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Abstract

We prove a realization of the local Langlands correspondence for two-dimensional
representations of a Weil group of conductor three in the cohomology of Lubin-Tate
curves by a purely local geometric method.

Introduction

Let K be a non-archimedean local field with a residue field %k of characteristic p. Let p be the
maximal ideal of the ring of integers of K. We take an algebraic closure K™ of K. Let K™ be
the maximal unramified extension of K inside K?°. Let K and K" denote the completions
of K and K™ respectively. For a natural number n, we write LT(p") for the Lubin—Tate
curve with full level n structure over K. We write Wy for the Weil group of K. Let D be
the central division algebra over K of invariant 1/2. Let ¢ be a prime number different from
p. We take an algebraic closure Q, of Q,. Then the groups Wy, GLy(K) and D* act on
ligqn H! (LT(p”) f{ac,@e), and these actions partially realize the local Langlands correspondence
and the local Jacquet—-Langlands correspondence for GLy over K. This realization was proved
by Carayol in [Car90] using global automorphic arguments. However there is no known proof
using only a local geometric method.

In this paper, we give a purely local proof of a realization of the local Langlands corre-
spondence for two-dimensional W-representations of conductor three, using a description of
a semi-stable reduction of a Lubin-Tate curve in [IT17]. A conductor of a representation of a
Weil group means the Artin conductor exponent of it. We note that three is the smallest inte-
ger which is a conductor of a primitive two-dimensional Wi-representation. The calculation in
[IT17] is done by purely local methods. In [IT17], the actions of Wy and D* on a Lubin-Tate
curve are calculated in some sense. Using the calculation, we can study representations of
Wiy and D* in the cohomology of Lubin—Tate curves. On the other hand, we have already
known the relation between representations of GLy(K) and D* in the cohomology by [IT17,
Proposition 2.1], which is based on a realization of the local Jacquet—Langlands correspondence
proved in [Mield] by purely local methods. Therefore, we can study the relation between rep-
resentations of Wy and GLy(K) in the cohomology. This enables us to show a realization of
the local Langlands correspondence in the cohomology of Lubin—Tate curves.

In the study of a realization of the local Langlands correspondence for GLs, the most difficult
and interesting case is the dyadic case, which means the case where p = 2. A proof in the case
where p is odd is similar and easier. Therefore, we have decided to write a proof only in the
dyadic case.
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In the dyadic case, the irreducible two-dimensional Wiy-representations of conductor three
are primitive. In a construction of the local Langlands correspondence for primitive represen-
tations in [Kut80], Weil representations are used (cf. [BH06, §12]). On the other hand, our
descriptions of representations of GLy(K) in the cohomology of Lubin—Tate curves are given by
cuspidal types. Therefore, it is a non-trivial problem to check that the described representations
in the cohomology actually match under the local Langlands correspondence.

We explain the contents of this paper. In Section 1, we recall definitions of Lubin—Tate
curves, and give an easy consequence of a cohomological result in [IT17]. In Section 2, we
recall a description of a semi-stable reduction of a Lubin-Tate curve in [IT17].

In Section 3, we study the first degree etale cohomology of an elliptic curve, which ap-
pears in the semi-stable reduction of the Lubin-Tate curve as an irreducible component. The
cohomology of this elliptic curve gives a primitive Wi-representation of conductor three.

In Section 4, we show that a correspondence of explicitly described representations appear in
the cohomology of Lubin-Tate curves. In Section 5, we show that the correspondence obtained
in Section 4 is actually the local Langlands correspondence by calculating epsilon factors. In
other word, we give a description of the local Langlands correspondence via cuspidal type for
representation of conductor three. To determine the sign of an epsilon factor, we calculate the
Artin map for a wildly ramified abelian extension with a non-trivial ramification filtration by
reducing it to the equal characteristic case using results in [Del84].

Following a suggestion of a referee, we give comments on related progresses after this paper
was written. A semi-stable reduction of a Lubin-Tate curve studied in this paper is generalized
to higher dimensional cases as reductions of affinoids in Lubin-Tate perfectoid spaces in [IT13]
and [IT16]. Some arguments in Section 5 of this paper is generalized to GL,-cases in [IT15b]
to study an explicit description of the local Langlands correspondence for simple supercuspidal
representations of GL,. On the other hand, we use the Deligne-Laumon product formula in
[IT15b], which is not of purely local nature. In [Tsul6], a purely local proof of the non-abelian
Lubin-Tate theory for GL is given in the odd equal characteristic case. A purely local proof
of the non-abelian Lubin—Tate theory for a primitive Galois representation is not yet known
outside the case studied in this paper.
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Notation

In this paper, we use the following notation. For a field F', an algebraic closure of F' is denoted
by F?¢ and a separable closure of F' is denoted by F*P. For a Galois extension E over F, let
Gal(E/F) denote the Galois group of the extension. Let K be a non-archimedean local field.
Let Ok denote the ring of integers of K and k its residue field of characteristic p > 0. Let p be
the maximal ideal of Ok. Let ¢ = |k|. For £ € k, let € € py_1(K)U{0} denote the lift of &. For
a finite extension F' of K, let Wr denote the Weil group of F' and Ir denote the inertia subgroup
of Wg. For a finite extension F' of K and a Galois extension L of F'in F*P let W (L/F') denote
the image of Wr in Gal(L/F). Let K" denote the maximal unramified extension of K in K?°.
The completions of K* and K" are denoted by K and K™ respectively. We write Oz.. and

Oz for the rings of integers of K and K™ respectively. For an element a € Og.., we write
a for the image of a by the reduction map Oz.. — k*. We fix a uniformizer w of K. Let
v(+) denote the valuation of K?° such that v(w) = 1. Let |-|x be the absolute value of K such
that || = ¢'. For a,b € K* and a rational number a € Qsq, we write a = b (mod «) if



we have v(a — b) > «, and a = b (mod a+) if we have v(a — b) > «. For a local ring A, the
maximal ideal of A is denoted by m,4. For an algebraic curve X over k%, we denote by X¢
the smooth compactification of the normalization of X. For an affinoid X, we write X for its
reduction. The category of sets is denoted by Set. For a representation 7 of a group, the dual
representation of 7 is denoted by 7*. We take rational powers of @ compatibly as needed.

1 Lubin—Tate curve

Let n be a natural number. We put

Ki(p") = {(i Z) € GLy(Ok)

c=0, dElmodp”}.

In the following, we define the connected Lubin—Tate curve X;(p™) with level K;(p™).

Let X denote a formal Ox-module of dimension 1 and height 2 over £*¢, which is unique
up to isomorphism. Let C be the category of Noetherian complete local Oz, -algebras with
residue field £*°. For a one-dimensional formal Og-module F = Spf A[[X]] over A € C and
an element a € O, we write [a]#(X) € A[[X]] for the a-multiplication on F. For a formal
one-dimensional Og-module F = Spf A[[X]] over A € C and an A-valued point P of F, the
corresponding element of m 4 is denoted by z(P). We consider the functor

Ai(p"): C — Set

which sends A € C to the set of isomorphism classes of triples (F, ¢, P), where F is a formal
Ok-module over A with an isomorphism ¢: ¥ ~ F ®4 k* and P is a w"-torsion point of F
such that
I[I (x-a(az(P)) | [="](X)
a€Ok [pm

in A[[X]]. This functor is represented by a regular local ring R;(p™). We write X;(p™) for
Spf R1(p™). Its generic fiber is denoted by X;(p™), which we call the connected Lubin-Tate
curve with level K;(p™). The space X;(p™) is a rigid analytic curve over K. We can define
the connected Lubin-Tate curve X(p”) with full level n structure by changing P to be an
Ox-module homomorphism ¢: (O /p™)> — m4 such that

[ o) ' (%)

a€(Ok [p™)?

in A[[X]]. For i € Z, we can define a rigid analytic curve X(p")@ over K" by changing an
isomorphism ¢ in the definition of X (p") to a quasi-isogeny ¢: ¥ — F ®4 k?¢ of height i. We
put
LT(p") = [[X(p™)®.
i€z

Let D be the central division algebra over K of invariant 1/2. We write Op for the ring
of integers of D. For a positive integer m, let K,, be the unramified extension of K of degree
m and k,, be the finite extension over k of degree m. Let k € Gal(K2/K) be the non-trivial
element. The ring Op has the following description: Op = O, ® O, with p? = w and
ap = pa” for a € Ok,. We define an action of Op on ¥ by ((X) = (X for ¢ € p,z_1(Ok,) and
©(X) = X7 Then this gives an isomorphism

Op ~ End(X) (1.1)
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by [HG94, Proposition 13.10]. Using the isomorphism (1.1), we can define a left action of Of
on X;(p") and X(p"). We can define also a left action of D* on LT(p") using the isomorphism
D ~ End(X)[1/w] induced by (1.1).

Let ¢ be a prime number different from p. We take an ¢-adic compactly supported coho-
mology of a rigid analytic space by regarding it as an adic space (c¢f. [Hub98]). We take an
algebraic closure Q, of Q,. We put

Hyp = lim He (LT(p") g, Q) -

Then we can define an action of GLy(K) x Wy x D* on Hiy (cf. [Dat07, 3.2, 3.3]).

We write Irr(D*, Q,) for the set of isomorphism classes of irreducible smooth representations
of D* over Q,, and Disc(GLy(K),Q,) for the set of isomorphism classes of irreducible discrete
series representations of GLy(K) over Q,. Let

JL: Irr(D*,Q,) — Disc(GLy(K), Q)

be the local Jacquet-Langlands correspondence. We denote by LJ the inverse of JL. Let
Nrdp/x: D* — K> be the reduced norm map, and Trdp,x: D — K be the reduced trace
map.

Proposition 1.1. For a supercuspidal representation m of GLy(K) over Q,, we have
Homgr, r)(Hip, 7) ~ LI(m)%?
as representations of D*.

Proof. Let w; be the central character of m. We take ¢, € @g such that ¢2 = w,(w). We define
a character ¢, of GLy(K) by (:(g) = 299 and a character &, of D* by &:(d) = o (Nrdo/x ()
for d € D*. For n > 0, let LT(p")/w? denote the quotient of LT(p") under the action of
w? C D*. We put

Hiyp o = limy He (LT (p") /%) goc - Qo)

Then we have
Homer, k) (Hixp, ™) ~ Homep, (k) (Hip o ™ ® (') ® &x

as representations of D* by arguments in [Str05, 3.3]. Hence the claim follows from [IT17,
Proposition 2.1], because LI(m ® ;1) @ &, = LI(n). O

2 Semi-stable reduction of X;(p?)

From now on, we assume that p = 2. The dual graph of a semi-stable reduction of X;(p?) in
this case is the following:

Xeoa Xag, Koo X ¢,
where k) = {G,..., a1}, KX ={¢{,....{__1}, Y12 and Yy are defined by 2%y —ay? = 1, Z;
and FZ are isomorphic to Pl.., and X, are defined by 22 + 2z = w® (¢f. [IT17, Introduction]).
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For a finite extension K’ of K, let Artg/: K’ = W2 be the Artin reciprocity map normal-
ized so that the image by Artgs of a uniformizer is a lift of the geometric Frobenius element.
We define a homomorphism [-|: Wi — Q¢ by the composition

Wi — Wib 255 K 15 g,
Definition of S, (W x D*)? and r,
We put
S =k xk*
and

(Wi x D*)° = {(0,d) € Wk x D* | [Nrdp;x(d)|x - |o] = 1}.

Then (Wi x D*)° acts on Xi(p®) g It induces an action of (Wi x D*)” on [[ ces Xe o
by [IT17, Proposition 5.4 and Proposition 6.12]. For 0 € Wy, let r, be the integer such
that |o| = ¢7"™. Let O} x Wk be the semidirect product where o € Wy acts on Of by
d— @"dp~". Then we have the isomorphism

OF x Wi ~ (Wi x D)% (d,0) = (0,dp™"). (2.1)

By this isomorphism, O} x W acts on H(C,C’)e s XE,C" We will describe this action.

Definition of ki, ko and fy

For d € Of, we put ) -
Hl(d) = dl, /ﬁ?g(d) = _qudQ,

where d = d; + @dy with d; € O, and dy € Og,. We take (¢,(') € S. We put
Ja = Triye, (¢ 2Ro(d))

for d € OF.

Definition of (", 9, 6, (35, v, and y,
We briefly recall the definition of (3, v, and p, for 0 € W from [IT17, Section 6.2.2]. Consult
there for detailed discussions. We choose (" € pg(g—1)(K™) such that

41/3 — 6/4' (22)

We take 6 € K such that 6* —§ = 1/(¢"w@"/3) and d/12 = {'¢"~! (mod 0). We take 0 € K>
such that 62 — 6 = §3. Note that v(d) = —1/12, v(8) = —1/8 and § € K (("='/3,0).
Let 0 € Wi in this paragraph. We put
o CHW% .
(3o = <//—1) € pz(K™).
("ws

We take v, € ps(K") U {0} such that o(8) = (;5,(6 + ) (mod 5/6). We choose (3 € ps(K™)
such that (3 # 1. Then, we can take p, € pus(K™) U {0} such that

po =0(0) — 0+ 126 + v +0((3) — ¢ (mod 0+).



Definition of \,, A and Q) x Z

We put
1
o(@™ ) ,
Ao = ——1— € pia(g—1)(K™)
oo 2(a—1)

for 0 € Wg. We define a character A\: Wx — kX by A(o) = A\,. We put

a B v
Qz{g(a,ﬁ,v)z o B2 | € GL3(Fy) a72+0z27263}-
(8]

We note that |Q| = 24 (cf. [IT17, p. 137]). Let @ x Z be the semidirect product where r € Z
acts on Q by g(a, 8,7) = g(a?", 87, ~9"). To clarify the dependence on ¢, we sometimes write
Q X Z for Q x Z. Let k3 x Gal(ky/k) be the semidirect product with the natural action of
Gal(ka/k) on k5. We consider Fy as a subfield of ky C k**. Let Fr, be the ¢-th power Frobenius
map on k*. Then (Q x Z) x (ks x Gal(k2/k)) acts on [[ o)es XEUC’ as a scheme over k as
follows: An element

((g(e, B,7),7), (a,Frg)) € (Q X Z) x (ky »x Gal(ks/k))
acts by the isomorphism
X — Xacqb’c,; (z,w) = (27 + o Bw? " +a My a(w! T+ (a7 B)?),

where we describe a bijection on k**-valued points. Note that the action of (¢(1,0,0),r) € QXZ
is induced by the action of Frj on the coefficients of k*[z, w]/(2* + z — w?).

Proposition 2.1. The action of O x Wk on H(C,C’)GS XZC/ is described as follows: An element
(d,1) € OF x Wk induces the isomorphism

Xeo = Xia@ees (zw) = (2 + fa,w).
For (" € k*, the action of Wi C OF x Wk on Hcek§ szc/ factors through
Bt Wik = (Q X Z) x (k) x Gal(ks/k));
0= ((9(53,07 C_g,aﬂgv 63,0/7«7)7 Ta)a (/_\cn Frq—n,—)) :
Proof. This follows from [IT17, Proposition 5.4 and Proposition 6.12]. O]

Definition of O

Let ©¢: Wik — @ % Z be the composite of = with the projection to @ x Z. By [IT17,
Proposition 6.13], the map Oy gives an isomorphism W (K" (ww!/?,0)/K) ~ Q x Z and a finite
extension of K inside K" (w'/3,6) corresponds to a finite index subgroup of Q x Z.

3 Cohomology of elliptic curve

Let ¢ be an odd prime number. We fix an algebraic closure Q, of Q,. In the sequel, we consider
representations of groups over Q.



Definition of Qs, Cy, Z, ¢, 7 and Cs

We put

QS = {9(175/7’) € Q}7
which is a normal subgroup of @) of order 8. Let C; C Qg be the cyclic subgroup of order 4
generated by ¢(1,1,v) for v € Fy\{1}. Let Z C Cj4 be the subgroup consisting of ¢(1,0, )

with 72+~ = 0, which is the center of Q. We take a faithful character ¢ of C;. By [BH06, 22.2
Lemmal, there exists a unique irreducible two-dimensional representation 7 of ) such that

7-|Z = (¢|Z)€B27 tr(g<a707 0>;7—) = -1 (31)

for € Fy\{1}. Let C3 C @ be the cyclic subgroup of order 3 consisting of g(«,0,0) with
a € F;. Then we have

7=Ind¢, ¢ —Indg, . (6|2 ® 1c,) (3.2)
by [BHO06, 16.4 Lemma 2.(4)] and a proof of [BH06, 22.2 Lemma].

Definition of &, 7, and f

Let € be the elliptic curve over Fy defined by 2% + z = w?. Then (g(a, 3,7),7) € Q x Z acts
on Skac by

b

(zw) = (27 + a7 Bu’ +a el + (a7 B)%).

The action of Q x Z gives a representation H'(Egac, Q,) of Q x Z by the pullback by the inverse.
For a representation V' of () x Z and an integer m, we write V' (m) for the twist of V' by the
character Q@ X Z > (g,n) — ¢~ ™.

We write 7, for the representation H'(Epac,Q,)(1) of Q x Z. Let f be the degree of the
extension k over Fsy.

Definition of 7,, C' and ¢’

We are going to define a subgroup C' C Qg x Z and a character ¢’ of C. To clarify the
dependence on ¢, we sometimes write C,) and ng’( 9 for C' and ¢’ respectively.
First, we consider the case where f = 1. Let

Cl2) C Qs X2) Z

be the subgroup which consists of (g(1,8,7),n) satisfying ¢(1,5,v) € Cy if n is even, and
g(1,8,7) ¢ Cy if n is odd. We note that the index of C9) in Qg X(2) Z is two. We take 15 € Q,
such that n? — 2n, +2 = 0 and ¢(g(1,1,(3)) = —n2/2. We note that 3 = —4. We define a
character

¢/(2): Cla) = @KX

by sending (g(1, Gs, Gs), 1) to 7/2 and (9(1,0,0),2) to (~1)/2. We note that (g(1, Gy, Cs), 1) and
(9(1,0,0),2) generates Cz) as a group.
In general, let C(,) be the inverse image of C,) under the group homomorphism

Qs X(q) Z — Qs X2 Z; (g,n) — (g, fn).

Let ¢'( o) Pe the character of Cg) induced by gb’(Q) and the homomorphism C,) — C(2). We have

gb’(q)|c4 = ¢ by the construction. We note that C(4 = Cy x Z and d)’(q) (g,n) = ¢(g)(—2) ™72
if f is even.

Lemma 3.1. We have an isomorphism 7| ggxz ~ Ind2**% ¢/ .
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Proof. 1t suffices to consider the case where f = 1, because the claimed isomorphisms for
general cases are induced from the isomorphism for this case by the group homomorphism

Qs X(q) Z — Qg X(2) Z; (g,n) = (g, fn).

We assume that f = 1. We know that 7|, =~ Indgj ¢, and these representations are
irreducible. Hence the Q,-vector space

Homa, 72/, (& ¢') g, )

is 1-dimensional, and Q)g ¥ Z acts on the 1-dimensional subspace by a character x, which factors
through the projection Qg X Z — Z. Then we have

TZ'QSNZ = (IndgsNZ ¢/) @ X-

Therefore, it suffices to show that

tr((Q(L E?n 53)7 1)7 TQ) = tr((g(L 537 §3>ﬂ 1)? Indgsxz ¢/) 7é 07 (33)
since (3.3) implies that x is trivial. We put

¢//((g7 n)) = ¢/<(g(17 0, O)a 1)(97 n)(g(la 0, O)’ _1))
for (g,n) € Qg x Z. Then we have

tl‘((g(l, (_3’ 63)7 1>’ InngNZ Qb,) = ¢,(<g<17 537 53)7 1)) + d)//((g(l’ C_?n 53)7 1))

_B Ty
2 4

where we use

(g<1a 07 0)7 1)(9(17 é?n E3)a 1)(9(17 07 O)a _1) = (g<1a E3a 53)7 1)?’(9(1’ 07 0)7 _2)

at the second equality.
Let Fry ¢ be the absolute 2-th power Frobenius endomorphism of £ac. By the Lefschetz
trace formula, we have

24+ 1= tr((g(1, Ga: Ga), 1) H' (Epee, Qp)) = [{P € E(*™) | ((9(1,G,G3), 1) 7! 0 Froe) P = P}|
=[{(z,w) €K x k| +z2=0", 2=22+ G + (G, w=w’+ (G} +1
=[{(z,w) €K x k| +z=0", W+ Gu'+G=0, w+tw+G=0}+1=1
Hence, we have
tr((g(1,Cs,C3),1);m2) = 1. (3.5)
The claim (3.3) follows from (3.4) and (3.5). O

For any positive integer m, let
frgmi Skac — gkac

be the base change to k?¢ of the 2™-th power absolute Frobenius endomorphism of £.
Lemma 3.2. We assume that f = 1. Then we have

0 ifn=1,
1 ifn=2

tr((g(l,0,0),n);Tg) = {

for (g(1,0,0),n) € Q@ x Z.



Proof. We have

0 ifn=1,

tr((g(1,0,0),n); H' (Egne, Qp)) = tr(frde; H' (Epne, Qp)) = {_4 o

where the last equality follows from |E(Fq)| = 3, |E(F4)| = 9 and the Lefschetz trace formula.
The claim follows from this. ]

Lemma 3.3. We have det((g,n);Tq) =q " for (g,n) € Q X Z.

Proof. We have an isomorphism 7,|g ~ 7 as Q-representations by [IT17, Lemma 7.7].

First we are going to show that det 7 = 1. We see that det 7 factors through Q/Qs, because
(Q/Qs is the maximal abelian quotient of Q). By (3.2), we know that 7 is self-dual. Hence, the
character of ()/Qg induced from det 7 is trivial, since |Q/Qg| = 3. Therefore, we have det 7 = 1.

Since 7, is induced from 7, by the group homomorphism

QX Z = Q X2 Z; (g,n) — (g, fn),

it suffices to show the claim in the case where f = 1.
We assume that f = 1. Let w; and wy be the non-trivial characters of C'5. Then, we have a
direct decomposition
T 2’03 = w1 © wo

by (3.1). We fix a basis in the above decomposition. Then the action of (¢(1,0,0),1) € Q x Z

can be written as
0 a
b 0

for some a,b € @Z, since we have (¢(1,0,0),1)c = ¢*(g(1,0,0),1) in Q x Z for ¢ € C3. By
Lemma 3.2, we have 2ab = —1. Hence, we have

det((g(17070>7 1)a7—2) = —ab= 271.

The claim follows from this and det T = 1. O]

Definition of 7

Let 7/ be the representation of Wy induced from the (Q) x Z)-representation 7, by O,. We say
that a continuous two-dimensional representation V of Wi over Q, is primitive, if there is no
pair of a quadratic extension K’ and a continuous character y of Wy such that V' ~ Ind%ﬁ/ X-
The representation 7 is primitive of conductor 3 by [IT17, Lemma 7.8].

4 Realization of correspondence

Definition of y,, L and g

Let xo: Fy — @Z be the non-trivial character. We put

3:{(62 Z)eMg(oK) CEOmodp}, m:{(i Z)EJ

and U; = 1+ P C My(Ok). We put L = K(¢) C D, and consider L as a K-subalgebra of
M, (K) by the embedding

a=d=0mod p}, (4.1)

w 0

L= My(K); ¢ (0 1>. (4.2)
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We put Uh = 1+ ¢Op. We take an additive character 1x: K — Q, such that g (a)

(x2 © Tryr,)(a) for a € Ok.

For a finite abelian group A, the character group HormZ(A@gX ) is denoted by AY.

Definition of Ay, . and 7 .

Let (' € k*, x € (k*)Y and ¢ € @; We define a character A¢r . LXU:} — @Z by
AC’,X,C(‘P) = —C
A¢ryc(a) = x(a) for a € OF,
A¢ryo(x) = (Yi o tr) <€”2gp’1(:1: - 1)) for z € Uy.

We put

_ GLz(K)
T xe = C"Inde Ul A<,7X7C'

By [IT18, Proposition 1.3], m¢ . is a supercuspidal representation of conductor 3, and any
supercuspidal representation of conductor 3 is isomorphic to ¢ . for some (" € k*, x € (k*)Y

andce@z.

Definition of 0., . and p¢/ . .

Next, we define a character 8¢, .: L*U}, — Q, by

GC',X,C(SO) = 07
O y.c(a) = x(a) for a € OF,

0</7X7C(d> = (XQ © Trkz/]Fz) <C/_2/{2(d>> for d € Ué

We put
DX
pC/7X7C = IndLXUb 0C’7X7C‘

The representation p¢ . is irreducible by [BH06, 54.4 Proposition (1)].
Proposition 4.1. For ¢’ € kX, x € (k*)¥ and ¢ € Q,, we have JL(pe y.e) = T ye-
Proof. This follows from [BH06, 56.5], because

(Y o Trdp)k) (5'_2¢_1(d - 1)) = (x2 © T, r,) (Cﬁ?"&z(d)>

for d € U},.

]

Remark 4.2. In [BH06, 56.1], the local Jacquet-Langlands correspondence for D* is char-
acterized by coincidences of L-functions and e-factors. However, we can check that the corre-
spondence between per .. and wer . satisfies the characterization by trace identities (cf. [IT18]
). We note that the existence of the local Jacquet—Langlands correspondence for D* satisfying

the characterization by trace identities is proved in [Miel4] by purely local methods.
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Definition of ¢. and 7¢/, .

For ¢ € @Z, let ¢.: Wi — @Z be the character defined by ¢.(c) = ¢"=. For (' € k*, x € (k*)Y
and ¢ € @EX, we put
TC’vac = TC/ ® (X © )\) ® ¢C‘

For a representation V' of a Weil group and an integer m, we write V' (m) for the m-times Tate
twist of V. We choose (—2)'/2 € Q,.

Theorem 4.3. For (' € k*, x € (k)Y and c € @Z, we have

1
HomGLQ(K)(HLT7 7T</7X7c) = TC/7X7C ® pCI7X7C
as representations of Wy x D*.

Proof. Let ' € k*, x € (k*)¥ and ¢ € @Z By Proposition 1.1 and Proposition 4.1, we know
that

Hompx (p¢r e, Homer, (i) (Hip, Ter o)) = 7'
for some two-dimensional Wi-representation 7’. First, we will show that 7" = 7, ..
We put

Hyx = lim H (X(p") gae, Q)
and '
(GLy(K) x Wi x D*)° = {(g,0,d) € GLy(K) x Wx x D* | |det(g) " Nrdp/k(d)|x - |o] = 1}.
Then we have
Homg, k) (Hixps Ter x.e) = Homer, ) (C-Ind(G St o ch,x,c>

K Wi xD*
C HomKl(p ) (C IndKIE§5)X(W£<KX><DX) H;(,WC/’Xp)

C Homyg, <c IndVVV‘fo;)X H; (X1(p%) gacs Qp) @e) ;

where the last inclusion follows by taking the Kj(p?)-invariant part and using [JPSS81, 5
Théoreme], because the conductor of me . is three. Hence, we obtain

7~ Hom(pgf%c, Homegp,(x (HﬁT, e, xc))
C Hompx (pg,,x,c, (c-lnd%xx%x) H! (X4 (p )Kac,@g)> ) (4.3)

xy\ DX
~ <pg,,x,c® (C—Indw‘;fxx%x) HY (X (p )Kac,@e)> ) (4.4)

~ Hom px ( Ind?v/é(XXDDx) He (X1 (p%) goes Qi) sz,x,c>

Wiy xD* 1 *
~ Hompx C—Ind(w‘fxxDX @H CC”QZ (=1 ), 0é e |

CEkS

where the last isomorphism follows from [IT17, Proposition 7.3, Proposition 7.9 and Theorem
7.16] by studying only Of-actions. We remark that [IT17, Theorem 7.16] is based on [IT15a,
Theorem 5.3] where we use Berkovich spaces, but it does not matter for Lubin—Tate spaces by
[Far04, Lemma 4.4.6]. As vector spaces, the last space is isomorphic to

* ~C O\ *
Hom cIndD EBH (Xeen Q) | Pt e ~ Homx @Hl(X“,,@g) Pl
ceks ek
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which is two-dimensional by [IT17, Proposition 7.9]. Hence, the inclusion in (4.3) is an equality.
Therefore it suffices to show that there is a non-trivial homomorphism

Wi xD* X¢ 0. *
c-Ind{(y X0 @ H' (X o, Q) (=) | — 70, @ Pl
(eky

as representations of Wx x D*. By the Frobenius reciprocity, this is equivalent to give a
non-trivial homomorphism

(T¢'xe ® P xe) [ (Wiex Dxyo — @ H1<X<,<'7@Z)<1)
CekS

as representations of (Wx x D*)°. We put
(05 x Wk)* ={(d,0) € OF x Wk | k1 (d)A, = 1}
and consider this group as a subgroup of (Wx x D*)? by the isomorphism (2.1). Then we have
~° ray (W xDX*
P (X . T)) = di 0 (X 0 (L),
CEkS

because the action of OF x W on H(C es XE,C’ permutes the connected components transi-

tively and (O} x W) is the stabilizer of the connected component XiC’ by Proposition 2.1.
Hence, we have

Hom(WKXDX)O (TC/,ch ® IOC/7X7C> |(WK><D><)07 @ H1<X27</,@4)(1>

CekS
= Hom(OE NWK)O ((TC/QGC ® ’OC/aX7C)|(OE><WK)O7 Hl (X].,CH@E)(]‘)) :
WKXD

WxxL*U}
non-trivial homomorphism

Since 7¢/ y.c ® pery,e = Ind (T¢r e @ O¢r ye) and (OF X Wg)? C Wi x L*U},, we have a

CQCMCQDPCxﬁ)kOENWkW'__>(Qﬁxc@©00xm>kogmwkw
by the Frobenius reciprocity. Hence, it suffices to show there is a non-trivial homomorphism
(¢ e ® Ocr o)l (0w — H'(X] 0, Q)(1)
as representations of (O} x Wx)°. We put
Wi ={(\10) € (OF x W)’ | o € Wk}

We consider U}, as a subgroup of (O x Wg)® by identifying d € U}, with (d, 1) € (OF x Wg)°.

Then we have an isomorphism

(7Z’XCIQ§ 9C'Xﬁ¢)|M// — H' ( 1g/7(24)(1)|ng

as representations of Wy, by Proposition 2.1 and the definition of 7, . and 6, .. This iso-
morphism is compatible with the action of U}, by Proposition 2.1. Then this is an isomorphism
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as representations of (OF x Wg)?, because (O x W) is generated by W}, and U},. Thus we
have proved that

HOmDX (p§'7X7C’ HOIHGL2(K)(HIIJT, WC'1X70)) = T xe (45)
By (4.5), we see that Homey, k) (Hir, T/ y.c) 1s an irreducible representation of Wy x D*.

The group Q x (Z/27) is regarded as a quotient of Wy via Oy. Let &: D* — Q, be the
character defined by &.(d) = ¢?®do/x(@d) By (4.5), we have

Hompx (p¢r e ® & Homg (1) (Hip, T xe) @ b Ly 5o @ (X0 N) T @&
= T¢! x,ce ® ¢;(1_2)7f/2 ® (X © )‘)71'

Then we see that 7/, . ® ¢c_(1_2)—f/2 ® (xoA)tand pery . ®ET factor through representations

of Q x (Z/2Z) and D*/(w@”(1 + wOp)) respectively, where we use Lemma 3.1 for the first
factorization. Hence, the (W x D*)-representation

Homer, (i) (Hirs Terxe) ® Gy e @ (X0 N) T @&

factors through a representation of the finite group (Q x (Z/2Z)) x (D*/(@w*(1 + @wOp))).
Then we have

Homer, () (Hip, T xe) @ Gylg) 52 ® (X0 N) T @&
= (T</7X1C ® 9256_(1_2)—”2 ® (xo )‘)_1) ® (P e ® gc_l)a

because an irreducible representation of a product of two finite groups is isomorphic to a tensor
product of irreducible representations of the two groups. Therefore, we have the claim. O

5 Local Langlands correspondence

In this section, we prove that the correspondence in Theorem 4.3 actually gives the local
Langlands correspondence. After we introduce some notations, we give an explicit description
of the Artin map in Subsection 5.1. This enables us to calculate an epsilon factor explicitly. In
Subsection 5.2, we give an explicit description of the local Langlands correspondence for ¢/, .
using a result in Subsection 5.1.

We write Gy (K, Q,) for the set of equivalent classes of two-dimensional Frobenius semisimple
Weil Deligne representations of Wy over Q,, and Irr(GLy(K),Q,) for the set of equivalent
classes of irreducible smooth representations of GLy(K). For 7 € Iir(GLy(K),Q,), let wy
denote the central character of w. Let

LL;: Go(K,Q,) — Irr(GLy(K), Q)

be the (-adic Langlands correspondence. We follow the normalization in [BH06, 35.1]. If we
take an isomorphism ¢: Q, ~ C, then ‘7 and “m denote the representations over C associated to
7 and 7 by ¢ respectively for 7 € Go(K,Q,) and 7 € Irr(GLy(K), Q,). We use similar notations
also over a finite extension of K.

Remark 5.1. The (-adic Langlands correspondence LL, satisfies that
WiL(r) © Attt = (det7) @ ||
for 7 € Go(K,Qy). If we take an isomorphism v: Q, ~ C, then we have
1
e(‘r,s,¢) =¢ (‘LLg(T), s+ 5,1#)
for any non-trivial additive character ¢: K — C*.

13



For a finite extension K’ of K, we define an additive character ¢y : K' — @Z by g =
Vg o Trgr /i, and let vgs be the normalized discrete valuation of K’ that sends a uniformizer
to 1.

Definition of F, L/, €F/K» ARCI and TEC

We take ¢’ € k*. We simply write 7¢r, Ae and 77 for merq1, A¢ 11 and 7e11 respectively. We
put
F=K((%Y3) and L' = F(y).

We define Jp, Pr C Mo(Op) similarly to J and B as in (4.1). We put U§F =1+ B% for any
positive integer i. We consider L’ as an F-subalgebra of My(F) similarly as (4.2). We put
eF/K = (—1)f.
Let mr ¢ be the tame lifting of 7w to F. See [BHO06, 46.5 Definition| for the tame lifting. We
define a character Apc: L'“UZ, — Q, by
AF,C/ (SC) = E;L/ll(f)AC(NI'LI/L(l')) for x € L/X,
AF,(/(J;) = (wF @) tr) (6/728071(1' — 1)) for x € U:?F

GLy(F

LIXUZ) Ap by [BHO6, 46.3 Proposition] and the construction of the

F

Then we have mp ¢ = c-Ind

tame lifting.
We will describe the restriction of 7 to Wy, The field F' corresponds to the subgroup
Qs X Z of Q) x Z.

Definition of 4,, d, and 6,

First, we consider the case where f is even. We put ho(z) = 2> — x. Then we have
ho(62 — 6) = 1/(¢"w'/?)  (mod 3/4).

Hence we can take 6, € F(§) such that ho(d) = 1/(("@'?) and 6 = 62 — § (mod 3/4)
by Newton’s method. Similarly, we can take d; € F(§) such that 67 — 6, = 5 and &, = §
(mod 3/4). Then we have F(84) = F(§). Further, we can take 6, € F(0) such that 63 — 0, = 63
and 0y = 6 (mod 7/12). We have F(0y) = F(6). Then F(dy) corresponds to the subgroup
Cy X Z of Q X Z.

Next, we consider the case where f is odd. We put hy(z) = 22 — x + 1. Then we have

h(62 =0+ ¢) = 1/(C"w'?)  (mod 3/4).

Hence we can take dy € F(C3,8) such that hy(0y) = 1/(¢"w'/?) and 6, = 62 — 6 + (3 (mod 3/4)
by Newton’s method. Similarly, we can take §; € F((3,6) such that 67—, +(3 = s and 6, = ¢
(mod 3/4). Then we have F((3,04) = F((3,60). Further, we can take 6, € F((3,6) such that
03 — 0y = &3 and 6, = 0 (mod 7/12). We have F((3,02) = F((3,6). Then F(ds) corresponds to
the subgroup C' of () x Z.

We note that v(dy) = —1/6 for any f.
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Definition of E, ¢o and g/

We put E = F(d;). The image of Wi under ©p equals C. Let ¢ be the character of Wg
induced from ¢' by ©.. Then we have

%4
TC/ |WF ~ IHde ¢</

We consider ¢ as a character of £ by the Artin reciprocity map Artg. For a finite extension
K’ of K and integer i, we write pgs for the maximal ideal of Ok, and put Uk, = 1+ p%.,. Let
E,, be the unramified extension over E of degree m for a positive integer m. Let »g,p be the
character of F* with kernel Nrg/p(E*).

5.1 Explicit Artin reciprocity law

The results in this subsection will be used in the proof of Proposition 5.6.

For a Galois group G of a finite Galois extension of a non-Archimedean field, let G and G*
be the ramification subgroups of G with lower numbering and upper numbering respectively.
Note that

KerTrk/]FQ = {§ + 52 | ¢ € k‘} (51)

Lemma 5.2. We have
¢ (1 + ) = Pg(dz)
for x € p% and
sepr(1+y) = vr ((("@"?) 7 'y)

fory € pp.

Proof. We prove the first statement only in the case where f is odd. It is easier to prove the
first statement in the case where f is even.
We put G = Gal(E,(0)/E). For o € I, we can show that

U(O’ (é)_é) — 1_12 if <3,0' - ]-7 Ve = 17
0) 6 % fGe=11v,=0u,=1

by the definition of (,, v, and u,. Then we have
Gal(E2<9)/E2) = GO = G1 D) Gal(EQ(H)/ng)) = G2 = Gg D) {1} = G4

and
Gal(Fy(0)/E,) if0<t<I1,
G' = < Gal(Ey(0)/Ey(6)) ifl<t<2
{1} if 2 < t.

Then the restriction of ¢ to U% equals the composite

U — U3/(U Negyo5(U ) = Gal(Ex(0)/ Bx(9)) ~ Z 25

X

Q

by [Ser68, XV §2 Corollaire 3 au Théoréme 1]. We define No: ks — k by No(x) = Try, x(2)* +
Try,/k(x). Then we can check that

Nrg, o)/ ng(e)/Uéz(e) — Uz /Uy
becomes Ny: ky — k under the identifications

Upy)/Upyo) = k23 14072 =2 and Up/Up ~k; 146,z — .
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Therefore we have L
¢ (1+x) = (x2 0 Trey, ) (632) (5:2)

for z € p%;, because Im Ny = Ker Try/p, by (5.1). Since we have (x2 o Tryr,)(Z) = g (d2x) for
r € Op, the first statement follows.
We can prove the second statement similarly. ]

Lemma 5.3. We consider ('"%p~! as an element of GLy(F) by the embedding (4.2). Then we
have

det({'"%¢p™1) = Nrg/p(53) mod U},
= ”w%)_l + Trg/r(03) mod Op.

Proof. We have R X
det(C/_QQO_l) — _C/_4w_1 — —C//_S’(ﬂ_l

by (2.2). On the other hand, we have

—(¢("Bw)! if f is even,

Nrg/r(03) = Nrg/p(ds)® = {(1 — (¢"@3H3if f s odd.

Hence, we have the first congruence. We have tr(é’*2<,0*1) = 0. On the other hand, we have

TI‘E/F((;S) = TrE/F(62>3 — 3NrE/F<52) TI‘E/F(ég)

1+ 3(</lw1/3)—1 if f is even,
=1—=3Nrg/p(d2) = {_2 + 3(¢"@/3) 7t if f is odd.

Hence, we have the second congruence. O

Let & be the elliptic curve over Fy defined by 2%+ 2 = w® +w. Let oy, ap € Q, be the roots
of 22 + 22z +2 = 0.

Lemma 5.4. We have
EF) =q+1— ((=2)2)" = (=(=2)'/2)”,
‘5/(Fq)’ =q+1- Oé{ — oég.

Proof. We have tr(fry; H(Egec, Q,)) = 0 and tr(frl; H'(Epac, Qy)) = —4 as in the proof of Lemma
3.2. Hence we obtain

tr(fy; B (Eee, Q) = (=272 + (=(=2)V2) .

The first claim follows from this and the Lefschetz trace formula. The second claim is proved
similarly by tr(fry; H'(Efac, Qp)) = —2 and tr(fry; H(E}ac, Q) = 0. O

If f is odd, then the map O, induces an isomorphism W (E"™(0)/E) ~ C, and we write ag
for the composite

B A b s W(E™(9)/E) ~ C.

Lemma 5.5. We assume that f is odd. Let ny and my be the integers such that 1 < ng my < 2,
ny = (f+1)/2 mod 2 and my = (f?+7)/8 mod 2. Then we have ap(d) = (g(1, Gy, —1).
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Proof. Let C be the image of C' in Qg x (Z/27). Then C ' is a cyclic group of order 8. Let g
be the composite of ag with the natural projection C' — C'. It suffices to show that

ap(%) = (91, G, G), 1),

because we know that the second component of ag(dy) is —1. We note that the isomor-
phism W(E™(0)/E) ~ C induces Gal(E5(6;)/E) ~ C. By this isomorphism, we consider
(g(1,C2™  C5),1) as an element of Gal(Ey(6s)/E).

We write Eg) for E in the mixed characteristic case, and E;) for F in the equal characteristic
case. We use smular notations for other fields and elements of the fields. Then we have the
isomorphism

E(T))/U%m) = E(;)/Ug(p); o+ §152j(10) + §205 gy — &0 + &0y 1 ) T &20, (p

where £y, &1,§2 € k C E(,). This isomorphism induces an isomorphism

se se ab se se ab
(Gal(E(of/E(O))/Gal(E(oy/E(O))g) = (Gal(E(pf/E(p))/Gal(E(pf/E(p))g)

by [Del84, (3.5.2)]. It further induces an isomorphism

Gal(Es 0)(62,0))/ E()) == Gal(Es ) (02,))/ Ew))-

Then we have a commutative diagram

% 3 ArtE(O)
By Uk, — Gal(Exz ) (02,0)/Eq) —=C
2 z
Ep)
EW@;—%GWQ@@ 1/ Ey) —

by [Del84, (3.6.1)] and the construction of the isomorphisms. Therefore, it suffices to show that
ap(ds) = (g(1, ™, ), 1) in the equal characteristic case.
We assume that the characteristic of F is p. We define the central division algebra D, over

E of degree 64 by
7
Dg = @ EQ(HQ)S
i=0

where s® = d5 and sas™! = (g(1, Can, (37),1)(a) for a € Ey(6;). Let o, € Gal(Eg/E) be the
lift of Fr,. We define the central division algebra D, over E of degree 64 by

7
D, = @ Egt!
1=0

where t® = §y and tat™' = o (a) for a € Fg. By the construction of the Artin reciprocity map,
it suffices to show D, ~ D, to prove the claim. To show this isomorphism, it suffices to find
s', 64,05 € D, such that

=0y =0+ G =0y 07 —0,=0" 5405 = 00,
s'ggs/fl = Cg, 5/5215/71 =) + Cgf, 5/955/71 =0, + C;nf@/l + C;nf

We put 8 = t. Then we have s° = 6, and §'(zs'~" = (2. We take ag € piga_1(E,) such that
a% —ag = (3. We put
8 = ag + 12 +t*
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Then we can check that 6212 — 04 + (3 = 0y using t?agt™® = ap + 1. We can check also that
toht—t = 0} + (37 using tagt ™' = ap + (3’
We take by € pgs_1(Es) and by € pga_1(Ey) such that b — by = a3 + (3 and bj = ap. We
put
0 = by + (ag + (3)t* + bat* + ¢°.
Then we can check that 6,2 — 6, = &>, 8,6, = 6,8, and 05t = 0}, + (38, + (5 using
thot™ = by + aple" + (5 and thyt~' = by + (. Therefore, we have proved the claim. O

5.2 Explicit local Langlands correspondence

In the next proposition, we show that 7|y, corresponds to 7 under the local Langlands
correspondence by calculating their epsilon factors. We will show a correspondence over K
in Theorem 5.7 using the correspondence over F' and a construction of the local Langlands
correspondence for primitive representations in [BH06, 50.3].

Proposition 5.6. We have LL;(7¢/|w,) = Tre .
Proof. We put LL(7¢) = 7 and LLe(7¢|w,) = 7. We want to show that 7 = 7pcr.

By Lemma 5.2, Lemma 5.3 and [BHO06, 44.7 Proposition], the representation 77, ., contains
the ramified simple stratum (Jr, 3, CA’ ~2p71). Then the representation 7T2, contains the ramified

simple stratum (3,1, 20 1) by the construction of T in [BHOG, 50.3]. Therefore we have

GLo (K) A/

T = c-Ind; 7
J

for a character Ay, : LUy — Q, such that Ay = A on Uy.
Let 15 denote the trivial character of Wr. We put

sy = det Indyp % 1p.

Then sp/k|w, = 1p if f is even, and »p/k|w, is the unramified character of order two if f is
odd. Hence, the definition of ep/x in [BHO06, 46.3] coincides with that in this paper. By [BHO6,
46.3 Proposition|, we have

/ GLy(F) A1
7TF’C, = C'IndL/ng AF,C,
F

for a character A%, : L'"US, — Q, such that Apo = Apg on U3, and

e () = G?L/;(f) o (Nrpyr ()

for z € L'*. Hence we have A% ., (x) = 1 for x € Uj,, because A, (z) = 1 for x € U}. Then we
see that A = Ape on Up, F*U; , because Ay, = Ape on F* by Remark 5.1 and Lemma
3.3.

We define kp: F* — Q, by rp(z) = (=1)’r@_ Since Np o = Apg on Up, F*U3 |, we know
that A} = Ape or Ao = Ape ® (kp o det). We take an isomorphism ¢ Q, ~ C. Then, to
show A% = Ape, it suffices to show that

e(‘Tpen 1/2,009p) = e("Tpe, 1/2,0 0 Yp).

We note that we have already known this equality up to sign.

In the sequel of this proof, we identify Q, with C by ¢, and omit to write .. By [BH06, 25.5
Corollary|, we obtain e(mpr,1/2,9p) = —€p/k using that 5 is the least integer m > 0 such
that USTFI C Ker Ap¢r. On the other hand, we have

3
5(77-;7,(” 1/2a 77Z)F) = 5(TC'|WF7 O>¢F) - q25(TC’|WF7 1/27¢F),
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because the conductor of 7|y, is three. Hence, it suffices to show that

5(TC'|WF7 1/27 wF) = _GF/ing/z'

Let Ag/r(¢r) be the Langlands constant of E over F with respect to ¢p (cf. [BHO6, 30.4]).
Let 1g denote the trivial character of Wg. Then we have

Apyr(p) = e(Indy” 15,1/2,¢p)e(1p, 1/2,05) " = e(5ep/r,1/2,0p) = %E/F(g//w%) = €r/K,

where we use Indgg lg ~ 1p @ xp/p and [BHO6, 23.5 Lemma 1 and Proposition| at the second
equality, Lemma 5.2 and [BHO06, (23.6.2) and 23.6 Proposition] at the third equality, and Lemma
5.2 and the equality

—1/(¢"='/3) if f is even,

Nrpr(d2) = {_1/«//@1/3) 41 if fis odd

at the last equality. Therefore, it suffices to show that
€(¢C’7 1/2a ¢E> = _q_3/27

because we have e(7¢/|w,, 1/2,¢r) = e(é¢, 1/2,VE) g p(Vr).
We define 9%, by ¥(x) = ¥gp(dx) for x € E*. Then ¢} has level one (c¢f. [BH06, 1.7
Definition]), and we have

e(60,1/2,08) = 6o (02)'e(de, 1/2.05) = 260 (82) ™" D> der(63y)Wp(93y)

yEU}E/U2

=g 260(03)7 D b1+ ) Mvr (3(1+ x))
xepE/pE

=50 Y do(l+ ) vs(r)
zepp/pg

by [BHO06, 23.5 Lemma 1, (23.6.2) and (23.6.4)] and 1z (d3) = 1. Therefore it suffices to show
that

G (03)7 > b1 40y n) hp(Sr) = —q . (5.3)

xEOE/pE

Note that we have already known this equality up to sign.
First, we consider the case where f is even. Then we have

60 (33) = (=207 (~1) = (~2)¥7

by
Nrp(o,)/6(02) = Nrpgs,/e(—03) = Nrpg, p(0s)° = =6,
and Lemma 5.2 with x = —2. Hence, it suffices to show
~1\~ i
S b+ 65 e) p(3n) = —(-2)7.

We simply write £24 for €2 + €4, and use similar notations also for other sums. We have

b (1 + E24051 + 123577 = 1 (5.4)
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for £ € k, since

Nrg(oy)/5(1 + €0405 1) = Nrpa, /5 (951(92 + 554)> = Nrpe,)/E (522(52 —€- 5254))

= NI"E(54)/E (5;2 ((1 — 52)54 + 09 — é))
=14 24571 +£42%5;2 (mod 1/2).

Therefore we see that ¢ (14 05 'x) = £y/—1 for z € Op if T # €24 &* for any € € k. Then we
have

S 0o+ 6k () = 5 3 b (14 €4057) (936,

CCGOE/pE fek

since we have already known that

> (1465 2) p(dr) = £(-2)2 € Q.

:EEOE/]JE

We have X A
S b0 (1+ €246, Mg (262Y) =3 b0 (1+ €26, 2) i (52624,

gek ¢ek
since R . A
Gor(L+€0,1) 7 = 9o (1 +€1276,%) = (1 +€°657)
by (5.1), (5.2) and (5.4). Further we have

D o (1+8%6,7)m(556") = D xo (Triym, (€8 + €+ €)

£k ¢k

=> X2 (Trgye, (€%)) = —2(-2)

ek

by Lemma 5.2 and (5.1), because

W

{(@.y) €k |2* +a =y} = [E(F,)| -1 =q—2(-2)

by Lemma 5.4. Thus we have the claim in the case where f is even.

Next we consider the case where f is odd. We define ny and m; as in Lemma 5.5. We treat
only the case where ny = m; = 1. The other cases are proved similarly.

We assume that ny = my = 1, which is equivalent to that f =1 mod 8. We put n = ng. By
Lemma 5.5 and the definition of ¢, we have ¢¢/(d2) = ¢/n. Hence, to prove (5.3), it suffices
to show

Z ¢C'(1 + 52_1$)_1wE<(5§x) = —q277_3'

2€0g/vE
By (5.2), we have )
P (1+E12057%) =1 (5.5)
for £ € k. We have
¢ (1 + Tri, 2(€)0; " + (Tre,p(6Y) + NYEQ/E(§2’4))52_2) =1 (5.6)
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for € € ky by (5.5) and

Nrg, 0)/(1 + €0405 ") = Nrg,sy)/6 ( RS 54))
= Nrg,(50)/ (54_2 <(1 — )61+, — € - C3>>
= Nrgyp (G =0) 72 (L= €)2(G = 0) + 1 =)0 == )+ (2 — €~ )?))
=1+ Trg,/e(E*)0; " + (Tr,p(€® + 8¢ + £Cs) + Nrp, p(€*)) 657 (mod 1/2).

Then we have X R
G (1+E210, 1 +£726,2) =1 (5.7)

for € € k by (5.5) and (5.6), because
Trkz/k(gg) + Nrkz/k(g2 + 54) = Ter/k(f)?’ + (Ner/k(€2) + gq—‘rl Trk2/k(€>)
+ (Nrgy i (€2) + €471 T%/k(f))Q

for € € ky. Since

Nr (005 (02/04) = Nrgy(50)/5(—01) = Nrg,/p(G — 02) = 65 + 02 + 1,

we have
¢</(5% + 09 + 1) = ¢’(g(170’0)’ _2) _ (_271)—f S
Hence, we obtain ¢¢(1+ 45" + 057) = —n°¢~". Therefore we have

oo (14 (€2 +1)8; 1) e (0362 + >>=—%wl+52745;1>-1¢E<6§£274>

by (5.5) and ¢ (1 + 65 %) = ¥p(ds) = 1¥p(43), which follows from Lemma 5.2 and
TI‘E/F(ég) =1=-1+4+ 2( ”?ﬂl/g)_l = TrE/F((S;) (mod 2/3)

Then we have

> G406y ) n(de) = ;(1__)2% (1+ €240, ") em(836>),

IEOE/pE £€k

because ¢ € Ker Tryp, = {&° +¢* | ¢ € k} if and only if ¢ + 1 ¢ Ker Try/r,. Therefore, it
suffices to show that

S de(L+ 2453 (03634 = —(-2)'F"

ek

On the other hand, we have

D (14846 ) (5387 = e (14 £06, ) p(536™)

gek &k
= ZXz (Trwsm, (€ +€%)) = —(_2)%
¢ck
by (5.1), (5.7) and Lemma 5.2, because
{@y) e R +a=y +y}| = EF) -1=q- (-2
by Lemma 5.4 under the assumption f = 1 mod 8. Thus we have proved the claim. [
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Theorem 5.7. For ' € k*, x € (k*) and ¢ € Q, , we have LLy(T¢r y.0) = Ter y -

Proof. We may assume that x = 1 and ¢ = 1 by character twists. By [BH06, 50.3 Lemma 1
and (50.3.2)] and Proposition 5.6, it suffices to show that

AC’|K>< @) Artf}l = (det TC/) X ‘-|_17

Aoy = Apglus,

Al (x) = evFL/'](f)ARC/ (x) for x € L™,
The first equality follows from Lemma 3.3, and the third equality follows from the definition

of AF@"
We are going to show the second equality. We put

U}J:{(z Z)GJ aEdzl,bEOmodp}, Ué'z{(é l1)>€3}-

Then we have A%|U§ = Ap¢|v; by the definition of A¢ and Ap¢, because Uy C U3, On the
other hand, we have

o3 )=o) el )

= p(C2h) = ¥ (¢'7?h)° = A (((1) (1)))3

for b € Ok. Therefore we have the claim, because Uj is generated by U} and UY. O
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