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Abstract

We define Langlands parameters for connected reductive groups over finite
fields and formulate the Langlands correspondence for finite fields using these
parameters.

1 Introduction

The goal of this paper is try to formulate a parametrization of representations of
a finite Chevalley group G(Fq) over Qℓ in terms of the Langlands dual group over
Qℓ of G. One motivation is to relate this parametrization for G(Fq) to the (still
conjectural!) Langlands parametrization of irreducible representations of groups
over local fields. The reason for using the dual group over Qℓ is that Langlands’
philosophy suggests that representations of a reductive group G on k = k vector
spaces ought to be related to (maps of a Weil group to) a k-dual group. Such
a parametrization was given for representations of GLn(Fq) by Ian Macdonald in
[Mac80].

For more general Chevalley groups, parametrizations involving the dual group
over Fq may be found in [DL76], [Lus84a], and [Lus88]. A formulation using the
complex dual group is stated in [Lus84b], but even this formulation is not so well
connected to Langlands parameters. The reason is that the Deligne–Lusztig and
Lusztig formulations are stated in terms of a single element of the dual group. In
the most fundamental and simplest example where G(Fq) = F×

q , a representation

is simply a character of the multiplicative group F×
q . The dual group over Fq is F

×
q .

The special dual group elements that Deligne and Lusztig consider in [DL76] and
[Lus88] are elements of order q−1; that is, elements of F×

q . They are therefore seek-
ing to parametrize characters of F×

q by elements of F×
q . Because the multiplicative

group of a finite field is cyclic, such a parametrization is possible, but it is never
natural. The choices required appear in [DL76, (5.0.1)–(5.0.2)]: isomorphisms

F×
q

∼−→ (Q/Z)p′

roots of 1, order prime to p in Q×
ℓ

∼−→ (Q/Z)p′ .

The first of these choices appears also in [Lus84a, (8.4.3)]. On the right in both
isomorphisms is the additive group of elements of order prime to p in Q/Z. The
isomorphisms exist essentially because all cyclic groups of the same order are iso-
morphic; but they cannot be chosen naturally. The field Qℓ appears in the second
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because the methods of étale cohomology employed by Deligne and Lusztig produce
representations not on complex vector spaces but rather on vector spaces over Qℓ.

In this paper, we define the Weil–Deligne group for a finite field, and use these
to formulate the Langlands correspondence for the finite field. Each fiber of this
correspondence should be parametrized by irreducible representations of a finite
group attached to a Langlands parameter, just as for other Langlands correspon-
dences. In a subsequent paper by the first author, we construct the Langlands
correspondence for finite fields under the good prime assumption, and discuss a
conjectural relation between the Langlands correspondence for finite fields and the
categorical local Langlands correspondence.
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2 Langlands dual group

The point of root data is that they provide a combinatorial way to specify a reduc-
tive group. Here is a statement.

Theorem 2.1. Let k be a field with separable closure ksep, and let G and be a
connected reductive algebraic group defined over k. Fix a Borel pair (T,B) (not
necessarily defined over k). Write BR for the corresponding based root datum
([ABV92, Definition 2.10]).

(1) There is a natural action of the Galois group Γ = Gal(ksep/k) on the based
root datum. This action depends only on the inner class of the k-rational form
G. The action factors through the Galois group of a finite Galois extension
E/k.

(2) Suppose T ′ ⊂ B′ ⊂ G′ is a Borel pair in another connected reductive algebraic
group over ksep, with based root datum BR′, and that

Ξ: BR → BR′

is an isomorphism of based root data, then Ξ is induced by an isomorphism
of algebraic groups over ksep

ξ : (T ⊂ B ⊂ G)→ (T ′ ⊂ B′ ⊂ G′)

The isomorphism ξ is uniquely determined up to pre-composition with Ad(t)
(for some t ∈ T ), or post-composition with Ad(t′) (for some t′ ∈ T ′).

(3) Suppose that we have pinnings P for T ⊂ B ⊂ G and P ′ for T ′ ⊂ B′ ⊂ G′.
Then Ξ is induced by a unique isomorphism of algebraic groups

ξP,P ′ : (G,P)→ (G′,P ′).

2



(4) Suppose BR′′ is any based root datum. Then there is a Borel pair T ′′ ⊂ B′′,
with a pinning P ′′, in a reductive algebraic group G′′ over ksep with the property
that the corresponding based root datum is BR′′. Because of (3), the pair
(G′′,P ′′) is unique up to a unique isomorphism.

(5) In the setting of (4), suppose in addition that BR′′ is endowed with an action
of Γ = Gal(ksep/k) that factors through the Galois group of a finite Galois ex-
tension E/k. Then there is a unique definition of G′′ over k with the following
properties:

(a) The torus T ′′ is defined over k, and the corresponding action of Γ on
X∗(T ′′) is the given one on BR′′.

(b) Each map ϕα′′ : SL2 → G′′ in the pinning P ′′ is defined over E (using
the standard definition of SL2 over E).

As a consequence of these properties, B′′ is also defined over k, so that G′′ is
quasisplit.

Corollary 2.2. Suppose (G,P) is a connected reductive algebraic group with a
pinning over a separably closed field ksep, and BR is the corresponding based root
datum. Write Aut(G,P) for the group of algebraic automorphisms of G preserving
the pinning (in the weak sense of permuting the collection of maps from SL2 to G).
Then there is a natural isomorphism

Aut(G,P) ≃ Aut(BR) :

that is, every automorphism of the based root datum of G arises from a unique
algebraic group automorphism preserving the pinning.

Every algebraic automorphism of G differs by an inner automorphism from one
preserving P; and the only inner automorphism preserving P is the identity. Con-
sequently there is a semidirect product decomposition

Aut(G) ≃ Int(G)o Aut(G,P).

Definition 2.3. Suppose G is a reductive algebraic group defined over the field k,
and that T ⊂ B ⊂ G is a Borel pair in Gksep; we do not require that T or B be
defined over k. Let Γ = Gal(ksep/k) act on the based root datum BR as in Theorem
2.1(1). Suppose K = Ksep is another field, assumed to be separably closed. A dual
group to G over K is a pinned reductive algebraic group (G∨,P∨) with based root
datum equal to the dual based root datum

BR∨ = (X∗,Π
∨, X∗,Π).

(According to Theorem 2.1(4), the pinned group (G∨,P∨) is unique up to a unique
isomorphism.)

We let Γ act on the dual based root datum BR∨ by the inverse transpose of
its action on BR. Because of the uniqueness of (G∨,P∨), Γ acts on (G∨,P∨) by
transport of structure. (This is Corollary 2.2.) The L-group of G over K is the
semidirect product

LG = Gal(ksep/k)nG∨(K).
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This action is by algebraic automorphisms, so LG is a pro-algebraic group over K.
It is the inverse limit of the algebraic groups

Gal(E/k)nG∨(K)

with E a finite Galois extension of k. The L-group of G depends only on the inner
class of the k-rational form G.

The general shape of a “Langlands conjecture” for group representations is

irreducible representations of G(k) on K-vector
spaces (up to equivalence) should fall into disjoint
packets Πϕ indexed by Langlands parameters ϕ (up
to conjugation by G∨(K)).

(2.1)

In this conjecture, a Langlands parameter is a group homomorphism

ϕ : Wk → LG

subject to requirements including

(1) im(ϕ) is semisimple;

(2) ϕ is compatible with the natural projections to Gal(ksep/k).

In this definition of Langlands parameter, the group Wk is a Weil group for the
field k. (Weil groups were defined for local and global fields in [Wei51]. We have
not tried to determine whether Weil’s motivation in that paper, a good formulation
of class field theory, can be made to suggest anything about the case of finite fields
that we are now interested in.) A Weil group is required to be equipped with a
natural homomorphism

πk : Wk → Gal(ksep/k)

(so that condition (2) in the definition of Langlands parameter makes sense).
Recall that for a local field E, a Weil group WE is a modified Galois group. In

particular, there is always a homomorphism

πE : WE → Gal(Esep/E),

with dense image, whose kernel is an abelian subgroup of WE.

3 Weil groups of finite fields

Suppose Fq is a finite field, and that Fq is an algebraic closure. We know that

Γ = Gal(Fq/Fq) = lim←−
m

Z/mZ;

the generator of this group is the arithmetic Frobenius

σq : Fq → Fq, σq(x) = xq.

For an algebraic variety X over Fq, let F : X → X be the q-th power geometric
Frobenius morphism. We will try to write σq for anything related to a Galois group
action (so that σq is invertible, and typically only Fq-linear) and F for anything
related to an Fq-morphism (so often not invertible).

The following definition is motivated by [Mac80, §3].
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Definition 3.1. We put
Ik = lim←−

m

F×
qm

where the limit is taken over the norm maps

Nmd,m : F×
qmd → F×

qm .

We define the Weil group of k by

Wk = Ik o ⟨σq⟩

where the conjugation by σq acts on Ik as q-th power.

Remark 3.2. There is a natural system {F×
qmoGal(Fqm/Fq)}m≥0 of finite quotients

of Wk. These look similar to WR = C× oGal(C/R).

Definition 3.3. Suppose k = Fq is a finite field. Suppose G is a reductive algebraic
group over Fq, K is an algebraically closed field, and LG is the L-group of G over
K (Definition 2.3). A Weil L-parameter is a group homomorphism

ϕ : Wk → LG

such that

(1) the map ϕ is compatible with projections to Gal(k/k);

(2) im(ϕ) is semisimple; and

(3) ϕ|Ik factors to some finite quotient F×
qm of Ik.

For a Weil L-parameter ϕ, write ϕ0 for ϕ|Ik . The (pointwise) stabilizer of ϕ0 is

ZG∨(ϕ0) = {y ∈ G∨ | Ad(y)(ϕ(w)) = ϕ(w) (w ∈ Ik)};

this is a (possibly disconnected) equal rank reductive subgroup of G∨. The Dynkin
diagram of (G∨)ϕ is obtained from the extended Dynkin diagram of G∨ by deleting
a nonempty set of vertices in each simple factor.

We say that two Weil L-parameters ϕ and ϕ′ are equivalent if the following
condition is satisfied: there is g ∈ G∨ such that Ad(g)(ϕ0) = ϕ′

0, and the images of
Ad(g)(ϕ(σq)) and ϕ′(σq) in

LG/ZG∨(ϕ′
0) are same.

We write
ΦFq(G)

for the set of equivalence classes of Weil L-parameters.

Definition 3.4. We say that
ϕ0 : Ik → LG

is an inertial L-parameter if it is the restriction of a Weil L-parameter to Ik. We
say that two inertial L-parameters ϕ0 and ϕ′

0 are equivalent if they are conjugate
by some g ∈ G∨.
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Proposition 3.5. A torus T defined over Fq is the same thing as a lattice auto-
morphism

σ∗
q : X

∗(T )→ X∗(T )

of finite order; or equivalently the inverse transpose automorphism

(σq)∗ : X∗(T )→ X∗(T ), (σq)∗ =
t(σ∗

q )
−1.

The algebraic functions on T are k-linear combinations of the rational characters
in X∗(T ). The geometric Frobenius morphism (of algebraic groups defined over Fq)
F : T → T sends the character λ to q(σ∗

q )
−1(λ).

We need also

Proposition 3.6. Suppose T is a torus over Fq with geometric Frobenius map
F : T → T . Then

(1) T (Fq) =
⋃
m≥1

F×
qm ⊗Z X∗(T );

(2) T (Fq) =
⋃
m≥1

T (Fqm) =
⋃
m≥1

T Fm

.

(3) The norm map

Nmd,m : T (Fqmd)→ T (Fqm),

Nmd,m(t) = t · Fm(t) · F 2m(t) · · ·F (d−1)m(t)

is surjective, with kernel equal to (Fm − 1)T (Fqmd).

Proof. The first assertion is trivial. The second says that every point over the
algebraic closure is defined over some finite extension. (The only issue requiring
care is that the subgroups defined in the first assertion are not the points over Fqm

unless the torus is split.) The third assertion is a consequence of Proposition 3.2.2
of [Car85].

Corollary 3.7. Suppose T is a torus over Fq with geometric Frobenius map F : T →
T , and suppose K is an algebraically closed field. Write

T̂ (Fqm) = Hom(T (Fqm), K
×)

for the group of one-dimensional characters over K. Write F also for the auto-

morphism of T̂ (Fqm) induced by the geometric Frobenius. Then

T̂ (Fq) ≃ characters of T (Fqm) factoring through Nm,1

≃ T̂ (Fqm)
F

.

Corollary 3.7 will be the key to formulating a Langlands parametrization of
torus characters.
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Proposition 3.8. Suppose T is a torus over Fq, K is an algebraically closed field,
and LT is the L-group of T over K. Then there is a natural bijection

ΦFq(T )←→ T̂ (Fq), ϕ←→ ξ(ϕ)

between the equivalence classes of Weil L-parameters of T and characters of T (Fq).

Here both the characters and the L-groups are defined using the algebraically
closed field K. We do not make any assumption on the characteristic of K: both
sides of the bijection may be smaller if the characteristic of the representing field
K divides the order of T (Fq).

Proof. Corollary 3.7 provides natural inclusions

T̂ (Fqm) ⊂ ̂T (Fqdm)

defined by norm maps; so we can consider the increasing “union”

T̂ (Fq∞) = lim−→
m

T̂ (Fqm).

Here “increasing” for positive integers is defined by divisibility.
We use the geometric Frobenius morphism F of T described in Proposition

3.6. Fix a positive integer m0 so that Fm0 is equal to multiplication by qm0 (on
the lattice X∗(T ), for example). (We can take for m0 the order of the arithmetic
Frobenius automorphism σ∗

q of Proposition 3.5.) According to Proposition 3.6, for
any m divisible by m0,

T (Fqm) = HomZ(X
∗(T ),F×

qm),

so
T̂ (Fqm) = Hom(T (Fqm), K

×)

= Hom(HomZ(X
∗(T ),F×

qm), K
×)

= Hom(F×
qm , X

∗(T )⊗Z K×)

= Hom(F×
qm , T

∨(K))

(m divisible by m0). (3.1)

By (3.1), we conclude

T̂ (Fq∞) = Hom(Ik, T
∨(K)),

the continuous homomorphisms that factor to some quotient Fqm of Ik. The arith-
metic Frobenius f acts on these homomorphisms by acting on the domain by σ−1

q

and on the range by σ∗
q . (To see that this is the correct action, one can follow the

Galois action of the arithmetic Frobenius σq through the isomorphisms of (3.1)).
The fixed points of σm

q under this action are the characters of T (Fqm):

T̂ (Fqm) = Hom(Ik, T
∨(K))σ

m
q (m ≥ 1). (3.2)

Here there is no divisibility requirement on m. We considered first very divisible m
to get a simple computation of characters; but Corollary 3.7 then gives a result for
all m ≥ 1.)

On the other hand, the right side of (3.2) is exactly

Hom(Ik, T
∨(K))σ

m
q = ΦFqm

(T ) (m ≥ 1).

7



We are more or less ready to state a Langlands classification for finite groups
of Lie type based on [DL76]. In order to make it more explicit, we need one more
definition.

Definition 3.9. In the setting of Definition 3.3, a rigid Weil L-parameter is a pair
(ϕ, T∨) such that

(1) ϕ : Wk → LG is a Weil L-parameter;

(2) T∨ is a maximal torus in G∨ such that ϕ(Ik) ⊂ T∨ and imϕ ⊂ NLG(T
∨).

We say that two rigid Weil L-parameters (ϕ, T∨) and (ϕ′, T ′∨) are equivalent if
the following condition is satisfied: there is g ∈ G∨ such that Ad(g)(ϕ0) = ϕ′

0,
Ad(g)(T∨) = T ′∨, and the images of Ad(g)(ϕ(σq)) and ϕ′(σq) in

LG/T ′∨ are same.

Proposition 3.10. Suppose we are in the setting of Definitions 3.3 and 3.9.

(1) Any Weil L-parameter ϕ is equivalent to the first term of a rigid Weil L-
parameter (ϕ′, T∨).

(2) Assume that two rigid Weil L-parameters (ϕ, T∨) and (ϕ′, T∨) satisfy ϕ|Ik =
ϕ′|Ik . Then there is g ∈ NZG∨ (ϕ0)(T

∨) such that ϕ′(σq) = ϕ(σq)g. They are
equivalent if and only if g ∈ NZG∨ (ϕ0)0(T

∨).

Proof. For the first, the subgroup ϕ(Ik) ⊂ G∨ is cyclic and semisimple, and therefore
contained in a maximal torus T∨ of G∨; then automatically T∨ ⊂ ZG∨(ϕ0). Then

Ad(ϕ(σq)
−1)(T∨) = T∨

0

is another torus of ZG∨(ϕ0); so there is an element g0 ∈ ZG∨(ϕ0)0 so that

Ad(g0)(T
∨) = T∨

0 .

If we define g = ϕ(σq)g0, then the conclusion is that

Ad(g)(T∨) = T∨,

so that g ∈ NLG(T
∨). Because g0 ∈ G∨, g has the same image σq ∈ Gal(k/k) as

ϕ(σq). Similarly, because g0 centralizes the image of ϕ0, we have

Ad(g)(ϕ(w)) = Ad(ϕ(σq))(ϕ(w)) = ϕ(w)q

for w ∈ Ik. We define ϕ′ by ϕ′|Ik = ϕ|Ik and ϕ′(σq) = g. Then (ϕ′, T∨) is a rigid
Weil L-parameter, proving (1).

The second assertion follows easily from the definition.

Because it is so central to this paper, we essentially repeat the proof of the
proposition by explaining how to list all rigid Langlands parameters. Write

T∨
0 ⊂ B∨

0
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for the Borel pair specified by the pinning in the definition of G∨ (Definition 2.3).
Since equivalence of rigid parameters is conjugation by G∨, every rigid parameter
has a representative with torus part T∨

0 ; so we seek to enumerate these. Now

NLG(T
∨
0 ) = Gal(k/k)nN∨G(T

∨
0 ),

NLG(T
∨
0 )/T

∨
0 = Gal(k/k)nW (G∨, T∨

0 ).
(3.3)

We write
W = W (G∨, T∨

0 ).

It is now clear that equivalence classes of rigid Weil L-parameters are exactly
the same thing as W -orbits of pairs

(ϕ0, x0), ϕ0 : Ik → T∨
0 , x0 ∈ σq ·W ⊂ Gal(k/k)nW

subject to the requirement that

Ad(x)(ϕ0(w)) = ϕ0(w
q),

Ad(xm)(ϕ0(w)) = ϕ0(w
qm). (3.4)

If m0 is a positive integer divisible by the order of every element of σqW , then
(3.4) implies that the image of ϕ0 consists of elements of order dividing qm0 − 1.
This means in particular that ϕ0 must factor to F×

qm0 . If we choose a multiplicative
generator η of this group, then ϕ0 is determined by the single element y0 = ϕ0(η) ∈
T∨, which is required only to satisfy

x0y0x
−1
0 = yq0. (3.5)

That is, for each element x0 ∈ σq ·W , the set of rigid Langlands parameters (ϕ0, x0)
may be identified with the finite subgroup of elements y0 ∈ T∨ (necessarily of order
dividing qm − 1) satisfying (3.5).

Therefore the equivalence classes of rigid Weil L-parameters are partitioned by
W -conjugacy classes in the coset σq ·W ; and if a conjugacy class has representative
x0, then the corresponding set of parameters may be labelled (not canonically) by
the finite group defined by (3.5).

With these explicit descriptions of L-parameters in hand, we can relate them to
our finite Chevalley group G(k).

Proposition 3.11. Suppose G is a connected reductive algebraic group defined over
the finite field k = Fq, B0 ⊂ G is a Borel subgroup defined over k, and T0 ⊂ B0 is
a maximal torus defined over k. Let Gal(k/k) act on W (G, T0) as in Theorem 2.1,
and form the semidirect product

Gal(k/k)nW (G, T0).

Fix also a second algebraically closed field K, over which we define L-groups and
represent k-groups.

(1) The semidirect product above is naturally isomorphic to (3.3).
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(2) The G(k)-conjugacy classes of maximal tori in G defined over k are naturally
indexed (by the Frobenius action) by W -conjugacy classes in σq · W . This
bijection is given by sending Ad(g)T0 to the image of g−1F (g) ∈ NG(T0) in
W ∼= σq ·W .

(3) If x0 ∈ σq ·W and Tx0 is a corresponding maximal torus defined over k, then
there is a natural isomorphism

NG(Tx0)(k)/Tx0(k) ≃ W (G∨, T∨)x0 .

(4) In the setting of (3), there is a natural bijection

T̂x0(k)/(NG(Tx0)(k)/Tx0(k))

≃ {rigid Weil L-parameters (ϕ, T̂ ) such that ϕ(σq) is a lift of x0}/∼.

(5) In the bijection of (4), suppose two characters θ1 ∈ T̂x1(k) and θ2 ∈ T̂x2(k)
correspond to the rigid parameters (ϕi, xi). Then the pair are geometrically
conjugate ([DL76, Definition 5.5]) if and only if the inertial L-parameters
ϕ1|Ik and ϕ2|Ik are equivalent.

Proof. The claim (1) follows from the construction of the L-group in Definition 2.3.
The claim (2) is [DL76, Corollary 1.14]. As for (3), we have

NG(Tx0)(k)/Tx0(k) ≃ W (G, Tx0)
F ≃ W (G, T0)

x0 ≃ W (G∨, T∨)x0

by [DM20, Proposition 4.4.1]. The claim (4) is Proposition 3.8. For the claim (5),
suppose m ≥ 1; consider the (surjective) norm homomorphisms

N : Txi
(Fqm)→ Txi

(Fq)

of Proposition 3.6. In the bijections of (3), the pairs (Ti(Fqm), θi ◦N) clearly corre-

spond to the rigid Weil L-parameters (ϕi|WFqm
, T̂ ). We choose m so that Ad(xm

i ) is

trivial on T∨; so equivalence of the rigid Weil L-parameters is the same as equiva-
lence of ϕ1|Ik and ϕ2|Ik by (4).

The proposition says that equivalence classes of rigid Weil L-parameters are in
one-to-one correspondence with G(k)-conjugacy classes of pairs (T, θ), with T a

maximal torus in G defined over k, and θ ∈ T̂ (k). A version of this is in [DL76,
(5.21.5)].

The main results of [DL76] concern the case

K = Qℓ,

with ℓ any prime not equal to p. In that setting, Deligne and Lusztig define a
virtual K-representation RTx0

(θ) of G(k) for every (Tx0 , θ) as in the proposition.
Here is a way to write the Deligne–Lusztig results as a Langlands classification

for finite groups of Lie type.
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Theorem 3.12 (Deligne–Lusztig [DL76]). Suppose G is a connected reductive al-
gebraic group defined over the finite field k = Fq. Consider

K = Qℓ,

with ℓ any prime not equal to p. Suppose (ϕ, T∨) is a rigid Weil L-parameter
(Definition 3.9). Let (T, θ) be a corresponding pair consisting of a maximal torus
defined over k and a K×-valued character of T (k) (Proposition 3.11(3)). Define

RT (θ) = virtual K-representation of G(k)

as in [DL76].

(1) The virtual representations RT1(θ1) and RT2(θ2) have irreducible summands
in common only if (T1, θ1) and (T2, θ2) are geometrically conjugate; that is,
only if the corresponding rigid Weil L-parameters have equivalent underlying
inertial L-parameters.

(2) Every irreducible G(k) representation over K appears as an irreducible sum-
mand of some RT (θ).

Definition 3.13. In the setting of Theorem 5.9 (so that K = Qℓ) write Π(G(k))
for the set of irreducible K-representations of G(k).

Suppose ϕ0 is an inertial L-parameter. The L-packet of ϕ0 is

Πϕ0(G(k)) = {π ∈ Π(G(k)) | π appears in RT (θ)}

for some character θ of some rational torus corresponding to a rigid Weil L-
parameter (ϕ, T∨) such that ϕ|Ik is equivalent to ϕ0.

According to Theorem 3.12, the L-packets partition Π(G(k)).
What we want next is a more explicit description of the packets Πϕ0 . To begin,

we ask how large these packets are.

Theorem 3.14 (Deligne–Lusztig [DL76, Theorem 6.8]). In the setting of Theorem
3.12, write the decomposition of the virtual representation RT (θ) into irreducible
representations as

RT (θ) =
∑

π∈Πϕ0
(G(k))

m(π)π,

with each multiplicity m(π) an integer. Then∑
π∈Πϕ0

(G(k))

m(π)2 = |(W (G, T )F )θ| = |W ((G∨)ϕ0 , T∨)x|.

Here the two Weyl groups appearing are identified by Proposition 3.11(3).

Corollary 3.15. In the setting of Theorem 3.12, suppose that the stabilizer (G∨)ϕ0

of the inertial L-parameter ϕ0 is a maximal torus in G∨. Then Πϕ0(G(k)) is a
single irreducible representation, namely ±RT (θ).

Proof. The hypothesis is equivalent to the triviality of W ((G∨)ϕ0 , T∨).

Theorem 3.14 and Corollary 3.15 suggest that the size of the L-packet Πϕ0(G(k))
is controlled by the failure of the (possibly disconnected) reductive group (G∨)ϕ0 to
be a torus. The first step is to enlarge the Weil group to the Weil–Deligne group,
which we introduce in the next section.
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4 Weil–Deligne groups and a Langlands corre-

spondence for finite fields

We want to refine the partition of the representations Π(G(k)) in (2.1). We will
turn next to a rough outline of the idea introduced by Deligne for doing that.

The general shape of a Deligne’s modified version of “Langlands conjecture” for
group representations is

irreducible representations of G(k) on K-vector
spaces (up to equivalence) should fall into disjoint
packets Πφ indexed by L-parameters φ of Weil–
Deligne type (up to conjugation by G∨(K)).

The conjecture includes an idea about the structure of an L-packet:

representations in a packet Πφ should be in-
dexed approximately by some irreducible G∨(K)-
equivariant local systems of K-vector spaces
on G∨(K) · φ; that is, by irreducible K-
representations of the group of connected compo-
nents G∨(K)φ/G∨(K)φ0 .

An even more optimistic version (proven for real groups in [ABV92]) is

the category of G(k) representations built from a
packet Πφ should be in duality with the category of
G∨(K)-equivariant perverse sheaves on G∨(K) ·φ.

In this conjecture, an L-parameter of Weil–Deligne type is an algebraic group
homomorphism

φ : WDk → LG

subject to requirements including

(1) im(φ|Wk
) is semisimple;

(2) φ is compatible with the natural projections to Gal(ksep/k).

In this definition of L-parameter of Weil–Deligne type, the group WDk is a Weil–
Deligne group for the field k. We will not state general requirements for a Weil–
Deligne group, because we do not know how to formulate them in a way consistent
with our fond hope: that there is a definition of something like an archimedean
Weil–Deligne “group” (or at least of its representations) that incorporates the mod-
ified notion of “Langlands parameter” introduced in [ABV92]. The same fond hope
asks also that this archimedean definition be made consistent with Deligne’s non-
archimedean definition in [Del73, 8.3.6].

Here at any rate is a definition of a Weil–Deligne group for a finite field. Each
Weil L-parameter ϕ will have several extensions to an L-parameter φ; we will try to
arrange a corresponding partition of each L-packet Πϕ into several smaller packets.
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Definition 4.1. The Weil–Deligne group of the finite field k is the locally pro-
algebraic group scheme

WDk = Ga oWk

over Z[1/p], where (σn
q , w) ∈ Wk acts on Ga by the multiplication by qn.

Assume that the characteristic of K is not p. An L-parameter of Weil–Deligne
type is a locally pro-algebraic group homomorphism

φ : WDk(K)→ LG

satisfying the following conditions:

(1) The map φ is compatible with projections to Gal(k/k).

(2) φ|Ik factors to some finite quotient F×
qm of Ik.

We say that the L-parameter φ is special if φ|Ga(K)(1) is a special unipotent element
of (G∨)φ(Ik). We say that φ is Frobenius semisimple if φ(σq) is semisimple in LG.

Lemma 4.2. Let g = su ∈ G∨ be the Jordan decomposition. Then we have

π0

(
ZZG∨ (s)◦(u)/Z (ZG∨(s)◦)

) ∼= π0

(
ZZG∨ (s)◦(u)/Z(G

∨)
)
.

Proof. We take a Borel pair T ⊂ B in Gksep . We may assume that s ∈ T∨. Let ∆
be the set of simple root of Gksep with respect to T ⊂ B. Let I ⊂ ∆ be the subset
consisting of elements which are the simple coroots of ZG∨(s)◦. Since Z∆/ZI has
no torsion, the natural map

(X∗(T )/ZI)tor → (X∗(T )/Z∆)tor

is injective. Then π0(Z(G
∨)) → π0(Z(ZG∨(s)◦)) is surjective, since it is identified

with
(X∗(T )/Z∆)∨tor → (X∗(T )/ZI)∨tor.

Hence, we have

π0(ZZG∨ (s)◦(u)/Z(ZG∨(s)◦)) ∼= π0(ZZG∨ (s)◦(u))/π0(Z(ZG∨(s)◦))
∼= π0(ZZG∨ (s)◦(u))/π0(Z(G

∨))
∼= π0(ZZG∨ (s)◦(u)/Z(G

∨)),

where we use the surjectivity of π0(Z(G
∨))→ π0(Z(ZG∨(s)◦)) at the second equal-

ity.

We put

AZG∨ (φ(Ik))◦(φ(Ga)) = π0(ZZG∨ (φ(Ik))◦(φ(Ga))/Z(ZG∨(φ(Ik))
◦)).

We define Lusztig’s canonical quotient AZG∨ (φ(Ik))◦(φ(Ga)) of AZG∨ (φ(Ik))◦(φ(Ga)) as
in [Lus84a, 13.1] using the isomorphism given by Lemma 4.2. We put φ0 = φ|Ga×Ik

and
A(φ0) = π0 (ZG∨(φ0)/Z(G

∨)) .
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Further we put

A(φ0) = A(φ0)/Ker(AZG∨ (φ(Ik))◦(φ(Ga))→ AZG∨ (φ(Ik))◦(φ(Ga))).

To obtain an enlargement of A(φ0), we put

Z̃(φ0) = {(g, σm
q ) ∈ LG | Ad((g, σm

q ))(φ0(x)) = φ0(Ad(σ
m
q )(x)) for all x ∈ Ga × Ik}

and
Ã(φ0) = Z̃(φ0)/Ker(ZG∨(φ0)→ A(φ0)).

We have φ(σq) ∈ Z̃(φ0). Let φ(σq) be the image of φ(σq) under the natural
projection

Z̃(φ0)→ Ã(φ0).

We say that two L-parameters φ and φ′ of Weil–Deligne type are equivalent if the
following condition is satisfied: there is g ∈ G∨ such that Ad(g)(φ0) = φ′

0 and φ(σq)

corresponds to φ′(σq) under the bijection

Ã(φ0) ∼= Ã(φ′
0)

induced by Ad(g), where φ0 = φ|Ga×Ik and φ′
0 = φ′|Ga×Ik . Let ΦK(G) be the

equivalence classes of Frobenius semisimple L-parameters over K of G. We write
ΦK(G)sp ⊂ ΦK(G) for the equivalence classes of special ones.

We put
Aφ = ZA(φ0)

(φ(σq)).

The following is a formulation of the Langlands correspondence for finite fields.

Conjecture 4.3. There is a natural map

LG : IrrQℓ
(G(k))→ ΦQℓ

(G)sp

such that, for φ ∈ ΦQℓ
(G)sp, we have a bijection between L−1

G (φ) and IrrQℓ
(Aφ).

References

[ABV92] J. Adams, D. Barbasch and D. A. Vogan, Jr., The Langlands classification
and irreducible characters for real reductive groups, vol. 104 of Progress
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[Wei51] A. Weil, Sur la théorie du corps de classes, J. Math. Soc. Japan 3 (1951),
1–35.

Naoki Imai
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo, 153-8914, Japan
naoki@ms.u-tokyo.ac.jp

David A. Vogan, Jr.
2-355, Department of Mathematics MIT, Cambridge, MA 02139, USA
dav@math.mit.edu

15


