Shintani lifts for Weil representations
of unitary groups over finite fields

Naoki Imai and Takahiro T'sushima

Abstract

We construct extended Weil representations of unitary groups over finite fields geo-
metrically, and show that they are Shintani lifts for Weil representations.

1 Introduction
Let q be a power of a prime number p. Let n be a positive integer. We define

Un(Q) = {9 € GLn(Fq2) | g'g= In}7

where g* = (aj,) for g = (a; ;). Let £ # p be a prime number. Let ¢ be a non-trivial character
of F, = {z € Fpe | 29+ 2 = 0} over Q,. A Weil representation of a unitary group U,(q)
associated to ¢ is constructed in [2], which we denote by py, ()4 Let m be a positive odd
integer.

In this paper, we investigate the behavior of py,(g),, via Shintani lifting from F, to Fym.
Let I' be a cyclic group of order m with generator o. Let F: U,(¢™) — U,(¢™); g —
(*g")~", where 7((a;;)) = (aj;). Let o act on U,(¢™) as F. We consider the semidirect
group U,(¢™) x I'. In [4], Gyoja defines a norm map from the set of U,(¢™)-conjugacy
classes in U, (¢™)o to the set of conjugacy classes in U,(q), which is denoted by N. We set

Ym =1 o Trp g p 0t Fomg — @;

Theorem. There is a unique extension pu, qmyw. of Pu,.@m)wm t0 Un(q™) X T' such that

for any g € U, (¢™).

This is a version of [5, Theorem in §1] in unitary cases. Similarly to [5, Theorem 4.1], we
actually show a stronger equality. Namely, we show a similar equality for Heisenberg—Weil
representations and more general norm maps. See Theorem 7.1 for the precise statement.
As mentioned in [5, §1], the arguments in [5] work also in unitary cases. In this paper, we
use an inductive argument similar to that in [5], but replace some ingredients in the proof
with geometric inputs: In [5], an extended Weil representation is constructed based on the
Schrodinger model of a Weil representation. On the other hand, we construct py, gm),,, in a
geometric way and study the representation by geometric tools.
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In [6, Theorem 2.5], it is known that the representation py,(gm)., is realized in the -
isotypic part of the middle ¢-adic cohomology of the smooth affine variety over F . defined

by
n
m m_q
20+ 2= g It
i=1

in A%tl. In order to extend this representation to U,(¢™) x I', we use the Frobenius action
over Iﬁ‘qz. A merit in our geometric construction is that the the action of the cyclic group I' in
the Shintani lift appears very naturally from the rationality of the above variety. We believe
that this gives a new insight on the relation between liftings of representations and geometry.

We briefly explain the content of each section. In §2, we collect several known facts
on Gyoja’s norm map. In §3, we recall unitary Heisenberg—Weil representations. In §4,
we construct an extension ppu,, (gm),y,. of a Heisenberg-Weil representation geometrically and
show Theorem 7.1 when n = 1 in Proposition 4.5. In 85, we study the behavior of pgu, (4=,
restricted to several subgroups. In §6, we study the support of the trace of pyu, gm)p,. In
§7, we state our main theorem. Under the knowledges in §5-86, we reduce Theorem 7.1 to a
special case in Lemma 8.3 in §8. By using the character formula of a tensor induction in [3],
we show Theorem 7.1 in the special case in §9.

Notation

e Let g be a power of a prime number p.

o Let Fq be an algebraic closure of IF,. For a scheme X over I, and an endomorphism F
of X, , let
XF ={r e X(F,) | F(z) = z}.

e For a positive integer m, let Frgm denote the geometric Frobenius element of Gal(F,/Fm)
given by F, — Fy; x> 27 .

e Let ¢ be a prime number different from p.
e For an abelian group A, let AY = HomZ(A,@gX ).

e For a representation W over Q, of an abelian group A and y € AV, let W[x] denote
the x-isotypic part of W.

2 Norm map

We follow [5, §3] and [4, §3]. Let G be a connected algebraic group over F, with Frobenius
endomorphism F. Let m be a positive integer. We put G = G,

Let I' be a cyclic group of order m with a generator o. Let o act on G as F. We consider
the semidirect group G x I'. Let 1 < i < m be an integer. We set d = (m, ). We choose an
integer ¢ such that ti = d (mod m). We set = m/d. For g € G, we can choose

a = a(g) € G(F,)

such that ' '
a'Fla) = (g,0") (1,07")
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by Lang’s theorem. We put
Nii(g,0') = agF'(g) - -- F""Y(g)a™.

The element N ,(g, 0") does belong to GF " Its conjugacy class does not depend on the choice
of a. By [4, Lemma 3.2(1)], N, induces a bijection from the set of G-conjugacy classes in
Go' to the set of conjugacy classes in GF'. The norm map is originally defined in [10] in the
case where ¢ =t = 1 and generalized in [§].

Let C be an algebraically closed field of characteristic 0. Let C(Go®) denote the vector
space of C-valued functions on Go® which are invariant under conjugation by G. For a finite
group H, let C(H) denote the set of C-valued class functions on H. Then we have the
bijection .

Nit: C(GT') = C(Ga'); x = x o Ny,
This induces the bijection A
C(GF)F = C(Go')°
by [4, Lemma 3.2(2)], where o acts on Go® by the conjugation. Note that GF' = GF*.

Lemma 2.1. Let H be a connected algebraic subgroup of G defined over F,, and G1, Gy two
connected algebraic groups over F, with Frobenius endomorphisms F. Let H = H" and

G; =Gl forj=1,2.

(1) Let XY € C(H x T), and take x € C(HT')F such that X|go: = Nis(x). Then we have
(A5 0 %) 6o = N (Ind % ).
(2) Let X € C(G % T), and take x € C(GF)F such that X|gei = Nis(x). Then we have
(%‘HNF)‘HUZ' = -/Vzt(X|HF)

(3) Assume that H is a normal algebraic subgroup of G. We identify G/H with (G/H)™".
Let X € C((G/H) x T), and take x € C((G/H)"")¥ such that X|(c/me = Nit(x). Let

p:GxD = (G/H)xT, p:G" = (G/H)"
be the canonical projections. Then we have
(X oP)laoi = Nit(x o p).

(4) Let x; € C(G; x TI') for j = 1,2, and take x; € C(Gfi)F such that Xjla,ei = Nit(X;)-
Then we have
()?1 X )?2)|(G1xc;2)ai = M,t(Xl X X2),

where (Gy X Gy)o' is identified with

{((Qlagi)7 (9270i)) € (G xT) x (G =) ‘ g1 €Gh, g2 € Gz}.

Proof. This is proved in [4, Lemma 3.6] if C' = C. The same proof works also for a general

C. ]



3 Heisenberg—Weil representation

Let V' be a vector space over F» with a hermitian form h. In this paper, a hermitian form is
supposed to be sesquilinear on the first coordinate. For the hermitian space (V, h), we define
Hy ) over I, as

Hyp(R) = {(v,a) € (V &, R) x (Fp ®p, R) | (Fr,®idg)(a) +a = hg(v,v)}
for an IFj-algebra R, where hp is the R-linear extension of h, with the group operation
(v,a)(V';ad") = (v+v' a+d + hg(v,0")).

We put H(V, h) = Hy ) (Fy) and call it the unitary Heisenberg group associated to (V. h).
Assume that h is nondegenerate in the sequel. Let Uy, be the unitary algebraic group
over [F, defined as

U (R)
= {9 € Autr 0., r(V ®F, R) | hr(gv1, gv2) = hg(vi,v2) for vi, v, € V ®p, R}

for an [Fg-algebra R, with an action on Hy ) defined by (v, a) — (gv, a) for (v,a) € Hy ) (R)
and g € Uy (R). We put
HUwn) = Hyn 2 U

Further we put
UV, h) = Uwp)(Fy), HUV,h) = HUwp) (Fy).

We simply write Hy, Uy and HUy for Hy ), U(y,n) and HUy,,) if it is clear which hermitian
form is involved.
For a positive integer m, we put

Fpny ={z €F, | 27" +z =0}.

Let o € Fy  \{1}. Let pu(v,n),» denote the unique irreducible representation of H(V, h) whose
restriction to the center Z(V,h) contains ¢». We put n = dimg , V. Then PHV.R) | 2(V,p) =

¢®7". The following is shown in [2] and stated in [6, Lemma 2.2].
Lemma 3.1. There exists a unique representation puuvnyy of HU(V, h) characterized by
o an isomorphism pruvk)e|awR) ~ PHWVE).W, and
e the equality tr pruwn.e(9) = (=1)"(—¢)N@ for g € U(V, k), where
N(g) = dimg , ker(g — idy).
We call puy(vp)w the Heisenberg—Weil representation of HU(V, h) associated to . The
restriction of pru(vn),e to the subgroup U(V, h) is called the Weil representation of U(V, h)

associated to .
Let

n
b By x Bos — Foz; (21,00, 20), (2, .., 1,)) = fox;
i=1

Any nondegenerate hermitian space (V, h) of dimension n is isometric to (Fy,, hy,). We simply
write Hy,(¢), Un(q) and HU,(g) for H(F},, hy,), U(Fp,, hy) and HU(F, by, ), respectively.

4



4 (Geometric construction

We give a geometric construction of an extended Heisenberg—Weil representation. Let m be
an odd positive integer. We consider the smooth affine variety over Fp defined by

274 2= Z "t
i=1
in AfFH;I, which is denoted by X,,,. The group HU,,(¢™) acts on menqu% by
q

((2:),2) = (g(x:),2)  for g € Un(q™),
(i), 2) = ((x;) + v, 2+ a+ hy(v, (x;))) for (v,a) € Hy(¢™).

Let HU,,(¢™) act on H}(X

C m

anq,@g) by letting g € HU,,(¢™) act as (g71)*.

Let v: Gal(F,/F,) — Q, be the character which sends the geometric Frobenius element
Fre to —g='. Let ¢ € Fy  \ {1}. The restriction of the trace map Tre 5, /5 t0 Fgm 4 induces
Trp 5 50 0 Fomq — Fo oy We set

v
’l/}m e ’(p (e} r]:‘rIE‘qu/]Fq2 E qu7+.

The Frobenius endomorphism F' of the algebraic group HUn, 5,y over F, induces an
q

automorphism of HU, (¢™), for which we use the same symbol F. Viewing HU,(¢™) as a
subset of IFZM X Fem x GL,(F2m) naturally, the coordinatewise ¢g-th power map on Fggm X
F,2m x GL,(F2n) induces an automorphism 7 of HU,(¢™). Then we have F? = 72 by the
definitions. Hence we have F = F™ = 77! as an automorphism of HU,(¢™) because
HU,(¢™) = HU(gx_;, ) and m is odd.

We regard Hgf(Xm,n’Fq,@g) as a Gal(F,/F)-representation as usual. By [1, Rapport
(1.8.1)], the action of Fr,2 on H(?(Xm,nﬁq,@g) is equal to the pullback under the ¢>-nd power

Frobenius endomorphism Fy of X,,,, over Fp. Let Gal(F,/F,) act on HU,(¢™) by letting
Fr,» act as F~2, since we have

Fx(g ) = (g7 'Fx) = (FxF?(g)")) = (F*(9)"")" Fx.

We regard B
HCn(Xm,n,Fq7 QE)[wm] ® yn

as an HU,,(¢™) x Gal(F,/F,)-representation, which we denote by pu,, (gm),pm-

Lemma 4.1 ([6, Theorem 2.5]). We have H:(X ,nfqy@z)hbm] = 0 for i # n. The restriction

m

of pru, (gm)m to HU,(q™) is isomorphic to puu,,(gm)uwm -
Lemma 4.2. (1) The geometric Frobenius element Frp2 acts on
Hcl (X1,1,an@e) W]
as scalar multiplication by —q.

(2) We have puu,, (gm)pm (Frem) = 1.



Proof. By Lemma 4.1, we have H (X 7, ,Q,)[¢] =0 for i # 1. Hence we have
Tr(Free; He (X, 15, QWD) = =4 Y w(0) Tr((=n)Free; HI (X, 5, Qo))-
n€Fq,+

By the Lefschetz fixed point formula, we have

Tr((—n)Fre; HX (X, 5, Q) = #{(x, 2) € X11(F,) | o’ =, 27— =2}
)¢ ifn=0,
)10 otherwise.

Te(Frge; He (X, 1 5,, Q)W) = —¢*. (4.1)

The action of Fr2 commutes with the one of Hy(g). Since H!(X LLE?QZ)W] is an irreducible
H; (¢)-representation by Lemma 4.1, Fr 2 acts on it as scalar multiplication by Schur’s lemma.
Hence the first claim follows from (4.1), because dim HCI(XLLE,@E)W] = ¢ by Lemma 4.1.
We show the second claim. By the first assertion and the Kiinneth formula, Fr,.m acts on
H"(Xmqu,@g)[z/}] as scalar multiplication by (—1)"¢"™". We have v™(Frpm) = (—1)""¢~™".

Thus we obtain

Since m is odd, the claim follows. n

We set I' = Gal(F2m /F,2). By Lemma 4.2 (2), we can regard ppu,, (gm),p,, as an HU,(¢™) x
I'-representation. This is an extension of puuy,(gm)w, to HUn(¢™) x I by Lemma 4.1. The
restriction of puuy, (gm)u,. to the subgroup U, (¢™) x I"is denoted by pu, gm).4,. as in §1. We
put 1

o= FquT
Then o is the generator of I' acting on HU,,(¢™) as F.

Definition 4.3. Let (V, h) be a nondegenerate hermitian space of dimension n over Fp. We
take an isometry (V. h) = (F, hy). This induces HU ) (Fgm) x T' = HU,(¢™) x I'. Via
this isomorphism and puu, gm)v,.. we define a representation of HUy py(Fgm) x I, which is
denoted by prU . ) (Fym) b -

Remark 4.4. The isomorphism class of p; PHU (v 1) (Fym ) o 1s 1ndependent of the choice of the
isometry (V, h) ~ (]F”Q, hy), since the difference is a conjugation by an element of Uy (F,).

For a positive integer r, let p, = {x € ?q | 2" = 1}.

Proposition 4.5. Let 1 < j <m. We set (j,m) =d. Let ( € pigmi1.

(1) We have
d
¢“ i C € pama,
tI',OHU1 ,Z,m(C FI' ) qd+1
—1 otherwise.
(2) We have

" +1

6 PHUL (gm). 5 (G FT2) = T B, (g6, (C 7).

(3) We have tr pru, (gm)im (Fr22) = ¢,



Proof. The third claim follows from the Kiinneth formula and the first one. The second claim
follows from the first one and Lemma 3.1.

We show the first claim. We consider the curve X, defined by z? + z = 24" ™! over F .
We have the finite étale morphism

m—1
Xima = X (2,2) — <x, (—1)2'2‘11) :
=0

)

The pull-back of this induces

Hy (X5, QW] = Ho (X, 15, Q) [Ym]- (4.2)
Thus
6 PHU, ()0 (G FY5) = (=g 1) Te(CFY) s HA(X,, 5, Qo) [¥)). (4.3)
In the sequel, we identify Uy (¢*) with p1,:; for any positive integer i. We have an isomorphism
HY(X,5 Q= @ «x (4.4)
XEhym 1 \{1}

as figm y1-representations as in [7, Lemma 2.2]. Let x € pym ;. We have
.
! i _ X < X|qu+1 =1, (4.5)
ql+1
because of (¢™ +1,¢% — 1) = ¢? + 1. We regard p;/dﬂ as a subset of yym,, by the dual of

" +1
Pqm1 = Hgdyr; T T

We have the finite morphism

™41
X = Xa; (z,2) — (x ad+1 ,z) .
Then the image of its pull-back map

, (Xd,an@e)M - Hcl(Xm,an@e)W

equals @Xeﬂzdﬂ\{l} x under (4.4). We write as j = dk. We compute

: — g +1 —
Te(CFr)es He (X, 5, Qo) [¥]) = Te(¢ 1 Fraa; He (Xy5,, Qo) [¥])
g +1 —
= (=) Te(¢ s Hy (X5, Qo) [W)])
)
= (¢ > x(¢m)
xeusg M1}
(=1)Fq D if ¢ € pgman,
= qd+1
(=1)*1g?  otherwise,

where the first equality follows from (4.5) and the second one follows from Lemma 4.2 (1)
since

Hi (X5, Q)] = He (X, 5,, Qo))
similarly to (4.2). Hence the claim follows from (4.3), since d is odd. O
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5 Compatibility

Let (V, h) be a nondegenerate hermitian space over F,2 of dimension n.

5.1 Orthogonal decomposition

Let (V,h) = (Vi, h1) ® (Va, he) be a decomposition of V' into the orthogonal direct sum of two
hermitian spaces. Then we have the natural homomorphism

H-U'V1 X H.U-V2 — HUV

This morphism and the projections induce

(HUy, (Fyn) x HUy, (Fyn)) 3 T —2—= HUy(Fyn) x T (5.1)

|

(HUy, (Fgn) x T) x (HUy, (Fgm) x T),

where I' acts on HUy, (Fym) x HUy, (Fym) by (hy, he) — (6'hy,0’hs) for ¢’ € T
Proposition 5.1. The inflation of puuy Fm)p. by O is isomorphic to the restriction of
PHUy, (Fym) b B PHUy, (Fym) o Y ©-

Proof. The claim follows from Definition 4.3 and the Kiinneth formula. [

5.2 Parabolic subgroup

Let W be an isotropic subspace of V and W+ be its orthogonal. Let (W, hg) be the hermitian
space W+ /W with induced hermitian form by h. Let Py be the stabilizer of W in Uy,.. Then
Py naturally acts on Hyo. We have the natural homomorphism Hy, . Py — HUyy,. This
induces the homomorphism

(Hyo % Pyy)(Fyn) 3 T — HUyy, (F,) % T. (5.2)

Proposition 5.2. The restriction of pruy (Fm)ym t0 (Hy x Py )(Fym) x T is isomorphic to

(H xP )(qu)NF ~
Ind(H:}/Vl Ngw)(ﬂ?q'm ) XFPHUWO (qu)7¢m ’

where the inflation of ﬁHUWO(Iqu)y¢m via (5.2) is denoted by the same symbol.

Proof. We have tr ppu,, (5,m)w, (0) = ¢" by Proposition 4.5 (3). Hence it suffices to check
that the trace of the induced representation at o is ¢" by [2, Theorem 3.3(b)]. We see that
the trace equals

|Hy (Fy) /Hy L (Fy)[q¢™ = ¢,

where ng = dim Wy, by the character formula of an induced representation and Proposition
4.5 (3) (cf. [5, the proof of Proposition 6.2]). Hence we obtain the claim. O



6 Support of trace of extended Weil representation

We have the isomorphism
v: HU(y ) (Fgn) x T' S HUy_py (Fgm) X T (v,a,9) — (v, —a, g).

Lemma 6.1. The HUy ) (Fgm) x ['-representation 5HU(V,h)(qu)’w;L1 is isomorphic to the in-
flation of Furu,y, (e gm)aim by .
Proof. This follows from Lemma 3.1 and Proposition 4.5 (3). O

Let (2V,+h) = (V,h) @ (V, —h) be the orthogonal direct sum. By (5.1), we have the
group homomorphism

5 (HU(V,h) (qu) X HU(V7,h) (qu)) X[ — HU(ZV,j:h) (qu) x T

Let
A: HU ) (Fgm) X T = HU gy a0) (Fgm) % T (g,0) — 0'(g, (g, 0))-

Lemma 6.2. The inflation of 'pVHU(QV’ih)(]qu)ﬂp by A is isomorphic to the restriction of

ﬁHU(V,h)(qu)u"/’m ® ﬁHU(V’h)(qu),w;Ll'
Proof. The inflation of pHU 4y 4 (Fym)pm PY 0’ is isomorphic to the restriction of the repre-
sentation
ﬁHU(V,h) (Fgm ), tom X ﬁHU(v,_h)(qu),wm
to
(HUypy(Fgm) x HUy,—py(Fgm)) x T
by Proposition 5.1. Hence the claim follows from Lemma 6.1. O]

Let Zv,) be the center of Hy ). We put ZU vy = Zyvpy X Uyp.

Lemma 6.3. The tensor product puu,y, , (Fym)wm @ pHU(Vh)(quw;Ll is 1somorphic to the in-
duction of the trivial character of ZU ) (Fgm) x T,

Proof. Take ¢ € Fg \ {1} such that Nry ,r,(¢) = 1. Let W be the Lagrangian subspace
{(v,¢v) € V @ V} of 2V, which is isotropic via £h. Note that W+ = W. Applying
Proposition 5.2 in this situation, we have Wy = {0}, HUyy, (Fym) =~ Fym 1 and pruy, @,m),6m
is the character
Fyny x T = Q5 (2,0") = ¥ (2).
Let _
U (Hw,an) X Pw)(Fgm) x IT' — @Z; ((v, Q}),a,g,ai) = P (a).

Then Jm is the inflation of ﬁHUWO (Fym )b Vid (5.2). Thus Proposition 5.2 gives an isomor-

phism

m

- - (H(2v,+n)xPw)(F
pHU(zv,ih)(qu)ﬂ/Jm|(H<2V,ih)><PW)(FqM)NF - Ind(H(Wih)xPW Fym) ><11" wm (6.1)

The image of A is contained in (Hey,4n) ¥ Pw)(IFgm) x I'. The map A induces a bijection

(HU(V’h) (qu) X F)/(ZU(V,h) (qu) X F) :>
(Hevan 3 Pw)(Fgn) 3 L)/ (Hpan) 3 Pw)(Fgm) x T').

Inflating (6.1) under A, we obtain the claim by Lemma 6.2. O
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Remark 6.4. The proof of Lemma 6.3 is slightly different from that of [5, Lemma 7.53] in
the sense that we use {(v,(v) € V & V} instead of {(v,v) € V& V} as W. By this choice,
the bijection at the end of the proof holds and the proof becomes clearer.

Corollary 6.5. The trace of the representation puu ., (Fm)wm 1S 2€70 0utside the conjugates
Of ZU(V,h) (qu) x I

Proof. We take an isomorphism Q, ~ C. Using this isomorphism, we consider ﬁHU(V,h) (Fym) thm
and ﬁHU(Vﬂh)(]qu)’d};nl as representations over C. First, we show that the representation
ﬁHU(Vh) (Fm)p! 1S 1somorphic to the complex conjugate of puu ., Fm)w.,- Clearly Pt is
equal to the complex conjugate of v,,. Hence PH .y (B ) is isomorphic to the complex
conjugate of pu ., (F,m)pn- Lherefore, we obtain the claim by Lemma 3.1 and Proposition
4.5 (3), since ﬁHU(V,h) (Fm)pt 18 irreducible as an HU (v (IFym )-representation.

The required claim follows from this and Lemma 6.3. O]

7 Main theorem

Let the notation be as in §2.

Theorem 7.1. Let 1 < i < m be an integer. We set d = (m,1). We take an integer t such
that ti = d (mod m). Then there is a unique extension ﬁHU(v,h,)(qu)ﬂ/fm of PHU ) (Fym ) o L0
HU 1) (Fgm) x I' such that

tr ﬁHU(V,h)(qu)7wrrL (g7 O-Z) = tr ﬁHU(V,h)(qu)7¢d (Nivt(g7 Uz)) (7]‘>

for any g € HU (v ) (Fgm).

In §4, we already know that pgu Wiy Fgm)m in Definition 4.3 is an extension of PHU (v 1) (Fym ), tom -
Since pHU y.,) (F,m)m 18 irreducible, only one extension can satisfy (7.1). The aim in the rest
of this paper is to prove that the extension ﬁHUW,h)(qu),wm actually satisfies (7.1).

8 Reduction steps

To show Theorem 7.1, we imitate the arguments in [5, §8]. We recall a known fact.

Lemma 8.1. Let g9 € U(V,h). Assume that gy stabilizes no non-trivial isotropic subspace.
Then go is semisimple.

Proof. The claim is stated in [2, proof of Theorem 4.9.2]. We recall a proof here (cf. [5, §8]).
Let go = su be the Jordan decomposition in U(V,h). If u # idy, then Im(u — idy) N Ker(u —
idy ) is a non-trivial isotropic subspace of V' stable under go. Hence the claim follows. O

We fix i and ¢. Changing the base field from F, to IF,a, we may assume that d = (m,7) =1
(cf. [5, Remark 3.1 (ii)]). Let g € HUy ) (Fgm). We set

go = Ni,t(g>ai)'

If go does not belong to ZUy )(F,), the both sides of (7.1) are 0 by Corollary 6.5. Assume
9 € Zp)(Fgn) = Fym 1. The restriction of pru ., Fm)wm 10 Zvn) (Fgm) is a multiple of y,.
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Clearly ((m —1)i/2,m) =1 by (m,i) = 1. Hence the left hand side of (7.1) equals 1,,(g)q"
m—1
by Proposition 4.5 (3) for j = (m —1)i/2, because o = Fr ,;* . By the definition of N;; and
(m,i) = 1, we have ' ‘
go = ga’(g) e O—Z(mfl)(g) = TrFq2m/]Fq2 (g)

Thus the right hand side of (7.1) is 1(go) dim pru(v,n),e = ¥m(9)q™. Hence we have (7.1) on
Zp(Fgn) x I'. By applying Lemma 2.1 (4) to the product ZU ) = Zn) x Uy, we
may assume that go € U(V, h).

We show Theorem 7.1 in the case where gy € U(V, h) by induction on n. The claim for
n = 1 is shown in Proposition 4.5 (2). Assume n > 1. If g, stabilizes a non-trivial orthogonal
decomposition of (V, h), the claim follows from the induction hypothesis by Lemma 2.1 (4),
and Proposition 5.1. If gg stabilizes a non-trivial isotropic subspace of V', the claim follows
from the induction hypothesis by Lemma 2.1 (1) and Proposition 5.2.

Now, we may assume that gy stabilizes no non-trivial isotropic subspace and stabilizes no
non-trivial orthogonal decomposition. By Lemma 8.1, gy is semisimple. We write s for go.

We set A = Endg , (V). Let

th: A= A, fr fin

be the adjoint involution associated to h. Namely, we have h(f(x),y) = h(z, fi*(y)) for any
z,y € V. Then we have s* = s~! by definition. Hence the involution stabilizes F[s].

Lemma 8.2. The subalgebra Fp(s] C Endg , (V') is a field.

Proof. Since s is semisimple, we can write as

Fpls] ~ [ Fo.

ael

where F, is a field. Let e, be the idempotent in Fp[s] associated to F,. We have a direct

sum
V=PV,

acl
where V, = {v € V | equ = v}. The subspaces V, are s-stable. The involution {, gives a
permutation o — @ on I, with an isomorphism F, ~ Fj.
Assume that [ has at least two elements. We take @ € I. If @« = @, then V is the
orthogonal sum of V,, and €p 540 Vp as hermitian spaces. Actually, we have

hxa,x5) = h(eaZa,x3) = h(Ta, eax3) = h(Ta,eqrs) =0

for any o # 3, zo € V, and 3 € V3. Hence V has a non-trivial s-stable orthogonal
decomposition. This contradicts to the assumption.

Assume a # @. Then V,, is a non-trivial s-stable isotropic subspace of V. Actually, we
have

h(@o, z),) = heata, 2h) = h(Zq, ezzl,) =0

for any z,,x,, € V,. Again this contradicts to the assumption. Hence I consists of one
element. The claim follows. m

We put
E=Fp[s]Cc A E,=E™

We regard V' as an E-vector space.
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Lemma 8.3. (1) The extension E/E. is a quadratic extension and [E; : F,] is odd.
(2) There exists a nondegenerate hermitian form h:V xV — E such that h = Trpr oh.

(3) We have dimgV = 1.

Proof. The first claim follows from that {5 on [Fy2 is the ¢-th power map.
Since Trg JFo E x E — T, is nondegenerate, we can define a nondegenerate hermitian

form h: V xV — E by the condition that
Tr/e,, (ah(v,v")) = h(v, av’)

for a € E,v,v" € V. Hence we obtain the second claim.

The element s € E* acts on V' as scalar multiplication. Since s stabilizes no non-trivial
orthogonal decomposition of (V, h) as hermitian spaces over E by the assumption, we obtain
the third claim. O

9 Proof in the reduced case

We will show Theorem 7.1 in the situation of Lemma 8.3. Note that n is odd and E = Fen
by Lemma 8.3. By the natural homomorphism U(V,h) < U(V, h), we obtain

r. HU(‘/’ E) - HU(‘/v h): (Ua a, g) = (U7TrE/Fq2 (a)ag)'
We put g = o Trgr , € Fon

Lemma 9.1. (1) The inflation of puup),w by r is isomorphic to PHUV ) b
(2) Let s € U(V,h). Then we have

" ifs=1,

6 pruwiny(8) = 8 Payqy u,(8) = {_1 otherwise

Proof. Let r*puy(v,n),» denote the inflation of pruvpy .y by 7. The restriction of r*pryvn),e
to the center of H(V, h) is a multiple of g with multiplicity ¢". Hence we have

(T*PHU(Mh),w”H(V,}E) = PH(V,R) g

Therefore the second claim implies the first one. The second claim follows from Lemma 3.1
(cf. [2, Corollary 3.5]). O

Let e = (m,n). We put I'. = Gal(F /F,). For a € T'., we put
Ea = E ®]qu?a ]qu7 Va = V ®]qu,a ]qu,

where F m is regarded as an F-algebra via the composite Fye = Fye < F m. Note that FE,,
is isomorphic to [ 2mn/.. We have

E®F4qu% HEQ; r®a— (T®a),,

a€l,

V @, Fgn = H Vi v@a— (vQ a),.

a€l’e

(9.1)
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The base change of h for F,m/IF, induces a hermitian form Ea: Vo xVy— E,. We put

ha - TrEa/Fqgm Oha,

which is a hermitian form on V,, over Fgam.
Let (Vin, hin) be the base change of (V, h) for Fym /F,. Then (V,,, hy,) is isomorphic to the
orthogonal sum @ (Va, ho). Hence we have the homomorphisms

[T HU(Va, ko) = ] HU(Va, ha) = HU(Vig, hi) = HU (v (Fg ) (9.2)

a€el’e ael’,

We put ag = id]qu € I'.. We omit the index set I', in the notation. Let

Do [ [HUVas ha) = HU(Vay, ha, ).
be the projection. We consider the homomorphism

(H HU(VQ,EQ)> w (0°) 22 UV Tray) 1 (09, (9.3)

where the left hand side is regarded as a subgroup of (Ha HU(VQ,TLQ)> x I'. We put

¢Ea = 1/) (e} TrEa/qu - F;/mn/57+.

Let R denote the tensor induction to

(H HU(VQ,EQ)> x T

of the inflation of Py under (9.3). Here and in the sequel, we identify (o¢) =

Vao ;ﬁao)waaO
Gal(Fg2m /[Fo2e) with Gal(Fg2mn/e /Fgon) via the natural isomorphism Fozm @p 5, Fozn = Fjzmn/e.

We take s € U(Vay, hay) with norm s € U(V, h). We set

§'=(sp L., 1) € [JU(Va o).

Recall that we assume (m,i) = 1.

Lemma 9.2. We have
. n ) =1
tr R(S/,Ul) _ {(] ZfS )

—1 otherwise.

Proof. The group T' permutes the factors {V, }aer, in (9.1) transitively and the stabilizer of
each factor is (). Hence by [3, §2],

tr R(s",07) = 80 By (v Frag) i, (Pag X 1)(5'0%)%)
= tl" ﬁHU(VaO;flao)vwan (36’ O-Ze)

m,n/e+l

(cf. [9, Definitions 10 and 11]). We note s, @+ = s. Thus the claim follows from (m, i) = 1
and Proposition 4.5 (1) with taking (¢",m/e) as (¢, m). O

13



Corollary 9.3. (1) The (], HU(VQ,EQ)) x I'-representation R is isomorphic to the infla-
tion of ﬁHU(V,h)(qu)’wm by the natural homomorphism

(H HU(VQ,%Q)> ) T — HU(y ) (Fym) x T.

(2) We have
@ ifs=1,

tI‘N m S/7O-i =
PHU (v, ) (Fq )it ( ) {—1 otherwise.

Proof. By [3, §2], the restriction of R to the subgroup [], HU(V,, ha) is isomorphic to
&apHU(Vajia)waa' The inflation of pru ., Fm)em DY (9.2) is isomorphic to &apHU(Va,ﬁa),wEa
by Proposition 5.1 and Lemma 9.1 (1). By Proposition 4.5 (3), we have

tr ﬁHU(V,}L) (qu)a"z’m <0> = qn

Since o is a generator of I', the first claim follows from Lemma 9.2. The second claim follows
from the first one and Lemma 9.2. O

Note that (g,0") is HUy,5)(Fm)-conjugate to (s',0") for any g € HU y,)(Fym) satisfying
s = N;4(g,0"). Hence, it suffices to show

tr ﬁHU(V,h)(qu),wm (8/7 Ui) = tr pHU(V,h)JP(S)‘

This follows from Lemma 9.1 (2) and Corollary 9.3 (2).
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