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Abstract. For the integral canonical model SKp of a Shimura variety ShK0Kp(G,X) of
abelian type at hyperspecial level K0 = G(Zp), we construct a prismatic F -gauge model for the
‘universal’ G(Zp)-local system on ShK0Kp(G,X). We use this to obtain several new results about
the p-adic geometry of Shimura varieties, notably an abelian-type analogue of the Serre–Tate
deformation theorem (realizing an expectation of Drinfeld in the abelian-type case) and a
prismatic characterization of these models at individual level.
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Introduction

Shimura varieties ShK(G,X) are a class of varieties over a number field E = E(G,X) associated
to a reductive Q-group G, and a piece of ancillary Hodge-theoretic data X, which sit at the
intersection of differential geometry, algebraic geometry, and number theory. A guiding principle
concerning Shimura varieties is that they should be moduli spaces of G-motives.1 In particular,
there ought to be a universal G-motive ωmot. While even the precise formulation of this is
conjectural, for more well-behaved categories C which approximate the theory of motives one
might still write down C -realization functors. In other words, G-objects ωC in C which serve
the role of RC ◦ ωmot for RC the C -realization functor from motives to C .

Over C this idea has been mostly realized. Namely, one can construct a functor

ωK,MHM : RepQ(G)→MHM(ShKC(G,X)), (I.1)

called the MHM realization functor (see [BW04, §2]). Here for a smooth complex variety X we
denote by MHM(X) Saito’s category of mixed Hodge modules on X (see [Sai90]), which serves as
a very close approximation to the theory of Q-motives over X. This is a remarkably powerful tool
in studying the geometry of ShK(G,X)C (e.g., see [BW04]) but, up to non-trivial foundational
issues, is easy to construct by the very definition of Shimura varieties. Indeed, Shimura varieties
start out life as complex analytic spaces of a very Hodge-theoretic flavor, and only after quite
sophisticated and inexplicit arguments obtain the structure of algebraic varieties over E.

For applications of Shimura varieties to number theory one must understand Shimura varieties
not just over C, but over p-adic fields and their integer rings. Until recently, finding an analogue
of (I.1) in this setting seemed completely out of reach since there was no good analogue for
MHM(X). But, recent deep work of Drinfeld and Bhatt–Lurie on integral p-adic Hodge theory
(e.g., see [Bha23]) has provided a good analogue of MHM(X) over a p-adic formal scheme X.
Specifically, they construct the category Dqc(X

syn) of prismatic F -gauges on X, closely related
to the syntomic cohomology from [BMS19], and built upon work of Fontaine and Messing. This
category promises to form a very close approximation to the category of Zp-motives over X.

However, finding a syntomic analogue of (I.1) remains challenging. Now the analytic origins
of Shimura varieties instead of helpful are a hindrance, as their Hodge-theoretic nature over C
does not lend itself well to the p-adic Hodge-theoretic setting. This is further complicated by the
inexplicit descent from C to E. So, except in the rare cases that one can unconditionally get at
the ‘true G-motive’ (e.g., if the Shimura datum is of so-called PEL type) it’s not at all clear
where to start. This makes the following theorem in the abelian-type setting significant.

Theorem A. Let (G,X) be of abelian type and p be an odd prime. Set K0 = G(Zp) where G is a
reductive Zp-model of GQp . Then, for the integral canonical model SK0Kp(G,X) at a p-adic place
of E, there is a syntomic realization functor on ŜK0Kp(G,X), i.e., an exact Zp-linear ⊗-functor

ωK0Kp,syn : RepZp
(G)→ Vect(ŜK0Kp(G,X)syn) ⊆ Dqc(ŜK0Kp(G,X)syn),

which recovers the universal G(Zp)-local system ωK0Kp,ét on the generic fiber.

There are many applications of Theorem A discussed below. We highlight two here.
(1) Serre–Tate theorem: if R→ R/I is a nilpotent thickening of p-nilpotent rings, then for an

R/I-point x of SK0Kp(G,X) the deformations of x to an R-point of SK0Kp(G,X) are naturally
in bijection with the deformations of the prismatic F -gauge with G-structure (ωKp,syn)x.

(2) A characterization of SK0Kp(G,X) at individual level: SK0Kp(G,X) is the unique
smooth and separated model X of ShK0Kp(G,X) which has a syntomic model of ωK0Kp,ét

such that (1) holds, and such that X̂η is the (potentially) crystalline locus of ωK0Kp,ét. We
emphasize that this characterization works at individual level K0K

p, not requiring consideration
of the full prime-to-p Hecke tower (i.e., letting Kp vary).

1For general G this is not quite correct, and one should instead consider Gc-motives for a certain modified
group Gc. See [LS18, §3] and §2.3 for details. For the sake of simplicity, we ignore this subtlety in the introduction
and assume G = Gc, but do not make this assumption in the main body of the article.
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For (1) the best previously-known versions of the Serre–Tate theorem (in this generality of R)
hold in the PEL case, where (unlike the abelian-type case) one may leverage the existence of a
G-motive. With respect to (2), previously the only characterization of integral canonical models
was for the entire family {SK0Kp(G,X)}Kp simultaneously, and involve a ‘(strong) extension
criterion’ which is less motivic in nature. We feel that both (1) and (2) make substantial progress
towards understanding Shimura varieties of abelian type as parameterizing motivic objects.

Syntomic realization functor. Let (G,X) be a Shimura datum of abelian type with reflex
field E. Fix a prime p > 2 and let E be the completion of E at a p-adic place. Set G = GQp , and
fix a reductive Zp-model G of G, letting K0 = G(Zp) be the associated hyperspecial subgroup.
For K = KpK

p ⊆ G(Af ) a compact open subgroup, write ShK for ShK(G,X)E . Then,

lim←−
Kp⊆K0

ShKpKp → ShK0Kp ,

is a K0-torsor on the pro-étale site of ShK0Kp , and we let

ωKp,ét : RepZp
(G)→ LocZp(ShK0Kp),

be the associated exact Zp-linear ⊗-functor, an object of G-LocZp(ShK0Kp). Here, for an exact Zp-
linear ⊗-category C we write G-C for the category of exact Zp-linear ⊗-functors ω : RepZp

(G)→ C.
Let SKp be the integral canonical model of ShK0Kp over OE as in [Kis10] and ŜKp its p-adic

completion. One may then consider the open subspace (ŜKp)η ⊆ ShanK0Kp , and define

ωKp,an : RepZp
(G)→ LocZp((ŜKp)η), ξ 7→ ωKp,an(ξ) := ωKp,ét(ξ)

an|
(ŜKp )η

,

a G(Zp)-local system on (ŜKp)η, i.e., an object of the category G-LocZp((ŜKp)η).
In [IKY24, Definition 2.27], we define when a G(Zp)-local system on a smooth rigid analytic

variety X has prismatically good reduction relative to smooth formal model X of X. While it
requires non-trivial technical input, we show that ωKp,an has prismatically good reduction relative
to ŜKp by reducing to the Siegel case (see Theorem 2.10). Using the main results of [IKY24] we
are then able to deduce the existence of a prismatic realization functor

ωKp,∆ : RepZp
(G)→ Vectφ((ŜKp)∆),

where the target is the category of prismatic F -crystals on ŜKp (see [BS23]), unique with respect
to the property that Tét ◦ ωKp,∆ ≃ ωKp,an, where Tét is the étale realization functor from [GR24].
But, it is initially quite unclear whether ωKp,∆ can be upgraded to take values in Vect((ŜKp)syn).

Remark 1. Our construction of ωKp,∆ utilizes abstract p-adic Hodge theory from [IKY24],
ultimately relying on [GR24] or [DLMS24]. In [Nie21], Nie constructs ‘absolute Hodge cycles’
in the prismatic cohomology of good-reduction abelian varieties over p-adic fields. This method
currently only works over a point and with inexplicit restrictions on p. If these conditions were
removed one might alternatively attempt to construct ωKp,∆ via this method (at least in the
Hodge-type case). This would yield an approach closer in spirit to that used in [Kis10].

In §1 we show that for a smooth formal OE-scheme X there is a bi-exact Zp-linear ⊗-equivalence

Vect(Xsyn) ∼−→ Vectφ,lff(X∆), (I.2)

(see Proposition 1.28), which is proven to be bi-exact in [IKY25] using our integral analogue
Dcrys of Dcrys from op. cit. Here Vectφ,lff(X∆) is the category of prismatic F -crystals (E, φE) on
X which are locally filtered free (lff): the Nygaard filtration on the Frobenius pullback ϕ∗E is
locally free (see Definition 1.24).

Thus, to upgrade ωKp,∆ to an object of G-Vect((ŜKp)syn), it suffices to show that ωKp,∆

takes values in Vectφ,lff((ŜKp)∆). One can even hope for a stronger property: ωKp,∆ is of type
−µh. Here µh is the Hodge cocharacter of (G,X) and being of type −µh means that locally
the Frobenius φE is in the double coset defined by −µh (see [IKY24, Definition 3.12]). By an
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Artin-approximation-like argument, it suffices to show ωKp,∆ is of type −µh over the complete
local rings ÔSKp ,x for each Fp-point x of SKp . We achieve this by comparing the pullback of
ωKp,∆ to ÔSKp ,x and a construction of Ito from [Ito25] using our integral analogue Dcrys of Dcrys.

Thus, by the equivalence in (I.2) we obtain a syntomic realization functor as in Theorem
A. In fact, one may use an enhancement of (I.2) (see Proposition 1.39) to show this syntomic
realization functor is of type −µh in an appropriate sense (see Definition 1.32).

Theorem B (see Theorem 2.14). There exists a unique G-object ωKp,syn of Vect((ŜKp)syn) of
type −µh such that Tét ◦ ωKp,syn ≃ ωKp,an.

Remark 2. In [She24], Shen constructs a de Rham F -gauge on (SKp)Fp
when (G,X) is of

Hodge type. In the language of the next section, this is equivalent to a map (SKp)Fp
→ BTG,−µh

1 ,

whereas our syntomic realization functor is a map ŜKp → BTG,−µh
∞ . That said, Shen is able to

describe this object in more down-to-earth terms using the de Rham cohomology of abelian
varieties and the BGG complex. Our construction recovers Shen’s after base changing along
Spec(Fp) → Spf(OE) and truncating from an ∞-truncated (i.e., untruncated) object to a
1-truncated one, i.e., base changing the composition ŜKp → BTG,−µh

∞ → BTG,−µh
1 to Fp.

Syntomic integral canonical models and the Serre–Tate theorem. The family of integral
canonical models {SKp}Kp are uniquely characterized as a system by a strong extension property :
for every regular formally smooth OE-algebra R, one has

lim←−
Kp

SKp(R) = lim←−
Kp

ShK0Kp(R[1/p]).

While this characterization is sufficient for many applications, it is incapable of characterizing the
models SKp for individual levels Kp, and is far from a direct moduli-theoretic characterization.

Given our guiding principle for ShK0Kp , it is natural to expect that a canonical model SKp of
ShKpK0 should be a moduli space of G-motives in some sense. If one thinks of prismatic F -gauges
as being the ‘syntomic realization’ of (and good approximation to) the category of Zp-motives, it
seems not unreasonable to expect a characterization of such models in syntomic terms.

To make this precise, we use the moduli stack BTG,−µh
∞ of prismatic F -gauges with G-structure

of type −µh suggested by Drinfeld, and developed by Gardner–Madapusi in [GM24].

Definition (see Definition 3.39). A syntomic integral canonical model of ShK0Kp is a smooth
and separated OE-model XKp of ShK0Kp such that

(1) (X̂Kp)η is the potentially crystalline locus of ωKp,ét,
(2) there exists a syntomic model of ωKp,an of type −µh such that the resulting map

ρKp : X̂Kp → BTG,−µh
∞ (I.3)

is formally étale.

Our ‘motivic’ characterization of SKp is then the following which additionally realizes an
expectation of Drinfeld (see [Dri24b, §4.3.3]) for abelian-type Shimura varieties.

Theorem C (see Theorem 3.34 and Theorem 3.40). The integral canonical model SKp is a
syntomic integral canonical model, and it is the unique such model.

Of course, the syntomic model of ωKp,an on ŜKp realizing the map ρKp for the integral canonical
model SKp is the syntomic realization functor ωKp,syn. And the formal étaleness of this map ρKp

can be reinterpeted in terms of a Serre–Tate theorem.
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Theorem D (Serre–Tate theorem for abelian-type Shimura varieties, see Theorem 3.34). Let R
be a p-nilpotent ring and R→ R/I a nilpotent thickening. Then, the diagram

SKp(R) BTG,−µh
∞ (R)

SKp(R/I) BTG,−µh
∞ (R/I)

ρKp

ρKp

is Cartesian. In other words, the deformations of an R/I-point x of SKp to an R-point of SKp

are canonically in bijection with the deformations of ρKp(x) to an R-point of BTG,−µh
∞ .

Remark 3. In [PR24], Pappas–Rapoport conjecture a method to characterize a system of
integral models of Shimura varieties in terms of shtukas which would apply even at non-
hyperspecial parahoric levels K0. But, this approach only characterizes the full system (and
cannot work at individual level K0K

p). Moreover, as the theory of shtukas is based off the
theory of v-sheaves which cannot distinguish between a ring and its reduced quotient, it is
impossible to use the approach of Pappas–Rapoport to obtain a result like Theorem D.

To understand the relationship between our work and that of [PR24], we observe the following.
In [IKY24, §3.3.4] we construct the shtuka realization of a G-object in prismatic F -crystals (or
F -gauges) over X . Together with Theorem C one is able to recover this ‘universal shtuka’ at
hyperspecial level, giving a verification of the Pappas–Rapoport conjecture in this case.

Cohomological application. At the end of this introduction, we list some further applications
of Theorems B, C, and D. But, we wish to highlight here an immediate cohomological consequence.

It is a well-established conjecture that the cohomology spaces H i
ét((ShK0Kp)Q, ωKp,ét(ξ)[1/p]) are

meant to realize the global Langlands correspondence for G (e.g., see [Kot90]). Thus, information
about these cohomology spaces should have implications for the local and global Langlands
programs. To this end, Theorem B recovers a result of Lovering (see Proposition 2.21) that says
that these cohomology spaces are crystalline when the Shimura variety is proper.

That said, in recent years much attention has been given to richer refinements of the classical
local Langlands program, which concerns ℓ-adic representations of p-adic Galois groups, allowing
instead p-adic or even mod-p representations. For these purposes Zp-refinements of the cohomology
of Shimura varieties are required, and Theorem B allows us to prove results in that direction.

To this end, let n be an element of N∪{∞}. We say that an object Λ of RepZ/pn(Gal(E/E)) has
syntomically good reduction if there exists an F -gauge V in Vect(Osyn

E /pn) such that Tét(V) ≃ Λ.
This is a refinement of the notion of being crystalline (cf. [Bha23, Theorem 6.6.13]).2

Theorem E (see Theorem 2.22). Suppose that ShK0Kp is proper. Then, for any object ξ of
RepZp

(G) such that the µh-weights of ξ[1/p] are in [0, p − 3 − i], the Gal(E/E)-representation
H i

ét((ShK0Kp)Qp
, ωKp,ét(ξ)/p

n) has syntomically good reduction. In fact, there is an isomorphism

H i
ét((ShK0Kp)Qp

, ωKp,ét(ξ)/p
n) ≃ Tét

(
Hi

syn(ŜKp/OE , ωKp,syn(ξ))/p
n)
)
.

Enhancement of Lovering’s crystalline realization functor. We return now to the setting
of abelian-type Shimura varieties. In [Lov17a], Lovering constructs a functor

ωKp,crys : RepZp
(G)→ VectFφ,div((ŜKp)crys)

called the crystalline realization functor, where the target is the category of strongly divisible
filtered F -crystals on ŜKp . There is a natural identification

Dcrys ◦ ωKp,ét[1/p]
∼−→ ωKp,crys[1/p].

2In general the étale realization functor is not fully faithful on Vect(Osyn
E /pn), and so one should really view

being syntomically good reduction as a piece of data instead of a condition. Thus, Theorem 2.22 should perhaps be
viewed as giving a ‘canonical’ syntomic model for the étale cohomology of various Z/pn-local systems on ShK0Kp .
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Moreover, he shows that the lattices ωKp,ét(ξ) and ωKp,crys(ξ) are matched by Fontaine–Laffaille
theory when it applies (i.e., when ωKp,ét(ξ) has Hodge–Tate weights in [0, p − 2]). Lovering’s
functor has found multiple applications (e.g., in [Lee21] and [SZ22]).

One main motivation for the construction of ωKp,syn was to refine this construction to the
prismatic/syntomic setting and to remove the weight restrictions on the lattice-comparison
aspects of Lovering’s results. We can make precise the fact that ωKp,syn recovers ωKp,crys and
allows one to remove the weight restrictions on Lovering’s results using the integral analogue
Dcrys of Dcrys from [IKY25].

Theorem F (see Theorem 2.18). There are canonical identifications

Dcrys ◦ ωKp,syn = Dcrys ◦ ωKp,∆
∼−→ ωKp,crys.

In particular for all ξ, the lattices ωKp,ét(ξ) and ωKp,crys(ξ) are matched by Dcrys.

Remark 4. The functor Dcrys : Vect((ŜKp)
syn)→ VectFφ,div((ŜKp)crys) from [IKY25] is an

equivalence on the Fontaine–Laffaille range, i.e. when restricted to objects with ‘weights’ in
[0, p − 2]. But, it fails to be fully faithful outside of that range. As ωKp,crys (being a tensor
functor) necessarily takes values outside of the Fontaine–Laffaille range, the existence of ωKp,syn

satisfying Theorem F is far from formal.

Further applications. Finally, we mention some further applications of the above results.
• In the forthcoming work [Mad24], Theorem B is applied to understand derived cycles on

Shimura varieties with applications to special values of L-functions/automorphic forms.
• In the forthcoming work [LM24], Theorem B is used to produce p-integral Hecke operators on

Shimura varieties of abelian type. This is used to solve a conjecture of Fakhruddin–Pilloni
and to give a conceptual construction of the fiber product diagram conjectured by Scholze,
and studied in [Zha23] and [DvHKZ24].
• Theorem B gives rise to a smooth morphism ζKp : SKp(G,X)k → G-Zip−µh , the zip period

map, where k is the residue field E and the target is the category of (G, µh)-zips (see Theorem
3.41). This is applied in [Rep24] to study the coherent cohomology of Shimura varieties.
• In [Ino25], the ideas developed here are applied to construct a prismatic realization functor

for toroidal compactifications of integral canonical models of Shimura varieties of Hodge type.
• In [Yan25], Theorem B is further applied to obtain a refinement of the zip period map.
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Notation and conventions.
⋄ The symbol p will always denote a (rational) prime.
⋄ The functor Dcrys is the integral analogue of Dcrys from [IKY25], and we use the notation and

conventions concerning various categories of (crystalline) F -crystals as in [IKY25, §2.1].
⋄ By a (derived) formal stack over Zp we mean a stack X on the big fpqc site of p-nilpotent

(animated) rings R, which we may view as a stack on the adic flat site Spf(Zp)
adic
fl (see [IKY24,
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§A.4]) by declaring X(R) := limX(R/pn). For a formal stack X over Zp we have the induced
stack Xn on the fpqc site of Spec(Z/pn), and we say that X is a p-adic formal Artin stack if
each Xn is an Artin stack over the fpqc site of Spec(Z/pn).
⋄ For a property P of morphisms of schemes (resp. Artin stacks), an adic morphism of formal

schemes X→ Y where Y has an ideal sheaf of definition I (resp. a morphism of p-adic formal
Artin stacks X → Y), is adically P (or I-adically P ) if the reduction modulo In (resp. the
morphism Xn → Yn) is P for all n. If A → B is an adic morphism of rings with the I-adic
topology, for I ⊆ A an ideal, then we make a similar definition.
⋄ For an Artin stack X on the fpqc site of Spec(Zp) and a subset T ⊆ |X | we define the formal

completion along T to be the substack on the fpqc site of Spec(Zp) to be

X̂T (R) := {f : Spec(R)→X : f(| Spec(R)|) ⊆ T} .

If T is clear from context we shall often omit it from the notation.
⋄ For a morphism f : X → Y we denote Rif∗Zp and Rif∗Qp by Hi

Zp
(X/Y ) and Hi

Qp
(X/Y ),

respectively. Similar notation will be applied for other cohomology theories.
⋄ Our notation and conventions concerning derived algebraic geometry are as in [GM24].
⋄ For a non-archimedean field K, a rigid K-space X is an adic space locally of finite type over
K. We denote the set of classical points by |X|cl := {x ∈ X : [k(x) : K] <∞}.
⋄ For an R-module M and an ideal I ⊆ R (resp. principal ideal (a) ⊆ R) we often write M/I

(resp. M/a) as shorthand for M/IM (resp. M/aM).
⋄ A filtration always means a decreasing and exhaustive Z-filtration (i.e.,

⋃
i∈Z Fili =M).

⋄ For a ring A and an element a of A, denote by Fil•a the filtration with Filra = arA for r > 0,
and Filra = A for r ⩽ 0. Define Fil•triv := Fil•0.
⋄ A filtration of (sheaves of) modules is locally split if its graded pieces are locally free.
⋄ For an Fp-algebra R (resp. Fp-scheme X), we denote by FR (resp. FX) its absolute Frobenius.

1. The Tannakian framework for prismatic F -gauges

In this section we discuss the Tannakian aspects of Drinfeld and Bhatt–Lurie’s theory of
prismatic F -gauges and compare it with the Tannakian theory of prismatic F -crystals as developed
in [IKY24]. We refer the reader to [IKY24, §1], [Bha23], and [IKY24, Appendix A] for preliminary
discussions of prismatic F -crystals, Tannakian theory, and stack-theoretic notions, respectively.

1.1. Some preliminaries on graded and filtered algebra. The extra structure present in a
prismatic F -gauge versus a prismatic F -crystal is that of a filtration with good properties. So,
we first describe some general results in the algebra of filtered rings/modules.

1.1.1. Basic definitions and results. We use standard terminology concerning filtered rings
(R,Fil•R) on topoi T and filtered modules over them (e.g., see [Tsu20, Definition 10]), and only
comment on two pieces of terminology/notation not explicitly stated there:
• For filtered modules (M,Fil•M ) and (N,Fil•N ) over (R,Fil•R) the filtered tensor product

(M,Fil•M )⊗(R,Fil•R) (N,Fil
•
N )

is the module M ⊗R N equipped with the filtration where

FilrM⊗RN :=
∑

a+b=r

im(FilaM ⊗R FilbN →M ⊗R N). (1.1.1)

When (N,Fil•N ) = (S,Fil•S) is a filtered ring with the structure of a filtered module over
(R,Fil•R) via a filtered ring map, then this tensor product is a filtered module over (S,Fil•S).
• A filtered crystal over (R,Fil•R) is a filtered module (M,Fil•M ) over (R,Fil•R) such that for

every morphism T → T ′ in T the natural morphism

(M(T ′),Fil•M (T ′))⊗(R(T ′),Fil•R(T ′)) (R(T ),Fil
•
R(T ))→ (M(T ),Fil•M (T ))
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is an isomorphism of filtered modules over (R(T ),Fil•R(T )).
3

With the obvious notion of morphisms, denote by MF(R,Fil•R) the category of filtered crystals
over (R,Fil•R). Note that MF(R,Fil•R) has the structure of an exact R-linear ⊗-category where
we define the tensor product by the same formula as in (1.1.1), and where

0→ (M1,Fil
•
M1

)→ (M2,Fil
•
M2

)→ (M3,Fil
•
M3

)→ 0,

is exact if
0→ FilrM1

→ FilrM2
→ FilrM3

→ 0

is an exact sequence of R-modules for every r in Z.
The following freeness condition will play an important role in our paper.

Definition 1.1 (cf. [Tsu20, Definition 10]). Let T be a topos with final object ∗, and (R,Fil•R)
a filtered ring in T . A filtered module (M,Fil•M ) over (R,Fil•R) is (finite) free if there exists a
filtered basis: a collection (eν , rν)

n
ν=1 where (eν)

n
ν=1 is a basis of M as an R-module, and rν

are integers, such that

FilrM =
n∑

ν=1

Filr−rν
R ·eν . (1.1.2)

We say that (M,Fil•M ) is locally filtered free (lff) if there exists a cover {Ti → ∗} such that the
restriction of (M,Fil•M ) to each slice topos T /Ti is (finite) free for all i. We denote the full
subcategory of MF(R,Fil•R) consisting of lff objects by MFlff(R,Fil•R).

For a filtered crystal (M,Fil•M ) over the filtered ring (R,Fil•R) in a topos T , we recall that
the rth-graded piece (for r in Z) is defined as the R-module

Grr(M,Fil•M ) = FilrM/Fil
r+1
M .

Example 1.2. When Fil•R = Fil•triv a filtered crystal (M,Fil•M ) is (locally) filtered free over
(R,Fil•triv) if and only if finitely many graded pieces of Fil•M are non-zero and the graded pieces
are (locally) free R-modules, i.e., that Fil•M ⊆M is a locally split filtration.

It is not hard to show that the category MFlff(R,Fil•R) is closed under tensor product, and so
inherits the structure of an exact R-linear ⊗-subcategory from MF(R,Fil•R).

We end by making an elementary, but useful, observation about short exact sequences of filtered
modules. First recall that a map f : (M1,Fil

•
1)→ (M2,Fil

•
2) of filtered (R,Fil•R)-modules is called

strict if the equality f(Filj1) = f(M) ∩ Filj2 for all j (cf. [SP, Tag 0120] and [SP, Tag 05SI]).

Lemma 1.3. Let R be a ring, and let

0→ (M1,Fil
•
1)→ (M2,Fil

•
2)→ (M3,Fil

•
3)→ 0, (1.1.3)

be a sequence of filtered (R,Fil•triv)-modules, which is a short exact sequence on the underlying
R-modules. Then, the following are equivalent:

(1) the maps (M1,Fil
•
1)→ (M2,Fil

•
2) and (M2,Fil

•
2)→ (M3,Fil

•
3) are strict,

(2) the sequence
0→ Filj1 → Filj2 → Filj3 → 0 (1.1.4)

is exact for all j (i.e., (1.1.3) is an exact sequence of filtered R-modules).
Suppose further that each of these filtered modules is strictly exhaustive (i.e., Filj = M for a
small enough j), then (1) and (2) are further equivalent to

(3) the sequence
0→ Grj(Fil•1)→ Grj(Fil•2)→ Grj(Fil•3)→ 0 (1.1.5)

is exact for all j.
3For a filtered ring (R,Fil•R), we observe that there is a natural equivalence between filtered modules over

(R,Fil•R) and filtered crystals for the filtered ring (OSpec(R), F̃il
•
R) in the Zariski topos on Spec(R). Thus, hereon

out we will treat the theory of filtered modules over a ring as a special case of the theory of filtered crystals.
8
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Proof. The equivalence of (1) and (2) follows from the definition of strictness. By the snake
lemma, (2) implies (3). We can check the converse by induction on j using the snake lemma. □

1.1.2. The Rees algebra construction. We now recall the Rees construction for a filtered
ring/module, and relate it to the notion of lff filtered modules.

We begin by reviewing some terminology concerning graded rings.
• A graded ring is a ring R together with a decomposition R =

⊕
r∈ZRr as abelian groups such

that Rr ·Rs ⊆ Rr+s for all r and s in Z. For a ring A, we say that R is a graded A-algebra if
there is a ring map A→ R with image in R0.
• A graded module M over R =

⊕
r∈ZRr consists of an R-module M , and a decomposition

M =
⊕

r∈ZMr as abelian groups such that Rr ·Ms ⊆Mr+s for all r and s in Z.
• We say that a graded module M =

⊕
r∈ZMr over R =

⊕
r∈ZRr is finite projective if its

underlying R-module is finite projective.4
• A graded ring map R→ S is a ring map f : R→ S with f(Rr) ⊆ Sr for all r.
• For graded R-modules M and N , we define their graded tensor product by declaring

(M ⊗R N)n =

{∑
i

mi ⊗ ni ∈M ⊗R N : mi ∈Mr, ni ∈ Ns, and r + s = n

}
.

When N = S is a graded ring equipped with the structure of a graded R-module via a graded
ring map, then this tensor product is a graded S-module.
With the obvious notion of morphisms, denote by MG(R) the category of graded modules

over R =
⊕

r∈ZRr. Note that MG(R) has the structure of an exact R-linear ⊗-category where

0→
⊕
r∈Z

M1,r →
⊕
r∈Z

M2,r →
⊕
r∈Z

M3,r → 0,

is said to be exact if
0→M1,r →M2,r →M3,r → 0

is an exact sequence of abelian groups for every r in Z.
We denote by MGfp(R) the full subcategory of MG(R) consisting of finite projective objects.

This is clearly closed under tensor products, and therefore MGfp(R) inherits the structure of an
exact R-linear ⊗-subcategory from MG(R).

For a filtered ring (R,Fil•R) we now wish to relate MFlff(R,Fil•R) to MGfp(S) for a certain
graded ring S associated to R which we now discuss.

Definition 1.4. Let (R,Fil•R) be a filtered ring. Then, its Rees algebra (e.g., see [LvO96,
Chapter I, §4.3, Definition 5]) is the graded ring

Rees(Fil•R) :=
⊕
r∈Z

FilrR t
−r ⊆ R[t±1].

For a filtered R-module (M,Fil•M ) we define its Rees module (see loc. cit.) to be

Rees(Fil•M ) :=
⊕
r∈Z

FilrM t−r ⊆M ⊗R R[t
±1],

which is a graded Rees(Fil•R)-module.

Suppose that (R,Fil•R) → (S,Fil•S) is a map of filtered rings, and (M,Fil•M ) is a filtered
(R,Fil•R)-module. Then, by functoriality of the Rees algebra construction we obtain a natural
map Rees(Fil•R)→ Rees(Fil•S) of graded rings. One thus obtains a canonical morphism

Rees(Fil•M )⊗Rees(Fil•R) Rees(Fil
•
S)→ Rees(Fil•M⊗RS), (1.1.6)

of graded Rees(Fil•S)-modules. This map is an isomorphism if the source has no non-trivial
t-torsion (e.g., if Rees(Fil•M ) is a flat module over Rees(Fil•R)). Indeed, it suffices to verify this

4See [Lau21, Lemma 3.0.1] for why this terminology is unambiguous
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map induces an isomorphism after applying the inverse to the equivalence in [LvO96, Chapter I,
§4.3, Proposition 7] (see also [LvO96, Chapter I, §4.3, Observation 6 (a)]). But, this is trivial.

Observe that as Rees(Fil•R) is a graded R-algebra, we have a natural action of the group
R-scheme Gm,R = Spec(R[x±1]) on Spec(Rees(Fil•R)) corresponding to the coaction map

Rees(Fil•R)→ Rees(Fil•R)⊗R R[x
±1],

uniquely specified by declaring that an element a in FilrR t
−r in Rees(Fil•R) maps to a⊗ xr. We

may then consider the Artin stack over R given by

R(Fil•R) := [Spec(Rees(Fil•R))/Gm,R],

called the Rees stack of (R,Fil•R). Given a graded Rees(Fil•R)-module M =
⊕

r∈ZMr there is a
natural action of Gm,R on M corresponding to the coaction map

M →M ⊗R R[x
±1]

defined in the analogous way. This defines a quasi-coherent sheaf on R(Fil•R) by the construction
in [SP, Tag 06WT]. We denote this functor by (−)/Gm,R.

Finally, suppose that R is J-adically complete with respect to a finitely generated ideal J ⊆ R.
We define the completed Rees stack R̂(Fil•R) (leaving the ideal J implicit) to be the completion
of R(Fil•R) along R(Fil•R)×Spec(R) Spec(R/J). We then have a natural pullback functor

(̂−) : Vect(R(Fil•R))→ Vect(R̂(Fil•R)) = 2-limVect(R(Fil•R)×Spec(R) Spec(R/J
n)),

which is an R-linear ⊗-functor.

Proposition 1.5. Suppose that (R,Fil•R) is a filtered ring. Then, the functors

MFlff(R,Fil•R)→MGfp(Rees(Fil•R)), (M,Fil•M ) 7→ Rees(Fil•M ),

and
(−)/Gm : MGfp(Rees(Fil•R))→ Vect(R(Fil•R))

are 2-funtorial bi-exact R-linear ⊗-equivalences. Suppose further that R is J-adically complete
with respect to a finitely generated ideal J ⊆ R and that FiliR ⊂ R is closed with respect to the
J-adic topology, for every i. Then, the functor

(̂−) : Vect(R(Fil•R))→ Vect(R̂(Fil•R))

is a 2-functorial bi-exact R-linear ⊗-equivalence.

Before proving this proposition, we first establish that the Rees construction preserves and
reflects locally-free-like conditions. More precisely, we have the following.

Proposition 1.6. Let (R,Fil•R) be a filtered ring. Then a filtered module (M,Fil•M ) over (R,Fil•R)
is lff if and only if its Rees module Rees(Fil•M ) is finite projective over Rees(Fil•R).

Proof. Since the problem is local on R,5 we may assume that R is a local ring. Then (M,Fil•M )
being lff is equivalent to it being finite free, and hence easily implies that Rees(Fil•M ) is free.

We show the converse. When Fil•R = Fil•(1), i.e., when FiliR = R for all i in Z, the assertion is
obvious. So, we assume Fil•R ̸= Fil•(1), i.e., that Fil1R is contained in the maximal ideal of the local
ring R. We first observe that the assertion holds when Fil•R = Fil•triv, i.e., when Fil1R = 0. Indeed,
note that

⊕
r∈Z GrrFilM , being the specialization of Rees(Fil•M ) to t = 0 (see [LvO96, Chapter I,

§4.3, Proposition 7]), is finite projective over R, and hence so is each GrrFilM . As R is local, this
implies that each GrrFilM is finite free, and hence (M,Fil•M ) is filtered free.

In general, consider the map (R,Fil•R)→ (R/Fil1R,Fil
•
triv) and the corresponding map

Rees(Fil•R)→ Rees(Fil•triv) ≃ (R/Fil1R)[t].

We observe that the scalar extension along this map is described as follows.

5Indeed, this follows from the observation that if y is an element of R, then the Rees module for (R,Fil•R)|D(y),
where D(y) is the non-vanishing locus of y, is canonically identified with Rees(R,Fil•R)[1/y].
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Lemma 1.7. We have a canonical isomorphism

Rees(Fil•M )⊗Rees(Fil•R) Rees(Fil
•
triv) ≃

⊕
r∈Z

FilrM∑
i⩾1 Fil

i
R ·Filr−i

M

t−r

of graded Rees(Fil•triv)-modules, where the multiplication-by-t map on the right-hand side is defined
by the canonical maps induced by Filr+1

M → FilrM .

Proof. This follows by considering the short exact sequence

0→
⊕
i⩾0

Fil1R t
i ⊕

⊕
i⩽−1

Fil−i
R ti →

⊕
i∈Z

Fil−i
R ti︸ ︷︷ ︸

Rees(Fil•R)

→
⊕
i⩾0

R/Fil1R t
i

︸ ︷︷ ︸
Rees(Fil•triv)

→ 0,

and tensoring it with Rees(Fil•M ) over Rees(Fil•R). □

Now assume that Rees(Fil•M ) is finite projective over Rees(Fil•R). Then the tensor product
Rees(Fil•M ) ⊗Rees(Fil•R) Rees(Filtriv) is finite projective over Rees(Fil•triv). In particular, the
multiplication-by-t map

Fil
r+1

:=
Filr+1

M∑
i⩾1 Fil

i
R ·Filr+1−i

M

→ Fil
r
=:

FilrM∑
i⩾1 Fil

i
R ·Filr−i

M

is injective. This implies by [LvO96, Chapter I, §4.3, Proposition 7] that this graded Rees(Fil•triv)-
module is the Rees module of some module with filtration of the form (M,Fil

•
) over (R/Fil1R,Fil

•
triv).

By loc. cit., the underlying module M is given by M/Fil1R ·M . Since we have already seen that
the assertion holds in the case where Fil•R = Fil•triv, we deduce that (M,Fil

•
) is actually free.

Let (ēν , rν)
n
ν=1 be a filtered basis of (M,Fil

•
) over (R/Fil1R,Fil

•
triv), and take a lift (eν)

n
ν=1

with eν in Filrν , which is a basis of the R-module M .

Claim 1.8. The tuple (eν , rν)
n
ν=1 is a filtered basis of (M,Fil•M ) over (R,Fil•R). In other words,

FilrM =
n∑

ν=1

Filr−rν
R eν ,

for every r in Z.

Proof. When r ⩽ rν for every ν, we have FilrM =M by Nakayama’s lemma, and this is clearly
equal to the right-hand side of the claimed equality.

We show the equality by induction on r. Fix an r in Z and assume that the equality holds
for r. We show Filr+1

M =
∑n

ν=1 Fil
r+1−rν
R eν . The right-hand side is evidently contained in the

left. Conversely, consider x =
∑

ν aνeν in Filr+1
M . Since x is in FilrM , we know by induction that

aν belongs to Filr−rν
R . For ν with r = rν , we have that ēν is in Fil

r \ Filr+1, and hence that aν
belongs to Fil1R = Filr+1−rν

R . We now consider x1 =
∑

ν:r>rν
aνeν , which we know is both in

Filr+1
M and

∑
i⩾1 Fil

i
R Filr−i

M . Thus, by the injectivity of the map Fil
r+1 → Fil

r, we get that x1 is
in
∑

i⩾1 Fil
i
R Filr+1−i

M , which by induction, implies that aν is in Filr+1−rν
R for ν with r > rν . □

In particular, this claim implies the filtered module (M,Fil•M ) is filtered free as desired. □

Remark 1.9. The proof of Proposition 1.6 shows the following. Assume that Fil1R is con-
tained in the Jacobson radical of R and that Rees(Fil•M )⊗Rees(Fil•R) Rees(Fil

•
triv) is free over

Rees(Fil•triv) ≃ R/Fil1R[t]. Then Rees(Fil•M ) is free over Rees(Fil•R), or equivalently, the filtered
module (M,Fil•M ) is filtered free over (R,Fil•R).

Proof of Proposition 1.5. Given Proposition 1.6, the fact that the first functor is an R-linear
⊗-equivalence follows from [LvO96, Chapter I, §4.3, Proposition 7] together with the isomorphism
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given by (1.1.6). Moreover, an explicit quasi-inverse to the first functor is given by by taking a
graded Rees(Fil•R)-module N =

⊕
r∈ZNr to the module M = N/(t− 1) with

FilrM := (Nr + (t− 1)N)/(t− 1)N.

The fact that this functor and its quasi-inverse are exact follows from Lemma 1.3, [LvO96,
Chapter I, §4.3, Proposition 8], together with the observation that an exact sequence of projective
Rees(Fil•R)-modules is split and thus exactness is preserved by any additive functor.

The fact that the second functor is an exact R-linear ⊗-equivalence follows from the general
theory of stacks (e.g., see again [SP, Tag 06WT]). Its bi-exactness is clear by inspection.

Finally, to show the last functor is a bi-exact R-linear ⊗-equivalence we begin by defining a
functor Vect(R̂(Fil•R))→ Vect(R(Fil•R)). Noting that there is a canonical identification

R(Fil•R)×Spec(R) Spec(R/J
n) ≃ [Spec (Rees(Fil•R)⊗R R/J

n) /Gm,R] ,

so giving such a functor is equivalent to giving a functor

2-lim
n

MGfp(Rees(Fil•R)/J
n)→MGfp(Rees(Fil•R)), (1.1.7)

which we now do.
In the following, we denote by On(d) the graded Rees(Fil•R)/J

n-module with underlying
Rees(Fil•R)/J

n-module free of rank one, generated by a homogeneous element of degree d.

Claim 1.10. Let (Mn =
⊕

i∈ZMn,i)n⩾1 be an object of the source of (1.1.7). Then, the graded
Rees(Fil•R)-module M := lim←−n

Mn ≃
⊕

i∈Z(lim←−n
Mn,i) is finite projective.6 Moreover, the natural

map M ⊗R R/J
n →Mn is an isomorphism.

Proof. By taking a finite set of homogeneous generators ofM1, we may produce a graded surjection⊕r
j=1 O1(dj)→ M1 for some r and some d1, . . . , dr which induces generators m1,1, . . . ,m1,r of

M1. This surjection of graded Rees(Fil•R)/J-modules is split by the projectivity of M1.
Choosing compatible homogeneous lifts mn,i of m1,j for each n ⩾ 1 and j = 1, . . . , r we obtain

a compatible system of homogeneous maps (
⊕r

j=1 On(dj) → Mn)n of Rees(Fil•R)/Jn-modules.
As J is nilpotent in R/Jn we further see by Nakayama’s lemma that these maps are surjective
for all n and thus, using the projectivity of Mn, split surjections. By the assumption that FiliR
is closed in R for all i, the inverse limit limn

⊕
j On(dj) is identified with

⊕
j O(dj) as a graded

Rees(Fil•R) module, which is finite projective. As we have a split surjection
⊕

j O(dj)→M , the
inverse limit M is also finite projective as desired.

Finally, thanks to the system of split surjection constructed above, the natural morphism
M ⊗RR/J

n →Mn being an isomorphism is reduced to case when M = O(dj), which is clear. □

Claim 1.10 allows us to produce a functor as in (1.1.7) which we claim is quasi-inverse to
(̂−). On filtered finite free modules (i.e., the modules of the form

⊕
j O(dj)), this follows as

FiliR ⊆ R is closed for all i. In general, let M be an object of MGfp(R(Fil•R)). Then showing
that M → limnM ⊗R R/J

n is an isomorphism can be reduced to the filtered finite free case by
taking a split surjection

⊕
j O(dj)→M . That the other composition is naturally isomorphic to

the identity follows from Claim 1.10. The fact that both of these functors are exact R-linear
⊗-functors is clear by inspection. □

1.2. Prismatic F -gauges in vector bundles. We now recall the two ways of describing
prismatic F -gauges in vector bundles: in terms of Rees algebras and in terms of formal stacks.

6Note that this first inverse limit is taken in the category of graded Rees(Fil•R)-modules, which is indeed
computed via this last direct sum.
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Description in terms of Rees algebras. We begin by recalling the natural filtration on a
prism used to construct the operative Rees algebras for prismatic F -gauges.

Definition 1.11. For a prism (A, I), we define the Nygaard filtration on A as follows:

A ⊇ FilrNyg(A, I) :=

{
ϕ−1
A (Ir) if r ⩾ 0

A if r < 0.

We often write Fil•Nyg(A) or just Fil•Nyg when there is no chance for confusion.

Lemma 1.12. Let (A, I) be a bounded prism. Then, FilrNyg(A, I) ⊆ A is closed for all r.

Proof. It suffices to show that the ideals Ir are closed, and that ϕA : A → A is (p, I)-adically
continuous. To see the former, it suffices by [Mat80, §23.B] to show that A/Ir is J-adically
complete with J = (p, I)A/Ir. But, as Jr ⊆ pA/Ir ⊆ J we have that the J-adic and p-adic
topologies coincide. Thus, the claim follows from [IKY24, Lemma 1.2]. For the latter claim, it
suffices to observe that ϕA stabilizes (p, I) (see [GR24, Lemma 3.4]). □

Let R be a qrsp ring (see [BMS19, Definition 4.20]), and consider the initial object (∆R, IR) of
R∆ (see [BS22, Proposition 7.2]). Associated to Rees(Fil•Nyg(∆R)) are the following two maps:

(1) the map of ∆R-algebras

τ : Rees(Fil•Nyg(∆R))→ ∆R, t 7→ 1,

(2) the graded homomorphism

σ : Rees(Fil•Nyg(∆R))→
⊕
r∈Z

IrRt
−r,

∑
r

art
−r 7→

∑
r

ϕ(ar)t
−r,

where the target is considered as a graded ∆R-subalgebra of ∆R[1/IR][t
±1].

Remark 1.13. The functor

MG

(⊕
r∈Z

IrRt
−r

)
→ ∆R-Mod, M =

⊕
r∈Z

Mr 7→M0,

is a bi-exact ∆R-linear ⊗-equivalence whose quasi-inverse is given by

L 7→ L⊗∆R

(⊕
r∈Z

IrRt
−r

)
,

with the obvious grading. In fact, [Spec(
⊕

r∈Z I
r
Rt

−r)/Gm,∆R
] is isomorphic to Spec(∆R).

We now give the Rees-algebra-theoretic definition of prismatic F -gauges over R.

Definition 1.14 (Drinfeld and Bhatt–Lurie). Let R be a qrsp ring. A prismatic F -gauge (in
vector bundles) over R is a pair (M,φM ) where M is an object of MGfp(Rees(Fil•Nyg(∆R)))

and φM is an isomorphism of ∆R-modules (σ∗M)0
∼−→ τ∗M .

A morphism (M1, φM1)→ (M2, φM2) of prismatic F -gauges overR is a morphism f : M1 →M2

of graded Rees(Fil•Nyg(∆R))-modules such that φM2 ◦ σ∗(f) = τ∗(f) ◦ φM1 . We denote the
category of prismatic F -gauges in vector bundles over R by F -Gaugevect(R). The category
F -Gaugevect(R) is an exact Zp-linear ⊗-category with structure essentially inherited from
MGfp(Rees(Fil•Nyg(∆R)), but where we decree that

φM1⊗Rees(Fil•
Nyg

(∆R))M2
:= φM1 ⊗ φM2 ,

(which makes sense as (σ∗(M1 ⊗∆R
M2))0 ≃ (σ∗M1)0 ⊗∆R

(σ∗M2)0 by Remark 1.13).
13



A morphism of qrsp rings R → S gives a map Rees(Fil•Nyg(∆R)) → Rees(Fil•Nyg(∆S)) of
graded rings compatible with both τ and σ. Thus, base extension provides an exact Zp-linear ⊗-
functor F -Gaugevect(R)→ F -Gaugevect(S). So, if X is a quasi-syntomic p-adic formal scheme,
F -Gaugevect forms a natural prestack on Xqsyn which is a stack by [GL23, Proposition 2.29].

Definition 1.15 (Drinfeld, Bhatt–Lurie). For a quasi-syntomic p-adic formal scheme X, the
category of prismatic F -gauges (in vector bundles) over X is given by the 2-limit

F -Gaugevect(X) = 2-lim
Spf(R)∈Xqrsp

F -Gaugevect(R),

equipped with the structure of an exact Zp-linear ⊗-category defined term-by-term.

Suppose that G is a smooth group Zp-scheme. One can then make sense of the category G-C of
G-objects in a Zp-linear ⊗-category C (e.g., see [IKY24, §A.5]).

Definition 1.16. For a quasi-syntomic p-adic formal scheme X, the category G-F -Gaugevect(X)
of prismatic F -gauges with G-structure over X is the category of G-objects in F -Gaugevect(X).

Prismatic F -gauges in terms of formal stacks. We now compare Definition 1.16 to the
notion of a prismatic F -gauge with G-structure which implicitly appears in [Bha23]. Throughout
this section we fix a bounded p-adic formal scheme X.

Attached to X are the following formal stacks over Zp:
• the prismatization X∆ as in [BL22b, Construction 7.1] (cf. [Bha23, Definition 5.1.6]) classifying

Cartier–Witt divisors (see [Bha23, Definition 5.1.3]) which is equipped with a Frobenius
FX : X

∆ → X∆ (see [Bha23, Remark 5.1.10]),
• the Nygaard filtered prismatization XN as in [Bha23, Definition 5.3.10] and [GM24, 6.4] (which

classifies filtered Cartier–Witt divisors as in [Bha23, Definition 5.3.1]) which has a structure
map πX : XN → X∆,
• the Hodge embedding and de Rham embedding jX,HT and jX,dR (see loc. cit.) which are open

embeddings X∆ ↪→ XN.
One has the equalities πX ◦ jX,dR = idX∆ and πX ◦ jX,HT = FX. Whenever X is clear from context,
we shall omit the decoration of X on these maps.

As in [Bha23, Definition 6.1.1], we define the formal stack Xsyn over Zp, the syntomification of
X, and the maps jN and j∆ so that the following diagram is cocartesian:

X∆ ⊔ X∆ XN

X∆ Xsyn.

taut.

jHT⊔jdR

j∆

jN

⌟

If X = Spf(R) we shorten the notation of these objects to R∆, RN, and Rsyn. These constructions
can be further extended to the case when R is a p-complete animated ring (see [GM24]).

The following shows that these formal stacks over Zp are more manageable when X is quasi-
syntomic and, in particular, are classical (i.e., don’t have non-trivial derived structure).

Proposition 1.17 (Bhatt–Lurie). Suppose that X is quasi-syntomic. Then, one has a canonical
identification of formal stacks over Zp:

X∆ ≃ 2-colim
Spf(R)∈Xqrsp

Spf(∆R), XN = 2-colim
Spf(R)∈Xqrsp

R̂(Fil•Nyg(∆R)).

where for each R the topology on ∆R and the completion R̂(Fil•Nyg(∆R)) are in terms of the
(p, IR)-adic topology. Moreover, under these identifications jdR and jHT are obtained by taking
the colimit over R of the maps τ and σ, respectively.
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Proof. When X = Spf(R) is qrsp, this follows from [BL22b, Theorem 7.17], [GM24, Theorem
6.11.5] and [Bha23, Remark 5.5.5]. In general, it suffices to observe that if S is a quasi-syntomic
cover over X with each constituent of the form Spf(R) for a qrsp ring R then

X∆ = 2-colim
S∈S•

S∆, XN = 2-colim
S∈S•

SN

where S• is the Čech nerve of S in the topos of formal stacks over Zp, which follows from
the covering properties discussed in [BL22b, Proposition 7.5] and [GM24, Corollary 6.12.8] (cf.
[Bha23, Remark 5.5.18]). But, as ∆R1⊗̂∆R2

∆R3 ≃ ∆R1⊗̂R2
R3

(see [ALB23, Proposition 3.30]) and
a similar tensor-product compatibility holds for completed Rees stacks, the claim follows. □

Combining this with Proposition 1.5 and Lemma 1.12 we obtain the following.

Corollary 1.18. Suppose that X is quasi-syntomic and that G is a smooth group Zp-scheme.
Then, there are natural bi-exact Zp-linear ⊗-equivalences

F -Gaugevect(X) ∼−→ Vect(Xsyn) ∼−→ 2-lim
Spf(R)∈Xqrsp

Vect(Rsyn).

and natural equivalences

G-F -Gaugevect(X) ∼−→ G-Vect(Xsyn) ∼−→ 2-lim
Spf(R)∈Xqrsp

G-Vect(Rsyn)

Due to Corollary 1.18, we shall use the notation F -Gaugevect(X) (resp. G-F -Gaugevect(X))
and Vect(Xsyn) (resp. G-Vect(Xsyn)) interchangeably when X is quasi-syntomic.

Remark 1.19. For a (classical) formal stack X over Zp a vector bundle on X is a vector bundle
on (Xfpqc,OX) where Xfpqc is as in [SP, Tag 06NU] and OX is as in [SP, Tag 06TU]. Formally,
one has a bi-exact Zp-linear ⊗-equivalence

Vect(X) ≃ 2-lim
Spec(R)→X

Vect(R),

where R is a (variable) p-nilpotent ring (one can also replace this with Spf(R)→ X where now
Spf(R) is an object of Spf(Zp)

adic
fl ), where the right-hand side is endowed with the term-by-term

exact Zp-linear ⊗-structure. So one may formally apply [IKY24, Theorem A.18] to deduce that
if (Λ0,T0) is a tensor package for G (see [IKY24, §A.5]) then G-Vect(X) ≃ TwistOX

(Λ0,T0).
In particular, this applies when X = Xsyn for X a quasi-syntomic p-adic formal scheme.

1.3. Relationship to prismatic F -crystals. We now clarify the relationship between prismatic
F -crystals and prismatic F -gauges on a base formal OK-scheme. We refer the reader to [IKY24,
§1.1] for standard terminology and notation concerning base formal schemes.

Notation 1.20. We fix the following notation:
• k is a perfect extension of Fp, W :=W (k), and K0 := Frac(W ),
• K is a finite totally ramified extension of K0, with ring of integers OK and ramification index e,
• π is a uniformizer of K and E = E(u) in W [u] is the minimal polynomial for π over K0,
• for a formally framed base OK-algebra R we set (SR, (E)) to be the Breuil–Kisin prism.

Construction 1.21 ([Bha23, Remark 6.3.4]). Let X be a quasi-syntomic p-adic formal scheme.
Then, there is a natural Zp-linear exact ⊗-functor

RX : Perf(Xsyn)→ Dφ
perf(X∆), V 7→ RX(V) = (E, φE),

which we imprecisely call the forgetful functor, constructed as follows.

Step 1: Set E∆ := j∗dRV, which we interpret as an object E of Perf(X∆) via [BL22b, Theorem
6.5] so then F ∗E∆ corresponds to ϕ∗E. More explicitly, for an object (A, I) of X∆, one can build
a morphism ρ(A,I) : Spf(A)→ X∆ as in [BL22b, Construction 3.10] and then E(A, I) = ρ∗(A,I)E

∆.

Step 2: Observe that there are natural morphisms

j∗HTV← F ∗π∗V→ F ∗j∗dRV,
15
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where the second map is the pullback along F of the natural map π∗V → j∗dRV coming from
the fact that jdR is a section of π, and the first map is obtained by adjunction from the map
π∗V → F∗j

∗
HTV using the fact that π ◦ jHT = F . By [Bha23, Remark 6.3.4], this induces an

isomorphism after inverting the invertible ideal IX∆ ⊆ OX∆ (see [Bha23, Construction 5.1.18]).

Step 3: By the construction of Xsyn, we have a canonical identification j∗HTV ≃ j∗dRV. Thus,
altogether, we get an isomorphism

F ∗E∆[1/I
X∆ ] ≃ j∗HTV[1/IX∆ ] ≃ j∗dRV[1/IX∆ ] = E∆[1/I

X∆ ].

which corresponds to an isomorphism φE : ϕ
∗E[1/I∆]→ E[1/I∆].

Finally, we observe by construction that RX restricts to give a functor

RX : Vect(Xsyn)→ Vectφ(X∆). (1.3.1)

Remark 1.22. When X = Spf(R) for a qrsp ring R, one may understand RX as in (1.3.1) as
the functor F -Gaugevect(R)→ Vectφ(∆R) explicitly described in [Ito23, Propsition 8.1.9].

In [GL23, Corollary 2.31] (see also [Ito23, Propsition 8.1.9]), it is shown that RX is fully faithful.
We now wish to describe the essential image when X is a base formal OK-scheme.

Definition 1.23. We make the following definitions.
(1) For a prism (A, I), and an object (M,φM ) of Vectφ(A, I), set

FilrNyg(ϕ
∗
AM) := {x ∈ ϕ∗AM : φM (x) ∈ IrM} ,

which defines a filtration Fil•Nyg(ϕ
∗
AM) by A-submodules, called the Nygaard filtration.

(2) For a quasi-syntomic p-adic formal scheme X and an object (E, φE) of Vectφ(X∆), we
define the filtration Fil•Nyg(ϕ

∗E) ⊆ ϕ∗E by O∆-submodules, called the Nygaard filtration,
so that Fil•Nyg(ϕ

∗E)(A, I) = Fil•Nyg(ϕ
∗E(A, I)), functorially in an object (A, I) of X∆.7

By design (ϕ∗E,Fil•Nyg(ϕ
∗E)) is a filtered module over (O∆,Fil

•
I∆
).

Definition 1.24. Let X be a quasi-syntomic p-adic formal scheme. We call a prismatic
F -crystal (E, φE) on X locally filtered free (lff) if (ϕ∗E,Fil•Nyg(ϕ

∗E)) is lff over (O∆,Fil
•
I∆
).

Remark 1.25. Note that (ϕ∗E,Fil•Nyg(ϕ
∗E)) is, a priori, only a filtered module over (O∆,Fil

•
I∆
)

and not a filtered crystal. But, in the lff case this is true (see [Ito23, Proposition 3.1.13]).

Denote the full subcategory of Vectφ(X∆) consisting of lff objects by Vectφ,lff(X∆). It is stable
under tensor products, and so it inherits the structure of an exact Zp-linear ⊗-category.

Example 1.26. Let X be a base formal W -scheme. If ω belongs to G-Vectφ,µ(X∆) for a
cocharacter µ : Gm,W → GW (see [IKY24, Definition 3.12] or Definition 1.36 below), then ω(Λ)
belongs to Vectφ,lff(X∆) for all objects Λ of RepZp

(G), as can be easily checked by hand.

Proposition 1.27. Let X be a bounded p-adic formal scheme, and (E, φE) a prismatic F -crystal
on X. Then, the following are equivalent:

(1) the prismatic F -crystal (E, φE) is lff,
(2) for any object (A, I) of X∆, the filtered module (ϕ∗E(A, I),Fil•Nyg(ϕ

∗E)(A, I)) is lff over
the filtered ring (A,Fil•I).

If X is a base formal OK-scheme, the above conditions are additionally equivalent to the following:
(3) there exists an open cover {Spf(Ri)} of X with each Ri a base (formally framed) OK-

algebra, such that if Mi := E(SRi , (E)) then (ϕ∗Mi,Fil
•
Nyg(ϕ

∗Mi)) is lff over (SRi ,Fil
•
E),

7See [IKY25, Remark 1.13] for a remark about the terminology ‘Nygaard filtration’.
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(4) there exists a quasi-syntomic cover {Spf(Si) → X} with each Si qrsp, such that if
Mi := E(∆Si , ISi) then (ϕ∗Mi,Fil

•
Nyg(ϕ

∗Mi)) is lff over (∆Si ,Fil
•
ISi

).

Proof. Clearly (2) implies (1). For the converse it suffices to show that the lff condition is flat
local on an object of X∆. This follows from the fact that for a (p, I)-adically faithfully flat
map of prisms (A, I)→ (B, IB) the natural map Rees(Fil•I A)→ Rees(Fil•IB B) is (p, I)-adically
faithfully flat. Indeed, the natural map In⊗A B → InB is an isomorphism as IB is an invertible
ideal, and hence Rees(Fil•I A)⊗A B

∼−→ Rees(Fil•IB B). The final claims concerning base formal
OK-schemes follows from [IKY24, Propositions 1.11 and 1.16]. □

We now come to the precise relationship between prismatic F -crystals and prismatic F -gauges
(compare with [Ito23, Corollary 8.2.13]). In the following, let G be a smooth group Zp-scheme.

Proposition 1.28. Let X be a quasi-syntomic p-adic formal scheme. Then the essential image
of RX is contained in Vectφ,lff(X∆). If X is a base formal OK-scheme, then RX induces a bi-exact
Zp-linear ⊗-equivalence

RX : Vect(Xsyn) ∼−→ Vectφ,lff(X∆).

In particular, RX induces an equivalence

G-Vect(Xsyn) ∼−→ G-Vectφ,lff(X∆).

Proof. Let ΠX : Vectφ(X∆)→ Perf(Xsyn) denote the functor from [GL23, Theorem 2.31].8 Let
(E, φE) be an object of Vectφ(X∆). We first prove the following claim.

Claim 1.29. The object Ẽ := ΠX(E, φE) is in Vect(Xsyn) if and only if (E, φE) is in Vectφ,lff(X∆).

Proof of Claim 1.29. For each perfectoid ring S with a map Spf(S)→ X, consider the conditions:

(1) the restriction Ẽ|SN is a vector bundle on SN,
(2) Fil•Nyg(ϕ

∗E(Ainf(S))) is lff over (Ainf(S),Fil
•
ξ̃
) (where ξ̃ is as in [IKY24, §1.1.1]).

Then Ẽ being in Vect(Xsyn) is equivalent to (1) being satisfied for any such S by [IKY24,
Proposition 1.11 and Lemma 1.15] and [Bha23, Remark 5.5.18]. On the other hand by Proposition
1.27, (E, φE) being lff is equivalent to (2) being satisfied for any such S. By Proposition 1.6,
conditions (1) and (2) are equivalent, as desired. □

This together with the construction of ΠX and [GL23, Proposition 2.52] gives an isomorphism

(ΠX ◦ RX)(F) ≃ F (1.3.2)

for any F an object of Vect(Xsyn). Thus, RX induces a functor Vect(Xsyn) → Vectφ,lff(X∆).
Again by Claim 1.29, the functor ΠX induces a functor Vectφ,lff(X∆) → Vect(Xsyn). These
functors are quasi-inverse to each other: for an object F in Vect(Xsyn), we have the isomorphism
(1.3.2); on the other hand, for an object (E, φE) of Vectφ,lff(X∆), we have a functorial isomorphism
(E, φE) ≃ (RX ◦ΠX)(E, φE) by the constructions of RX and ΠX. This proves the claim that RX is
an equivalence, and its bi-exactness is [IKY25, Proposition 2.17]. □

1.4. Prismatic F -gauges with G-structure of type µ. In this subsection, we introduce the
notion of prismatic F -gauge with G-structure of type µ.

Convention 1.30. We make the following three conventions throughout this section.
(1) The tautological line bundle OBGm{1} on BGm corresponds to the trivial line bundle on

Spec(Z) with the Gm-action given by the inverse of the natural scalar multiplication of Gm.
So OBGm{1} corresponds to the graded line bundle Z(−1) concentrated in degree −1. 9

8While this functor is only constructed in loc. cit. when X is smooth over OK , the construction goes through,
mutatis mutandis, for X a base scheme using the cover from [IKY24, Lemma 1.15].

9This convention agrees with [Bha23, Construction 2.2.1] and [GM24], but is opposite to that in [Ito23].
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(2) We normalize the isomorphism BGm
∼−→ Pic of stacks via idBGm 7→ OBGm{1}. 10 So L in

Pic(Spec(S)) corresponds to the natural map Spec(S) ∼−→ Spec(
⊕

i∈Z L
⊗iti)/Gm → BGm,

where t sits in degree 1.
(3) We identify BGm and the the moduli stack of Gm-torsors in the standard way.

Notation 1.31. In addition to Notation 1.20 we fix the following notation:

• G is a smooth affine group Zp-scheme,
• µ : Gm,W → GW is a 1-bounded cocharacter (see [Lau21, Definition 6.3.1]),
• for a line bundle L on a stack X together with a map a : X → Spf(W ), we denote the

induced G-torsor on X via µ by µ∗(L, a) (we omit the a if it is clear from context or write
can. to emphasize that it is the structure map which is canonical in the given context),
• for b : L ∼−→ L′ we denote the induced isomorphism by µ∗(b) : µ∗(L, a) ∼−→ µ∗(L

′, a).

Additionally, we recall the following standard notions of Breuil–Kisin twists on a bounded p-adic
formal scheme X. Denote by OX∆{1} the pullback of OZ∆

p
{1} from [Dri24a, Definition 4.9.4] (cf.

[BL22a, Construction 2.2.11] and [Bha23, Remark 5.1.19]) along X∆ → Z∆
p . Similarly, let OXN{1}

be the pullback to XN of OZN
p
{1} := π∗O∆{1} ⊗ t∗OBGm{−1} from [Bha23, Remark 5.5.15].11 If

X is clear from context we shorten OX∆{1} and OXN{1} to O∆{1} and ON{1}, respectively.
Let notation be as in Notation 1.31. We define

Pµ := µ−1
∗ (OBGm{1}),

a G-torsor on BGm,W . Equivalently, Pµ corresponds to the trivial G-torsor on Spec(W ) with the
action of Gm,W = Spec(W [z±1]) given by left multiplication by µ(z)−1 in G(W [z±1]). Denote by
µ(−1) the base change of µ along ϕ−1

W : W →W and by Pµ,N the pullback of Pµ(−1) by the map
WN → BGm,W that corresponds to the Breuil–Kisin twist OWN{1}.

Definition 1.32. Fix an n in N ∪ {∞}. Let X be a bounded p-adic formal W -scheme. Write
Xsyn
n := Xsyn ⊗L

Zp
(Z/pn), and similarly for XN

n .

(1) An n-truncated prismatic F -gauge with G-structure on X is a G-torsor F on the (derived)
formal stack Xsyn

n over Zp (giving Xsyn if n =∞, whence we drop the prefix ‘∞-truncated’).
(2) An n-truncated prismatic F -gauge with G-structure F is of type µ if the restriction to XN

n

(again giving XN itself when n =∞) is of type µ, i.e., flat locally (equiv. quasi-syntomically
locally) on X, the restriction F|XN

n
is isomorphic to Pµ,N|XN

n
.

Denote by TorsµG,n(X
syn) the ∞-groupoid of n-truncated prismatic F -gauges with G-structure

of type µ, a full ∞-subgroupoid of TorsG(X
syn
n ). If n =∞ we drop it from the notation.12

Remark 1.33. The Frobenius twist in the definition of Pµ,N is necessary for Pµ,N to have
filtration of type µ (cf. Proposition 1.39).

Remark 1.34. Similarly to Remark 1.19, if X is quasi-syntomic, one may identify TorsG(X
syn)

with G-Vect(Xsyn), and consequently TorsµG(X
syn) may be identified with a full subcategory

of G-Vect(Xsyn) which we denote by G-Vectµ(Xsyn). In particular, if X is quasi-syntomic,
combining Proposition 1.17 and Corollary 1.18 we have natural identifications

TorsG(X
syn) ≃ 2-lim

Spf(R)∈Xqrsp

TorsG(R
syn), TorsG(X

N) ≃ 2-lim
Spf(R)∈Xqrsp

TorsG(R̂(Fil
•
Nyg(∆R))).

10Here Pic is the Picard stack, denoted by PicZ/Z in [SP, Tag 0372].
11The definition of ON{1} agrees with that in [GM24]: A1/Gm is formed using the inverse of the natural action

so the degree of the Rees variable t is −1 in [GM24], and OBGm{1} corresponds to Z(1); while we use the natural
action so here deg(t) = 1, and OBGm{1} corresponds to Z(−1), as in [Bha23].

12When X is quasi-syntomic, observe that TorsG(X
syn) is a groupoid.
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We first compare the notion of n-truncated prismatic F -gauges with G-structure (of type µ)
to the notion of prismatic G-torsors with F -structure of type µ as in [IKY24, Definition 3.12],
which we now recall using a slightly different presentation.

Let (A,Fil•) be a filtered ring. Then, we have the natural closed immersion

ι : BGm × Spec(A/Fil1)→ R(Fil•),

defined by the surjection of graded rings

Rees(Fil•)→ Rees(Fil•triv(A/Fil
1)) = A/Fil1[t]

t7→0−−→ A/Fil1 .

Definition 1.35. We define the punctured Rees stack R◦(Fil•) for (A,Fil•) to be the open
substack of the Rees stack R(Fil•) given as the complement of the above closed embedding ι.

In the situation that Fil• = Fil•I for some invertible ideal I, the punctured Rees stack R◦(Fil•I)
is also obtained as follows. Consider the open embeddings

Spec(A) ∼−→

[
Spec

(⊕
i∈Z

I−iti

)
/Gm

]
→ R(Fil•I), Spec(A) ∼−→ {t ̸= 0} ⊆ R(Fil•I).

These two open embeddings induce an isomorphism

Spec(A) ⊔Spec(A[1/I]) Spec(A)
∼−→ R◦(Fil•I).

In particular, we obtain a 2-functorial identification of TorsG(R◦(Fil•I)) with the category of
triples (Q,P, ψ : Q[1/I] ∼−→ P [1/I]) where Q and P are G-torsors on A and ψ is an isomorphism of
G-torsors on A[1/I], with the obvious notion of morphisms. We fix the direction of the isomorphism
ψ so that the restriction of such a triple to {t ̸= 0} gives the G-torsor P .

Definition 1.36. Let (A, I) be an object of W∆ (in particular, A is naturally a W -algebra)
and µ : Gm,W → GW be a cocharacter.
(1) We say a G-torsor on R◦(Fil•I) presented as (Q,P, ψ : Q[1/I] ∼−→ P [1/I]) is of type µ if there

exists a (p, I)-adically faithfully flat cover A→ A′ such that IA′ is principal, and there
exists trivializations θ : GA′

∼−→ Q and θ′ : GA′
∼−→ P such that the isomorphism θ′−1 ◦ψ ◦ θ

is given by left multiplication by µ(d) for a generator d of IA′.
(2) We say a G-torsor P on R(Fil•I) is of type µ if there exists a (p, I)-adically flat cover

A → A′ such that P restricted to R(Fil•IA′) is isomorphic to the µ-typical G-torsor, i.e.,
the pullback of Pµ along the natural map R(Fil•IA′)→ BGm,W .

We denote these categories by TorsµG(R
◦(Fil•I)) and TorsµG(R(Fil

•
I)), respectively.

Lemma 1.37 (cf. [Bha23, Proposition 6.6.3]). Let (A, I) be a prism.
(1) Restriction along j : R◦(Fil•I)→ R(Fil•I) induces a fully faithful functor

j∗ : TorsG(R(Fil
•
I))→ TorsG(R

◦(Fil•I)).

Fix a W -structure on (A, I) (i.e., let it be an object of W∆), and a cocharacter µ : Gm,W → GW .
(2) The functor from (1) induces an equivalence

TorsµG(R(Fil
•
I))
∼−→ TorsµG(R

◦(Fil•I)). (1.4.1)

Proof. To prove Claim (1), we observe that by the Tannakian formalism it suffices to prove the
claim for G = GLn,Zp . Then it suffices to prove that

j∗ : Vect(R(Fil•I))→ Vect(R◦(Fil•I)),

is fully faithful. Using [SP, Tag 06WT], we are reduced to showing that pullback along

{t ̸= 0} ∪ Spec

(⊕
i∈Z

I−iti

)
→ Spec(Rees(Fil•I))
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induces a fully faithful functor between the categories of Gm-equivariant vector bundles on source
and target. But, the conditions of [ČS24, Lemma 7.2.7] are satisfied, and so the claim follows by
applying loc. cit. with Y = Hom(V,V′) for vector bundles V and V′ on R(Fil•I).

For Claim (2), first observe that Pµ|R◦(Fil•I )
is of type µ: using notation 1.31, it is presented as

(µ∗(I, can.), µ∗(A, can.), ψ := µ∗(id : I ·A[1/I] ∼−→ A[1/I])).

Replacing A by a Zariski cover on which I becomes principal, we may pick a generator d of I.
Then, with the tautological trivialization θ : G ∼−→ µ∗(A, can.) and the trivialization

θ′ : G = µ∗(A, can.)
µ∗(d·)−−−−→ µ∗(I, can.)

determined by d, the isomorphism θ′−1 ◦ψ ◦ θ is given by µ(d). Thus, the functor j∗ does indeed
carry objects of type µ to those of type µ. We then only have to show that (1.4.1) is essentially
surjective. Let P◦ = (Q,P, ψ : Q[1/I] ∼−→ P [1/I]) be an object of TorsµG(R

◦(Fil•I)). By definition,
there exists a (p, I)-adically faithfully flat cover A → A′ such that IA′ is principal and there
exist trivializations θ : GA′

∼−→ QA′ and θ′ : GA′
∼−→ PA′ such that θ′−1 ◦ ψ ◦ θ is given by left

multiplication of µ(d) for a generator d of IA′. We consider the µ-typical G-torsor P′ := Pµ,R(Fil•
IA′ )

on R(Fil•IA′). Note θ and θ′ induce an isomorphism P′|R◦(Fil•
IA′ )

∼−→ P◦
A′ . Then the descent datum

σ : P◦
A′ ⊗A′,pr∗1

(A′ ⊗A A
′) ∼−→ P◦

A′ ⊗A′,pr∗2
(A′ ⊗A A

′)

for P◦ along A → A′ induces, by the full faithfulness from Claim (1), a descent datum on P′,
which then gives a G-torsor P on R(Fil•I) such that j∗P ≃ P◦ as desired. □

To relate the above consideration to the type µ condition for prismatic F -crystals, we consider
the two A-lattices associated to an object of TorsφG(A, I). More precisely, we consider the functor

LatG : Tors
φ
G(A, I)→ TorsG(R

◦(Fil•I))

by sending (P, φP) to (ϕ∗P,P, φP : ϕ
∗P[1/I] ∼−→ P[1/I]).

Definition 1.38 (cf. [IKY24, Definition 3.12]). Let X be a quasi-syntomic p-adic formal
scheme and (P, φP) be an object of TorsφG(X∆). We say that (P, φP) is of type µ if for any
object (A, I) of the site X∆, the object LatG(P, φP) of TorsG(R◦(Fil•I)) is of type µ. Denote
the full subcategory of TorsφG(X∆) of objects of type µ by Torsφ,µG (X∆).

Let X be a quasi-syntomic p-adic formal scheme over W and consider the forgetful functor

RX : TorsG(X
syn)→ TorsφG(X∆),

from Construction 1.21, which can also be interpreted in terms of G-objects as in Remark 1.34.
The result below says this induces an equivalence on objects of type µ if X is sufficiently regular.

Proposition 1.39. Let X be a quasi-syntomic p-adic formal scheme over W .
(1) Let P be an object of TorsG(Xsyn) of type µ. Then the associated object (P∆, φP∆

) = RX(P)

of TorsφG(X∆) is also of type µ.
(2) Assume that X is either (a) Spf(R) for a perfectoid ring R or (b) a base formal scheme over

Spf(W ). Then the forgetful functor induces an equivalence of categories

RX : Tors
µ
G(X

syn) ∼−→ Torsφ,µG (X∆).

Proof. For Claim (1), by the definitions of the type µ conditions, we may assume that X = Spf(R)
for a qrsp ring R. We consider the following commutative diagram of categories

TorsG(R
syn)

P7→P∆ //

P7→ϕ∗PN

��

TorsφG(∆R, IR)

LatG
��

TorsG(R(Fil
•
IR
))

j∗
// TorsG(R

◦(Fil•IR)),
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where the left vertical arrow is the natural pullback functor along the composition

R(Fil•IR)
ϕ−→ R(Fil•Nyg) = RN → Rsyn.

Recall that P∆ being of type µ means that LatG(P∆) is of type µ, which, by the commutative
diagram, happens if and only if j∗ϕ∗PN is of type µ. Now, by Lemma 1.37, this is equivalent to
ϕ∗PN being of type µ. On the other hand, P being of type µ means that PN is of type µ. As
scalar extension preserves the type µ condition, Claim (1) follows.

To prove Claim (2), observe that as in Example 1.26 any object of Torsφ,µG (X∆) corresponds
to an object of G-Vectφ,lff(X∆), and so, by Proposition 1.28 and its proof, we only have to show
that the converse of Claim (1) also holds under the assumption of Claim (2). We may now
assume that X = Spf(R) for a perfectoid ring R (in case (b), take a perfectoid cover as in [IKY24,
Lemma 1.15]). Then the assertion follows since ϕ is now an isomorphism. □

1.5. Relationship to the theory of displays. To utilize the works [Ito23] and [Ito25], we
need to compare the notion of prismatic F -gauge with G-structure of type µ to that of prismatic
G-F -gauge of type µ introduced by Ito in [Ito23, Definition 8.2.5]. We maintain the notation
from Notation 1.31 throughout.

1.5.1. Prismatic G-µ-displays. Let R be a quasi-syntomic W -algebra. Following [Ito23], for
an object (A, I) of R∆, and a generator d of I, we define the sheaf

Gµ,(A,I) : Spec(A)ét → Grp, B 7→
{
g ∈ G(B) : µ(d)gµ(d)−1 ∈ G(B) ⊆ G(B[1/d])

}
,

which does not depend on d. For d generating I, define an action of Gµ,(A,I) on Gd := G by

Gd × Gµ,(A,I) → Gd, (x, g) 7→ g−1xϕ(µ(d)gµ(d)−1).

For another generator d′ of I there exists a unique unit u of A with d = ud′ and the morphism
Gd → Gd′ given by sending x to xϕ(µ(u)) is a Gµ,(A,I)-equivariant isomorphism of sheaves. Thus,
G∆,(A,I) := lim←−Gd, is a sheaf of sets carrying a canonical action of Gµ,(A,I).

As in [Ito23], a G-µ-display on (A, I) is a pair (Q(A,I), αQ(A,I)
) where Q(A,I) is a Gµ,(A,I)-torsor

and αQ(A,I)
: Q→ G∆,(A,I) is a Gµ,(A,I)-equivariant map of sheaves. There is an evident notion of

morphism of G-µ-displays on (A, I), and we denote by G-Dispµ(A, I) the category of prismatic
G-µ-displays on (A, I). For a morphism (A, I)→ (B, J), where both I and J are principal, there
is an obvious pullback morphism G-Dispµ(A, I)→ G-Dispµ(B, J) and Ito defines a prismatic
G-µ-display on R to be an object (Q, αQ) of the category

G-Dispµ(R∆) := 2-lim
(A,I)∈R∆

G-Dispµ(A, I),

which makes sense as every object (A, I) of R∆ has a cover (A, I)→ (B, J) where J is principal.
This definition extends, mutatis mutandis, to a quasi-syntomic formal scheme, and we denote

the resulting category by G-Dispµ(X∆).

1.5.2. Relationship to prismatic G-torsors with F -structure. We now show that G-µ-
displays are precisely the prismatic G-torsors with F -structure bounded by µ. More precisely, we
construct

G-Dispµ(A, (d))
∼−→ Torsφ,µG (A, (d)),

functorial in an object (A, (d)) of R∆.
We first construct an equivalence between the category of banal (see [Ito23, §5.1]) G-µ-displays

on (A, (d)) and the full-subcategory of Torsφ,µG (A, (d)) consisting of those (A, φA) with A

trivializable. Let (Gµ,(A,I), X : Gµ,(A,I) → G∆,(A,I)) be a banal G-µ-display on (A, I). Choose a
generator d of I, and write Xd in G(A) for the d-component of X(1). Define PX,d to be the
trivial GA-torsor and φPX,d

to be the composition

ϕ∗GA[1/d] = GA[1/d]
∼−→ GA[1/d]

∼−→ GA[1/d],

where the first map is left multiplication by Xd and the second map is left multiplication by
µ(d). For another generator d′ of I with d = ud′ with u ∈ A a unit, the left multiplication by
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µ(u) defines an isomorphism (PX,d′ , φPX,d′
) ∼−→ (PX,d, φPX ,d). Define (PX , φPX

) to be the inverse
limit lim←−d

(PX,d, φPX,d
) with transition maps given by µ(u).

The pair (PX , φPX
) is then seen to be an object of Torsφ,µG (A, (d)) whose underlying G-torsor is

trivalizable. This defines a functor as for an element g of Gµ,(A,(d)), we have an induced morphism
(µ(d)gµ(d)−1)d : PX·g → PX , which is functorial and preserves the Frobenius structures by
construction. This functor is clearly fully faithful.

Stackifying this association gives us a functor

G-Dispµ(A, (d))→ Torsφ,µG (A, (d)),

which is compatible in G and (A, (d)). So, for a quasi-syntomic W -algebra R, we obtain a functor

G-Dispµ(R∆)→ Torsφ,µG (R∆), (1.5.1)

functorial in G and R.

Proposition 1.40. The functor (1.5.1) defines an equivalence of categories

G-Dispµ(R∆)
∼−→ Torsφ,µG (R∆)

functorial in G and R.

Proof. As we have already observed, this functor is fully faithful, it remains to show that it is
essentially surjective. As both the source and target are stacks on X∆, this fully faithfulness
allows us to reduce ourselves to showing that the functor is essentially surjective on banal objects
over some (A, (d)). Let (P, φP) be an object of Torsφ,µG (A, (d)) with P trivializable. Then by
definition, φP is defined by Y µ(d)X for some X and Y in G(A). But left multiplication by Y
then defines an isomorphism PXϕ(Y ),d → P in Torsφ,µG (A, (d)), from where the claim follows. □

1.5.3. G-F -gauges of type µ. As in [Ito23, §4.1], set AG to be the ring O(GW ) and denote by
AG =

⊕
i∈ZAG,i the weight decomposition with respect to the µ-conjugation µ(z)gµ(z)−1.13 As G

is defined over Zp there is a natural identification ϕ∗AG = AG, and so we obtain a decomposition

AG =
⊕
i∈Z

A
(−1)
G,i ,

where, by definition, A(−1)
G,i is the base change of AG,i along ϕ−1 : W →W .

For a qrsp ring R, set

Gµ,N(R) :=
{
g ∈ G(∆R) : g

∗ : AG → ∆R satisfies g∗(A(−1)
G,i ) ⊆ Fil−i

Nyg ∆R for all i ∈ Z
}
.

For a generator d of IR ⊂ ∆R, let G(∆R)N,d denote the group G(∆R) with the right Gµ,N(R)-action
given by X · g := g−1Xσµ,N,d(g), where σµ,N,d(g) := µ(d)ϕ(g)µ(d)−1. We define G(∆R)N to be
the inverse limit lim←−d

G(∆R)N,d, where d runs over the set of generators of IR, and when d = ud′

for a unit u ∈ ∆R the transition map G(∆R)N,d → G(∆R)N,d′ is given by X 7→ Xµ(u).
Let X be a quasi-syntomic p-adic formal scheme. By [Ito23, Lemma 8.2.4], the groups Gµ,N(R)

form a sheaf of groups Gµ,N on Xqrsp together with an action on the sheaf of sets G∆,N defined via
the association R 7→ G(∆R)N.

Definition 1.41 ([Ito23, Definition 8.2.5]). Let X be a quasi-syntomic p-adic formal scheme.
A prismatic G-F -gauge of type µ on X is a pair (Q, αQ) consisting of a Gµ,N-torsor Q on Xqrsp

and a Gµ,N-equivariant map of sheaves αQ : Q → G∆,N.

Prismatic G-F -gauges of type µ form a groupoid G-F -Gaugeµ(X). There is a natural functor

Rdisp
X : G-F -Gaugeµ(X)→ G-Dispµ(X),

(see [Ito23, Proposition 8.2.11]).

13We take the opposite convention from [Ito23]: the weight decomposition in loc. cit. is taken with respect to
the inverse µ-conjugation. We do so as the variable t is declared to have degree −1 in [Ito23, Definition 8.1.1].
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Remark 1.42. There exists a canonical isomorphism[
Spec

(⊕
i∈Z

AG,i

)
/Gm,W

]
∼−→ Aut(Pµ)

of group stacks over BGm,W . In fact, the action of Gm,W on GW by µ-conjugation is identified
with the natural action of Gm,W on the group scheme Aut(Pµ|Spf(W )). In particular, for a qrsp
ring R, we have a canonical identification

Gµ,N(R)
∼−→ Aut(Pµ(−1))(RN) := MapBGm,W

(RN,Aut(Pµ(−1))),

where RN is regarded as a stack over BGm,W by the Rees structure map t : RN → BGm,W .

1.5.4. Comparison to G-torsors on the syntomification. We aim to prove the following.

Proposition 1.43. Let X be a quasi-syntomic p-adic formal scheme. Then, there exists an
equivalence of categories

TorsµG(X
syn) ∼−→ G-F -Gaugeµ(X),

2-bi-functorial in X and G.

To construct this equivalence we give a different notion of prismatic G-F -gauge of type µ (see
Definition 1.46) and show it is equivalent to that in [Ito23] (see Proposition 1.47).

To this end, for each qrsp ring R we let LR denote the invertible ∆R-module that corresponds
to O∆{1}∨ via the canonical isomorphism R∆ ≃ Spf(∆R) from Proposition 1.17, which comes
with a canonical isomorphism ϕ∗LR

∼−→ IR ⊗∆R
LR.

Consider the perfectoid ring O := Zp⟨µp∞⟩. Then L := LO is generated by [ε] − 1, where ε
in O♭ is as in [IKY24, Notation 1.1]. Then, for a qrsp ring R that admits a map from O, the
expression ∆R[1/L] makes sense.

Definition 1.44. For a qrsp O-algebra R, we define the following groups:

G′
µ,N(R) :=

{
g ∈ G(∆R[1/L]) : g

∗(A
(−1)
G,i ) ⊆ Fil−i

Nyg ·L
i
}
,

G′
µ,∆(R) :=

{
g ∈ G(∆R[1/L]) : g

∗(A
(−1)
G,i ) ⊆ Li

}
,

G′′
µ,∆(R) :=

{
g ∈ G(∆R[1/L]) : g

∗(AG,i) ⊆ Li
}
.

Lemma 1.45. There is a canonical commutative diagram

Aut(τ∗Pµ,N)

∼
��

Aut(Pµ,N)
σ∗
//τ∗oo

∼
��

Aut(σ∗Pµ,N)

∼
��

G′
µ,∆(R) G′

µ,N(R)
ϕ //oo G′′

µ,∆(R).

Proof. We first note that, by Remark 1.42, the group Aut(Pµ,N) is canonically identified with
the group MapBGm,W

(RN{1}, Spec(
⊕

i∈ZA
(−1)
G,i )), where RN{1} denotes the stack RN with the

BGm,W -structure RN → BGm,W given by the line bundle ON{1} (with the canonicalW -structure).
This structure map corresponds to the Gm-torsor Spec(

⊕
i∈Z Fil−i

Nyg ·Li) over R(Fil•Nyg) via
Convention 1.30 together with Proposition 1.5. Thus, this group is identified with the group of
Gm-equivariant W -maps Spec(

⊕
i∈Z Fil−i

Nyg ·Li)→ Spec(
⊕

i∈ZA
(−1)
G,i ),14 i.e., the group of graded

14As RN is identified with the completed Rees stack R̂(Fil•Nyg), the group G{µ}(RN) is, a priori, identified with
the group of compatible systems of Gm equivariant maps Spec(

⊕
i∈Z(Fil

−i
Nyg ·L

i)/(p, I)n) → Spec(
⊕

i∈Z A
(−1)
G,i ).

But, since each Fil−i
Nyg ·L

i is complete (see Lemma 1.12), giving such a system is equivalent to giving a Gm-
equivariant map as claimed.
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W -algebra homomorphisms
⊕

i∈ZA
(−1)
G,i →

⊕
i∈Z(Fil

−i
Nyg ·Li), which is identified with the group

G′
µ,N(R). The other isomorphisms are obtained similarly. □

We now consider the sheaf of sets A on Rqrsp defined by the association

R′ 7→ Isom((σ∗Pµ,N)|R′∆ , (τ
∗Pµ,N)|R′∆).

It admits a natural right action of G′
µ,N defined by the rule X ′ ·g′ := g′−1X ′ϕ(g′) where g′ belongs

to G′
µ,N(R) and X ′ is in A(R).

Definition 1.46. Let R be a qrsp ring. By a choice-free prismatic G-F -gauge on R of type µ
we mean a pair Q = (Q, αQ) consisting of a G′

µ,N-torsor Q on Rqrsp and a G′
µ,N-equivariant

map of sheaves αQ : Q → A.

Set G-F -Gauge′µ(R) to be the groupoid of choice-free prismatic G-F -gauges on R of type µ.
In the following we let µ′ denote the twist µ(−1).

Proposition 1.47. Let R be a qrsp O-algebra and choose a generator π in L. Let dπ denote the
element ϕ(π)/π in ∆R.

(1) The following diagram commutes

G(∆R)

µ′(π)-conj.
��

Gµ,N(R)
σµ,N,dπ //canoo

µ′(π)-conj.
��

G(∆R)

µ(π)-conj.
��

G′
µ,∆(R) G′

µ,N(R)
ϕ //oo G′′

µ,∆(R),

where σµ,N,dπ is the map from §1.5.3.
(2) The choice of π induces an isomorphism of categories

G-F -Gauge(R) ∼−→ G-F -Gauge′(R).

Proof. Claim (1) follows from the definition of the weight decomposition. Indeed, the natural
map µ′(π)gµ′(π)−1 : AG → ∆[1/L] sends a in A(−1)

G,i to πig∗(a).
To see Claim (2), we identify G(∆R)N := lim←−d

G(∆R)N,d with A(R) as follows. We have the
canonical projection G(∆R)N

∼−→ G(∆)N,dπ , so it suffices to identify G(∆R)N,dπ with A(R). Let
θdπ : G(∆R)N,dπ = G(∆R)

∼−→ A(R) be the map sending an element X of G(∆R) to the isomorphism
X ′ : σ∗Pµ,N

∼−→ τ∗Pµ,N defined as composite

σ∗Pµ,N = µ∗(O∆{1})
µ∗(π−1·)−−−−−→ µ∗(O∆) = G∆R

X·−→ G∆R
= µ′∗(O∆)

µ′
∗(π·)−−−−→ µ′∗(O∆{1}) = τ∗Pµ,N.

By Claim (1), this bijection is equivariant for the action of Gµ,N(R) on the left-hand side and that
of G′

µ,N(R) on the right-hand side via the identification G′
µ,N(R)

∼−→ Gµ,N(R) from Claim (1). □

Proof of Proposition 1.43. By Proposition 1.47 and quasi-syntomic descent, it suffices to construct
an equivalence TorsµG(R

syn) ∼−→ G-F -Gauge′µ(R) for qrsp rings R in a functorial way.
Suppose first that P is an object of TorsµG(R

syn) presented via an isomorphism φP : σ
∗PN →

τ∗PN for PN a G-torsor on RN. Say that P is banal if PN is isomorphic to Pµ,N. Suppose P

is banal and choose an isomorphism θ : Pµ,N
∼−→ PN. Consider the element X in A(R) that

defines φP via θ. We then define a choice-free prismatic G-F -gauge Q = (Q, αQ) of type µ as
follows. Define Q to be the trivial G′

µ,N-torsor on Rqrsp. Further define a G′
µ,N-equivariant map

αQ : Q = G′
µ,N → A by sending 1 to X. By the definition of the action of G′

µ,N(R) on A(R), the
object (Q, αQ) is independent of the choice of θ in the sense that, if we pick another isomorphism
θ′ : Pµ,N

∼−→ PN and α′
Q denotes the similarly defined map, then θ′−1 ◦ θ, viewed as an element of

G′
µ,N(R) via Lemma 1.45, gives an isomorphism (Q, αQ) ∼−→ (Q, α′

Q). One may check this defines
an equivalence TorsµG(R

syn)banal
∼−→ G-F -Gauge′µ(R)banal. This equivalence is 2-functorial in R,

and so we obtain the desired equivalence passing to the quasi-syntomic stackifications. □
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1.5.5. Summary of equivalences. We summarize the above results as follows.

Proposition 1.48. Let X be a quasi-syntomic p-adic formal scheme.
(1) There exists a commutative diagram of categories

TorsµG(X
syn) G-F -Gaugeµ(X)

Torsφ,µG (X∆) G-Dispµ(X)

∼
1.43

RX Rdisp
X

∼
1.40

(1.5.2)

2-bi-functorial in G and X, where the horizontal arrows are equivalences and the vertical
arrows are fully faithful.

(2) Assume further that X is either, (a) Spf(R) for a perfectoid ring R or, (b) a base formal
W -scheme. Then the vertical arrows in (1.5.2) are equivalences.

Proof. The only remaining part which is potentially unclear is the 2-commutativity of (1.5.2). It
suffices to work with objects P = (PN, φP) over X = Spf(R) with R a qrsp ring admitting a map
from O = Zp⟨µp∞⟩ and which are banal, i.e., there exists an isomorphism Pµ,N

∼−→ PN. Choose
such an isomorphism θ : Pµ,N

∼−→ PN and let Xθ denote the element of Isom(σ∗Pµ,N, τ
∗Pµ,N)

that defines φP via θ. Then the Frobenius structure of the associated prismatic G-torsor with
F -structure is, via θ given by the composition

ϕ∗τ∗Pµ,N[1/I]
can.−−→ σ∗Pµ,N[1/I]

Xθ−−→ τ∗Pµ,N[1/I].

Choose a generator π of the ideal LR and set dπ := ϕ(π)/π. Then, via the identification

G∆R
= µ∗(O∆)

µ′
∗(π·)−−−−→ µ∗(O∆{1}) = τ∗Pµ,N,

the above composition is identified with the composition

ϕ∗G[1/I] ≃ G[1/I]
µ(dπ)−−−→ G[1/I]

Xπ
θ−−→ G[1/I],

where Xπ
θ := µ′(π)−1Xθµ(π).

On the other hand, the associated object (Q, αQ) in G-F -Gaugeµ(R) is canonically isomorphic
to (Gµ,N → G(∆R) : 1 7→ Xπ

θ ), and hence the associated object of G-Dispµ(R) is given by
(Gµ,∆ → G(∆R) : 1 7→ ϕ(Xπ

θ )), whose associated prismatic G-torsor is canonically isomorphic to
(G∆R

, φ) where φ corresponds to left multiplication by µ(dπ)ϕ(Xπ
θ ). Left multiplication by Xπ

θ

on G∆ gives the desired commutativity isomorphism. □

2. Prismatic realization functors on Shimura varieties of abelian
type

In this section we construct an object ωKp,∆ of G-Vectφ((ŜKp)∆), called the prismatic realization
functor, where SKp is the integral canonical model of a Shimura variety of abelian type, and
show it can be upgraded to a syntomic realization functor ωKp,syn in G-Vect((ŜKp)syn).

2.1. Notation and basic definitions. Throughout this section, we fix the following.

Notation 2.1. Define the following notation:
⋄ G is a reductive group over Q,
⋄ Z denotes the center Z(G) of G,
⋄ S := ResC/R Gm,C is the Deligne torus,
⋄ (G,X) is a Shimura datum (see [Mil05, Definition 5.5]),
⋄ E = E(G,X) ⊆ C denotes the reflex field of (G,X) (see [Mil05, Definition 12.2]),
⋄ K ⊆ G(Af ) is a (variable) neat (cf. [Mil05, p. 288]) compact open subgroup.

25



As in [Del79] (cf. [Moo98]), associated to this data is the (canonical model of the) Shimura
variety ShK(G,X), which is a smooth and quasi-projective E-scheme. For K and K′ of G(Af ),
and g in G(Af ) such that g−1Kg ⊆ K′, denote by tK,K′(g) the unique finite étale morphism of
E-schemes ShK(G,X)→ ShK′(G,X) given on C-points by

tK,K′(g)
(
G(Q)(x, g′)K

)
= G(Q)(x, g′g)K′.

We shorten tK,K′(id) to πK,K′ and tK,g−1Kg(g) to [g]K . The morphisms πK,K′ form a projective
system {ShK(G,X)} with finite étale transition maps, and the morphisms [g]K endow

Sh(G,X) := lim←−
K

ShK(G,X)

(cf. [SP, Tag 01YX]) with a continuous action of G(Af ) (in the sense of [Del79, 2.7.1]).
We shall often fix the following additional data/notation/assumptions:
⋄ p is a rational prime and p a prime of E lying over p,
⋄ E is the completion Ep, OE its ring of integers, and k its residue field,
⋄ G := GQp , and G is a parahoric model of G over Zp,
⋄ K0 ⊆ G(Qp) the parahoric subgroup given by G(Zp),
⋄ Kp ⊆ G(Ap

f ) a neat compact open subgroup.
The triple (G,X,G) is a parahoric Shimura datum, and is an unramified Shimura datum if G
is reductive. For an unramified Shimura datum, the extension E/Qp is unramified (see [Mil94,
Corollary 4.7]) and we identify OE with W =W (k). Moreover, G is quasi-split and split over Ĕ.
We shorten ShK(G,X)E (resp. Sh(G,X)E) to ShK (resp. Sh).

Let (G,X,G) be a parahoric Shimura datum. Associated to X is a unique conjugacy class
of coharacters Gm,C → GC (see [Mil05, p. 344]) whose field of definition is E. Using [Kot84,
Lemma 1.1.3] this corresponds to a unique conjugacy class µh of cocharacters Gm,E → GE which
one checks has field of definition E. If (G,X,G) is unramified then one may use loc. cit. to show
the existence of a unique conjugacy class µh of cocharacters Gm,Z̆p

→ GZ̆p
modeling µh.

We often denote other Shimura data with numerical subscripts (e.g. (G1,X1)) and use the
same numerical subscripts to denote the objects defined above (or below) for this Shimura datum
(e.g. ShK0,1K

p
1

or G1). A morphism of Shimura data α : (G1,X1)→ (G,X) is a morphism of group
Q-schemes α : G1 → G such that αR(X1) ⊆ X, and is an embedding if α is a closed embedding. By
[Del79, §5], for a morphism α one has E ⊆ E1 and there is a morphism Sh(G1,X1)→ Sh(G,X)E1

of E1-schemes equivariant for α : G1(Af )→ G(Af ) and such that if α(K1) ⊆ K then the induced
map αK1,K : ShK1(G,X)→ ShK(G,X)E1 is given by

αK1,K (G1(Q)(x, g1)K1) = G(Q)(α ◦ x, α(g1))K

on C-points. If the induced map α : Gder
1 → Gder is an isogeny, then each αK1,K is finite étale, as

can be checked on connected components (cf. [She17, p. 6620]).
By a morphism α : (G1,X1,G1)→ (G,X,G) of parahoric Shimura data we mean a morphism

α : (G1,X1) → (G,X) of Shimura data together with a specified model G1 → G of G1 → G,
which we also denote α. We say that α is an embedding if G1 → G is a closed embedding.

2.2. Integral canonical models. We consider the following objects:

⋄ a symplectic space Λ0 over Z(p),
⋄ set V0 := Λ0 ⊗Z Q,

⋄ set Λ0 := Λ0 ⊗Z(p)
Zp,

⋄ set V0 := V0 ⊗Q Qp = Λ0[1/p].

We then have the Siegel Shimura datum (GSp(V0), h
±) (see [Mil05, §6]) with reflex field Q. For

a neat compact open subgroup L ⊆ GSp(V0)(Af ) there is an identification of ShL(GSp(V0), h
±)

with Mumford’s moduli space of principally polarized abelian schemes with level L-structure (see
[Del71, §4]). Set L0 = GSp(Λ0). Then, ShL0Lp admits a smooth model MLp(Λ0) over Zp with a
similar moduli description (see loc. cit.).

Recall that (G,X) is of Hodge type if there exists an embedding (called a Hodge embedding)
(G,X) ↪→ (GSp(V0), h

±) for some symplectic space V0 over Q, and of abelian type if there exists
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(G1,X1) of Hodge type and an isogeny Gder
1 → Gder inducing an isomorphism of adjoint Shimura

data (Gad
1 ,X

ad
1 )→ (Gad,Xad). As in [Lov17b, 2.5.14] (cf. the proof of [Kis10, Corollary 3.4.14]),

if (G,X,G) is an unramified Shimura datum of abelian type then (G1,X1,G1) may be further
chosen so that Gder

1 → Gder admits a central isogeny model Gder
1 → Gder. For such well-chosen

data, we say that (G1,X1) (resp. (G1,X1,G1)) is adapted to (G,X) (resp. (G,X,G)).
Suppose now that (G,X,G) is an unramified Shimura datum of abelian type. Set

ShK0 = lim←−
Kp

ShK0Kp = Sh/K0,

which is a scheme with a continuous action of G(Ap
f ). In [Kis10], there is constructed an OE-

scheme S = SK0 with a continuous action of G(Ap
f ) whose generic fiber recovers ShK0 with

its G(Ap
f )-action. For a neat compact open subgroup Kp ⊆ G(Ap

f ) write SKp := S /Kp, and
for neat compact open subgroups Kp and K

′p of G(Ap
f ), and an element gp of G(Ap

f ) such that
(gp)−1Kpgp ⊆ K

′p denote by tKp,K′p(gp) the induced map SKp → SK′p , subject to the same
notational shortenings as in the generic fiber case. Then, S is a so-called integral canonical
model : the OE-schemes SKp are smooth (and quasi-projective), the maps tKp,K′p(gp) are finite
étale, and for any regular and formally smooth OE-scheme X any morphism Xη → ShK0 of
E-schemes lifts uniquely to a morphism of OE-schemes X → S (the extension property).

Example 2.2. When (G,X) = (GSp(V0), h
±), and L0 = GSp(Λ0), then the integral canonical

model is precisely the system {MLp(Λ0)} (cf. [Moo98, Corollary 3.8]).

If α : (G1,X1,G1) → (G,X,G) is a morphism of unramified Shimura data of abelian type,
then the morphism ShK0,1 → (ShK0)E1 has a unique model S1 → SOE1

equivariant for the map
G1(A

p
f )→ G(Ap

f ) . If α(Kp
1) ⊆ Kp we denote by αKp

1,K
p the induced morphism SKp

1
→ (SKp)OE1

.

Lemma 2.3. If α : Gder
1 → Gder is a central isogeny, then each αKp

1,K
p is finite étale.

Proof. It suffices to show the maps SKp
1
(Gder

1 ,X+
1 )→ SKp(Gder,X+) (with notation as in [Kis10,

(3.4.9)]) are finite étale. Let (G2,X2,G2) be an unramified Shimura datum of Hodge type adapted
to (G1,X1,G1) and thus to (G,X,G) and fix a sufficiently small neat compact open subgroup
Kp
2. As the map SKp

1
(Gder

1 ,X+
1 ) → SKp(Gder,X+) fits into a commutative triangle with maps

of the form SKp
2
(Gder

2 ,X+
2 )→ SKp

1
(Gder

1 ,X+
1 ) and SKp

2
(Gder

2 ,X+
2 )→ SKp(Gder,X+) it suffices to

show these maps are finite étale. But, this follows from [Lov17b, 2.5.14] as the group ∆N is finite
and acts freely by [Lov17b, Proposition 2.5.9 and Lemma 2.5.10]. □

For an unramified Shimura datum (G,X,G) of Hodge type, an integral Hodge embedding is
an embedding ι : (G,X,G) ↪→ (GSp(V0), h

±,GSp(Λ0)). By [Kim18b, 3.3.1], such an integral
Hodge embedding always exists. As each MLp(Λ0) is a fine moduli space of principally polarized
abelian varieties it has a universal abelian scheme ALp compatible in Lp. If ι(Kp) ⊆ Lp, we
(suppressing ι from the notation) denote by AKp → SKp the pullback of ALp along ιKp,Lp . Denote
by ÂKp → ŜKp its p-adic completion (equiv. the pullback of AKp along ŜKp → SKp), and by
AKp → ShK0Kp the generic fiber of AKp → SKp .

We finally observe that the connected components of S are homogeneous in a suitable sense.

Lemma 2.4 (cf. [Kis10, Lemma 2.2.5]). The action of G(Ap
f ) on π0(SOĔ

) is transitive.

2.3. Étale realization functors. Following [KSZ21, Definition 1.5.4], for a multiplicative Q-
group T denote by Ta the largest Q-anisotropic subtorus of T, and by Tac the smallest subtorus
of Ta whose base change to R contains the maximal split subtorus of (Ta)R. For a reductive
Q-group G denote by Gc the Q-group G/Zac, and by Gc the group Gc

Qp
.

Fix a parahoric Shimura datum (G,X,G). There is a canonical map of Bruhat–Tits buildings
B(G,F )→ B(Gc, F ). Let x denote a point of B(G,F ) corresponding to G, and xc its image in
B(Gc, F ) (see [KP18, §1.1–1.2] and the references therein). Set Gc to be the parahoric group
scheme associated to xc (denoted by G◦

xc in [KP18, §1.2]). By [KP18, Proposition 1.1.4], G is a
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central extension of Gc, and so one is reductive if and only if the other is.15 Denote by µc
h the

conjugacy class of cocharacters of Gc induced by µh, and if (G,X,G) is unramified let µc
h be

conjugacy class of cocharacters of Gc
Z̆p

induced by µh.

Lemma 2.5. A morphism α : (G1,X1) → (G,X) (resp. α : (G1,X1,G1) → (G,X,G)) of
Shimura data (resp. parahoric Shimura data) induces a morphism Gc

1 → Gc (resp. Gc
1 → Gc).

Proof. The claim concerning Shimura data would follow from α(Z1,ac) ⊆ Zac. To show this, it
suffices to show that if S = (α−1(Zac) ∩ Z1,ac)

◦, then SR contains the split component of (Z1,a)R.
Suppose not and that R× ⊆ (Z1,a)(R) is not contained in S(R). If α(R×) is not contained in ZR

then we arrive at a contradiction as in the proof of [Lov17b, Lemma 3.1.3]. As R× ⊆ (Z1,a)(R)
this then implies that α(R×) ⊆ Zac(R) which is again a contradiction. The claim concerning
parahoric Shimura data then follows by applying [KP18, Proposition 1.1.4]. □

Remark 2.6. If (G,X) is of Hodge type, then G is equal to Gc. Indeed, this can be checked
explicitly for Siegel datum, and follows by functoriality for arbitrary (G,X). Shimura data of
abelian type need not enjoy this equality in general.

For a Shimura datum (G,X), and a neat compact open K = KpK
p ⊆ G(Ap

f ), the map

lim←−
K′p⊆Kp

ShK′
pK

p → ShK

is a Kp/Z(Q)
−
K -torsor on (ShKpKp)proét, where Z(Q)−K is the closure of Z(Q) ∩K in K (see [KSZ21,

§1.5.8]). If Kc
p denotes the image of Kp in Gc(Qp), loc. cit. shows that Kp → Kc

p factorizes
through Kp/Z(Q)

−
K . Denote by TK the Kc

p-torsor obtained by pushing forward lim←−K′p⊆Kp
ShK′

pK
p

along Kp/Z(Q)
−
K → Kc

p. We obtain an object νK,ét of Gc-LocQp(ShKpKp) given by sending
ρ : Gc → GL(V ) to the pushforward of TK along ρ : Kc

p → GL(V ). Fix g in G(Af ), and suppose
g−1Kg ⊆ K′. If g = gpg

p, and Int(gcp) is the inner automorphism of Gc associated to the image
gcp of gp in Gc(Qp), then

tK,K′ (g)∗(νK′ ,ét(ρ))) = νK,ét(ρ ◦ Int((gcp)−1)). (2.3.1)

We call the system νét := {νKpKp,ét} the (rational p-adic) étale realization functor on ShKp .
Let α : (G1,X1) → (G,X) be a morphism of Shimura data. If α(K1) ⊆ K one obtains a

morphism TK1 → TK ×(ShK)E1
ShK1 equivariant for αc : Kc

p,1 → Kc
p and, thus an isomorphism of

Kc
p-torsors αc

∗(TK1)→ TK×(ShK)E1
ShK1 . This is compatible in K in the obvious way. Equivalently,

for ρ in RepQp
(Gc) there is an identification

α∗
K1,K(νK,ét(ρ)E1) = νK1,ét(ρ ◦ αc), (2.3.2)

compatible in K1, K, and ξ in the obvious sense.
For a parahoric Shimura datum (G,X,G), and K = K0K

p (recall K0 = G(Zp)), there are
analogous integral objects. Again by [KSZ21, §1.5.8], Z(Q)K ⊆ Zac(Q) and so K0 → Gc(Zp)
factorizes through K0/Z(Q)

−
K .

Denote by SKp the push forward of lim←−Kp⊆K0
ShKpKp along K0/Z(Q)

−
K → Gc(Zp). From the

contents of [IKY24, §2.1.1], we obtain an associated object of Gc-LocZp(ShK0Kp):

ωKp,ét : RepZp
(Gc)→ LocZp(ShK0Kp).

Fix g = gpg
p in K0G(Ap

f ), and suppose (gp)−1Kpgp ⊆ K
′p. If Int(gcp) is the inner automorphism

of Gc associated to the image gcp of gp in Gc(Zp), then

tKpK0,K
′pK0

(g)∗(ωK′p,ét(ξ))) = ωKp,ét(ξ ◦ Int((gcp)−1)). (2.3.3)

15For the reader less familiar with Bruhat–Tits theory, [KP18, Proposition 1.1.4] shows that when G is reductive,
Gc = G/Z, where Z is the Zariski closure of (Z)Qp .
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We call the system {ωKp,ét} the (integral) étale realization functor on ShK0 . That this is an
integral model of νK0Kp,ét is made precise by the observation that

ωKp,ét[1/p] = νK0Kp,ét (2.3.4)

compatibly in a neat compact open subgroup Kp ⊆ G(Ap
f ).

Let α : (G1,X1,G1)→ (G,X,G) be a morphism of parahoric Shimura data. If α(Kp
1) ⊆ Kp one

obtains a morphism SK0,1K
p
1
→ SKp ×(ShK0Kp )E1

ShK0,1K
p
1

equivariant for αc : Gc
1(Zp)→ Gc(Zp) and,

thus an isomorphism of Gc(Zp)-torsors αc
∗(SK1

p
)→ SKp ×(ShK0Kp )E1

ShK0,1K
p
1
. This is compatible

in Kp in the obvious way. Equivalently, for ξ in RepZp
(Gc) there is an identification

α∗
Kp
1,K

p(ωKp,ét(ξ)E1) = ωKp
1,ét

(ξ ◦ αc), (2.3.5)

compatible in Kp
1, K

p, and ξ in the obvious sense.

Proposition 2.7. The Gc(Zp)-local system ωKp,ét belongs to Gc-LocdRZp,µc
h
(ShK0Kp).

Proof. That ωKp,ét is de Rham follows from [LZ17, Corollary 4.9] and the claim about cocharacters
is reduced to the case of special points which follows from [LZ17, Lemma 4.8]. □

Let (G,X,G) be an unramified Shimura datum of Hodge type, and fix an integral Hodge
embedding ι : (G,X,G) ↪→ (GSp(V0), h

±,GSp(Λ0)). By [IKY24, Theorem A.14] there is a tensor
package (Λ0,T0) with G = Fix(T0) (in the sense of loc. cit.). As in [Kim18b, §3.1.2], one may
construct from T0 ⊗ 1 ⊆ V ⊗

0 tensors Tét
0,p on H1

Qp
(AKp/ShK0Kp)∨ as an object of LocQp(ShK0Kp),

which are compatible in Kp.

Proposition 2.8. There is an isomorphism of Zp-local systems ωKp,ét(Λ0)
∼−→ H1

Zp
(AKp/ShK0Kp)∨

carrying ωKp,ét(T0)⊗ 1 in ωKp,ét(Λ0)[1/p] to Tét
0,p in H1

Qp
(AKp/ShK0Kp)∨.

Proof. First suppose that (G,X,G) = (GSp(V0), h
±,GSp(Λ0)) and ι is the identity embedding.

Then, by the moduli description of ShK0Kp one observes that there is an identification

SKp = Isom
(
(Λ0 ⊗Zp Zp, t0), (Tp(AKp), t)

)
,

where t0 is the tensor as in [Kim18a, Example 2.1.6], and t is the analogous tensor built from the
Weil pairing coming from the principal polarization on AKp . We deduce a natural identification
between ωKp,ét(Λ0) and H1

Zp
(AKp/ShK0Kp)∨. The desired isomorphism for general (G,X,G)

comes from the compatability in (2.3.5). To prove that the induced isomorphism of Qp-local
systems takes ωKp,ét(T0)⊗ 1 to Tét

0,p, we observe that these constructions admit globalizations
over E in the obvious way, in which case it suffices to check the claim on C-points. But, this
then follows from [Mil05, Theorem 7.4]. □

As a result of Proposition 2.8, we see that Tét
0,p actually lies in the image of the injective map

H1
Zp
(AKp/ShK0Kp)∨ → H1

Qp
(AKp/ShK0Kp)∨. We deduce from the contents of [IKY24, §2.1.1] that

ωKp,ét is the object of G-LocZp(ShK0Kp) associated to the torsor

Isom
(
(Λ0 ⊗Zp Zp,T0 ⊗ 1), (H1

Zp
(AKp/ShK0Kp)∨,Tét

0,p)
)
,

which thus is independent of any choices. Similar claims may be verified for νK,ét.
We end this section by describing a method, applying ideas from [Lov17b, §4.6–4.7], which

will allow us to reduce statements about Shimura data of abelian type to those of Hodge type.

Lemma 2.9. Let (G,X,G) be an unramified Shimura datum of abelian type, and (G1,X1,G1)
an adapted unramified Shimura datum of Hodge type. Then, there exists an unramified Shimura
datum (T, {h},T) of special type and an unramified Shimura datum (G2,X2,G2) of abelian type,
both with reflex field E1, such that
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(1) there exists a morphism of unramified Shimura data

α = (α1, α2) : (G2,X2,G2)→ (G1 ×T,X1 × {h},G1 × T)

such that αc : Gc
2 → G1 × Tc is a closed embedding,

(2) there exists a morphism of unramified Shimura data β : (G2,X2,G2)→ (G,X,G) such
that βKp

2,K
p : SKp

2
→ (SKp)OE1

is finite étale.

Proof. Choose a connected component X+
1 of X1 and an element hG of X+

1 . Let (G2,X2,G2) be
the unramifed Shimura datum of abelian type obtained by applying the construction in [Lov17b,
§4.6] to (G1,X1,G1) and the choice of X+

1 , and set

(T, {h},T) :=
(
ResE1/Q Gm,E1 , {hE},

(
ResOE1

/Z Gm,OE1

)
Zp

)
,

with hE as in [Lov17b, 4.6.4]. The map α is then constructed from the natural inclusion of
G2 = G1×Gab

1
T into G1×T. To prove that αc is a closed embedding, observe that as (G1,X1)

is of Hodge type that (Z1)ac is trivial, and as Z1 → Gab
1 is an isogeny that (Gab

1 )ac is also trivial.
From this we deduce that Zc

2 = Tac and so the claim follows. The map β is constructed as in
[Lov17b, §4.7.2], the second claim follows from Lemma 2.3. □

2.4. Prismatic and syntomic realization functors. For an unramified Shimura datum
(G,X,G) of abelian type, and a neat compact open subgroup Kp ⊆ G(Ap

f ), we associate the
smooth p-adic formal scheme ŜKp , and the open embedding

SKp := (ŜKp)η ⊆ ShanKp ,

with quasi-compact source, which is an isomorphism when SKp → Spec(OE) is proper (see
[Hub94, Remark 4.6 (iv)]). The morphisms tKp,K′p(gp) induce morphisms on the adic spaces SKp

compatible with those maps on the ShanKp , and we use similar notational shortenings for them.
We may also consider the functors

ωKp,an : RepZp
(Gc)→ LocZp(SKp), Λ 7→ ωKp,ét(Λ)

an|SKp ,

which enjoy the same compatabilities for varying level structure and morphisms of unramified
Shimura varieties as the Gc-local systems ωKp,ét.

Prismatic realization functors. By a prismatic (F -crystal) realization functor at level Kp, we
mean an exact Zp-linear ⊗-functor (unique up to unique isomorphism, as Tét is fully faithful)

ωKp,∆ : RepZp
(Gc)→ Vectφ((ŜKp)∆),

together with ȷKp : Tét ◦ ωKp,∆
∼−→ ωKp,an. If the isomorphisms ȷKp are chosen compatibly in Kp,

we call the collection {(ωKp,∆, ȷKp)} a prismatic (F -crystal) canonical model of {ωKp,an}, which is
unique up to unique isomorphism. We often omit the data of ȷKp from the notation.

Fix prismatic canonical models {ωKp,∆} and {ωKp
1,∆
} for unramified Shimura data (G,X,G)

and (G1,X1,G1) respectively. If α : (G1,X1,G1)→ (G,X,G) is a morphism, then for any ξ in
RepZp

(Gc), and neat compact open subgroups Kp ⊆ G(Ap
f ) and Kp

1 ⊆ G2(A
p
f ) with α(Kp

1) ⊆ Kp,
one has canonical, compatible in Kp, Kp

1, and ξ, identifications

α∗
Kp
1,K

p(ωKp,∆(ξ)O1) = ωKp
1,∆

(ξ ◦ αc). (2.4.1)

This follows by appropriately applying T−1
ét and the isomorphisms ȷKp and ȷKp

1
to (2.3.5).

Theorem 2.10. Suppose that (G,X,G) is an unramified Shimura datum of abelian type. Then,
for any Kp, the functor ωKp,an takes values in Loc∆-gr

Zp
(SKp). In particular, the collection

T−1
ét ◦ ωKp,an =: ωKp,∆ : RepZp

(Gc)→ Vectφ((ŜKp)∆)

forms a prismatic canonical model of {ωKp,an}.
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Remark 2.11. If (G,X,G) is of special type this theorem was (implicitly) obtained by Daniels
in [Dan22], and his construction agrees with ours by the unicity of canonical prismatic models.

We first prove a refined version of this theorem when (G,X,G) is of Hodge type using [IKY24,
Theorem 2.28]. Choose an integral Hodge embedding ι : (G,X,G)→ (GSp(V0), h

±,GSp(Λ0))

and write AKp → SKp for the generic fiber of ÂKp → ŜKp . Define

Tan
0,p := (Tét

0,p)
an|SKp ⊆ (H1

Zp
(AKp/SKp)∨)⊗.

By Proposition 2.8, we have a canonical identification

(ωKp,an(Λ0), ωKp,an(T0))
∼−→ (H1

Zp
(AKp/SKp)∨,Tan

0,p).

Combining [ALB23, Corollary 4.64] and [GR24, Theorem 1.10 (i)], we deduce thatH1
Zp
(AKp/SKp)∨

has prismatically good reduction with a canonical identification

T−1
ét (H1

Zp
(AKp/SKp)∨) = H1

∆(ÂKp/ŜKp)∨,

compatible in Kp. Applying T−1
ét to Tan

0,p gives rise to a set T∆
0,p of tensors on the object

H1
∆(ÂKp/ŜKp)∨ of Vectφ((ŜKp)∆). The following is a consequence of [IKY24, Theorem 2.28],

and immediately implies Theorem 2.10 for (G,X,G) of Hodge type by [IKY24, Proposition 1.28].

Theorem 2.12. Suppose that (G,X,G) is an unramified Shimura datum of Hodge type. Then,

Isom
(
(Λ0 ⊗Zp O∆,T0 ⊗ 1), (H1

∆(ÂKp/ŜKp)∨,T∆
0,p)
)

is a prismatic G-torsor with F -structure on (ŜKp)∆, compatible in Kp.

To reduce from the abelian type case to the Hodge type case, we require a simple lemma
concerning prismatically good reduction local systems. We use the notation from §1.

Lemma 2.13. Suppose that X2 → X1 is a finite étale cover where X1 → Spf(OK) is smooth.
Then, an object L1 of LocZp(X1) has prismatically good reduction if and only if L2 := L1|X2 does.

Proof. It suffices to prove the if condition. We may assume that Xi = Spf(Ri) where Ri are
(framed) small OK-algebras. That L1 is crystalline is clear. Let (Vi, φVi) denote the object
T−1
Xi

(Li) of Vectan,φ((Xi)∆). Then, by the flatness of X2 → X1, we have that

(j(SR1
,(E)))∗V

1
(SR1

,(E)) ⊗SR1
SR2 = (j(SR2

,(E)))∗V
2
(SR2

,(E)).

The right-hand side is a vector bundle by [IKY24, Proposition 1.26] and thus so is the sheaf
(j(SR1

,(E)))∗V
1
(SR1

,(E)). Thus, L1 has prismatically good reduction again by loc. cit. □

Proof of Theorem 2.10. We freely use notation from Lemma 2.9. We first prove the claim for
(G2,X2,G2). Choosing a faithful representation ξ′2 = ξ1 ⊗ ξt of G1 × Tc, where ξ1 (resp. ξt) is a
faithful representation of G1 (resp. Tc), we obtain the faithful representation ξ2 := ξ′2 ◦ αc of Gc

2.
Choosing neat compact open subgroups Kp

1 ⊆ G1(A
p
f ) and Kp

t ⊆ T(Ap
f ) such that α(Kp

2) ⊆ Kp
1×K

p
t ,

we see from (2.3.5) that

ωKp
2,an

(ξ2) = (α1
Kp
2K0,2,K

p
1K0,1

)∗(ωKp
1,an

(ξ1))⊗Zp (α
2
Kp
2K0,2,K

p
tK0,t

)∗(ωKp
t ,an

(ξt)).

But, ωKp,an(ξ1) has prismatically good reduction by Theorem 2.12. Moreover, as ŜKp
t

is of
the form

∐
Spf(OE′), for connected finite étale OE-algebras OE′ (e.g. see [DY24, Proposition

3.22]), ωKp
t ,an

(ξt) has prismatically good reduction by [GR24, Proposition 3.7]. Thus, as having
prismatically good reduction is preserved by pullbacks and tensor products, the claim follows
from [IKY24, Corollary 2.30].

Now, to prove the claim for (G,X,G) it suffices to prove that for each compact open subgroup
Kp and each connected component C of SKp that ωKp,an(ξ)|Ĉη

has prismatically good reduction.
By Lemma 2.4 and Equation (2.3.3), we may assume that there exists some neat compact open
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subgroup Kp
2 ⊆ G2(A

p
f ) such that β(Kp

2) ⊆ Kp and C lies in the image of βKp
2,K

p . As βKp
2,K

p is
finite étale the claim follows from (2.3.5) and Lemma 2.13. □

Syntomic realization functor. We now discuss the existence of an upgrade of ωKp,∆ to a
syntomic realization functor. By a syntomic realization functor at level Kp, we mean an object
ωKp,syn of Gc-Vect((ŜKp)syn) (which is unique up to unique isomorphism, as R

ŜKp
is fully faithful)

with ȷKp : R
ŜKp
◦ ωKp,syn

∼−→ ωKp,∆. Such ȷKp are unique if they exist, and so we often omit them
from the notation. The collection {ωKp,syn} is called a syntomic canonical model of {ωKp,an}.

By Proposition 1.28 to show such ωKp,syn exist it suffices to show that ωKp,∆ takes values in
Vectφ,lff((ŜKp)∆). This is true (see Corollary 3.7) but we delay its proof until §3.2.

Theorem 2.14. Suppose that (G,X,G) is an unramified Shimura datum of abelian type. Then,
for any Kp, the functor ωKp,∆ is of type −µch, and so takes values in Vectφ,lff((ŜKp)∆). In
particular, the collection

R−1

ŜKp
◦ ωKp,∆ =: ωKp,syn : RepZp

(Gc)→ Vect((ŜKp)syn)

forms a syntomic canonical model of {ωKp,an}.

2.5. Potentially crystalline loci and comparison of stratifications. Let K be a complete
discrete valuation field with perfect residue field, and let X be a quasi-separated adic space locally
of finite type over K, and Σ be either Zp or Qp. For an object L of LocΣ(X) we call a point x of
|X|cl (potentially) crystalline for L if Lx is a (potentially) crystalline representation of Γk(x).

There exists at most one quasi-compact open subset U ⊆ X such that |U |cl is the set of
potentially crystalline points of L (cf. [Hub93, Corollary 4.3]). In this case we call U the
potentially crystalline locus of L. For a K-scheme S locally of finite type, and an object L of
LocΣ(S), if we speak of the potentially crystalline locus of L we mean the potentially crystalline
locus of Lan. These definitions apply equal well for G-objects (orG-objects) ω in these categories.16

Observe that potentially crystalline points satisfy pullback stability: for a map f : X ′ → X, a
classical point x′ of X ′ is potentially crystalline for f∗(L) if and only if x = f(x′) is a potentially
crystalline point for L. If k(x′)/k(x) is unramified (e.g. f = fη for a finite étale model f : X′ → X),
one may replace ‘potentially crystalline’ by ‘crystalline’.

For a Shimura datum (G,X) of (pre-)abelian type, and a neat compact open subgroup
K ⊆ G(Af ), the existence of a potentially crystalline locus UK ⊆ ShanK for νK,ét was established
in [IM20, Theorem 5.17] (see [IM20, Remark 2.12] and [LZ17, Theorem 1.2]). If (G,X,G) is
an unramified Shimura datum of abelian type, and K = K0K

p, we abbreviate UK to UKp which
coincides with the potentially crystalline locus of ωKp,ét.

We now describe UKp for unramified Shimura data of abelian type, generalizing results of
Imai–Mieda in the PEL setting (see [IM20, Corollary 2.11 and Proposition 5.4] and [IM13, §7]).

Proposition 2.15. Let (G,X,G) be an unramified Shimura datum of abelian type, and Kp ⊆
G(Ap

f ) a neat compact open subgroup. Then, UKp = (ŜKp)η and all the classical points of UKp

are crystalline for ωKp,ét.

Proof. We know that all the classical points of SKp are crystalline for ωKp,ét by Theorem 2.10.
Moreover, the full claim holds in the Siegel-type case by [IM20, Theorem 5.17] and its proof.

Assume that (G,X,G) is of Hodge type and choose an integral Hodge embedding ι : (G,X,G) ↪→
(GSp(V0), h

±,GSp(Λ0)), and a level Lp with ι(Kp) ⊆ Lp and ιK0Kp,L0Lp is a closed embedding. By
the construction of SKp (see [Kis10, Theorem (2.3.8)]), SKp is obtained as the normalization of
a closed subscheme of MLp(Λ0), and so finite over MLp(Λ0).17 So, if x is a classical point of ShanKp

16Although as observed in [IKY24, Proposition 2.20], this will coincide with the set of potentially crystalline
points for the value of ω on any faithful representation of G or G.

17More precisely, as a closed subscheme of MLp(Λ0) is finite type over OE , it is excellent (see [SP, Tag 07QW]),
and thus Nagata (see [SP, Tag 07QV]) and so one may apply [SP, Tag 035S].
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not in SKp then the image of x in ShanLp is a point outside SLp (see [Hub96, Proposition 1.9.6]).
Hence x is not a potentially crystalline point by the Siegel case, and pullback stability.

Assume now that (G,X,G) is of abelian type. We use notation from Lemma 2.9. Let x be a
classical point of ShanKp not in SKp . By Lemma 2.4 and Equation (2.3.3), we may assume that there
is a lift x2 of x in ShanKp

2
, but not in SKp

2
, for some neat compact open subgroup Kp

2 ⊂ G2(A
p
f ). The

image x1 of x2 in ShanKp
1

for an appropriate Kp
1 ⊂ G1(A

p
f ) is a point outside SKp

1
because SKp

2
is finite

over SKp
1

(cf. [Hub96, Proposition 1.9.6]). Take a faithful representation ξad1 of Gad
1 , inducing

faithful representations ξad and ξad2 of Gad and Gad
2 respectively as Gad ∼= Gad

2
∼= Gad

1 . By [IM20,
Corollary 2.11 and Proposition 5.4], ωKp

1,an
(ξad1 )x1 is not potentially crystalline. Hence ωKp,an(ξ

ad)x

is not potentially crystalline too by pullback stability, as the pullbacks of ωKp,an(ξ
ad)x and

ωKp
1,an

(ξad1 )x1 to x2 are both isomorphic to ωKp
2,an

(ξad2 )x2 . Thus, x is not potentially crystalline. □

For neat compact open subgroups Kp ⊆ G(Ap
f ) and Kp ⊆ G(Qp), we may define functions

ΣKpKp : |UKpKp |cl → B(Gc)(
resp. Σ◦

Kp : |UK0Kp |cl → C(Gc)

)
(where C(Gc) is the quotient of Gc(Q̆p) by the action of Gc(Z̆p) by σ-conjugacy), associating to
x the element of B(Gc) (resp. C(Gc)) associated with the F -isocrystal (resp. F -crystal) with
Gc-structure (resp. Gc-structure) given by Dcrys ◦ (νKpKp,ét)x (resp. Dcrys ◦ (ωKp,ét)x) (see [IKY25,
Example 1.5] for this latter notation). These functions are equivariant via the map ΓE → Γk,
when the source (resp. target) is endowed with the natural action of ΓE (resp. Γk). On the other
hand, we may define functions

ΣKp : SKp(k)→ B(Gc)(
resp. Σ

◦
Kp : SKp(k)→ C(Gc)

)
in the analogous way using the the G-object in Vectφ((SKp,k)crys) given by Dcrys ◦ ωKp,∆ which
is equivariant with respect to the actions of Γk.

In the following, we use the notion of an overconvergent (also known as wide, partially proper,
or Berkovich) open subset of a rigid E-space, as in [FK18, Chapter II, §4.3] .

Proposition 2.16. The functions ΣKpKp and Σ◦
Kp are overconvergent locally constant.18 Moreover,

ΣK0Kp = ΣKp ◦ sp, Σ◦
Kp = Σ

◦
Kp ◦ sp, (2.5.1)

where sp: |(ŜKp)η|cl = |UK0Kp |cl → SKp(k) is the specialization map.

Proof. The second equality in (2.5.1) follows essentially by construction. To prove the first
equality, it suffices to check that for a point x of |UK0Kp |cl the F -isocrystals with G-structure
given by Dcrys ◦ (νK0Kp)x and that induced by Dcrys ◦ (ωKp,ét)x agree. It suffices to find an
isomorphism between their values at Λ0 matching the tensors T0. But, this can be reduced to
the second equality in (2.5.1) considering (2.3.3).

The claim concerning overconvergent local constancy for ΣK0Kp and Σ◦
Kp follows from the

equations in (2.5.1) as the the tube open subsets sp−1(x)◦, for x in SKp(k), are overconvergent
open and contain every classical point of (ŜKp)η (see [ALY22, Proposition 2.13]). To prove that
ΣKpKp is overconvergent locally constant for all Kp, observe that for K′

p ⊆ Kp we have that

ΣK′
pK

p = ΣKpKp ◦ πK′
pK

p,KpKp .

Using this, and that πK′
pK

p,KpKp is finite étale and so preserves overconvergent opens under both
preimage and image (cf. [Hub96, p. 427 (a)]), one reduces to the previous case Kp = K0. □

18i.e., for every classical point x there exists an overconvergent open neighborhood Ux ⊆ UKpKp such that these
functions are constant on |Ux|cl.
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Remark 2.17. Beware that the overconvergent local constancy in Proposition 2.16 does
not imply constancy on each connected component as the overconvergent subset

⋃
x Ux, with

notation as in Footnote 18, need not equal UKpKp (and may not even have the same number of
components). This is because an overconvergent open subset of a rigid space U which contains
all classical points need not be all of U . For example, it is possible that this union could be
sep−1(UBerk − {y}), where sep: U → UBerk is the separation map as in [FK18, Chapter 0,
§2.3.(c)], and y is a non-classical rank 1 point. For example, compare with the overconvergent
open subset of the closed unit ball B1

Qp
given by the complement of the closure of the Gauss

point, which is not even a connected subset.

2.6. Comparison with work of Lovering. In this subsection we compare our work to that in
[Lov17a], and derive several consequences about Shimura varieties of abelian type when p > 2.

2.6.1. Comparison result. In [Lov17a], Lovering constructs a so-called crystalline canonical
model {ωKp,crys} of the system {ωKp,an} for an unramified Shimura datum of abelian type. More
precisely, with notation as in [IKY25, §2.1.2], he constructs exact Zp-linear ⊗-functors

ωKp,crys : RepZp
(Gc)→ VectFφ,div((ŜKp)crys)

compatible in Kp, together with compatible identifications of filtered objects of Gc-MIC(SKp):

iKp : DdR ◦ ωKp,an[1/p]
∼−→ ωKp,crys[1/p].

Moreover, he shows that for all finite unramified E′/E, and points x : Spf(OE′)→ ŜKp that:
(ICM1) for all ξ in RepZp

(Gc), the morphism of isocrystals on Spa(E′)

iKp,x : (Dcrys ◦ ωKp,an[1/p])(ξ)x
∼−→ ωKp,crys[1/p](ξ)x,

is Frobenius equivariant,19

(ICM2) for all ξ in RepZp
(Gc), the morphism iKp,x matches the lattice ωKp,crys(ξ)x with

M/uM ↪→ (Dcrys ◦ ωKp,an[1/p])(ξ)x,

where M = ϕ∗M(ωKp,an(ξ)x), and this embedding is as in [Kis10, Theorem (1.2.1)].
As explained in [Lov17a, Proposition 3.1.6], these conditions uniquely characterize {ωKp,crys}.

Theorem 2.18. There is an identification Dcrys ◦ ωKp,∆
∼−→ ωKp,crys compatible in Kp.

To prove this, we will require the fact that ωKp,∆ takes values in Vectφ,lff((ŜKp)∆) the proof
of which, as mentioned before Theorem 2.14, we delay until §3.2 (see Corollary 3.7).

Proof of Theorem 2.18. It suffices to show that {Dcrys ◦ ωKp,∆} is a crystalline canonical model.
Using Corollary 3.7, the fact that it is an exact tensor functor valued in VectFφ,div(Xcrys) follows
from [IKY25, Proposition 2.16]. Furthermore, by [IKY25, Theorem 2.10], there are isomorphisms
in IsocFφ((ŜKp)crys)

(Dcrys ◦ ωKp,∆)[1/p]
∼−→ Dcrys ◦ (Tét ◦ ωKp,∆)[1/p]

ȷKp−−→ Dcrys ◦ ωKp,an[1/p], (2.6.1)

and we denote the inverses by ȷcrysKp , which are compatible in Kp. As ȷcrysKp is an isomorphism
of filtered F -isocrystals, condition (ICM1) is automatic. Condition (ICM2) follows from the
compatability of Tét with pullbacks, and [IKY25, Example 2.12]. □

We provide an explication of this result when (G,X,G) is of Hodge type. Fix an integral
Hodge embedding ι : (G,X,G)→ (GSp(V0), h

±,GSp(Λ0)) and a tensor package (Λ0,T0) with
Fix(T0) = G. By [Kim18b, §3.1.2] and [Kis10, Corollary 2.3.9], one may construct tensors

TdR
0,p ⊆ (H1

dR(AKp/SKp)∨)⊗,

19We are implicitly using the fact that for a Zp-local system L on a smooth rigid space X with a smooth formal
model over an unramified base, the underlying vector bundles DdR(L) and Dcrys(L) on (X,OX) are the same.
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which are compatible in Kp. By pulling backTdR
0,p, we obtain a set T̂dR

0,p of tensors on H1
dR(ÂKp/ŜKp)∨.

Using the canonical isomorphism from [BO78, Theorem 7.23 and Summary 7.26.3],

H1
dR(ÂKp/ŜKp)∨ ∼−→ H1

crys(ÂKp/ŜKp)∨
ŜKp

,

of vector bundles with connection, we obtain tensors Tcrys
0,p in H1

crys(ÂKp/ŜKp)∨. By [Kim18b,
Proposition 3.3.7] these are tensors in H1

crys(ÂKp/ŜKp)∨ considered as an object of VectFφ(ŜKp).

Proposition 2.19. There is an isomorphism

Dcrys(ωKp,∆(Λ0))
∼−→ H1

crys(ÂKp/ŜKp)∨

in VectFφ,div(ŜKp), compatible in Kp and carrying Dcrys(ωKp,∆(T0)) to Tcrys
0,p .

Proof. By Theorem 2.12, there is an isomorphism ωKp,∆(Λ0)
∼−→ H1

∆(ÂKp/ŜKp)∨ in Vectφ((ŜKp)∆),
compatible in Kp, and carrying ωKp,∆(T0) to T∆

0,p. Thus, it suffices to construct an isomorphism

Dcrys

(
H1

∆(ÂKp/ŜKp)
)∨ ∼−→ H1

crys(ÂKp/ŜKp)∨,

in VectFφ(ŜKp) carrying Dcrys(T
∆
0,p) to Tcrys

0,p . That there is an isomorphism in VectFφ(ŜKp)

follows from [ALB23, Theorem 4.6.2] and [BBM82, (3.3.7.3)] via [IKY25, Theorem 4.8].
Thus, it suffices to show that this isomorphism carries Dcrys(T

∆
0,p) toTcrys

0,p . As H1
crys(ÂKp/ŜKp)∨

is a vector bundle on ŜKp , there is an injection

Γ
(
ŜKp ,H1

crys(ÂKp/ŜKp)∨
)
→ Γ

(
SKp ,H1

crys(ÂKp/ŜKp)∨η

)
,

and so it suffices to show that the images of these two sets of tensors agree. But, by [IKY25,
Theorem 2.10] the image of Dcrys(T

∆
0,p) may be identified with Dcrys(Tét(T

∆
0,p)) = Dcrys(T

ét
0,p).

The claimed matching is then given by [Kim18b, Proposition 3.3.7]. □

By Theorem 2.12, ωKp,∆ is associated with the prismatic G-torsor with F -structure

Isom
(
(Λ0 ⊗Zp O(ŜKp )∆

,T0 ⊗ 1), (H1
∆(ÂKp/ŜKp)∨,T∆

0,p)
)
,

compatibly in Kp. Thus, by Proposition 2.19, we may identify Dcrys ◦ ωKp,∆ with

Isom
(
(Λ0 ⊗Zp OŜKp/O

,T0 ⊗ 1), (H1
crys(ÂKp/ŜKp)∨,Tcrys

0,p )
)
, (2.6.2)

with Frobenius and Rees structure (see [Lov17a, §2.4]) inherited from H1
crys(ÂKp/ŜKp)∨, com-

patibly in Kp. But, this is Lovering’s construction of ωKp,crys in the Hodge type case.

2.6.2. Cohomological consequences. To obtain cohomological implications of Theorem 2.18,
it is useful to recall that the group-theoretic description of when a Shimura variety is proper.

Proposition 2.20. For a neat compact open subgroup Kp ⊆ G(Ap
f ), the following are equivalent:

(1) Gad is Q-anisotropic,
(2) ShK0Kp → Spec(E) is proper,
(3) SKp → Spec(OE) is proper.

Proof. The equivalence of of the first two conditions is classical (e.g. see [Pau04, Lemma 3.1.5]).
The equivalence of the first and third conditions is [MP19, Corollary 4.1.7] when (G,X,G) is of
Hodge type, and one quickly reduces to this case using Lemma 2.3. □

So combining [IKY25, Corollary 3.11] and Corollary 3.7 reproves [Lov17a, Theorem 3.6.1].
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Proposition 2.21 ([Lov17a, Theorem 3.6.1]). Suppose that Gder is Q-anisotropic. Then, for any
object ξ of RepZp

(Gc), the Galois representation H i
ét((ShK0Kp)Qp

, ωKp,ét(ξ)[1/p]) of E is crystalline,
and there is a canonical isomorphism of filtered F -isocrystals

Dcrys

(
H i

ét((ShK0Kp)Qp
, ωKp,ét(ξ)[1/p])

) ∼−→ H i
crys

(
((SKp)Z̆p

/Z̆p)crys, ωKp,crys(ξ)[1/p]
)
. (2.6.3)

If the µc
h-weights of ξ[1/p] are in [0, p− 3− i], then the isomorphism in (2.6.3) sends the lattice

H i
ét((ShK0Kp)Qp

, ωKp,ét(ξ)) to the lattice H i
crys

(
((SKp)Z̆p

/Z̆p)crys, ωKp,crys(ξ)
)
.

We obtain a syntomic refinement of the above result. To this end, let us say that a Z/pn-
representation of Gal(E/E), with n in N ∪ {∞}, is of syntomically good reduction if it belongs
to the essential image of the functor Tét : Vect(Osyn

E /pn)→ RepZ/pn(Gal(E/E)), which when
n =∞ is a refinement of the crystalliness condition (cf. [Bha23, Theorem 6.6.13] and Footnote
2). The following is an immediate corollary of [IKY25, Proposition 3.12].

Theorem 2.22. Suppose that Gder is Q-anisotropic. Then, for any object ξ of RepZp
(Gc) with

µc
h-weights of ξ[1/p] in [0, p− 3− i] the Gal(E/E)-representation H i

ét((ShK0Kp)Qp
, ωKp,ét(ξ)/p

n)

has syntomically good reduction for any n in N ∪ {∞}. In fact, there is an isomorphism

H i
ét((ShK0Kp)Qp

, ωKp,ét(ξ)/p
n) ≃ Tét

(
Hi

syn(ŜKp/OE , ωKp,syn(ξ))/p
n)
)
.

2.6.3. Comparison of stratifications. In [SZ22], Newton stratifications and central leaves are
defined on the special fiber of SKp , extending all previously known cases (see the references in
op. cit.). This gives functions

ΥKp : SKp(k)→ B(Gc), Υ◦
Kp : SKp(k)→ C(Gc).

equivariant with respect to the actions of Γk. By the results of [SZ22, §5.4.2 and §5.4.5], ΥKpKp

agrees with the function to B(Gc) defined using ωKp,crys, and agrees with the function C(Gc)
defined using ωKp,crys when (G,X) is of Hodge type or Z(G) is connected. Combining this with
Proposition 2.16 and Theorem 2.18 then gives the following corollary.

Corollary 2.23. Suppose that (G,X,G) is an unramified Shimura datum of abelian type (resp.
of Hodge type or of abelian type and Z(G) is connected). Then, for any neat compact open
subgroup Kp ⊆ K0 and neat compact open subgroup Kp ⊆ G(Ap

f ) we have that

ΣKpKp = ΥKp ◦ sp ◦ πKpKp,K0Kp ,

(
resp. Σ◦

Kp = Υ◦
Kp ◦ sp

)
.

Remark 2.24. While some of the rational (i.e., B(Gc) related) results in Proposition 2.16
and Corollary 2.23 could have been proven using results in [Lov17a], the integral (i.e., C(Gc)
related) results could not, as Lovering is only able to establish matching between the lattices
ωKp,ét(Λ) and ωKp,crys(Λ) for low Hodge–Tate weights.

3. Prismatic characterizations of integral models and Serre–Tate
theory

We formulate and prove two characterizations of integral canonical models for unramified
Shimura data of abelian type: one in terms of prismatic F -crystals and the other in terms of
prismatic F -gauges. The first is both stronger and less sophisticated, but the second is more
conceptual and naturally leads us to a version of the Serre–Tate deformation theorem for such
integral Shimura varieties. Throughout this section we assume that p > 2.

3.1. The universal deformation spaces of Ito. To formulate our prismatic characterization
of Shimura varieties, we need a deformation space of prismatic F -crystals with G-structure of
type µ. This is furnished by a construction of Ito which we now recall.20

20Ito’s work is in terms of prismatic G-µ-displays. That said, given the contents of §1.5.2 we glibly state his
work in terms of prismatic G-torsors with F -structure.
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Notation 3.1. We fix the following notation:

• k is a perfect field of characteristic p,
• W =W (k),
• G is a smooth group Zp-scheme (assumed reductive in §3.1.2),
• µ : Gm,W → GW is a 1-bounded cocharacter (see [Lau21, Definition 6.3.1]),
• CW is the category of complete Noetherian local rings R equipped with a local ring map
W → R with k → R/mR an isomorphism, and with morphisms maps of local W -algebra,
• C

reg
W is the full subcategory of CW consisting of regular local rings.

We consider objects CW of as p-adic topological rings unless stated otherwise.

3.1.1. Universal deformation spaces. Denote by Uµ the unipotent group scheme over W
associated to µ via the dynamic method (see [Con14, Theorem 4.1.7]). Set RG,µ := O(Ûµ), which
is a p-adically complete ring non-canonically isomorphic to W Jt1, . . . , tdK for some d (see [Ito23,
Lemma 4.2.6]). If f : G1 → G is a morphism of reductive groups over Zp mapping µ1 to µ then
we obtain an induced continuous morphism of W -algebras RG,µ → RG1,µ1 . Furthermore, if the
map Gad

1 → Gad induced by f is an isomorphism, then the map RG,µ → RG1,µ1 is an isomorphism.
Fix an element b of G(W )µ(p)−1G(W ). The pair (GW , φb), where φb corresponds to left

multiplication by b, defines an element of Torsφ,−µ
G (k∆). As in [Ito25, Definition 1.1.2], for an

object R of Creg
W , a deformation of (GW , φb) over R is a pair ((A, φA), γ) where (A, φA) is an object

of Torsφ,−µ
G (R∆), and γ : (A, φA)|k∆

∼−→ (GW , φb) is an isomorphism. In [Ito25, Theorem 1.1.3]
(using Proposition 1.40), Ito shows that there is a universal deformation ((Auniv

b , φAuniv
b

), γuniv)

over RG,µ, which means that for any other deformation ((A, φA), γ) over an object R of Creg
W ,

there exists a unique morphism h : RG,µ → R such that h∗((Auniv
b , φAuniv

b
), γuniv) is isomorphic to

((A, φA), γ). Define ωuniv
b to be the object of G-Vectφ(R∆) associated to (Auniv

b , φAuniv
b

).

Lemma 3.2. For a morphism of reductive groups f : G1 → G sending µ1 to µ, and b1 to b, the
induced map f : Spf(RG1,µ1)→ Spf(RG,µ) satisfies the following, with ξ an object of RepZp

(G):

(Auniv
b1 , φAuniv

b1

)×G1,∆ G∆
∼−→ f∗(Auniv

b , φAuniv
b

), f∗(ωuniv
b (ξ)) = ωuniv

b1 (ξ ◦ f).

Proof. It suffices to show the first isomorphism. By [Ito23, Theorem 6.1.3], it suffices to construct
an isomorphism after evaluating at (RG1,µ1JtK, (p− t)). By the construction in the proof of [Ito25,
Theorem 4.4.2], both evaluations are isomorphic to Qf(Xuniv

1 ), where Xuniv
1 is Xuniv in the proof

of [Ito25, Theorem 4.4.2], when applied to (GW , φb1), G1 and µ1. □

If g is in G(W ) then conjugation by g−1 induces an isomorphism cg : RG,µ → RG,gµg−1 and
c∗g(ω

univ
b ) = ωuniv

gbg−1 . If b′ is another element of G(W [1/p]) and g is an element of G(W ) such that
b′ = gbϕ(g)−1 then left multiplication by g induces an isomorphism (GW , φb)→ (GW , φb′) and
thus there is an isomorphism ωuniv

b
∼−→ ωuniv

b′ . Thus, the pair (RG,µ, ω
univ
b ) only depends, up to

isomorphism, on the G(W )-conjugacy class of µ, and the σ-G(W )-conjugacy class of b.

3.1.2. Comparison to Faltings universal deformations with Tate tensors. We now wish
to use the functor Dcrys to compare the work of Ito to that of Faltings on universal deformations
of p-divisible groups with Tate tensors in the reductive case. Below we use the notation for
Dieudonné theory as in [IKY25, §4]. Most specifically, D(H) denotes the filtered Dieudonné
crystal of a p-divisible group H (see [IKY25, Definition 4.6]).

We use the notation 3.1.1, but now assume that k is algebraically closed and G is reductive.
We write ωuniv

b,crys for the composition Dcrys ◦ ωuniv
b , which is a G-object in VectFφ((RG,µ)crys).
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3.1.2.1. Universal deformation of p-divisible groups. Fix a p-divisible group H0 over k, and
choose any lift H̃0 of H0 over W . Set M0 := D(H0)(W ↠ k), and let b0 in GL(M0[1/p]) such
that σ(b0) corresponds to the Frobenius on M0. From H̃0 we obtain the Hodge filtration:

Fil1
H̃0,Hodge

⊆ D(H̃0)(id : W →W ) = D(H0)(W ↠ k).

From the Cartan decomposition, we know that b0 lies in G(W )µ−1
0 (p)G(W ) for a cocharacter

µ0 : Gm,W → GL(M0) uniquely determined up to conjugacy. We take the unique cocharacter µ0
such that Fil1

H̃0,Hodge
is induced by µ0 in the sense of [Kim18a, Definition 2.2.1].

Choose an isomorphism RGL(M0),µ0

∼−→W Jt1, . . . , tdK and equip it with the usual Frobenius
ϕ0. From the above considerations we obtain the following data on RGL(M0),µ0

:

Muniv
b0

:= RGL(M0),µ0
⊗W M0, Fil1Muniv

b0
:= 1⊗ Fil1M0, φMuniv

b0

:= u−1
t ◦ (1⊗ b0),

where ut corresponds to the tautological element of Ûµ0(RGL(M0),µ0
), and φMuniv

b0

is considered as

a map ϕ∗0Muniv
b0
→Muniv

b0
. As explained in [Moo98, §4.5], Faltings produced a (unique) φMuniv

b0

-

horizontal integrable connection ∇Muniv
b0

on Muniv
b0

with (Muniv
b0

, φMuniv
b0

,Fil•
Muniv

b0

,∇Muniv
b0

) a filtered

Dieudonné crystal on RGL(M0),µ0
and so corresponds to an object Huniv

b0
of BTp(RGL(M0),µ0

).
As explained in [Kim18a, §3.3], this notation is not misleading as Huniv

b0
is a universal defor-

mation of H0 (in the sense that it (pro)represents the functor in [Kim18a, Definition 3.1]).

Proposition 3.3. There is a natural isomorphism

ωuniv
b0,crys(M0)(RGL(M0),µ0

) ∼−→ (Muniv
b0 , φMuniv

b0

,Fil•
Muniv

b0

).

Proof. This follows from [IKY25, Theorem 4.8] and [Ito25, Theorem 6.2.1]. □

3.1.2.2. Deformations with Tate tensors. Fix a triple (G, b, µ) as in §3.1.1. We assume that
(G, b, µ) is of Hodge type: there exists a faithful representation ι : G→ GL(Λ0) such that ι ◦ µ has
only weights 0 and 1. Set (b0, µ0) := (ι(b), ι ◦ µ)∨. Further fix isomorphisms

RGL(Λ∨
0 ),µ0

∼−→W Jt1 . . . , tdK, RG,µ
∼−→W Js1, . . . , skK

such that the natural map RGL(Λ∨
0 ),µ0

→ RG,µ is Frobenius equivariant when the source and target
are given the (usual) Frobenii induced by these isomorphisms.21 Finally, fix a tensor package (in
the sense in [IKY24, §A.5]) (Λ0,T0) with G = Fix(T0).

As explained in [Kim18a, §2.5] associated to (G, b, µ) and ι is a p-divisible group Hb0 over k
together with an identification D(Hb0)(W ) = Λ∨

0 where Frobenius acts by b0. Moreover, under
this identification the set T0 is a set of tensors on D(Hb0) as an F -crystal. Set

(Muniv
b , φMuniv

b
,Fil1

Muniv
b

) := (Muniv
b0 , φMuniv

b0

,Fil1
Muniv

b0

)⊗RGL(Λ∨
0 ),µ0

RG,µ,

and let Huniv
b be the pullback of Huniv

b0
to RG,µ. Then,

D(Huniv
b )(RG,µ) = (Muniv

b , φMuniv
b

,Fil1
Muniv

b
,∇Muniv

b
),

for some connection ∇Muniv
b

. Observe that T0 naturally defines a set of tensors on Muniv
b0

and

(by base change) on Muniv
b , which we denote TFal,′

0 and TFal
0 , respectively. The tensors TFal

0 on
D(Huniv

b ) are Frobenius equivariant and lie in the 0th-part of the filtration (see [Kim18a, §3.5]).
By work of Faltings (see [Kim18a, Theorem 3.6])Huniv

b satisfies a universality property. Suppose
that R0 =W Ju1, . . . , urK for some r, and X is a p-divisible group over R0 deforming Hb0 . By the
universality of Huniv

b0
, there exists a unique map fX : RGL(Λ∨

0 ),µ0
→ R0 such that f∗X(Huniv

b0
) is

isomorphic (as a deformation) to X. Then, fX factorizes through RGL(Λ∨
0 ),µ0

→ RG,µ if and only

21This is possible, for instance, by the discussion in [Ito23, §4.2], which shows that Uµ is isomorphic to Lie(Uµ)
as W -schemes, and Lie(Uµ) is a direct summand of Lie(GL(Λ∨

0 )).
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if there exists tensors {tα} on D(X)(R0) lifting those on T0 on D(Hb0), and which are Frobenus
equivariant and lie in the 0th-part of the filtration. In this case {tα} = f∗X(TFal,′

0 ).
Consider now the obvious morphism f : (G, b, µ)→ (GL(Λ∨

0 ), b0, µ0). Combining Lemma 3.2
and Proposition 3.3, there is a canonical identification

ωuniv
b,crys(Λ

∨
0 )(RG,µ)

∼−→ f∗(D(Huniv
b0 ))(RG,µ)

= D(Huniv
b )(RG,µ)

= (Muniv
b , φMuniv

b
,Fil1

Muniv
b

),

of naive filtered F -crystals.

Proposition 3.4. The isomorphism of naive filtered F -crystals on RG,µ

ωuniv
b,crys(Λ

∨
0 )(RG,µ)→ (Muniv

b , φMuniv
b

,Fil1
Muniv

b
)

carries ωuniv
b,crys(T0)(RG,µ) to TFal

0 .

Proof. Under this identification ωuniv
b,crys(T0)(RG,µ) constitutes a Frobenius-equivariant tensors

lying in the 0th-part of the of the filtration and lifting those on D(Hb0). Thus, by the universality
statement from above, ωuniv

b,crys(T0)(RG,µ) must be equal to f∗(TFal,′

0 ) = TFal
0 . □

3.2. Comparison to Shimura varieties. We now show that for the integral canonical model
SKp , the prismatic realization functor ω∆ recovers Ito’s universal prismatic Gc-torsor with F -
structure at the completion of SKp at each point of SKp(Fp). This may be seen as a prismatic
refinement of [Kis17, (1.3.9) Proposition], in the general abelian type setting.

Suppose that (G,X,G) is an unramified Shimura datum of abelian type, and x is a point
of SKp(Fp). As in §2.5 we have the associated element bx,crys := Dcrys ◦ (ωKp,ét)x in C(Gc).
Additionally, choose an element µch in our conjugacy class µc

h of cocharacters Gm,Z̆p
→ Gc

Z̆p
.

Lemma 3.5. The element bx,crys lies in the image of the map

Gc(Z̆p)σ(µ
c
h(p))

−1Gc(Z̆p)→ C(Gc).

Proof. If (G,X) is of Hodge type this follows from [Kim18b, Lemma 3.3.14]. In the special-type
case, we may assume that the torus in the Shimura datum is cuspidal following the argument
given on [Dan22, pp. 31–33]. From there the claim follows from [KSZ21, Proposition 4.3.14 and
Corollary 4.4.12].

For the abelian type case, we take (G1,X1,G1), (T, {h},T) and (G2,X2,G2) as in Lemma 2.9.
The question is reduced to the case of (G2,X2,G2) by functoriality. For the reduction to the
case of (G1 ×T,X1 × {h},G1 × T), it suffices to show the injectivity of

Gc
2(Z̆p)\Gc

2(Q̆p)/G
c
2(Z̆p)→ Gc

3(Z̆p)\Gc
3(Q̆p)/G

c
3(Z̆p),

where we put G3 = G1 × T. Fix a Borel pair T1 ⊂ B1 ⊂ G1. This gives Borel pairs T2 ⊂ B2 ⊂ Gc
2

and T3 ⊂ B3 ⊂ Gc
3 by the constructions of Gc

2 and Gc
3. The injectivity of this map of double cosets

follows from the Cartan decomposition since the unipotent radials of B2 and B3 are same. □

Choose an element bx in Gc(Z̆p)µ
c
h(p)

−1Gc(Z̆p) such that σ(bx) maps to bx,crys in C(Gc).

Theorem 3.6. There exists an isomorphism ix : RGc,µc
h

∼−→ ÔSKp ,x such that

i∗x(ω
univ
bx ) ∼= (ωKp,∆)|ÔSKp ,x

.

Note while the pair (RGc,µc
h
, ωuniv

bx
) depends on the choice of bx and µch, the isomorphism type

of the pair (RGc,µc
h
, ωuniv

bx
) does not, and therefore neither does the statement of Theorem 3.6.

Proof of Theorem 3.6. We perform a devissage to the Hodge and special type cases.
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Hodge type case. Let (G,X,G) ↪→ (GSp(V0), h
±,GSp(Λ0)) be an integral Hodge embedding,

and AKp → SKp the associated abelian scheme. Let Tcrys
0,p be the tensors on the filtered F -crystal

H1
crys(ÂKp/ŜKp) = D(AKp [p∞])

(see [BBM82, (3.3.7.2)] for this identification), as in §2.6. The triple (G, bx, µh) is of Hodge
type relative to the embedding ι : G→ GL(Λ0). By work of Kisin, there exists an isomorphism
ix : RG,µh

∼−→ ÔSKp ,x together with an isomorphism i∗x(H
univ
bx

,TFal
0 ) ∼= (AKp [p∞],Tcrys

0,p )
ÔSKp ,x

(see

[Kim18b, Proposition 4.1.6]). We claim that i∗x(ωuniv
bx

) is isomorphic to ω := (ωKp,∆)|ÔSKp ,x
. We

consider the following isomorphisms

ω(Λ∨
0 )
∼−→M∆(A [p∞]

ÔSKp ,x
) ∼−→ i∗xM∆(H

univ
bx ) ∼←− i∗x(ωuniv

bx )(Λ∨
0 ),

where the first isomorphism is from Theorem 2.12, the second is the one obtained by applying M∆

to the above isomorphism of Kisin, and the third one is obtained as follows. By [Ito25, Theorem
6.2.1] we have a canonical isomorphism M∆(H

univ
ι(bx)∨

) ∼←− ωuniv
ι(bx)∨

(Λ∨
0 ). Then, by Lemma 3.2, we

get the third isomorphism as the restriction of this isomorphism along

RGL(Λ∨
0 ),ι(µh)∨ → RG,µh

ix−→ ÔSKp,x
.

By [IKY24, Proposition 1.28] it suffices to show the above composite carries ω(T0) to i∗x(ωuniv
bx

)(T0)

It further suffices to show Dcrys(ω(T0))(RG,µh
) is matched to Dcrys(i

∗
x(ω

univ
bx

)(T0))(RG,µh
) as

Vect((RG,µh
)∆)→ Vect(RG,µh

), E 7→ Ecrys(RG,µh
)

is faithful as follows from [dJ95, Corollary 2.2.3] and the second equivalence in [IKY24, Equation
(2.3.2)]. But, this matching follows by combining Proposition 2.19 and Proposition 3.4.

Special type case. Write (T,X,T) for the unramified Shimura datum. In this case SKp is a
disjoint union of schemes of the form Spec(OE′), for a finite unramified extension E′ of E (see
[DY24, Proposition 3.22]), and so there is a tautological identification RGc,µc

h
= Z̆p = ÔSKp ,x. We

show that under this identification that the prismatic Tc-torsors with F -structure are matched.
By Remark 2.11, Lemma 3.2, and the argument given in [Dan22, pp. 31–33] we are reduced

to showing the following. Let T = ResOE′/Zp
Gm,OE′ , T := TQp , and µ the Qur

p -cocharacter of T
with weights (1, 0, . . . , 0). Then, b0 = (p−1, 1, . . . , 1) represents the unique class in the image
of T(W̆ )µ−1(p)T(W̆ ). Then, we must show that Tét ◦ ωuniv

b0
restricted to the inertia subgroup

ΓE′,0 agrees with the Lubin–Tate character α0 : ΓE′,0 → T(Zp) (see the discussion before [Dan22,
Proposition 4.9]), or equivalently that their compositions with embedding ι : T(Zp)→ GL(OE′)
are equal. But, as (T, b0, µ

−1) is the Lubin–Tate triple, we know by [Ito25, Theorem 6.2.1] that
this ωuniv

b0
(ι) is M∆(XLT), if XLT is the p-divisible group with OE-structure over Spf(W̆ ) coming

from Lubin–Tate theory. Thus, the composition of the character ΓE′,0 → T(Zp) → GL(OE)

corresponding to Tét ◦ ωuniv
b0

is Tét(M∆(XLT)) = Tp(XLT) (see [DLMS24, Proposition 3.35]). But,
this is the composition of α0 with T(Zp)→ GL(OE) (see the proof of [Dan22, Proposition 4.9]).

Abelian type case. Let (G1,X1,G1) be an unramified Shimura datum of Hodge type adapted
to (G,X,G). Consider the morphism of Shimura data obtained in Lemma 2.9. Then, as the map
αc : (Gc

2)
der → (G1 × Tc)der is an isogeny, it induces an isomorphism

RG2,µc
h,2

∼−→ RG1×Tc,µc
h,1×µc

h,T
.

Moreover, for the same reason, for any x2 in SK2
p
(Fp) we obtain an induced isomorphism

αc : ÔS
K
p
2
,x2 → ÔS

K
p
1×K

p
T
,(x1,xT),

as αKp
2,K

p is finite étale by Lemma 2.3. Thus, we may use Lemma 3.2, together with the claims in
the case of Hodge and special type, to deduce the existence of an isomorphism ix2 : RGc

2,µ
c
h,2

∼−→
ÔS

K
p
2
,x2 such that the prismatic G-torsors with F -structure ωKp

2,∆
|
ÔS

K
p
2
,x2

and i∗x2
(ωuniv

bx2
) for Gc

2
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agree when pushed forward along αc : Gc
2 → G1 × Tc. As they have further natural identifications

when pushed forward to Gab, this implies they are isomorphic (see [DY24, Proposition 2.1.6]).
Finally, as the morphism β : Gder

2 → Gder is an isogeny, it again induces isomorphisms RGc
2,µ

c
h,2
→

RGc,µc
h

and ÔS
K
p
2
,x2 → ÔSKp ,x, where x is the image of x2. If ix : RGc,µc

h

∼−→ ÔSKp ,x is the resulting

isomorphism, then there are isomorphisms between ωKp,∆|ÔSKp ,x
and i∗x(ωuniv

bx
). While arbitrary

x may not be the image of such an x2, we may reduce to this case by Lemma 2.4 and (2.3.3). □

We observe an important corollary of the above proof, which was used previously several times
(see Theorem 2.14 and Theorem 2.18).

Corollary 3.7. The prismatic realization functor ωKp,∆ belongs to Tors
φ,−µc

h
Gc ((ŜKp)∆). In

particular, ωKp,∆ takes values in Vectφ,lff((ŜKp)∆).

Proof. It suffices to show that for each small open subset Spf(R) of ŜKp , and for every point x
of the special fiber of Spf(R), there exists a p-adically etale neighborhood Spf(S)→ Spf(R) such
that the Frobenius for ωKp,∆ over SS is in the double coset Gc(SS)µ

c
h(E)−1Gc(SS).

By moving to an étale neighborhood if necessary, we may assume without loss of generality
that the underlying Gc-torsor is trivial on Spf(R). Write g for the element of Gc(SR[1/E])
corresponding to the Frobenius for ωKp,∆ on SR = RJtK. Consider the functor

F : AlgRJtK → Set, A 7→ {(h, h′) ∈ Gc(A)× Gc(A) : hgh′ = µch(E)−1 ∈ Gc(A[1/E])}.

Let y be the point of Spec(RJtK) equal to (x, t), with the obvious meaning. Observe that we have
the equality ÔSpec(RJtK),y = ÔSpf(R),xJtK. Thus, as a result of Theorem 3.6 (and the description of
the universal deformation in [Ito25, Theorem 4.4.2]), we have that F (ÔSpec(RJtK),y) is non-empty.
The claim then follows from Artin approximation.

More precisely, first note that RJtK is excellent (see [IKY24, Proposition 1.12]). Moreover, the
functor F is clearly limit-preserving as Gc is. Thus, by Artin approximation for an excellent base
(see [AHR23, Theorem 3.4]), there exists some affine etale neighborhood Spec(B)→ Spec(RJtK)
containing y in its image and with F (Spec(B)) non-empty. Let A be the (p, t)-adic completion
of B, so that Spf(A) → Spf(RJtK) is a (p, t)-adically etale neighborhood of y. Set S = A/tA.
Then, Spf(S) → Spf(R) is a p-adically etale map, and there is a unique deformation (by the
topological invariance of the etale site of a formal scheme) to a (p, t)-adically etale map over
Spf(RJtK) and, in fact, it must be Spf(SJtK). Thus, in fact, A = SJtK where Spf(S)→ Spf(R) is
a p-adically etale neighborhood of x. Observe then that, by set-up, F (SJtK) is non-empty, but
this means precisely that the Frobenius is in the double coset of µch(E)−1 over S as desired. □

3.3. A prismatic characterization of integral models. Throughout this section we fix
notation and conventions as in §2, and in particular fix (G,X,G) to be an unramified Shimura
datum of abelian type.

3.3.1. Characterization of integral canonical models. Throughout this subsection let us
fix a neat compact open subgroup Kp ⊆ G(Ap

f ). Recall from §2.5 that there exists a potentially
crystalline locus UKp ⊆ ShanK0Kp of νK0Kp,ét or, equivalently ωKp,ét.

Consider a smooth formal OE-model XKp of UKp , and a prismatic model ζKp of ωKp,an, i.e., an
object of Gc-Vectφ((XKp)∆) with Tét ◦ ζKp isomorphic to ωKp,an. For x in XKp(Fp), there is an
element bx,crys in C(Gc) associated to the F -crystal with Gc-structure given by Dcrys ◦ (ζKp)x. Fix
µch in µc

h. Then, we have the following property of bx,crys.

Lemma 3.8. The element bx,crys lies in the image of the map

Gc(Z̆p)σ(µ
c
h(p))

−1Gc(Z̆p)→ C(Gc).

Proof. As X is smooth over OE , we know that the specialization map sp: |UKp |cl → XKp(Fp)

is surjective. Let y be a point of |UKp |cl such that sp(y) = x. Then, a simple specialization
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argument shows that bx,crys is equal to the element associated to the isocrystal with G-structure
associated to Dcrys ◦ (ωKp,ét)y. But, the claim then follows from Lemma 3.5. □

Choose an element bx in Gc(Z̆p)µ
c
h(p)

−1Gc(Z̆p) such that σ(bx) maps to bx,crys in C(Gc).

Definition 3.9. A prismatic integral canonical model of UKp is a smooth and separated
formal OE-model XKp such that there exists a prismatic model ζKp of ωKp,an with the following
property: for each Kp and each x in XKp(Fp) there exists an isomorphism Θ∆

x : RGc,µc
h

∼−→ ÔXKp ,x

such that (Θ∆
x)

∗(ωuniv
bx

) is isomorphic to the pullback of ζKp to ÔXKp ,x.

We now aim to show that the unique prismatic integral canonical model of UKp is ŜKp . Our
proof relies on providing a slight extension of the fully-faithfulness portion of [GR24, Theorem
A] to certain semi-stable formal schemes, mimicking the argument in [DLMS24, Theorem 3.29].

To state this let us fix a complete discrete valuation ring OK with fraction field K and perfect
residue field k. Set W to be W (k), and fix a uniformizer ϖ of K.

Proposition 3.10. Set R to be OKJx1, . . . , xdK/(x1x2 · · ·xm −ϖ), where d and m are integers
with 1 ⩽ m ⩽ d. Then the étale realization functor

Tét : Vectφ(R∆)→ LocZp(R[1/p])

is fully faithful.

As in [Ito23], we consider the following Breuil–Kisin type prism. Let SR be the ring
W Jx1, . . . , xdK equipped with a Frobenius lift ϕ determined by ϕ(xi) = xpi , and E in SR be the
polynomial Eϖ(x1x2 · · ·xm), where Eϖ is the minimal polynomial of ϖ relative to Frac(W ).
Then the pair (SR, (E)) defines an object of R∆.

Lemma 3.11. The object (SR, (E)) covers the final object ∗ of Sh(R∆).

Proof. Similarly to [IKY24, Proposition 1.16], the assertion follows from [IKY24, Proposition
1.11] (using [ALB23, Proposition 5.8] in place of [IKY24, Lemma 1.15]). □

Thus, we can regard a prismatic F -crystal on R∆ as a finite free Breuil–Kisin module equipped
with a descent datum. More precisely, we let S

(1)
R be (SR⊗̂ZpSR)

{
J
E

}∧
δ

where

J := ker
(
SR⊗̂ZpSR → SR → SR/(E) ∼−→ R

)
.

As in [DLMS24, Example 3.4], it represents the self-product of SR over ∗ in Sh(R∆).
For i = 1, . . . , d, let εi denote the product of xj for 1 ⩽ j ⩽ d excluding i. Denote the

ring R[1/εi]∧p by Ri, which is a base ring in the sense in [IKY24, §1.1.5]. Using the map
OK⟨x±1

j ; j ̸= i⟩ → Ri given by sending xj to xj as a formal framing, we obtain the relative
Breuil–Kisin ring SRi which we denote by Si. Then we have a morphism (SR, (E))→ (Si, (Eϖ))
sending xi to u

εi
and xj to xj for j ̸= i.

We let OE (resp. OE,i) be the p-adic completion of SR[1/E] (resp. Si[1/Eϖ]). We use the
following lemma to reduce Proposition 3.10 to the case of Ri.

Lemma 3.12. Let S(i) denote the intersection Si ∩ OE in the ring OE,i. Then the inclusion
SR ⊆

⋂d
i=1S(i) in OE is an equality.

Proof. We put S′ :=
⋂d

i=1S(i). Since SR and S′ are p-adically complete, it suffices to show that
the containment SR ⊆ S′ is an equality modulo p. We consider the commutative diagram

SR/(p) = kJx1, . . . , xdK //

��

(kJxj ; j ̸= iK[1/xj; j ̸= i]) JuK = Si/(p)

��
OE/(p) = kJx1, . . . , xdK[1/x1···xm] // (kJxj ; j ̸= iK[1/xj; j ̸= i]) JuK[1/u] = OE,i/(p),

42



in which all the maps are injective. Setting S(i) to be the intersection of Si/(p) and OE/(p) in
OE,i/(p), we have SR/(p) =

⋂d
i=1S(i). We claim that the induced surjection S′/(p)→

⋂d
i=1S(i)

is an isomorphism. This is equivalent to the equality

pOE ∩
⋂
i

S(i) = p ·
⋂
i

S(i).

We note that the right hand side is equal to
⋂

i(pS(i)) as p is a nonzerodivisor in OE. Hence, it
suffices to show the equality pOE ∩S(i) = pS(i) for all i. But this follows from the injectivity of
the right vertical map in the above diagram. □

Proof of Proposition 3.10. By the proof of Lemma 3.11 the faithfulness portion of the claim is
reduced to the case of a perfectoid base, which is clear. Thus, it suffices to check fullness. Let F

and F′ be two objects of Vectφ(R∆) and let Tét(F)→ Tét(F) be a morphism in LocZp(R[1/p]),
which, by [BS23, Corollary 3.7], corresponds to a morphism F[1/I∆]

∧
p → F′[1/I∆]

∧
p of prismatic

Laurent F -crystals on R∆ (cf. [IKY24, §2.2]). Let M and M′ (resp. M and M′) denote the
evaluation of F and F′ (resp. F[1/I∆]

∧
p and F[1/I∆]

∧
p ) at the prism (SR, (E)).

Since the étale realization functor

Vectφ(Ri,∆)→ Vect(Ri,∆,O∆[1/I∆]
∧
p )
∼−→ LocZp(Ri[1/p])

is fully faithful by [DLMS24, Theorem 3.29 (1)], the restriction of F[1/I∆]∧p → F′[1/I∆]
∧
p to Ri,∆

induces a morphism F|Ri,∆
→ F′|Ri,∆

. In particular, the map

Mi := M⊗OE
OE,i →M′

i := M′ ⊗OE
OE,i

sends Mi := M ⊗S Si into M′
i := M′ ⊗S Si. Then, by Lemma 3.12, we get that the map

M→M′ sends M into M′.
Since the prism (SR, (E)) is a cover of the final object by Lemma 3.11, it suffices to show

that the map M→M′ is compatible with the descent data for F and F′. To see this, we observe
that the natural map S

(2)
R → S

(2)
R [1/E]∧p is injective. Indeed, it can be checked after passing

modulo p, where it is reduced to showing that E is a nonzerodivisor in S
(2)
R /(p), which follows

from the flatness of SR → S
(2)
R , cf. [DLMS24, Lemma 3.5]). Thus, the assertion follows from

the compatibility of the map M→M′ with the descent data for F[1/I∆]
∧
p and F′[1/I∆]

∧
p . □

We are now ready to prove our uniqueness claim concerning prismatic integral canonical models
of UKp . We roughly follow the strategy employed in [Pap23, Theorem 7.1.7], with some key
differences owing to the more formal geometry and p-adic Hodge theory nature of our setup.

Theorem 3.13. The unique prismatic integral canonical model of UKp is ŜKp .

Proof. That ŜKp is a prismatic integral canonical model of UKp follows from combining Theorem
2.10, Proposition 2.15, Proposition 3.6. Thus, it suffices to show that if XKp and X′

Kp are two
prismatic integral canonical models of UKp , then they are isomorphic.

Denote by X′′
Kp the normalization of XKp ×Spf(OE) X

′
Kp in UKp . More precisely, we set X′′

Kp to
be the relative formal spectrum Spf(A)→ XKp ×Spf(OE) X

′
Kp , where A is the integral closure of

OXKp×Spf(OE)X
′
Kp

in s∗(O+
UKp

), where s : (UKp ,O+
UKp

)→ XKp ×Spf(OE) X
′
Kp is the composition of the

following map of locally ringed spaces

(UKp ,O+
UKp

)
∆−→ (UKp ×Spa(E) UKp ,O+

UKp×Spa(E)UKp
)

sp−→ XKp ×Spf(OE) X
′
Kp .

As E is a discrete valuation field, and therefore the local rings of each formal scheme and rigid
space are excellent, these normalizations are finite over their original base and so topologically
of finite type and normal (cf. [SP, Tag 0AVK] and [SP, Tag 035L]). Let π : X′′

Kp → XKp and
π′ : X′′

Kp → X′
Kp be the natural projection maps. We show that π and π′ are isomorphisms.

To prove this, fix a point x′′ in X′′
Kp(Fp) and let x and x′ be their images in XKp and X′

Kp ,
respectively. Let bx,crys and bx′,crys be as in the definition of a prismatic integral canonical model.
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Observe that bx,crys actually equals bx′,crys. Indeed, from the diagram of isomorphisms

Spec(k(x)) ∼←− Spec(k(x′′)) ∼−→ Spec(k(x′)),

and the identification of Tét ◦ ζKp and Tét ◦ ζ ′Kp with ωKp,an, we obtain an isomorphism

Tét ◦ (ζKp)x′′ ∼= Tét ◦ (ζ ′Kp)x′′ ,

from where the claim follows by [GR24, Theorem A]. Denote this common class of bx, bx′ by
bx′′,crys, and choose an element bx′′ of Gc(Z̆p)µ

c
h(p)

−1Gc(Z̆p) such that σ(bx′′) maps to bx′′,crys.
Let O, O′, and O′′ be the complete local rings of x, x′, and x′′ of their respective formal schemes.

By excellence each of these complete local rings is normal and formally of finite type over OE (see
[SP, Tag 0C23]). Choose isomorphisms Θ∆

x and Θ∆
x′ as in the definition of a prismatic integral

canonical model. We claim that the following diagram commutes:

Spf(O′′)

Spf(O) Spf(O′)

Spf(RGc,µc
h
).

π π′

Θ∆
x Θ∆

x′

(3.3.1)

To prove this, we first make the following observation.

Claim: There exists an epimorphism of formal schemes of the form Spf(R)→ Spf(O′′), where

R = OKJt1, . . . , tn, x1, . . . , xmK/(x1 · · ·xm −ϖ),

with notation as in Proposition 3.10.

Proof. Let Spf(A) be an affine open neighborhood of x′′ in X′′
Kp . As Spf(A)η is an open subset of

the smooth rigid space UKp , it is smooth, and so by Elkik’s algebraization theorem (see [Elk73,
Théorème 7]) there exists some finite type smooth morphism Spec(B)→ Spec(OE) such that A is
isomorphic to the p-adic completion of B over OE . Let f : Y → Spec(B) be a strictly semi-stable
over OK (for some finite extension K of E) alteration of Spec(B) as in [dJ96, Theorem 6.5], and
choose any closed point y of of Y mapping to x′′. Then ÔY,y is isomorphic to

OKJx1, . . . , xdK/(x1 · · ·xm −ϖ)

over OK for some integers d and m with 1 ⩽ m ⩽ d. We then claim that the induced map
f : Spf(ÔY,y)→ Spf(O′′) is an epimorphism, from where the conclusion will follow. But, the map
f : Spec(OY,y)→ Spec(Bx) is dominant by assumption, and thus induces an injection Bx → OY,y.
As both the source and target are regular local rings we deduce from [GD71, I, Corollaire 3.9.8]
that O′′ → ÔY,y is an injection. Since ÔY,y and O′′ are complete local rings, the claim follows. □

To prove that Equation (3.3.1) commutes, it thus suffices to show that the outer square of the
following diagram commutes

Spf(R)

Spf(O′′)

Spf(O) Spf(O′)

Spf(RGc,µc
h
),

π π′

Θ∆
x Θ∆

x′

f f ′

where f and f ′ are defined to make the triangle diagrams they sit in commute. But, observe
that as R is a complete regular local ring, it suffices by the universality condition of Spf(RGc,µc

h
),
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and our definition of a prismatic integral canonical models, to show that f∗(ζKp) is isomorphic to
(f ′)∗(ζ ′Kp). But, by setup we know that

Tét ◦ f∗(ζKp) ∼= Tét ◦ (f ′)∗(ζ ′Kp),

and so the claim follows from Proposition 3.10.
Given the commutativity of (3.3.1), we can now argue as in [Pap23, Proposition 6.3.1 (b)]

to show that π : Spf(O′′)→ Spf(O) and π′ : Spf(O′′)→ Spf(O′) are isomorphisms. Indeed, the
commutativity of (3.3.1) is equivalent to π ⊗ π′ : O⊗̂OĔ

O′ → O′′ factorizing through the map

O⊗̂OĔ
O′ a⊗idO′−−−−→ O′⊗̂O′

Ĕ
O′ ∆−→ O′,

where a denotes the isomorphism (Θ∆
x′)−1 ◦Θ∆

x . Let R denote the image of π ⊗ π′. Then, we see
that this factorization gives rise to a surjection O′ → R.

We claim that O′′ has the same Krull dimension as O′. Observe that dim(O′′) = dim(OX′′,x′′)
and dim(O′) = dim(OX′,x′). As these are closed points on integral formal schemes of finite type
over OK , they have the same dimension as X′′ and X′, respectively. But, dim(X′′) and dim(X′)
each decrease by 1 when passing to the rigid generic fiber, but these generic fibers are isomorphic.

On the other hand, the dimension of R is equal to the dimension of O′′, as R → O′′ is an
integral embedding (see [SP, Tag 00OK]). Thus, combining these two claims we deduce that
the dimension of R and O′ are the same. Thus, the surjection O′ → R must be an isomorphism,
being a surjection of integral domains of the same finite dimension.

We then get a finite map O′ ∼−→ R→ O′′. We claim that this map is an isomorphism. This
follows from taking A = OX′,x′ and B = OX′′,x′′ in the following lemma.

Lemma 3.14. Let (A,m) and (B, n) be normal local Noetherian rings flat over Z(p). Suppose
that (A,m) → (B, n) satisfies: (1) Âm → B̂n is finite, (2) A[1/p] → B[1/p] is an isomorphism.
Then, Âm → B̂n is an isomorphism.

Proof. As Âm → B̂n is a finite map between normal domains, it suffices to show that the map
Âm[1/p] → B̂n[1/p] is an isomorphism. Let us begin by observing that the map A → B is
automatically injective as the source and target are both Z(p)-flat and the map A[1/p]→ B[1/p]
is injective. As (A,m) is a normal domain, we deduce from [GD71, I, Corollaire 3.9.8] that
Âm → B̂n is injective, and thus that Âm[1/p]→ B̂n[1/p] is injective. Thus, it suffices to show that
Âm[1/p]→ B̂n[1/p] is surjective. But, observe that as A[1/p]→ B[1/p] is an isomorphism that the
map Âm[1/p]→ (Âm ⊗A B)[1/p] is an isomorphism. As one has a factorization

Âm[1/p]→ (Âm ⊗A B)[1/p]→ B̂n[1/p],

with the second map being the obvious one, it suffices to show that the map Âm ⊗A B → B̂n is
surjective. But, by Nakayama’s lemma, using the fact that B̂n is a finite Âm-module, it suffices to
show this surjectivity modulo m. But, as B̂n is a finite Âm-module, its topology agrees with the
m-adic one. Thus, one has that B/mB is naturally equal to B̂n/mB̂n, and thus the surjectivity
of Âm ⊗A B → B̂n modulo m is clear. □

From the above we deduce that the map π′ : Spf(O′′)→ Spf(O′) is an isomorphism and, by
symmetry, the same holds for π. We are then done by Lemma 3.15 below. □

Lemma 3.15. Let α : Y1 → Y2 be a morphism of finite type flat formal OE-schemes such that:
(a) αη is an isomorphism of rigid E-spaces, (b) for every point y1 of Y1(Fp) with y2 = α(y1) the
induced map ÔY2,y → ÔY1,y1 is an isomorphism. Then, α is an isomorphism.

Proof. For each n ⩾ 0 let αn : Y1,n → Y2,n denote the reduction of α modulo pn+1. It suffices
to show that αn is an isomorphism for all n. Indeed, we first observe that as the flat locus of
each αn is open, and contains every closed point of the scheme Y1,n, which are evidently dense
by consideration of the variety Y1,0, we deduce that αn is flat. Thus, to prove that it’s étale, it
suffices to prove this claim for α0 (see [SP, Tag 06AG]). But, in this case the fact that (b) implies
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α is étale is classical. To prove that α0, and thus each αn (see loc. cit.), is an isomorphism it
suffices to show that the fiber over each Fp-point y2 of Y2(Fp) is a singleton (see [SP, Tag 02LC]).
But, as Y2 is a finite type and flat over OE , the specialization map sp: |(Y2)η|cl → Y2,0(Fp) is
surjective. Thus, there exists some finite extension E′ of E and a morphism Spf(OE′) → Y2

whose special fiber is the underlying point of y2. As α is étale, we know that α−1(y2) is a disjoint
union of copies of Spec(Fp), and so by the topological invariance of the étale site, this implies
that Y1 ×Y2 Spf(OE′) is a disjoint union of copies of Spf(OE′). As αη is an isomorphism though,
this number of copies must be one. The claim follows. □

There is also a characterization of the scheme SKp itself, using the notion of a prismatic
F -crystal (ω′, ζ, ι) on a p-adic scheme as in [IKY24, §3.3.4], which we use freely below.

Definition 3.16. Let X be a finite type separated E-scheme, U ⊆ Xan an open adic subspace,
and ωét a G-object in de Rham Zp-local systems on Xan (resp. X).
• A locally of finite type separated flat OE-scheme X is a model of (X,U) if there is an

isomorphism X ∼−→XE carrying U isomorphically onto X̂η.
• A prismatic model (of type µ) of ω (resp. ωan) is a G-object in prismatic F -crystals (one

of type µ) (ω′, ζ, ι) on X with ω′ isomorphic to ω (resp. ωan).

We often identify a prismatic model (ω′, ζ, ι) of ω with just its prismatic F -crystal component
on X̂ , i.e., with just ζ. So, we informally speak of ζ being a prismatic F -crystal model of ω.

Definition 3.17. A smooth and separated OE-model XKp of ShK0Kp is called a prismatic
integral canonical model if it is a model of (ShK0Kp , UKp) and there exists a prismatic model ζKp of
ωKp,ét such that for every point x of XKp(Fp) there exists an isomorphism Θ∆

x : RGc,µc
h

∼−→ ÔXKp ,x

such that (Θ∆
x)

∗(ωuniv
bx

) is isomorphic to the pullback of ζKp to ÔXKp ,x.

Said differently, a smooth separated OE-model XKp of ShK0Kp is a prismatic integral canonical
model if X̂Kp is a prismatic integral canonical model of UKp .

The following is an immediately corollary of [IKY24, Proposition 3.6] and Theorem 3.13.

Corollary 3.18. The unique prismatic integral canonical model of ShK0Kp is SKp.

3.3.2. Relationship to work of Pappas and Rapoport. We now discuss the relationship
between our work and that in [PR24]. Below we shall refer to the conjunction of [PR24, Conjecture
4.2.2] and [Dan22, Conjecture 4.5] as the Pappas–Rapoport conjecture.

We begin by formulating a version of a prismatic integral canonical model as in Definition
3.17, but for the entirety of the system {ShK0Kp}Kp . Namely, by a smooth G(Ap

f )-model of
{ShKpK0}Kp , we mean a collection {XKp}Kp of separated smooth OE-schemes together with finite
étale morphisms fKp,Kp′ (gp) modeling tKp,Kp′ (gp).

Definition 3.19. A prismatic integral canonical model of {ShK0Kp}Kp is a smooth G(Ap
f )-model

{XKp}Kp such that XKp is a prismatic integral canonical model of ShK0Kp for all Kp.

We have the following which is an essentially trivial corollary of Theorem 3.13.

Theorem 3.20. The system {SKp}Kp is the unique prismatic integral canonical model of
{ShK0Kp}Kp.

That said, independent of Theorem 3.13 we can show a prismatic integral canonical model
satisfies the conditions of the Pappas–Rapoport conjecture.

Proposition 3.21. Suppose {XKp}Kp is a prismatic integral canonical model of {ShKpK0}Kp.
Then, {XKp}Kp satisfies the conditions of the Pappas–Rapoport conjecture.

Proof. That condition (a) of [Dan22, Conjecture 4.5] holds for {XKp}Kp follows by combining
[IKY24, Proposition 3.6] and the Néron–Ogg–Shafarevich criterion (see Lemma 3.22 below). To
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show that condition (b) of loc. cit. holds, set (PKp , φPKp
) = Tsht(ζKp), with notation as in [IKY24,

§3.3], an object of Gc-Shtµc
h
(XKp). By definition, we have that (PKp)E = Usht(ω

an
Kp,ét)

∼= PKp,E ,
and thus condition (b) is satisfied. Finally, to verify condition (c) of loc. cit., it suffices by setup
to show that there exists an isomorphism

Θx : M̂
int
(Gc,bx,µc

h)/x0

∼−→ Spd(RGc,µc
h
),

with the property that Tsht(Θ∗
x(ω

univ
bx

)) is isomorphic to the universal shutka. Here Mint
(Gc,bx,µc

h)

is the integral moduli space of shtukas as in [SW20, Definition 25.1], and M̂int
(Gc,bx,µc

h)/x0
is the

completion at the neutral point x0 in the sense of [Gle22]. But, the existence of such an
isomorphism follows from [Ito25, Theorem 5.3.5] and its proof. □

Lemma 3.22 (Néron–Ogg–Shafarevich criterion). Let R be a discrete valuation ring over OE of
mixed characteristic (0, p). For an element {xKp} of lim←−Kp ShK0Kp(R[1/p]), each induced morphism

xanKp : Spa(R[1/p])→ ShanK0Kp

factorizes through UKp .

Proof. As {SKp} satisfies the extension property, there exists a unique element {yKp} in
lim←−Kp SKp(R) with (yKp)η = xKp . Let ŷKp : Spf(R̂) → SKp denote the completion of yKp .
Then, we observe that xanKp = (ŷKp)η. But, (ŷKp)η takes values in UKp by Proposition 2.15 □

Remark 3.23. The usage of the system {SKp} and its extension property in the proof of
Lemma 3.22 is not strictly necessary. One could also use the method in the proof of Proposition
2.15 to reduce to the Siegel-type case, and thus to the classic Néron–Ogg–Shafarevich theorem.

3.4. A syntomic characterization of integral models and Serre–Tate theory. We now
discuss how the material from §3.2 can be upgraded to the realm of prismatic F -gauges. We then
use this to realize an expectation of Drinfeld and in doing so produce a syntomic characterization
of integral canonical models and an analogue of the Serre–Tate theorem.

3.4.1. The stack BTG,µ
∞ . We begin by recalling Gardner–Madapusi–Mathew’s representability of

the moduli space of prismatic F -gauges with G-structure of type µ, which is based off of previous
ideas of Drinfeld as in [Dri24a].

Notation 3.24. Fix notation as in Notation 3.1 and additionally set P−µ ⊆ G to be the parabolic
given by the dynamic method for the cocharacter µ−1 (see [Con14, Theorem 4.1.7]).

For a bounded p-adic ring R and an element n of N ∪ {∞}, the notion of an n-truncated
prismatic F -gauge with G-structure of type µ over R is defined as in Definition 1.32.

Definition 3.25 (cf. [GM24]). A p-adically complete ring R has p-finite differentials if the
R/p-module Ω1

(R/p)/Fp
is finitely generated.

For example, this condition is satisfied when R is a base W -algebra (see [dJ95, Lemma 1.3.3]),
R is an object of CW , k is a characteristic p field with finite p-basis (see loc. cit. for the definition),
or R is perfectoid. We let Algp-fin

Zp
denote the category of p-adically complete rings with p-finite

differentials, which we equip with the flat topology.

Definition 3.26 (cf. [GM24]). For n in N ∪ {∞} we consider the derived prestack

BTG,µ
n : Algp-fin,op

Zp
→ Grpd∞, R 7→ BTG,µ

n (R),

of n-truncated prismatic F -gauges with G-structure of type µ.
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We then have the following remarkable theorem of Gardner–Mathew. In the following, we
use the notion of Weil restriction as in [GM24]: for a prestack Y on Algp-fin

Zp
, set Y (n) to be the

prestack on Algp-fin
Zp

given by R 7→ Y (R⊗L
Zp

Z/pn).

Theorem 3.27 ([GM24]). Fix n in N ∪ {∞}.
(1) If n is finite, the prestack BTG,µ

n is a quasi-compact smooth p-adic formal Artin stack of
dimension 0 with affine diagonal.

(2) For finite n, the natural map BTG,µ
n+1 → BTG,µ

n is smooth and surjective.
(3) [Grothendieck–Messing theory] For (R′ → R, γ) a (nilpotent) divided power thickening in

Algp-fin
W there is a Cartesian diagram of groupoids

BTG,µ
n (R′) BP

(n)
−µ (R

′)

BTG,µ
n (R) Xµ

n (R′ → R)

(3.4.1)

where Xµ
n (R′ → R) := BG(n)(R′)×BG(n)(R) BP

(n)
−µ (R).

Proof. The only thing not addressed by [GM24] is Grothendieck–Messing theory for n =∞. But,
as a limit of Cartesian diagrams is a Cartesian diagram, this follows by passing to the limit: for
a(n affine smooth) Zp-group scheme H and a p-complete ring R, the natural maps BH(R)→
BH(Spf(R))→ limnBH(n)(R) are isomorphisms (see [HLP23, Proposition 2.1.4]). □

In diagram (3.4.1), the vertical maps are the natural ones, the top horizontal map is the
restriction along the Nygaard de Rham point (see e.g., see [IKY25, Definition 1.11]), and the
lower horizontal map is such that the projection, denoted αγ , to BG(n)(R′) is constructed using
the map x̃dR,γ : Spec(R′) → R∆ from [GM24, Lemma 6.8.1]. The map x̃dR,γ : Spf(R′) → R∆

is an extension of prismatic de Rham point (e.g., see [IKY25, Definition 1.11]). The extension
x̃dR,γ depends on γ.

From Theorem 3.27 we see that BTG,µ
∞ = lim←−BTG,µ

n is the projective limit of smooth quasi-
compact p-adic formal Artin stacks, with smooth surjective transition maps. This is just as in
the case of the formal Zp-stack BTh,d

p,∞ of p-divisible groups of height h and dimension d, which
is the limit of the smooth Artin formal stack over Zps BTh,d

p,n of n-truncated p-divisible groups of
height h and dimension d (cf. [Wed01, §1]). This is reasonable as the following result shows.

Theorem 3.28 ([GM24, Theorem A], [Mon24, Theorem 1.11]). Let µd be the cocharacter
(1d, 0h−d) of GLh,Zp . Then, there is a canonical isomorphism

Msyn : BT
h,d
p,∞
∼−→ BT

GLh,Zp ,µd
∞

which agrees with Anschutz–Le Bras’s filtered Dieudonné functor M∆ (cf. [ALB23] and specifically
[ALB23, Remark 1.9], as well as [Mon24, Proposition 3.45]) on qrsp rings R. Moreover, the
functor Msyn preserves duals.

Example 3.29 (see [GM24, §11.6]). Let us say that (G, µ) is of Siegel type if it is of the
form (GSp(Λ0), µg) for some symplectic Zp-lattice Λ0 of rank 2g. For a p-nilpotent ring R, we
then define p-DivG,µ(R) to be the groupoid of quasi-polarized p-divisible groups over R. By
definition, such a quasi-polarized p-divisible group is a triple (H,L, λ) where H is a p-divisible
group over R, L is a rank 1 Zp-local system on R, and λ : H ∼−→ H∨ ⊗ L such that under the
canonical double-duality isomorphism H ≃ H∨∨ we have that λ∨ corresponds to −λ.22

One may then deduce from from Theorem 3.28 that Msyn induces an equivalence of categories
BTG,µ

∞ (R)→ p-DivG,µ(R) given by P 7→ (H,L, λ). More precisely, (H,L) is uniquely defined so

22Note that precisely H ⊗ L denotes the tensor product in fppf Zp-modules, which is still a p-divisible group
as this can be checked locally, which reduces us to the case when L is trivial.

48



that f∗P = (Msyn(H),Msyn(L)) where f : G→ GL(Λ0)× Gm,Zp is the tautological map, and
where in the expression Msyn(L) we are abusing notation and implicitly identifying L with its
associated étale p-divisible group.

3.4.2. Deformation theory of prismatic G-F -gauges. We now show that Ito’s universal
deformation (Auniv

b , φAuniv
b

) from §3.1.1 is universal not only for C
reg
W but the larger category CW ,

when interpreted using prismatic F -gauges with G-structure of type µ.
We continue to use the notation from Notation 3.24 and further fix an element b of G(W )µ(p)−1G(W ).

The pair (GW , φb), where φb corresponds to left multiplication by b, defines an element of
Torsφ,−µ

G (k∆) which by Proposition 1.39 is equivalent to an object Pb of BTG,−µ
∞ (k).

Given a functor of groupoids F : G1 → G2 and an object x of G2 we denote by fib(G1 → G2;x)
the fiber over x which, by definition, means the groupoid of pairs (y, ι) where y is an object of
G2 and ι : F (y) ∼−→ x is an isomorphism, where a morphism (y, ι)→ (y′, ι′) is an isomorphism
σ : y → y′ such that ι′ ◦ F (σ) = ι.

Definition 3.30. Let Y be a formal stack over Zp. Let y a point of Y(k) for some k perfect
extension of Fp. Set W =W (k). Define the deformation functor associated to the pair (Y, y)
to be the contravariant functor

Defy : C
op
W → Grpd, R 7→ fib(Y(R)→ Y(k); y)

We say Y has discrete deformation theory if for each p-nilpotent ring R, nilpotent ideal I of R,
and point y of Y(R/I), the fiber fib(Y(R)→ Y(R/I); y) is a discrete groupoid.

For Y = BTG,−µ
∞ and b as above, we shorten the notation DefPb

to Defb. We then have the
following result which underlies the rest that follows.

Proposition 3.31. The formal stack BTG,−µ
∞ over Zp has discrete deformation theory.

Before we prove Proposition 3.31 we give the following interpretation of Grothendieck–Messing
theory that will be used many times below. Fix a PD thickening (R′ ↠ R, γ) of objects of
Algp-fin

Zp
. Let x′ be an object of BG(R′) and set

BTG,−µ
∞ (R′)x′ := BTG,−µ

∞ (R′)×x∗
dR,R′ ,BG(R′) x

′, BTG,−µ
∞ (R)x′ := BTG,−µ

∞ (R)×αγ ,BG(R′) x
′.

Then, we have the following natural Cartesian diagram

BTG,−µ
∞ (R′)x′ Qx′/Pµ(R

′)

BTG,−µ
∞ (R)x′ Qx′/Pµ(R)

(3.4.2)

Here Qx′ is our shorthand for the G-torsor αγ(x
′) on R′, which carries a natural action of Pµ.

Here we are interpreting Qx′/Pµ as a quotient stack. We observe that (3.4.2) being Cartesian
implies a natural isomorphism of groupoids

fib
(
BTG,−µ

∞ (R′)→ BTG,−µ
∞ (R); z

) ∼−→ fib
(
(Qx′/Pµ)(R

′)→ (Qx′/Pµ)(R); tz
)
, (3.4.3)

for z in BTG,−µ(R)x′ and tz the image of z under the bottom arrow in (3.4.2).
This is quite helpful as Qx′/Pµ is actually a smooth algebraic space (cf. [SP, Tag 06PH] and

[SP, Tag 0AHE]). Moreover, by [SP, Tag 06GE], every surjective morphism R→ R′ of Artinian
objects in CW may be factorized as a sequence of small surjections in the sense of [SP, Tag 06GD].
But, such a small surjection is, in particular, a square-zero thickening and so has a unique (and
so canonical) PD structure (γi) with γi = 0 for i ⩾ 2, which we denote by γ in all cases.

Proof of 3.31. Applying [SP, Tag 06GE] to R→ R/I it suffices to show that if R′ → R is a small
extension and an object x of BTG,−µ

∞ (R), then fib
(
BTG,−µ

∞ (R′)→ BTG,−µ
∞ (R);x

)
is discrete. But,

given (3.4.3) this is clear as the right-hand side is a discrete groupoid. □
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Consider the ring RG,µ from §3.1.1. We abuse notation and conflate Spf(RG,µ) (where RG,µ is
endowed with the topology defined by the maximal ideal) with the natural functor C

op
W → Set it

represents. Using Proposition 1.48, the pair (Auniv
b , φAuniv

b
) from §3.1.1 upgrades to a deformation

(Auniv
b,syn, φAuniv

b,syn
) of Pb and so defines a morphism ρb : Spf(RG,µ)→ Defb.

Proposition 3.32. The morphism

ρb : Spf(RG,µ)→ Defb

is an isomorphism. In particular, the pair (Spf(RG,µ), (A
univ
b,syn, φAuniv

b,syn
)) represents Defb.

Proof. We use the results of [GM24] to show that Defb is represented by an object Runiv
b of Creg

W .
This is sufficient, as the morphism ρb induces a bijection when evaluated on any object R of Creg

W

by the universal property of the pair (Spf(RG,µ),A
univ
b,syn, φAuniv

b,syn
) (again utilizing Proposition 1.48).

As the source and target of ρb belong to C
reg,op
W , this implies that ρb is an isomorphism by the

Yoneda lemma. To show that Defb is (pro)representable it suffices by Schlessinger’s criterion
(cf. [SP, Tag 06JM]) to show that Defb satisfies condition (RS) as in [SP, Tag 06J2] and that
dimk TDefb is finite, where this tangent space is as in [SP, Tag 06I2].23

To show that Defb satisfies condition (RS) we show that whenever we have a diagram of
Artinian objects of CW R2 → R← R1 such that the left arrow is a small surjection, that

Defb(R1 ×R R2)→ Defb(R1)×Defb(R) Defb(R2) (3.4.4)

is a bijection of sets. This is indeed sufficient by [SP, Tag 06J5]. As (3.4.4) is a map of sets over
Defb(R1) it suffices to show that for each s in this set that the map in (3.4.4) induced on fibers
over s is a bijection. But, this is naturally interpreted as the map of sets

fib
(
BTG,−µ

∞ (R1 ×R R2)→ BTG,−µ
∞ (R1); s

)
→ fib

(
BTG,−µ

∞ (R2)→ BTG,−µ
∞ (R); s

)
,

where s is the image of s in Defb(R). But, note that R1×RR2 → R1 is a small surjection by [SP,
Tag 06GH]. So, using (3.4.3), if x′ = αγ(s) and x′ = αγ(s), we must show that the natural map

fib ((Qx′/Pµ)(R1 ×R R2)→ (Qx′/Pµ)(R1); ts)→ fib ((Qx′/Pµ)(R2)→ (Qx′/Pµ)(R); ts)

is a bijection, where we are using the fact that Qx′ base changes to Qx′ . But, this is clear as
Qx′/Pµ is a smooth algebraic space.

For dimk TDefb < ∞, it suffices to observe that, as a special case of (3.4.3), we have an
isomorphism of k-spaces TDefb → TDeftb , where Deftb is the deformations of tb in (Qb/Pµ)(k)
inside Qb/Pµ, with Qb := x∗dR,kPb. But, as Qb/Pµ is a smooth algebraic space over k this is clear.

Finally, to show that the universal deformation ring Runiv
b is an object of Creg

W , it suffices by
[SP, Tag 0DYL] to show that Defb is unobstructed in the sense of [SP, Tag 06HP]. But, by [SP,
Tag 06HH], we may restrict to small extensions. We may then apply (3.4.3) again to deduce
unobstructedness as each Qx′/Pµ is a smooth algebraic space. □

Remark 3.33. Given Proposition 3.32 we shall often conflate (Auniv
b , φAuniv

b
) and (Auniv

b,syn, φAuniv
b,syn

),
only using the extra decoration when clarity is needed.

3.4.3. Serre–Tate theory in the abelian-type case. We now verify an expectation of Drinfeld
using results obtained so far. This allows us to further establish an analogue of the Serre–Tate
theorem in the setting of abelian-type Shimura varieties at hyperspecial level.

Throughout this section we adopt the notation and conventions of Notation 2.1 and §3.2. In
particular, we fix (G,X,G) to be an unramified Shimura datum of abelian type. We further fix
an element µch of the conjugacy class from µc

h from §2.1.

23Note that condition (a) in Schlessinger’s criterion is equivalent to condition (RS) by definition, as evidently
Defb is a predeformation category in the sense of [SP, Tag 06GT] as Defb(k) is a singleton. Moreover, condition
(c) is vacuous as W surjects onto k.
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3.4.3.1. Serre–Tate theory. Let us begin by observing that the syntomic realization functor
ωKp,syn on ŜKp as constructed in §2.4 is a prismatic F -gauge with Gc-structure of type µch by
Corollary 3.7 and Proposition 1.39. Thus, we obtain a canonical morphism

ρKp : ŜKp → BT
Gc,−µc

h∞ ,

of formal stacks over Zp. The existence of such a morphism was expected by Drinfeld (see [Dri24b,
§4.3]). The main theorem of this section is the following result.

Theorem 3.34 (Serre–Tate theory). The morphism

ρKp : ŜKp → BT
Gc,−µc

h∞

is formally étale, i.e., if R is a p-nilpotent ring and R→ R/I a nilpotent thickening, then

SKp(R) BT
Gc,−µc

h∞ (R)

SKp(R/I) BT
Gc,−µc

h∞ (R/I)

ρKp

ρKp

is Cartesian.

To prove this theorem we need some preliminary setup. To this end, fix x to be a point of
SKp(Fp). As in §3.3.1 we have the associated element bx,crys in C(Gc). Additionally, recall that
we have the associated conjugacy class µc

h of cocharacters Gm,Z̆p
→ Gc

Z̆p
. Then, by Lemma 3.5

the element bx,crys lies in the image of the map

Gc(Z̆p)σ(µ
c
h(p))

−1Gc(Z̆p)→ C(Gc).

Fix bx in Gc(Z̆p)µ
c
h(p)

−1Gc(Z̆p) with σ(bx) mapping to bx,crys in C(Gc), e.g., bx = ρKp(x).
Consider the functor

Defx : CW → Set, Defx := SKp |CW
.

Note that Defx parameterizes the deformations of x within SKp and is (pro)represented by the
formal spectrum Spf(ÔSKp ,x) = Spf(Ô

Ŝ p
K ,x

).
The following is an immediate consequence of Theorem 3.6 and Proposition 3.32. Indeed,

Proposition 1.39 implies that (with notation as in these results) that ρKp,x = ρbx ◦ ix, as both
pull back the universal object over Defbx to isomorphic deformations of Pbx = (ωKp,syn)|x.

Lemma 3.35. The induced map

ρKp,x : Defx → Defbx

is an isomorphism.

Proof of Theorem 3.34. By inducting on the minimal n ⩾ 2 such that In = (0), we may assume
without loss of generality that n = 2.

So, suppose that R is a p-nilpotent ring and I ⊆ R is square-zero ideal, then we must show
that for any R/I-point x of SKp that the natural map

fib (SKp(R)→ SKp(R/I);x)→ fib
(
BT

Gc,−µc
h∞ (R)→ BT

Gc,−µc
h∞ (R/I); ρKp(x)

)
, (3.4.5)

is a bijection of sets (where the right-hand is discrete by Proposition 3.31). The proof will proceed
in several steps. But, before we start those steps, we make the following observation.

Lemma 3.36. Suppose that (G, µ) is as in Notation 3.1. Then if R = colimiRi is a filtered
colimit of rings and I = colim Ii an ideal with I and each Ii square-zero. Then the commutative
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diagram

colimiBT
G,µ
∞ (Ri) //

��

BTG,µ
∞ (R)

��
colimiBT

G,µ
∞ (Ri/Ii) // BTG,µ

∞ (R/I)

is Cartesian.

Proof. The natural map from colimiBT
G,µ
∞ (Ri) to the fiber product is evidently injectivity. To

show surjectivity, fix an object P of BTG,µ
∞ (R) and consider the G-torsor x = x∗dR,RP which is the

image of some xi in BG(Ri) for sufficiently large i (see [Čes15, Lemma 2.1]). Consider

2-colim
j⩾i

BTG,µ
∞ (Rj)xi BTG,µ

∞ (R)x (Qx/P−µ)(R)

2-colim
j⩾i

BTG,µ
∞ (Rj/Ij)xi BTG,µ

∞ (R/I)x (Qx/P−µ)(R/I).

Here the left-hand square is the obvious ones, and the right-hand square is the Cartesian square
as in (3.4.2). Observe that Qx/P−µ = (Qxi/P−µ)R and Qxi/P−µ is of finite presentation over Ri,
we have that the outer rectangular diagram (ignoring the central nodes) is obtained by passing
to the 2-colimit over j ⩾ i of the Cartesian diagram as in (3.4.2) applied for Rj ↠ Rj/Ij . As
2-colimits of Cartesian diagrams of groupoids is Cartesian, we deduce the outer rectangle is also
Cartesian. Thus, we deduce the left-hand square is Cartesian as desired. □

Step 1: restriction to Z̆p-algebras. Observe that it suffices to show that (ŜKp)Z̆p
→ BTGc,−µh

∞
is formally étale. Indeed, this follows from the following general observation as well as the fact
that Zp → Z̆p is ind-étale modulo pn for all n.

Lemma 3.37. Let

X

Y F

f
p

q

be a diagram of fpqc-stacks, where X and Y are schemes. If f is surjective and pro-étale and p is
formally étale, then q is formally étale.

Proof. We begin by making the following observation. Consider a commutative diagram

Y F

Spec(R/I) Spec(R).

q

a

i

b (3.4.6)

As f is surjective and pro-étale, there exists an ind-étale cover c : R/I → C and a map
γ : Spec(C)→ X such that f ◦ γ = a ◦ c. By [SP, Tag 097P] there exists an ind-étale R-algebra
C such that C = C/IC, which necessarily induces a surjective map c : Spec(C)→ Spec(R). We
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thus obtain the following commutative diagram

X

Y F

Spec(R/I) Spec(R)

Spec(C/IC) Spec(C).

f
p

q

a

i

bγ

c

i′

c

(3.4.7)

We use of this diagram twice below.
We first show that q is formally unramified. Suppose that α, β : Spec(R) → Y are two

morphisms whose addition to (3.4.7) preserves commutativity. Using the fact that f is pro-étale
and surjective we may (after possibly enlarging C) produce α′, β′ : Spec(C)→ X whose addition
to (3.4.7) preserves commutativity. But, by the formal unramifiedness of p we deduce that α′

equals β′, and thus that
α ◦ c = f ◦ α′ = f ◦ β′ = β ◦ c.

As c is an epimorphism of schemes, we deduce that α equals β as desired.
We now show that q is formally étale. As we know that q is formally unramified, it suffices

to show that there exists a map α : Spec(R) → Y such that α ◦ i = a and q ◦ α = b. Now,
as p is formally étale there exists a unique morphism δ : Spec(C) → X whose addition to
(3.4.7) preserves commutativity. By a simple diagram chase, it suffices to show that the map
f ◦ δ : Spec(C)→ Y descends to a morphism Spec(R)→ Y . As Spec(C)→ Spec(R) is an fpqc
cover and Y is a sheaf for the fpqc topology on S, it suffices to show that f ◦ δ equalizes the
two natural maps π1, π2 : Spec(C ⊗R C)→ Spec(C). But, reducing f ◦ δ ◦ πi modulo I gives the
same map, as the map a ◦ c : Spec(C/IC)→ Y does descend to a map Spec(R/I)→ Y . Thus,
by the formal unramifiedness of Y → F it suffices to show that q ◦ f ◦ δ ◦ π1 = q ◦ f ◦ δ ◦ π2. But,
this is clear as the map q ◦ f ◦ δ does descend to a map Spec(R)→ F (namely b). □

Moreover, let us observe that if Spec(R/I)→ (ŜKp)Z̆p
is a morphism, then we have a map

Spec(R/I)→ Spec(Z̆p), and by the formal étaleness of Zp/p
n → Z̆p/p

n for all n there exists a
unique extension to a map Spec(R)→ Spec(Z̆p). Thus, we see that without loss of generality,
we may assume that R is a Z̆p-algebra.

Step 2: reduction to finitely generated Z̆p-algebras. Suppose that R is an arbitrary
Z̆p-algebra and I is a square-zero ideal. Observe that we may write R as a filtered colimit
R = colimiRi where Ri ranges over all finitely generated Z̆p-subalgebras of R. If Ii := I ∩ Ri

then I = colimi Ii. Moreover, I2i ⊆ I2 = (0), so I2i is also square-zero. Suppose that we have
shown that the map in (3.4.5) is a bijection for all finite-type Z̆p-algebras. Then, in particular

colim
i

fib (SKp(Ri)→ SKp(Ri/Ii);x)→ colim
i

fib
(
BT

Gc,−µc
h∞ (Ri)→ BT

Gc,−µc
h∞ (Ri/Ii); ρKp(x)

)
is a bijection. But, the source is fib (SKp(R)→ SKp(R/I);x) by the finite presentation of SKp

and the latter is fib
(
BT

Gc,−µc
h∞ (R)→ BT

G,−µc
h∞ (R/I); ρKp(x)

)
by Lemma 3.36. The claim follows.

Step 3: the Hodge-type case. We now assume that (G,X,G) is of Hodge type. We will then
apply the following lemma for an integral Hodge embedding.

Lemma 3.38. Let X ↪→ Y be a closed embedding of topologically of finite type formal Zp-schemes
and let R be a p-nilpotent finite type Z̆p-algebra. Then a morphism Spec(R) → Y factorizes
through X if and only if for every maximal ideal m of R the composition Spf(R̂m)→ Spec(R)→ Y
factorizes through X.
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Proof. Let J ⊆ OY be the ideal sheaf corresponding to X. It suffices to show that JOSpec(R) is
zero. But, for this it suffices to check this vanishing on each Rm. Moreover, as Rm → R̂m is
faithfully flat (see [SP, Tag 00MC]) it further suffices to check that JO

Spf(R̂m)
is zero. But, this

follows from the existence of a factorization of Spf(R̂m)→ Spec(R)→ Y through X. □

Choose now an integral Hodge embedding ι : (G,X,G) ↪→ (H, h±,H) and let µsh be a (choice
of) integral Hodge cocharacter for the Siegel-type Shimura datum base changed to W . By [Xu20,
Theorem 1.1.1] this integral Hodge embedding induces a closed embedding

ŜKp(G,X) ↪→ ŜLp(H, h
±)

for an appropriately chosen neat compact open subgroup Lp ⊆ H(Ap
f ). By Step 2 it suffices to

prove (3.4.5) for R finite type over Z̆p. But using Example 3.29 we may interpret the composition

Spec(R)→ BTG,−µh
∞ → BT

H,−µs
h∞

as a quasi-polarized p-divisible group (H,L, λ) over R deforming (A0[p
∞], L0, λ0), where we write

(A0, L0, λ0, α0) for the point of ŜLp(H, h
±)(R/I) corresponding to the composition

Spec(R/I)→ ŜKp(G,X) ↪→ ŜLp(H, h
±),

where α0 denotes the Kp-level structure. By the classical version of Serre–Tate theory (e.g., see
[Kat81, §1]) there exists a unique deformation (A,L, λ, α) in ŜLp(H, h

±)(R) of (A0, λ0, L0, α0)
such that (A[p∞], L, λ) = (H,L, λ). By Lemma 3.38 we will be done if we can show that for any
maximal ideal m of R the restriction of (A[p∞], L, λ) is in the image of

ŜKp(G,X)(R̂m) ↪→ ŜLp(H, h
±)(R̂m)

Note that R̂m is an object of CZ̆p
. As we have a morphism Spf(R̂m)→ BTG,−µh

∞ extending the

map Spec(R/m)→ ŜKp we deduce from Lemma 3.35 that such an extension exists.

Step 4: the special type case. Suppose now that (G,X,G) is of special type. Then the
bijectivity of (3.4.5) may be checked by hand. Indeed, in this case SKp(G,X) is isomorphic to a
disjoint union of the form Spec(OF ), where F is an an unramified extension of Qp (e.g., see [DY24,
Proposition 3.22]). Working component by component, we may replace ŜKp with Spf(OF ). As
Spf(OF )→ Spf(Zp) is formally étale, we see that the morphism Spec(R/I)→ Spf(OF ) for the
Z̆p-algebra R, uniquely lifts to a morphism Spec(R) → Spf(OF ). We will thus be done if we
can show that the composition Spec(R)→ Spf(OF )→ BT

Gc,−µc
h∞ agrees with the given one from

(3.4.5). But, it’s clear that the two maps induce the same map Spec(R/I)→ BT
Gc,−µc

h∞ . So, the
claim follows from (3.4.3) as, in this case, we have that Qx′/Pµc

h
is trivial, as Gc is a torus, and

so there is a unique lift of this Spec(R/I)→ BT
Gc,−µc

h∞ to a point Spec(R)→ BT
Gc,−µc

h∞ .

Step 5: the abelian type case. Suppose now that (G,X,G) is of abelian type. Consider
the objects as in Lemma 2.9. For an appropriate neat compact open subgroup and Mp ⊆
G1(A

p
f )×T(Ap

f ) the map α induces a closed embedding

α : SKp
2
(G2,X2) ↪→ SMp(G1 ×T,X1 × {h}). (3.4.8)

To prove this it suffices to pass to Z̆p. Now, it’s evident that (G1,X1,G1) is an adapted Hodge
type datum for both (G2,X2,G2) and (G1 × T,X1 × {h},G1 × T). Thus, by construction of
integral canonical models as in [Kis10, (3.4.11)], we have that at infinite level, the choice of a
connected component S + of (SKp,1)Z̆p

gives an identification of the map SKp,2 → SKp,1×Lp

(base changed to Z̆p) with the map

[S + ×A (G2)]/A (G2)
◦ → [S + ×A (G1 × T)]/A (G1 × T)◦,

with notation as in loc. cit. We claim this map is a closed embedding. Indeed, from the
fact that G2 → G1 × T and G2 → G1 × T are closed embeddings inducing isomorphisms on
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derived subgroups (and so induce isomorphisms on adjoint groups and has the property that
Z(G1) = Z(G1 ×T) ∩G1 and the integral analogue) we see that the map A (G2)→ A (G1 × T)
is a closed embedding. We are then done as the group A (B)◦ only depends on Bder (e.g., see
[KP18, Lemma 4.6.4 (2)]), so that A (G2)

◦ = A (G1 × T)◦. We then deduce the existence of the
desired Mp by arguing as in [Del71, Proposition 1.15].

Fix a finite index subgroup of Mp of the form Kp
1×Lp, and so we obtain a finite étale morphism

SKp
1
(G1,X1)×SLp(T, {h}) ≃ SKp

1×Lp(G1 ×T,X1 × {h})→ SMp(G1 ×T,X1 × {h}).

As we have already verified formal étaleness for Hodge and special type, it follows that formal
étaleness holds also for the source. Applying Lemma 3.37 we deduce also that formal étaleness
holds at level Mp. One may then apply the same argument as in Step 3 to the closed embedding
in (3.4.8) to deduce the formal étaleness result holds for (G2,X2,G2).

Finally, to deduce the result for SKp(G,X), we observe that we have a finite étale morphism

β : SKp
2
(G2,X2)→ SKp(G,X),

for an appropriate choice of neat compact open subgroup Kp
2 ⊆ G2(A

p
f ). Moreover, we know

that ρKp ◦ β agrees with π ◦ ρKp
2

where π : BT
Gc
2,−µc

h2∞ → BT
Gc,−µc

h∞ is the natural map. We
already know that ρKp

2
is formally étale, and we claim that π is as well. Indeed, this follows

from the identification in (3.4.3) as Gc
2 → Gc is a central isogeny, and so the natural morphism

Qx′
2
/Pµc

h2
→ Qx′/Pµc

h
, where the notation has the obvious meaning is an isomorphism. Indeed,

this may be checked over an étale cover, in which case we may assume that Qx′
2

and Qx′ are
trivial, so that this is the natural map Gc

2/Pµc
h2
→ Gc/Pµc

h
. But, this is obviously an isomorphism

as the flag variety does not change under central isogenies.24

We deduce that π ◦ ρKp
2

is formally étale, and so ρKp is formally étale by Lemma 3.37 on the
connected components lying in im(β). But, we may then deduce the formal étaleness of ρKp over
all connected components, using a translation argument (see the proof of Theorem 2.10). □

3.4.3.2. Syntomic characterization. We now formulate a more conceptual, but a priori stronger,
version of the notion of prismatic integral model from Definition 3.17. We use the notion of a
prismatic F -gauge with G-structure of type µ modeling a G-object in de Rham local systems
on XE , for a (formal) scheme X over OE . This is a straightforward generalization of that in
Definition 3.17, and we follow similar conventions as in the prismatic F -crystal setting.

Definition 3.39. A smooth separated model XKp (resp. XKp) of UKp (resp. ShK0Kp) is called
a syntomic integral canonical model if there exists a prismatic F -gauge with Gc-structure of
type −µch modeling ωKp,an (resp. ωKp,ét) such that the induced map

XKp → BT
Gc,−µc

h∞ ,

(
resp. X̂Kp → BT

Gc,−µc
h∞

)
is formally étale (resp. and is also a model of (ShK0Kp , UKp) in the sense of Definition 3.16).

From Proposition 1.39 and Proposition 3.32 any syntomic integral canonical model is a prismatic
integral canonical model. So, the following is a consequence of Theorem 3.13 and Theorem 3.20.

Theorem 3.40. Let (G,X,G) be an unramified Shimura datum of abelian type and Kp a neat-
compact open subgroup of G(Ap

f ). Then SKp (resp. ŜKp) is the unique syntomic integral canonical
model of ShK0Kp (resp. UKp).

24Indeed, let f : G → H be a central isogeny of reductive group schemes over a base scheme S and let Z ⊆ Z(G)
be its kernel. Then, for a cocharacter µ of G the morphism Pf◦µ → H is the result of quotienting Pµ → G by Z.
Thus, as G/Pµ = (G/Z)/(Pµ/Z) this implies the desired claim.
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3.5. Applications to the theory of G-zips. In [Oor01], Oort defined stratifications of the
special fiber of integral canonical models of Siegel-type Shimura varieties in terms of the group-
theoretic properties of the p-torsion of the universal abelian scheme. To generalize this idea
to integral canonical models SKp for other unramified Shimura data, in [PWZ15], the authors
defined the Artin stack H-Zipµ of (H, µ)-zips for a reductive group H/Fq with cocharacter µ.

The generalization of Oort’s ideas should take the form of a map ζKp : S Kp → Gc-Zip−µc
h where

S Kp is the reduction modulo p of SKp . Such a map was constructed by Viehmann–Wedhorn
in [VW13] for PEL-type Shimura varieties, and by Zhang in [Zha18] for Hodge-type Shimura
varieties. In fact, Zhang was able to show that the map ζKp is smooth.

One can use the syntomic realization functor ωKp,syn to generalize such results to the abelian-
type setting. Namely, by reducing modulo p we obtain a formally étale

ωKp,syn : S Kp → BT
Gc,−µc

h
∞ , (3.5.1)

where again we are using BT
Gc,−µc

h
∞ to denote the reduction of BTGc,−µc

h∞ modulo p. By passing to
the 1-truncation (i.e., pulling back a G-bundle along Rsyn ⊗ Fp → Rsyn), we obtain a morphism

BT
Gc,−µc

h
∞ → BT

Gc,−µc
h

1 (3.5.2)

which is formally smooth by [GM24, Theorem D]. By [GM24, Theorem E] there is a morphism

BT
Gc,−µc

h
1 → Gc-Zip−µc

h , (3.5.3)

which, in fact, is a gerbe for an explicit group scheme (and so smooth). Composing the above
maps, we arrive at the following result.

Theorem 3.41. Suppose that p > 2 and (G,G,X) is an unramified Shimura datum of abelian
type. Then, composing (3.5.1), (3.5.2), and (3.5.3) gives a smooth morphism

ζKp : S Kp → Gc-Zip−µc
h .
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