τ ∗i′). We put

E+ = E + Ex, E− = E ∩ Ex, E ′+ = E + Ex′ , E ′− = E ∩ Ex′ .

Then we have

length(Ex/E−) = i, length(E/E−) = i− 1,

length(Ex′/E ′−) = i′, length(E/E ′−) = i′ − 1.
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Hence we have length(E−/(E− ∩ E ′−)) ≤ i′ − 1 and length(Ex/(E− ∩ E ′−)) ≤ i + i′ − 1.
Therefore the inclusion E− ∩ E ′− ⊂ Ex ∩ Ex′ implies that

lx,x′ ≤ i+ i′ − 1.

We have Ex +$Ex′ ⊂ E+ and $E+x,x′ = $Ex + (Ex ∩$Ex′) ⊂ E−, since $Ex′ ⊂ E . We

have $E+ ⊂ Ex ∩ (Ex′ +$Ex) = E−x,x′ and E− ⊂ Ex ∩ 1
ϖ
Ex′ , since $E+ ⊂ Ex and $E ⊂ Ex′ .

We put j1 = length((E+ + E+x,x′)/E+x,x′) and j2 = length((E− + E−x,x′)/E−x,x′). We have

length(E−/(E− ∩ E ′−)) = length(E−/(E− ∩ Ex′)) = j2 + length((E− ∩ E−x,x′)/(E− ∩ Ex′))

= j2 + length(E−x,x′/(Ex ∩ Ex′)) = j2 + d1.

We have

j2 + i− d2 = length((E− + E−x,x′)/E−) ≤ 1 + length((F(E∨+) + E−x,x′)/F(E∨+))

since length(F(E∨+)/E−) = 1. Further we have

length((F(E∨+) + E−x,x′)/F(E∨+)) = length(E+/(E+ ∩ E+x,x′)) ≤ length(E+/(E ′− + Ex))
≤ length(E/(E− + E ′−)) = i′ − 1− length(E−/(E− ∩ E ′−)) = i′ − 1− j2 − d1.

Therefore we obtain j2 ≤ [(i′ − i+ d2 − d1)/2].
Further, j1 + d2 − i ≤ j2 ≤ j1 + d2 − i + 1 follows from length(F(E∨−)/E+) = 1. This

implies i− 1− d2 ≤ j1 and d2 − i ≤ j2. We have j1 ≤ i− 1− d1 and j2 ≤ n− i− d2 − j1
by the inclusions Ex +$Ex′ ⊂ E+ ∩ E+x,x′ and E+ + E+x,x′ ⊂ E− ∩ E−x,x′ . The equality

length((E + E+,−)/E+,−) + length((E− + E−x,x′)/E−x,x′) = i′ − 1− d1

and length((E + E+,−)/E+,−) ≤ i− 1 imply j2 ≥ i′ − i− d1.
We have

length((E + E+,−)/E+,−) = length(E/(E ∩ E+,−)) = length(E/(E ∩ (E− + Ex′)))

= length((E + Ex′)/(E− + Ex′)) = length((E + Ex′)/Ex′)− length((E− + Ex′)/Ex′)

= length((E + Ex′)/Ex′)− length(E−/(E− ∩ Ex′)).

Hence, length((E+E+,−)/E+,−) = i′−1−j2−d1 if and only if length((E+Ex′)/Ex′) = i′−1.
This implies the last claim.

9.1.2 Same hyperspecial subgroup

Assume that x = x′. It suffices to consider the case where x = x′ = x0, since all the
hyperspecial subgroups are conjugate.

Let 2 ≤ i ≤ [(n − 1)/2]. Let (E , E+, E−) be a point of Xi. Let s be the rank of
(E ∩ E0)/E−. We put V1 = E/E− and take V2 ⊂ E0/E− and V3 ⊂ E+/E− such that
projections induce isomorphisms V2 ' (E + E0)/E and V3 ' E+/(E + E0). An open
neighbourhood of (E , E+, E−) in Gr(i − 1,VYi

) under (8.8) is given by Hom(V1,V2 ⊕ V3)
sending f ∈ Hom(V1,V2 ⊕ V3) to the inverse image Ef of

{v + f(v) | v ∈ V1} ⊂ E+/E−
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in E+. By Theorem 8.6, the condition that Ef belongs to Xi is equivalent to

〈v + f(v),F(v′ + f(v′))〉 = 0 (9.5)

in $−1WOF
(R)/WOF

(R) for v, v′ ∈ V1. We write f as f2 + f3 for f2 ∈ Hom(V1,V2) and
f3 ∈ Hom(V1,V3) For v, v′ ∈ (E ∩ E0)/E−, the condition (9.5) is equivalent to

〈v + f2(v),F(f3(v
′))〉+ 〈f3(v),F(v′ + f2(v

′) + f3(v
′))〉 = 0 (9.6)

in $−1WOF
(R)/WOF

(R).
Take a basis v1, . . . , vi−1 of V1 such that v1, . . . , vs form a basis of (E ∩ E0)/E−. Take

a basis vi, . . . , v2i−s−1 of V2 and a basis v2i−s, . . . , v2i−1 of V3. Write f(vl) as xl,ivi + · · ·+
xl,2i−1v2i−1. Then the condition (9.6) is equivalent to

〈vl +
2i−s−1∑
j=i

xl,jvj,F(
2i−1∑

k=2i−s

xm,kvk)〉+ 〈
2i−1∑

k=2i−s

xl,kvk,F(vm +
2i−1∑
j=i

xm,jvj)〉 = 0

for 1 ≤ l,m ≤ s. We can write this as

(〈vl +
2i−s−1∑
j=i

xl,jvj,F(vk)〉)l,k(xq
m,k)k,m = −(xl,k)l,k(〈vk,F(vm +

2i−1∑
j=i

xm,jvj)〉)k,m.

Taking the determinant, we obtain

det(xl,k)l,k

(
det(〈vl +

2i−s−1∑
j=i

xl,jvj,F(vk)〉)l,k(det(xl,k)l,k)
q−1

− (−1)s det(〈vk,F(vm +
2i−1∑
j=i

xm,jvj)〉)k,m
)
= 0.

The condition Ef ∩ E0 = E− is equivalent to det(xl,k)l,k 6= 0. Hence, if (E , E+, E−) belongs
to the closure of p′−1

0 (X̊bi,x0
µ∗ (τ ∗i )), then we have det(〈vk,F(vm)〉)k,m = 0. This means

F−1(E∨+) ⊂ E . Hence we have obtained the following proposition:

Proposition 9.3. The intersection

p′−1
0 (X

bi−s,x0

µ∗ (τ ∗i−s)) ∩ p′−1
0 (X̊bi,x0

µ∗ (τ ∗i ))

is contained in the locus defined by the condition F−1(E∨+) ⊂ E .

Conversely, we assume that F−1(E∨+) ⊂ E . Then we may assume that v1 is a ba-
sis of F−1(E∨+)/E−, vi is an element of (F(E∨) ∩ E0)/E− lifting a basis of (F(E∨) ∩
E0)/(E ∩ E0) such that vi /∈ F−1(E∨+)/E− and v2i−s is an element of F(E∨)/E− lift-
ing a basis of (F(E∨) + E0)/(E + E0). Further, we may assume that v2, . . . , vi−1 and
v2i−1, . . . , v2i−s+1, v2i−s−1, . . . , vi+1 form dual base with respect to the pairing

E/(F−1(E∨+))× E+/(F(E∨)); (v, v′) 7→ 〈F(v), v′〉.
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and that 〈vj,F(vk)〉 = 0 for i+1 ≤ j ≤ 2i− s− 1 and i ≤ k ≤ 2i− 1. Then the condition
(9.5) is equivalent to

〈
2i−1∑

j=2i−s

xl,jvj,F(
2i−1∑
k′=i

xm,k′vk′)〉+

{
〈vl + xl,ivi,F(

∑2i−1
k=2i−s xm,kvk)〉 if 1 ≤ l ≤ r,

〈vl + xl,ivi,F(
∑2i−1

k′=i xm,k′vk′)〉 if s+ 1 ≤ l ≤ i− 1,

+


0 if m = 1,

xl,2i+1−m if 2 ≤ m ≤ s,

xl,2i−m if s+ 1 ≤ m ≤ i− 1,

= 0 (9.7)

for 1 ≤ l,m ≤ i− 1.
We put

y = det(xl,j)1≤l≤s, 2i−s≤j≤2i−1.

We want to show that the quotient of k[[xl,j ]]1≤l≤i−1, i≤j≤2i−1 by the relation (9.7) is
nonzero after inverting y.

Proposition 9.4. (1) The intersection

p′−1
0 (Xb1,x0

µ∗ (τ ∗1 )) ∩ p′−1
0 (X̊b2,x0

µ∗ (τ ∗2 ))

is equal to the locus defined by the condition F−1(E∨+) = E .

(2) We have an isomorphism Xb1,x0
µ∗ (τ ∗1 ) ∩ Xb2,x0

µ∗ (τ ∗2 ) ' XF,F3

I1n
([1], [1])pf given by E 7→

E∨/E0. Further, this intersection is irreducible.

Proof. In this case, (9.7) becomes

〈x1,3v3,F(x1,2v2 + x1,3v3)〉+ 〈v1 + x1,2v2,F(x1,3v3)〉 = 0.

If the quotient of k[[x1,2, x1,3]] by this relation is zero after inverting x1,3, there is a positive
integer N such that xN

1,3 is divisible by

〈x1,3v3,F(x1,2v2 + x1,3v3)〉+ 〈v1 + x1,2v2,F(x1,3v3)〉

in k[[x1,2, x1,3]]. This does not happen because 〈v3,F(v2)〉 6= 0, which follows from v2 /∈
F−1(E∨+)/E−. Hence we have (1). The claim (2) follows from (1) and Lemma 3.2, since

XF,F2,F3

I1n
([1],≤ [s1], [1]) = XF,F3

I1n
([1], [1]).

By Proposition 9.4, Xb1,x0
µ∗ (τ ∗1 ) ∩ Xb2,x0

µ∗ (τ ∗2 ) is isomorphic to the perfect closed sub-
scheme of (Pn−1)pf defined by two equations

n∑
i=1

xix
q
n+1−i = 0,

n∑
i=1

xix
q3

n+1−i = 0.

Since all non-degenerate hermitian forms on Fn
q2 are isomorphic, the above scheme is

isomorphic to the perfect closed subscheme of (Pn−1)pf defined by two equations

n∑
i=1

xq+1
i = 0,

n∑
i=1

xq3+1
i = 0.
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9.2 Intersection of components for νi and νr when n is even.

Assume that n is even in this subsection. We put gr = $δλr+ν∗r = $−(εr+1+···+εn), Λx,r =
grΛx and Ex,r = grEx.

Proposition 9.5. Let i 6= r. Assume that X̊bi,x
µ∗ (τ ∗i )∩X

br,x′

µ∗ (τ ∗r ) is non-empty. Then we
have Λx′ ⊂ Λx,r, $Λx,r ⊂ $−1Λx′ and

length(Λx,r/Λx,r ∩ Λx′) = length(Λx′/Λx,r ∩ Λx′) + r. (9.8)

Let Px,r,x′ be the parabolic subgroup of G that is the stabilizer of the filtration

Ex′ ⊂ $Ex,r + Ex′ ⊂ Ex,r ∩$−1Ex′ ⊂ $−1Ex′ .

We put j1 = length(($Λx,r + Λx′)/Λx′), j2 = length((Λx,r ∩ $−1Λx′)/Λx′) and define
wr ∈ Sn by

wr(j) =


j + i− 1 if j1 + 1 ≤ j ≤ j2

j − j2 − i+ r if j2 + 1 ≤ j ≤ j2 + i− 1

j otherwise.

Then we have
X̊bi,x

µ∗ (τ ∗i ) ∩Xbr,x′

µ∗ (τ ∗r ) = Xbr,x′

µ∗ (τ ∗r )Px,r,x′ ,[wr].

Proof. By Proposition 8.3, Xbr,x′

µ∗ (τ ∗r ) is parametrized by E 99K Ex′ bounded by ν∗
r such

that $E ⊂ F(E∨). By the identification (6.1), the subscheme X̊bi,x
µ∗ (τ ∗i ) ∩ Xbr,x′

µ∗ (τ ∗r ) ⊂
Xbr,x′

µ∗ (τ ∗r ) is given by the conditions

length((E + Ex,r)/Ex,r) = i− 1, length(Ex,r/E ∩ Ex,r) = i (9.9)

and $Ex,r ⊂ E ⊂ $−1Ex,r. Let E ∈ X̊bi,x
µ∗ (τ ∗i ) ∩ Xbr,x′

µ∗ (τ ∗r ). Since $Ex,r ⊂ E , we have
F(E∨) ⊂ Ex,r. Hence Ex′ ⊂ E ⊂ F(E∨) ⊂ Ex,r. We also have $Ex,r ⊂ E ⊂ $−1Ex′ . By the
equality

length((E + Ex,r)/Ex,r) + length(Ex,r/Ex,r ∩ Ex′)

= length((E + Ex,r)/E) + length(E/Ex′) + length(Ex′/Ex,r ∩ Ex′),

length(E/Ex′) = r − 1 and (9.9), we have (9.8).

Since we have (9.8), by the above argument, for any E parametrizing Xbr,x′

µ∗ (τ ∗r ) the
condition (9.9) holds if and only if length((E + Ex,r)/Ex,r) = i− 1, which is equivalent to

length((E+(Ex,r∩$−1Ex′))/(Ex,r∩$−1Ex′)) = i−1. Therefore the subscheme X̊bi,x
µ∗ (τ ∗i )∩

Xbr,x′

µ∗ (τ ∗r ) ⊂ Xbr,x′

µ∗ (τ ∗r ) is given by the conditions length((E + (Ex,r ∩ $−1Ex′))/(Ex,r ∩
$−1Ex′)) = i− 1 and $Ex,r + Ex′ ⊂ E . This implies the claim.

Assume that x 6= x′.

Proposition 9.6. Assume that Xbr,x
µ∗ (τ ∗r )∩X

br,x′

µ∗ (τ ∗r ) is not empty. Then we have lx,x′ ≤
r−1 and $Λx ⊂ Λx′. The intersection Xbr,x

µ∗ (τ ∗r )∩X
br,x′

µ∗ (τ ∗r ) is parametrized by E 99K Ex
bounded by ν∗

r such that $E ⊂ F(E∨) and E 99K Ex′ is also bounded by ν∗
r . In particular,

it is isomorphic to{
H ∈ Grpf(r − 1− lx,x′ , $−1(Λx ∩ Λx′)/(Λx + Λx′)) | H ⊂ Frob(H⊥)

}
.
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Proof. Assume that E is a point of Xbr,x
µ∗ (τ ∗r ) ∩Xbr,x′

µ∗ (τ ∗r ). Since $E ⊂ F(E∨) and both
E 99K Ex and E 99K Ex′ are bounded by ν∗

r , we have the following chain conditions:

Ex ⊂ E ⊂ $−1 F(E∨) ⊂ $−1Ex,
Ex′ ⊂ E ⊂ $−1 F(E∨) ⊂ $−1Ex′ .

The inclusion follows from Ex ⊂ E ⊂ $−1Ex′ . Note that length($−1 F(E∨)/E) = 2, while
both length(E/Ex) and length(E/Ex′) are r − 1. Then Ex ∩ Ex′ and E are related by

Ex + Ex′ ⊂ E ⊂ $−1 F(E) ⊂ $−1(Ex ∩ Ex′).

Since lx,x′ = length((Ex + Ex′)/Ex), we have

lx,x′ = r − 1− length(E/(Ex + Ex′)).

Hence we have lx,x′ ≤ r − 1.
The isomorphism in the claim is given by sending E to E/(Ex + Ex′) ⊂ $−1(Ex ∩

Ex′)/(Ex + Ex′).

10 Example

In this section, we study in details the case where n = 6. We identify the moduli
parametrizing modification E ⊂ Ex bounded by ν∗

1 with (P5)pf by taking a basis of Λx

such that the Hermitian pairing is the standard one. Let Px,x′,+ be the projective subspace
of (P5)pf defined by the condition $E+x,x′ ⊂ E . Let Px,x′,− be the projective subspace of

(P5)pf defined by the condition E−x,x′ ⊂ E . We note that Px,x′,+ and Px,x′,− are isomorphic

to (P5−d2)pf and (Pd2−1)pf respectively.
In the following, we freely use Proposition 9.2 to determine the range of j1 and j2.

10.1 Intersection of components for ν1

We may assume that x 6= x′. The intersection is not empty only if lx,x′ = 1, since if E
is in the intersection we have E ⊂ Ex ∩ Ex′ and E ⊂ Ex is bounded by ν∗

1 . In this case,
d1 = 0, d2 = 1, j1 = j2 = 0 by (9.1) and d1 ≤ d2. The intersection is Px,x′,−, which is a
point given by Ex ∩ Ex′ .

10.2 Intersection of components for ν1 and ν2

If x = x′, then the intersection is isomorphic to the perfect closed subscheme of (P5)pf

defined by two equations

6∑
i=1

xix
q
7−i = 0,

6∑
i=1

xix
q3

7−i = 0

by Proposition 9.4.
We assume that x 6= x′. We can check claims in §10.2.1 and §10.2.2 using Proposition

9.2. Especially, the conditions (9.3) and (9.4) are automatically satisfied in these cases.
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10.2.1 d1 = 0, d2 = 1

In this case, j1 = 0 and j2 = 1. The intersection is equal to the perfect closed subscheme
of Px,x′,+ defined by equation

5∑
i=1

xix
q
6−i = 0.

10.2.2 d1 = 0, d2 = 2

In this case, j1 = 0 and j2 = 1. The intersection is Px,x′,−, which is isomorphic to (P1)pf .

Remark 10.1. If d1 = d2 = 1, then there is no j2 ∈ N satisfying the condition in
Proposition 9.2.

10.3 Intersection of components for ν2

Let (E+, E−) be a point of XI1,46
([1])pf . The hermitian pairing on V induces a pairing on

E+/E− since we have E+ ⊂ F(E∨−) and E− ⊂ F(E∨+). We take a basis v1, v2, v3 of E+/E−
such that v1 ∈ F−1(E∨+)/E−, v2 ∈ Ex/E−. Let E be a point of X̊b2,x

µ∗ (τ ∗2 ) in the fiber of
(E+, E−) under

π : X̊b2,x
µ∗ (τ ∗2 )→ XI1,46

([1])pf .

We can take a generator v = x1v1 + x2v2 + v3 of E/E− for x1, x2 ∈ k, since E 6⊂ Ex. Then
we have

〈v,F(v)〉 = x1〈v1,F(v3)〉+ x2〈v2,F(v3)〉+ xq
2〈v3,F(v2)〉+ 〈v3,F(v3)〉

because 〈w,F(w′)〉 = 0 for w,w′ ∈ Ex/E− and 〈v3,F(v1)〉 = 0. Hence the fiber of (E+, E−)
under π is defined by

x1〈v1,F(v3)〉+ x2〈v2,F(v3)〉+ xq
2〈v3,F(v2)〉+ 〈v3,F(v3)〉 = 0 (10.1)

in (A2)pf . We note that (〈v1,F(v3)〉, 〈v2,F(v3)〉) 6= (0, 0) because v3 /∈ Ex/E−.
We describe the fiber of

πj1,j2 : X̊
b2,x
µ∗ (τ ∗2 )Px,x′ ,[wj1,j2

] ∩ Partj1,j2 (Gj1,j2 ;Pj1,j2)
pf
rj1,j2

→ XI1,46
([1])pfPx,x′ ,[wj1,j2

]

and determine its dimension when(
X̊b2,x

µ∗ (τ ∗2 ) ∩ X̊b2,x′

µ∗ (τ ∗2 )
)
Px,x′ ,[wj1,j2

]

is not empty. We recall that length(E+,−/E−) = dj1,j2 by Lemma 9.1. We note that
if E ⊂ E+,− the condition (10.1) is automatic by (9.2). In the following 5 cases, the
condition on the relation between E and E+,− follows from (9.4).

10.3.1 d1 = 0, d2 = 1

In this case, 0 ≤ j1 ≤ 1 and j2 = 0. We have dj1,j2 = 2− j1. The fiber of πj1,0 is given by
the condition E 6⊂ E+,−, where the dimension of the fiber is 1.
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10.3.2 d1 = 0, d2 = 2

In this case, 0 ≤ j1 ≤ 1 and 0 ≤ j2 ≤ 1. We have dj1,j2 = 1 − j1 + j2. The fiber of πj1,0

is given by the condition E 6⊂ E+,−, where the dimension of the fiber is 1. The fiber of
πj1,1 is given by the condition E ⊂ E+,−, where the dimension of the fiber is 1 − j1 since
length(E+,−/E−) = 2− j1.

10.3.3 d1 = 1, d2 = 1

In this case, j1 = 0 and j2 = 0. We have dj1,j2 = 2. The fiber of π0,0 is given by the
condition E ⊂ E+,−, where the dimension of the fiber is 1 since length(E+,−/E−) = 2.

10.3.4 d1 = 0, d2 = 3

In this case, j1 = 0 and j2 = 1. We have dj1,j2 = 1. The fiber of π0,1 is given by the
condition E = E+,−, where the dimension of the fiber is 0.

10.3.5 d1 = 1, d2 = 2

In this case, j1 = 0 and j2 = 0. We have dj1,j2 = 1. The fiber of π0,0 is given by the
condition E = E+,−, where the dimension of the fiber is 0.

10.4 Intersection of components for νi (1 ≤ i ≤ 2) and ν3

In this case, the intersection is given by Xb3,x′

µ∗ (τ ∗3 )Px,3,x′ ,[w3] as Proposition 9.5, and

Xb3,x′

µ∗ (τ ∗3 ) is isomorphic to XI26
([1])pf by Proposition 8.3.

10.5 Intersection of components for ν3

In the following two cases, the claims follow from Proposition 9.6.

10.5.1 lx,x′ = 1

The intersection is isomorphic to the perfection of the Fermat hypersurface defined by

x1x
q
4 + x2x

q
3 + x3x

q
2 + x4x

q
1 = 0

in P3.

10.5.2 lx,x′ = 2

The intersection is a point given by Ex + Ex′ .

11 Shimura variety

In this section, we explain how the study of X̊bi,x0
µ∗ (τ ∗i ) is related to the supersingular

locus of a Shimura variety, recalling previously known results.
Let E be a quadratic imaginary field, and let V be an n-dimensional Hermitian space

over E with signature (2, n−2) at infinity. Fix a prime p 6= 2 inert in E. Further assume
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that V⊗EQp2 contains a self-dual Zp2 lattice Λ. Let G = GU(V) be the general associated
unitary group. We put G = GU(Λ) as before.

We take a basis of VC = V⊗E C over C such that the Hermitian form is given by the
matrix diag(12,−1n−2). Let h : ResC/R GmC → GR be the morphism of algebraic groups
over R such that h(z) corresponds to diag(z · 12, z̄ · 1n−2) for z ∈ C× under

G(R) ⊂ AutC(VC) ' GLn(C),

where the last isomorphism is given by the basis taken above. Let X be the G(R)-
conjugacy class of h. Then (G,X) is a Shimura datum.

We have an isomorphism

(ResC/R GmC)C ' GmC ×GmC

of algebraic groups over C induced by the isomorphism C⊗RC ' C×C; a⊗b 7→ (ab, āb).
We define µh by the composition

GmC ↪→ GmC ×GmC ' (ResC/R GmC)C
hC−→ GC,

where the first morphism is the inclusion into the first factor. Let µ : GmE → GE be
the morphism of algebraic over E such that µ(z) corresponds to (diag(z · 12, 1n−2), z) for
z ∈ E× under the isomorphism

GE ' GLn(E)×GmE

given by taking a basis of V over E. Then µh and µC are in the same G(C)-conjugacy
class. We note that the reflex field E(G,X) of (G,X) is E if n 6= 4 and Q if n = 4.

Let Kp ⊂ G(Ap
f ) be a sufficiently small open compact subgroup. Let Kp ⊂ G(Qp) be

a hyperspecial subgroup. We put K = KpKp ⊂ G(Af). Let ShK(G,X) be the canonical
model over E(G,X) of the Shimura variety attached to (G,X) and K. Let SK(G,X) be
the canonical integral model of ShK(G,X) over OE(G,X),(p) constructed in [Kis10].

Let SK(G,X) be the perfection of SK(G,X)⊗ Fp. We have the Newton map

N : SK(G,X)(Fp)→ B(G,µ∗)

as in [XZ17, 7.2.7]. Let [b] ∈ B(G,µ∗) be the basic element. We write SK(G,X)[b] for
the closed perfect subscheme of SK(G,X) defined by N−1([b]). We call SK(G,X)[b] the
supersingular locus of SK(G,X).

Remark 11.1. In [Kot92], a moduli space of abelian schemes with additional structures
is constructed. It is isomorphic to a finite union of integral models of Shimura varieties.
Under the isomorphism, a point of SK(G,X)[b] corresponds to a supersingular abelian
variety.

We take a point x ∈ SK(G,X)[b](Fp). We put L = W (Fp)[
1
p
]. Then we have a basic

element bx ∈ G(L) and an algebraic group Ix over Q as in [XZ17, 7.2.9]. We have
embeddings Ix(Q) ⊂ G(Ap

f ) and Ix(Q) ⊂ Jbx(Qp) as in [XZ17, 7.2.13]. Then we have the
isomorphism

Ix(Q)\Xµ∗(bx)× G(Ap
f )/K

p ∼−→ SK(G,X)[b] (11.1)

by [XZ17, Corollary 7.2.16]. We use notations in §8 for F = Qp.
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Proposition 11.2. We have dimSK(G,X)[b] = n − 2. The irreducible components of
SK(G,X)[b] are parametrized by∐

1≤i≤r

Ix(Q)\(G(Qp)/G(Zp))× G(Ap
f )/K

p.

For sufficiently small Kp, a non-empty open subscheme of each irreducible component of
SK(G,X)[b] is isomorphic to a non-empty open subscheme of X̊bi,x0

µ∗ (τ ∗i ) for some i, which
is described in §8.

Proof. The first two claims follow from Proposition 8.1 and (11.1). The last claim is
proved in the same way as [Vol10, Theorem 6.1].
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