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Abstract. We construct a moduli space LPG of SL2-parameters over Q, and show that it has
good geometric properties (e.g. explicitly parametrized geometric connected components and
smoothness). We construct a Jacobson–Morozov morphism JM : LPG → WDPG (where WDPG
is the moduli space of Weil–Deligne parameters considered by several other authors). We show
that JM is an isomorphism over a dense open of WDPG, that it induces an isomorphism between
the discrete loci LPdisc

G → WDPdisc
G , and that for any Q-algebra A it induces a bijection between

Frobenius semi-simple equivalence classes in LPG(A) and Frobenius semi-simple equivalence
classes in WDPG(A) with constant (up to conjugacy) monodromy operator.
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1. Introduction

Motivation. A problem of fundamental importance in the study of harmonic analysis is the
classification of irreducible complex admissible representations of G(F ) where F is a non-
archimedean local field, and G is a reductive group over F . The local Langlands correspondence,
a guiding principle for many areas of number theory in the last 40 years, posits a parameteriza-
tion of such admissible representations in terms of equivalence classes of parameters related to
the Galois theory of F . These parameters come in several forms. Chief amongst these are the
complex L-parameters which are homomorphisms ψ : WF × SL2(C)→ LG(C) satisfying certain
properties (cf. [SZ18, §3]), and complex Weil–Deligne parameters which are pairs (ϕ,N) where

ϕ : WF → LG(C) is a homomorphism and N is a nilpotent element of the Lie algebra of Ĝ(C),
satisfying certain properties (cf. [GR10, §2.1]). The notion of equivalence in both cases is that

of Ĝ(C)-conjugacy.
The classical theorem of Jacobson–Morozov (cf. [Jac79, §III.11, Theorem 17]) asserts that

the Jacobson–Morozov map θ 7→ dθ (( 0 1
0 0 )) gives a surjection

JM :

{
Algebraic homomorphisms

θ : SL2(C)→ Ĝ(C)

}
→
{

Nilpotent elements

N ∈ Lie(Ĝ(C))

}
,
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which becomes a bijection on the level of Ĝ(C)-quotients. One may extend this to a Jacobson–
Morozov map

JM :

{
Complex L-parameters

ψ : WF × SL2(C)→ LG(C)

}
→
{

Complex Weil–Deligne parameters
(ϕ,N)

}
.

This map is not a bijection, even up to equivalence and, in fact, is not even surjective (see
Example 3.5). That said, the Jacobson–Morozov map does give a bijection between equivalence
classes of Frobenius semi-simple parameters (see [GR10, Proposition 2.2] or [Ima20, Proposition
1.13]), those which feature most prominently in the local Langlands correspondence. Therefore,
in practice the Jacobson–Morozov map allows one to pass fairly freely between these two no-
tions of parameter and to treat them as essentially equivalent. This is useful as each of these
perspectives has its own advantages (e.g. as illustrated quite well in [GR10]).

The goal of this article is to put the above results on a moduli-theoretic footing. Namely we
define and study a moduli space of L-parameters, and construct a Jacobson–Morozov morphism

JM : LPG →WDPG

between the moduli space of L-parameters and the moduli space of Weil–Deligne parameters.
We then show that there is a natural stratification of the moduli space of Weil–Deligne pa-
rameters with the property that over each stratum the Jacobson–Morozov morphism takes a
particularly simple form. Using this, we show that the Jacobson–Morozov morphism satisfies
some birational-like properties, is an isomorphism over the discrete locus, and that a version of
the above bijection between equivalence classes of complex Frobenius semi-simple parameters
has an analogue over an arbitrary Q-algebra.1

Statement of main results. Let F be a non-archimedean local field and G a reductive group
over F . In §6.1 we define the moduli space of L-parameters for G which we denote LPG.

Proposition 1 (see Corollary 6.8). The moduli space LPG is smooth over Q and has explicitly
parameterized affine connected components.

On the other hand, let WDPG denote the moduli space of Weil–Deligne parameters (e.g. as
in [Zhu20, §3.1]). In §6.3 we define the Jacobson–Morozov morphism

JM : LPG →WDPG.

Our major result may then be stated as follows.

Theorem 1 (see Theorem 7.9 and Theorem 7.13). The Jacobson–Morozov morphism is weakly

birational and induces an isomorphism LPdisc
G
∼−→WDPdisc

G over the discrete loci.

Here we say a morphism of schemes f : Y → X is weakly birational if there exists a dense
open subset U ⊆ X such that f : f−1(U) → U is an isomorphism. A weakly birational map f
is birational if and only if f induces a bijection at the level of irreducible components. Also,
the discrete loci inside of LPG and WDPG are defined, at least when G is semi-simple, as the
locus of points where the centralizer of the universal parameter is quasi-finite over the base (see
Definition 7.3 and Definition 7.11 for general definitions).

To prove Theorem 1 we stratify WDPG by its nilpotent orbits. Denote by N̂ the nilpotent

variety for Ĝ and form the stratification N̂t :=
⊔
N ON by its Ĝ-orbits which we treat as a

disconnected scheme over Q. We then obtain a stratification WDPtG by pulling back N̂t along

the natural map WDPG → N̂ . We give an explicit description of the structure of this variety.

Proposition 2 (see Corollary 5.17). The moduli space WDPtG is smooth over Q and has ex-
plicitly parameterized connected components.

1The reason we do not restrict our attention to semi-simple parameters is that they do not form a representable
presheaf. Thus, to do geometry we are required to work with arbitrary parameters.
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The Jacobson–Morozov morphism factorizes through WDPtG and interacts well with the ex-
plicit decompositions indicated in Proposition 1 and Proposition 2. Utilizing this we show the
following, which implies the weakly birational portion of Theorem 1.

Proposition 3 (see Theorem 7.9). The morphism JM : LPG →WDPtG is birational.

A key component of our proof of Proposition 3 is a relative version of the bijection be-
tween equivalence classes of complex Frobenius semi-simple parameters. Here, Frobenius semi-
simplicity is somewhat delicate and defined in Definition 5.10 and Definition 6.11.

Theorem 2 (see Theorem 6.16). For any Q-algebra A the map

JM : LPG(A)/Ĝ(A) → WDPtG(A)/Ĝ(A)

is a bijection on Frobenius semi-simple elements.

We finally mention that another important ingredient in our proof of Proposition 3 is a result
which may be interpreted as a stronger version of the isomorphy of the Jacobson–Morozov
morphism over the discrete loci, as stated in Theorem 1. Namely, in Proposition 7.8 we show
that the Jacobson–Morozov morphism is an isomorphism over the locus of points of WDPG
whose centralizer has reductive identity component. The relationship to birationality comes
from Proposition 7.7 which shows that the locus of such points is dense in WDPG and thus, a
fortiori, dense in WDPtG (the same holds true for LPG).

As the moduli space of Weil–Deligne parameters has featured quite prominently in recent
developments in the Langlands program and adjacent fields (e.g. see [BG19], [DHKM20], [Zhu20]
and [FS21]) we feel that these results will be valuable in the study of the fine structure of
the space WDPG. In particular, one may in theory reduce many questions involving ‘generic’
geometric structure of WDPG to the study of LPG. More specifically, we have stratified the
geometric space WDPG into pieces such that each stratum is smooth and (essentially) like a
homogenous space for a group, and thus simple geometrically (cf. Theorem 5.16). Moreover,
each of these strata is birational to similarly defined strata in the representation-theoretically
simpler space LPG. In fact, such ideas have already implicitly appeared in several important
geometric results concerning WDPG (e.g. see [BG19, §2.3]).

In addition to its potential uses to study the geometry of WDPG, we believe that these
moduli-theoretic results are clarifying in several other ways. Namely, the weak birationality of
the Jacobson–Morozov morphism helps qualify in the classical setting that almost every complex
Weil–Deligne parameter is in the image of the Jacobson–Morozov map. Moreover, the isomorphy
over the discrete locus may also be used to deduce results of interest even in this classical case
(e.g. see Proposition 3.18). Finally, we feel that our explicit description of the moduli space of L-
parameters (e.g. its set of connected components) helps explain some phenomena differentiating
LPG from WDPG as previously observed by others (c.f. the introduction to [DHKM20]).

Future directions. While our results are written over Q, it is clear that they extend over Z[ 1
N ]

for sufficiently divisible N . Evidently one cannot hope to extend our results over all of Z[1
p ] as

currently written. But, as in op. cit. (and [Hel20]), the correct analogue of WDPG over Z[1
p ]

does not directly involve Weil–Deligne paramters but, instead, involves a scheme of 1-cocycles
for the discretization W 0

F of the tame inertia group. One may then ask whether there is an

analogous description of LPG which allows our results to work over Z[1
p ].

Also, as the morphism JM : LPG → WDPG is weakly birational there exists a dense open
subset U of WDPG such that JM : JM−1(U) → U is an isomorphism. In Proposition 3.15
below, we essentially show that the analytication JM−1(U)an

C contains all (essentially) tempered
L-parameters. From a geometric perspective (e.g. from the perspective of [FS21]) it is more
natural to consider `-adic L-parameters instead of complex ones. One is then naturally led to
the ask whether JM−1(U)an

Q` contains the analogue of (essentially) tempered representations,

which are the (essentially) ν-tempered representations of Dat (see [Dat05]).
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Notation and conventions.

• F is a non-archimedean local field with residue field of characteristic p and size q,
• WF is the Weil group of F ,
• for a Galois extension of fields k′/k, we write the Galois group as Γk′/k and we write Γk

for the absolute Galois group of k,
• for a ring R we shall denote by AlgR the category of R-algebras,
• we shall frequently abuse terminology and call a covariant functor AlgR → C a C-valued

presheaf,
• a reductive group S-scheme H will always have connected fibers,
• for a set X we shall denote by X the associated constant scheme over Q.
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2. Some group theoretic preliminaries

In this section we establish some notation, definitions, and basic well-known results that we
shall often use without comment in the sequel. We encourage the reader to skip this section on
first reading, referring back only when necessary.

2.1. The nilpotent variety, unipotent variety, and exponential map. Let us fix k to be
a field of characteristic 0 and H to be a reductive group over k. We denote by h the Lie algebra
of H thought of both as a vector k-space and as a k-scheme.

Let A be a k-algebra and x an element of hA. Recall then that as in [DG70, II, §6, №3]
one may associate an element exp(Tx) in H(AJT K) to x. We then say that x is nilpotent if it
satisfies any of the following equivalent conditions.

Proposition 2.1. The following are equivalent:

(1) for all finite-dimensional representations ρ : H → GL(V ) the endomorphism dρ(x) of
VA is nilpotent,

(2) there exists a faithful finite-dimensional representation ρ : H → GL(V ) such that the
endomorphism dρ(x) of VA is nilpotent,

(3) exp(Tx) belongs to H(A[T ]),
(4) there exists a morphism of group A-schemes α : Ga,A → HA such that x = dα(1),

if A is in addition reduced, then (1)-(4) are equivalent to

(5) x belongs to hder
A and ad(x) is a nilpotent transformation of hder

A .

Proof. The equivalence of (1)-(4) is given by [DG70, II, §6, №3, Corollaire 3.5]. To see the
equivalence of (1) and (5), in the case when A is reduced, we may assume that A is a field.
Let σ : H/Z(Hder) → GL(W ) be the faithful representation given by taking a direct sum of
Ad: H → GL(hder) and the composition of H → Hab with a faithful representation of Hab.
It is clear that applying (1) to σ shows that (5) holds. Conversely, suppose that (5) holds,
so then dσ(x) is nilpotent. Let ρ be as in (1). We may assume that ρ is irreducible. We
put n = |Z(Hder)|. Then ρ⊗n : H → GL(V ⊗n) factors through H/Z(Hder). Hence by [Del82,
Proposition 3.1 (a)] dρ⊗n(x) is nilpotent. This implies that dρ(x) is nilpotent. �

Let us consider the symmetric algebra on h∗ (resp. the graded ideal of positive degree tensors)

S(h∗) =
⊕
d>0

Sd(h∗) = Hom(h,A1
k),

(
resp. S+(h∗) :=

⊕
d>0

Sd(h∗)

)
.
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Let S(h∗)H be the k-subalgebra of S(h∗) which is invariant for the adjoint action of H on h (in
the sense of [MFK94, Definition 0.5 i)]). Let us then consider the radical ideal

S+(h∗)H := S+(h∗) ∩ S(h∗)H .

The nilpotent variety of H is the closed subshceme of h given by N := V
(
S+(h∗)H

)
(or NH

when we want to emphasize H). This is not a misnomer as for any extension k′ of k we have

N (k′) = {x ∈ hk′ : x is nilpotent}

(cf. [Jan04, §6.1, Lemma]). In particular, N is the unique reduced subscheme of h whose k-points
consist of the nilpotent elements of hk.

The nilpotent variety N is an integral (cf. [Jan04, §6.2, Lemma]) finite type affine k-scheme
of dimension dim(H)−r where r is the geometric rank of H (see [Jan04, §6.4]). In fact, as k is of
characteristic 0, it is normal by the results of [Kos63]. Observe that the nilpotent variety is stable
under the adjoint action of H. Also observe that if f : H → H ′ is a morphism of reductive groups
over k it induces a morphism df : NH → NH′ and satisfies df(Ad(h)(x)) = Ad(f(h))(df(x)).

Example 2.2. Let Matn,k be the scheme of n-by-n matrices over k, and let I ⊆ O(Matn,k)

be generated by those polynomials corresponding to (aij)
n = 0. Then, NGLn,k = V (

√
I).

From this example, and the functoriality of the nilpotent variety, it’s easy to see that if A is
a k-algebra, then one has the containment

N (A) ⊆ {x ∈ hA : x is nilpotent},

which is an equality if A is reduced, but can differ otherwise. That said, from this containment
we see that for any element x of N (A) we may define an element exp(x) of H(A) as in [DG70,
II, §6, №3, 3.7]. As this association is functorial we obtain an H-equivariant morphism of
schemes N → H called the exponential morphism and denoted by exp (or expH when we want
to emphasize H) which is functorial in H. We would now like to describe the image of exp.

To this end, note that there exists a unique reduced closed subscheme U (or UH when we
want to emphasize H) of H such that

U(k′) =
{
h ∈ H(k′) : h is unipotent

}
,

for all extensions k′ of k (see [Spr69, Proposition 1.1]). We call U the unipotent variety associated
to H. It is an integral finite type affine k-scheme of dimension dim(H)−r which is stable under
the conjugation action of H (see loc. cit.). Moreover, as k is of characteristic 0, it is normal
(see [Spr69, Proposition 1.3]). We observe that U is stable under the conjugation action of H.

Observe that exp factorizes through U , as both are reduced, and so this may be checked
on the level of k-points. We have the following ombnibus result concerning the exponential
morphism.

Proposition 2.3. Let H be a reductive group over a characteristic 0 field k. Then,

(1) the exponential map exp: NH → UH is an H-equivariant isomorphism,
(2) for any k-algebra A and any x in NH(A), Ad(exp(x)) is equal to

∑∞
i=0

1
i! ad(x)i,

(3) for any k-algebra A and any nilpotent Lie subalgebra n of hA contained in N (A) the
subset exp(n) ⊆ H(A) is a subgroup. If the functor n 7→ n ⊗A B is representable by a
closed subgroup scheme of NA then exp(n) is actually a closed subgroup scheme of HA

such that exp(n)x is unipotent for all x in Spec(A).

Proof. For (1), as NH and UH are connected and normal, and exp may be checked to be a
bijection on k-points, this follows from Zariski’s main theorem as k is of characteristic 0. Claim
(2) follows by the functoriality of the exponential map (cf. [DG70, II, §6, №3, 3.7]). Finally, (3)
may be deduced by the Campbell–Hausdorff series (see [Bou72, II, §6, №4, Théorème 2]). �
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2.2. The L-group and C-group. Fix F to be a non-archimedean local field, and let G be a
reductive group over F . In this subsection we define the C-group of G, which is a modification
of the L-group of G that is better suited to the theory of parameters over a general Q-algebra.

To begin, let Ψ(G) denote the canonical based root datum of GF (see [Kot84, §1.1] and [Mil17,
§21.42]) which comes equipped with an action of ΓF . We fix once and for all a Langlands dual

group of G by which we mean a pinned reductive group (Ĝ, B̂, T̂ , {xα}) over Q (see [Mil17,

§23.d]) together with an isomorphism between Ψ(Ĝ, B̂, T̂ ) and Ψ(G)∨. We denote by ĝ the Lie

algebra of Ĝ, and by N̂ the nilpotent variety of Ĝ.
Next, let WF denote the Weil group scheme over Q associated to F as in [Tat79, (4.1)]. For

a Q-algebra A one may identify WF (A) with the set of continuous maps f : π0(Spec(A))→WF

where here π0(Spec(A)) is thought of as a profinite space (cf. [Sta21, Tag 0906]) and WF is
given its usual topology. In particular,WF (A) = WF (A) when π0(Spec(A)) is discrete (e.g. if A
is connected or Noetherian), but can differ otherwise. For w in WF we shall occasionally abuse
notation and use w to also denote its image in WF (A).

Note that if d : WF → Z is the degree map sending a lift of arithmetic Frobenius to −1, then
there is a morphism of Q-group schemes d : WF → Z which takes a map f to d ◦ f . Observe
that Z admits an embedding of group Q-schemes into Gm,Q corresponding to 1 7→ q−1 and we
denote the composition of d with this map by ‖ · ‖ : WF → Gm,A. We define IF = ker(‖ · ‖),
which is an affine scheme equal to lim←− IF /IK as K travels over all finite extensions of F . Note
that if A is a Q-algebra and X an A-scheme locally of finite presentation then any morphism
of A-schemes IF,A → X must factorize through IF /IK for some K (cf. [Sta21, Tag 01ZC]).

Remark 2.4. One reason to prefer WF over the constant group scheme WF is that the
topological group π0(WF ) is equal to WF with its usual topology, and similarly for IF .

Returning to G, note that the action of ΓF on Ψ(G) gives rise to an action of ΓF on

(Ĝ, B̂, T̂ , {xα}) and, in particular, on Ĝ as a group Q-scheme. We define a finite Galois ex-

tension F ∗ of F characterized by the equality ΓF ∗ = ker(WF → Aut(Ĝ)). Equivalently, F ∗

is the minimal field splitting G∗, the quasi-split inner form of G. We write Γ∗ for ΓF ∗/F . As

Γ∗ acts on Ĝ and WF admits Γ∗ as a quotient, we obtain an action of WF on Ĝ. Define the

L-group scheme of G to be the group Q-scheme LG = ĜoWF . Observe that there is a natural

inclusion Ĝ ↪→ LG which identifies Ĝ as a normal subgroup scheme of LG. In particular, there

is a natural conjugation action of LG on Ĝ, which in turn induces an adjoint action of LG on ĝ.

As the action ofWF on Ĝ factorizes through a finite quotient, we see by Lemma 2.5 below that

the group presheaf associating a Q-algebra A to Z0(Ĝ)(A) := Z(Ĝ)(A)WF (A) is representable.

Lemma 2.5. Let A be a Q-algebra, H a reductive group over A, and Σ a finite group acting
on H by group A-scheme automorphisms. Then, the group functor

HΣ : AlgA → Grp, B 7→ H(B)Σ

is represented by a subgroup scheme of H smooth over A, with H◦ reductive over A, and such
that for all A-algebras B one has the equality Lie(HΣ)(B) = Lie(H)(B)Σ.

Proof. Write H = Spec(R), then one easily verifies that Spec(RΣ), where RΣ is the ring of
coinvariants, represents HΣ. As A is a Q-algebra, it is evident that RΣ is a direct summand of
R and thus HΣ is flat over A, and thus smooth. By [SGA3-1, Exposé VIB, Corollaire 4.4] we
know that H◦ is representable and smooth over A, and it is then reductive by [PY02, Theorem
2.1]). The claim about Lie algebras is clear as the functor of Σ-invariants preserves kernels. �

Let X∗ denote the cocharacter component of Ψ(G) and R+ the positive root component, and
define δ to be the element of X∗ given by the sum over the elements of R+. By our identification

between Ψ(Ĝ, B̂, T̂ ) and Ψ(G)∨ we see that δ corresponds to an element of X∗(T̂ ) which we

also denote by δ. Let us set zG := δ(−1) ∈ T̂ (Q)[2]. By the proof of [BG14, Proposition 5.39],
6
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zG lies in Z0(Ĝ)(Q). Thus, the action of WF on Ĝ × Gm,Q (with trivial action on the second

component) fixes the pair (zG,−1). Therefore, WF acts on Ǧ := (G × Gm,Q)/〈(zG,−1)〉. We

then define the C-group scheme of G to be CG = Ǧ oWF . Note that by [BG14, Proposition

5.39] there exists a central extension G̃ of G such that CG is naturally isomorphic to LG̃.

The group Ĝ admits a natural embedding into Ǧ, with normal image, via the first factor,

and therefore we obtain a conjugation action of CG on Ĝ, and thus an adjoint action of CG on
ĝ. Also, the morphism

(Ĝ×Gm,Q) oWF → Gm,Q ×WF , (g, z, w) 7→ (z2, w)

annihilates 〈(zG,−1)〉, and thus induces a morphism

pC = (pGm , pWF
) : CG→ Gm,Q ×WF .

Finally, we observe that if k is an extension of Q, and c is any element of k such that c2 = q,
then there is a morphism ic : LGk → CGk obtained as the composition

LGk
(g,w) 7→(g,c−d(w),w)−−−−−−−−−−−−→ (Ĝk ×Gm,k) oWF,k → CGk.

2.3. Scheme of homomorphisms and cross-section homomorphisms. We establish here
some terminology and basic results concering the scheme of homomorphisms as well as the
scheme of cross-section homomorphisms (in the sense of [DHKM20, Appendix A]). Throughout
the following we fix k to be field of characteristic 0.

Scheme of homomorphisms. Let H and H ′ be reductive groups over k with Lie algebras
h and h′. For a k-algebra A denote by Hom(HA, H

′
A) the set of group A-scheme morphisms

HA → H ′A. Consider the following functor

Hom(H,H ′) : Algk → Set, A 7→ Hom(HA, H
′
A),

and define the functor Hom(h, h′) similarly, both of which carry a natural H ′-conjugation action.

Proposition 2.6. The following statements hold true.

(1) The functor Hom(H,H ′) is representable by a smooth k-scheme for which the action
map

µ : H ′ ×Hom(H,H ′)→ Hom(H,H ′)

is smooth,
(2) if H is semi-simple then Hom(H,H ′) is affine, and if H furthemore simply connected

then the map

Hom(H,H ′)→ Hom(h, h′), f 7→ df,

is an H ′-equivariant isomorphism,
(3) for any k-algebra A the natural map

Hom(HA, H
′
A)→ Hom(H(A), H ′(A))

is injective.

Proof. Statements (1) and (2) follow from [SGA3-3, Exp. XXIV, Proposition 7.3.1] and [Bri21,
Theorem 2] respectively. Statement (3) follows from Proposition 2.7 below as H and H ′ are
integral and unirational (see [Mil17, Summary 1.36, Theorem 3.23, and Theorem 17.93]). �

Proposition 2.7. Suppose that X and Y are finite type integral k-schemes with X unirational.
Then for any k-algebra A, the natural map

Hom(XA, YA)→ Hom(X(A), Y (A))

is injective.
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Proof. One quickly reduces to the case when X = D(w) ⊆ Ank for w in k[x1, . . . , xn], Y = A1
k,

f lies in A[x1, . . . , xn] and g is the zero map. As X(F )→ X(A) is injective, we will be done if
we can show that f does not vanish on D(w)(k). If {ai}i∈I is a basis of A as a k-vector space
then we may write f =

∑
i∈I aifi where fi ∈ k[x1, . . . , xn]. As f is non-zero there exists some

i such that fi is non-zero. As D(w)(k) is Zariski dense in Ank as k is infinite, there then exists
some x in D(w)(k) such that fi(x) 6= 0. Then, by setup, f(x) 6= 0. �

In the future, we call a homomorphism of groups H(A) → H ′(A) algebraic if it is the map
on A-points of a morphism (necessarily unique) of group A-schemes HA → H ′A.

Schemes of cross-section homomorphisms. Fix an abstract group Σ and a reductive group
H over k. We then consider the presheaf

Hom(Σ, H) : Algk → Set, Hom(Σ, H(A)) = Hom(ΣA, HA).

This presheaf clearly carries an H-conjugation action. If, in addition, Σ acts on H by group
k-scheme morphisms then for a k-algebra A we say a homomorphism f : ΣA → HA o ΣA is a
cross-section homomorphism over A if p2(f(σ)) = σ for all σ, where p2 : HA o ΣA → ΣA is the
scheme-theoretic projection. We denote by Z1(Σ, H)(A) the set of cross-section homomorphisms
over A which is clearly a presheaf on k-algebras which carries an H-conjugation action2.

Proposition 2.8 ([DHKM20, Lemma A.1 and Corollary A.2]). Suppose that Σ is finite. Then,
Hom(Σ, H) (resp. Z1(Σ, H)) is represented by a finite type smooth affine k-scheme. Moreover,
for all k-algebras A, and all f in Hom(Σ, H)(A) (resp. Z1(Σ, H)(A)) the orbit map

µf : HA → Hom(Σ, H)A,

(
resp. µf : HA → Z1(Σ, H)A

)
is smooth.

2.4. Transporter and centralizer schemes. Let R be a ring, H a group-valued functor on
AlgR, and X a set-valued functor on AlgR. Then, for an R-algebra S and two elements α and
β of X(S) we define the transporter set to be

TranspH(α, β) := {h ∈ H(S) : h · α = β} .

We then define the transporter presheaf to be the presheaf

Transp
H

(α, β) : AlgS → Set, T 7→ TranspH(αT , βT ).

We abbreviate Transp
H

(β, β) to ZH(β) and call it the centralizer presheaf, which is clearly a
group presheaf. We then have the following obvious proposition.

Proposition 2.9. Suppose that H is a group R-scheme and that X is a separated R-scheme
of finite presentation. Then, for any R-algebra S and any elements α and β of X(S), the
presheaves Transp

H
(α, β) and ZH(β) are representable by closed finitely presented subschemes

of HS. Moreover, for any S-algebra T one has the natural equalities

Transp
H

(α, β)T = Transp
H

(αT , βT ), ZH(β)T = ZH(βT ).

3. The classical setting

In this section we recall the Jacobson–Morozov theorem and the Jacobson–Morozov theorem
for parameters in their classical settings. This will not only serve to emphasize the results we
wish to geometrize, but will play an important role in the proof of these more general results.

2The notation Z1(Σ, H) is used as this object is equal to the scheme of 1-cocycles in [DHKM20, Appendix A].
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3.1. The Jacobson–Morozov theorem. Let k be a field of characteristic 0 and H an alge-
braic group over k such that H◦ is reductive. It will be useful to explicitly name the matrices

e0 =

(
0 1
0 0

)
, h0 =

(
1 0
0 −1

)
, f0 =

(
0 0
1 0

)
,

which form a k-basis of the Lie algebra sl2,k. We then have the Jacobson–Morozov Theorem as
follows.

Theorem 3.1 (cf.[Bou75, VIII, §11, №2, Proposition 2 and Corollaire]). The map

JM : Hom(SL2,k, H)→ N (k), θ 7→ dθ(e0)

is an H(k)-equivariant surjection, and induces a bijection

Hom(SL2,k, H)/H(k)→ N (k)/H(k).

Let us call a triple (e, h, f) of elements an sl2-triple in h if the following equalities hold

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let us denote by T (k) (or TH(k) when we want to emphasize H), the set of sl2-triples in h.
The natural adjoint action of H(k) on h induces an action of H(k) on T (k).

Theorem 3.2. The following diagram is commutative and each arrow is a bijection

Hom(SL2,k, H)/H(k)
θ 7−→ dθ //

JM

��

Hom(sl2,k, h)/H(k)

ν 7→(ν(e0),ν(h0),ν(f0))

��
N (k)/H(k) T (k)/H(k).

e←−[ (e,h,f)oo

We end this subsection by explaining the relationship between the centralizers of θ and
N = JM(θ). Namely, let us set

uN = im(ad(N)) ∩ ker(ad(N)), UN = exp(uN ).

Then, we have the following Levi decomposition statement.

Proposition 3.3. The equality ZH(N) = UN o ZH(θ) holds. Further we have

Lie(ZH(θ)) = Lie(ZH(N))0, Lie(UN ) =
⊕
i>0

Lie(ZH(N))i,

where for an integer i we set

Lie(ZH(N))i = {x ∈ LieZH(N) : Ad
(
θ
((

z 0
0 z−1

)))
x = zix}.

Proof. The first claim is proved in the same way as [BV85, Proposition 2.4]. The second follows
from [Elk72, Lemma 5.1] by taking the derived group of H◦. �

3.2. The Jacobson–Morozov theorem for parameters. We now recall the analogue of the
Jacobson–Morozov theorem for parameters. We use the notation from §2.2.

Definition 3.4. Topologize LG(C) by giving Ĝ(C) the classical topology.

(1) A (complex) Weil–Deligne parameter for G is a pair (ϕ,N) where
• ϕ : WF → LG(C) is a continuous cross-section homomorphism,

• N ∈ N̂ (C) is such that Ad(ϕ(w))(N) = ‖w‖N for all w ∈WF .
(2) A (complex) L-parameter for G is a map

ψ : WF × SL2(C)→ LG(C),

such that
• ψ|WF

: WF → LG(C) is a continuous cross-section homomorphism,

• ψ|SL2(C) : SL2(C)→ LG(C) takes values in Ĝ(C) and is algebraic.
9



For τ ∈ {L,WD} let us denote by Φτ,�
G the set of complex τ -parameters for G. Recall that a

Weil–Deligne parameter (ϕ,N) (resp. an L-parameter ψ) is called Frobenius semi-simple if for
one (equiv. for any) lift w0 of arithmetic Frobenius the element ϕ(w0) (resp. ψ(w0)) is semi-

simple (in the sense of [Bor79, §8.2]). We denote by Φτ,ss,�
G the subset of Frobenius semi-simple

τ -parameters. For each τ there is a natural action of Ĝ(C) on Φτ,�
G which stabilizes the subset

Φτ,ss,�
G . We then define Φτ

G := Φτ,�
G /Ĝ(C) and Φτ,ss

G := Φτ,ss,�
G /Ĝ(C). For an element ψ of ΦL,�

G

we denote by θ (or θψ when we want to emphasize ψ) the morphism ψ|SL2(C) : SL2(C)→ Ĝ(C).
To upgrade Theorem 3.1 to the parameter setting, we need to associate a Weil–Deligne

parameter to any L-parameter. To this end, let us define a morphism of groups

i = (i1, i2) : WF →WF × SL2(C), w 7→
(
w,

(
‖w‖

1
2 0

0 ‖w‖−
1
2

))
.

We then define the Jacobson–Morozov map to be the Ĝ(C)-equivariant map

JM : ΦL,�
G → ΦWD,�

G , ψ 7→ (ψ ◦ i, dθ(e0)).

It is easy to check that JM−1(ΦWD,ss,�
G ) is precisely ΦL,ss,�

G . As the Jacobson–Morozov map is

Ĝ(C)-equivariant it induces maps ΦL
G → ΦWD

G and ΦL,ss
G → ΦWD,ss

G .
The Jacobson–Morozov map is not a bijection as the following example illustrates.

Example 3.5. Set G = GL4 and as G is split we may replace LG(C) with Ĝ(C) = GL4(C).
Consider the Weil–Deligne parameter (ϕ,N) given as follows

ϕ : w 7→


q2 0 0 0
0 q 1 0
0 0 q 0
0 0 0 1


d(w)

, N =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

Suppose that (ϕ,N) = JM(ψ). Then, ψ is of the form ρ � Std, where Std is the standard
representation of SL2(C). Indeed, from the Jacobson–Morozov theorem one sees that as an
SL2(C) representation C4 is isomorphic to Std2. One may then check that the morphism

HomSL2(C)(Std,C4)� Std→ C4

is an isomorphism of WF × SL2(C)-representations. That said, note that the twist of ρ by

the unramified character w 7→ ‖w‖−1/2 must be isomorphic to the representation on KerN
induced by ϕ. In particular ρ is semi-simple. Hence the Weil–Deligne parameter attached to
ψ must be Frobenius semi-simple, but the original (ϕ,N) is not Frobenius semi-simple.

However, we have the following Jacobson–Morozov theorem for parameters.

Theorem 3.6 (see [GR10, Proposition 2.2] or [Ima20, Proposition 1.13]). The Jacobson–Morzov

map JM : ΦL,ss,�
G → ΦWD,ss,�

G is a surjection and induces a bijection ΦL,ss
G → ΦWD,ss

G .

3.3. Bijection over reductive centralizer locus and applications. The Jacobson–Morozov

theorem for parameters is stated at the level of Ĝ(C)-orbits. While this is a non-issue for now,
when we attempt to geometrize this result it becomes more problematic due to the subtle nature
of quotients in algebraic geometry. So, we wish to upgrade the Jacobson–Morozov theorem for

parameters to a bijectivity statement before quotienting by Ĝ(C).
To begin, we give an analogue of Proposition 3.3 for parameters. To state it, let (ϕ,N) be

an element of ΦWD,�
G and set UN (ϕ) := UN (C) ∩ Z

Ĝ(C)
(ϕ).

Proposition 3.7. Let ψ be an element of ΦL,�
G and set (ϕ,N) = JM(ψ). Then, the equality

Z
Ĝ(C)

(ϕ,N) = UN (ϕ) o Z
Ĝ(C)

(ψ) holds.
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Proof. Given Proposition 3.3 it suffices to show that if ua belongs to Z
Ĝ(C)

(ϕ,N), where u is

in UN (C) and a is in Z
Ĝ(C)

(θ), then in fact u belongs to UN (ϕ) and a belongs to Z
Ĝ(C)

(ψ). To

prove this, we note that conjugation by an element in the image of ϕ stabilizes both UN (C)
and Z

Ĝ(C)
(θ). Indeed, since Ad(ϕ(w))(N) = ‖w‖N , we have that conjugation by ϕ(w) sta-

bilizes Z
Ĝ(C)

(N) and hence its unipotent radical UN . On the other hand, as ϕ(w) equals

ψ(w, 1)θ(i2(w)), and ψ(w, 1) commutes with θ, one may easily check the claim that ϕ(w) nor-
malizes Z

Ĝ(C)
(θ). Now for each w ∈ WF , ua equals Int(ϕ(w))(u) Int(ϕ(w))(a). Therefore,

Int(ϕ(w))(a)a−1 equals Int(ϕ(w))(u)−1u. By what we have proven, the former is an element of
Z
Ĝ(C)

(θ) and the latter is an element of UN (C). Since UN (C) and Z
Ĝ(C)

(θ) have trivial inter-

section, we have that both sides are trivial and so a and u commute with ϕ(w) as desired. �

We may use this decomposition to exhibit an example of a semi-simple L-parameter ψ whose
associated Weil–Deligne parameter has strictly larger centralizer.

Example 3.8. Let G = GL3 and consider the element ψ in ΦL,ss,�
G given by the following

ψ

(
w,

(
a b
c d

))
=

a b 0
c d 0
0 0 1

‖w‖− 1
2 0 0

0 ‖w‖−
1
2 0

0 0 1

 , w

 .

and set (ϕ,N) = JM(ψ). In this case, we have

uN =


0 ∗ ∗

0 0 0
0 ∗ 0

 .

Hence 1 0 1
0 1 0
0 0 1

 ∈ Z
Ĝ(C)

(ϕ,N) ∩ UN (C),

but it does not belong to Z
Ĝ(C)

(ψ) by Proposition 3.7.

Remark 3.9. We remark that although Z
Ĝ(C)

(ψ) need not equal Z
Ĝ(C)

(JM(ψ)), these groups

are the same for the purposes of parametrizing L-packets as in [Kal16] as they have the same

component groups by Proposition 3.7. More generally, one can consider the group S\ψ (resp.

S\JM(ψ)) that is related to [Kal16, Conjecture F] and is defined by

Z
Ĝ(C)

(ψ)/[Z
Ĝ(C)

(ψ) ∩ Ĝ(C)der]◦,

(
resp. Z

Ĝ(C)
(JM(ψ))/[Z

Ĝ(C)
(JM(ψ)) ∩ Ĝ(C)der]◦

)
.

These groups are equal by Proposition 3.7 as UN (ϕ) is contained in [Z
Ĝ(C)

(JM(ψ))∩Ĝ(C)der]◦.

This decomposition also allows us to give an algebraic condition for when a Weil–Deligne
parameter is the image under the Jacobson–Morozov map of a semi-simple L-parameter with
the same centralizer. In the rest of this section, we use Proposition 5.11, but the proof of the
proposition does not depend on the rest of this section.

Proposition 3.10. The group Z
Ĝ(C)

(ϕ,N)◦ is reductive if and only if (ϕ,N) = JM(ψ) for a

Frobenius semi-simple Weil–Deligne parameter ψ such that Z
Ĝ(C)

(ψ) = Z
Ĝ(C)

(ϕ,N).

Proof. Suppose first that Z
Ĝ(C)

(ϕ,N)◦ is reductive. We shall show in Proposition 5.11 that this

implies that (ϕ,N) is Frobenius semi-simple. Let ψ be any element of ΦL,ss,�
G such that JM(ψ) =

(ϕ,N). By Proposition 3.7 the reductivity of Z
Ĝ(C)

(ϕ,N)◦ implies that UN (ϕ) is trivial, and
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thus Z
Ĝ(C)

(ψ) = Z
Ĝ(C)

(ϕ,N) as desired. Conversely, if (ϕ,N) = JM(ψ) for an element of ΦL,ss,�
G

and Z
Ĝ(C)

(ψ) = Z
Ĝ(C)

(ϕ,N), then Z
Ĝ(C)

(ϕ,N)◦ is reductive by [SZ18, Proposition 3.2] �

Let ΦWD,rc,�
G consist of those (ϕ,N) with Z

Ĝ(C)
(ϕ,N)◦ reductive. We call this the reductive

centralizer locus of ΦWD,�
G .

Corollary 3.11. The map JM : JM−1
(

ΦWD,rc,�
G

)
→ ΦWD,rc,�

G is a Ĝ(C)-equivariant bijection.

Proof. This follows from Theorem 3.6, Proposition 3.10 and that ψ is Frobenius semi-simple if

and only if JM(ψ) is for ψ ∈ ΦL,�
G . �

3.4. Essentially tempered parameters. To make Corollary 3.11 useful, we now show that

JM−1(ΦWD,rc,�
G ) contains a large class of important L-parameters. To this end, let us call

an element ψ of ΦL,�
G essentially tempered if the projection of ψ(WF ) to Ĝ(C)/Z0(Ĝ)(C) is

relatively compact. Let ΦL,est,�
G be the set consisting of essentially tempered L-parameters. We

will soon show that every essentially tempered L-parameter maps into the reductive centralizer
locus, but first we must establish some results concerning Frobenius semi-simple parameters.

Proposition 3.12. Any element ψ of ΦL,est,�
G is Frobenius semi-simple.

Proof. The map ψ′ obtained by composing ψ|WF∗ with the projection to Ĝ(C)/Z0(Ĝ)(C) is a
homomorphism. By Lemma 3.13 below it suffices to show that if w0 is an arithmetic Frobenius
lift and m is divisible by [F ∗ : F ], then ψ′(wm0 ) is semi-simple. But, by essentially temperedness

we know that the image of ψ′(wm0 ) in Ĝ(C)/Z0(Ĝ)(C) is contained in a maximal compact

subgroup K of Ĝ(C)/Z0(Ĝ)(C). Up to conjugation, we may then assume that K = H(R) for H

a compact form of Ĝ(C)/Z0(Ĝ)(C) (see [Con14, Theorem D.2.8 and Proposition D.3.2]). But,
as H(R) consists only of semi-simple elements, the claim follows. �

Lemma 3.13. Let (s, w) be an element of LG(C) and write (s, w)m = (sm, w
m). Then, (s, w)

is Frobenius semi-simple if and only if sm is semi-simple for some non-zero integer m divisible
by [F ∗ : F ].

Proof. Fix any representation r : LG → GLn. As r((s, w)k) = r(s, w)k we see that (s, w) is
semi-simple if and only if (s, w)k is for some k > 0. But, if m is divisible by [F ∗ : F ] then as
r((s, w)mk) = r(skm, 1) for some k > 0, the conclusion follows. �

The following shows that the naming of essentially tempered L-parameters is reasonable.

Proposition 3.14. For ψ ∈ ΦL,�
G , the following conditions are equivalent:

(1) ψ ∈ ΦL,est,�
G ,

(2) there is a continuous character χ : WF × SL2(C) → Z0(Ĝ)(C) such that the projection

of (χψ)(WF ) to Ĝ(C) is relatively compact.

Proof. It is clear that (2) implies (1). We show that (1) implies (2). Fix a Frobenius lift
w0 ∈WF . Set H = Z

Ĝ(C)
(ψ), which has reductive identity component by Proposition 3.12 and

[SZ18, Proposition 3.2]. Let ψ̂ be the Ĝ-component of ψ. Taking a positive integer m to be

divisible by |Aut(ψ(IF ))| and [F ∗ : F ] we see that ψ̂(wm0 ) ∈ H, and thus in fact ψ̂(wm0 ) ∈ Z(H).

By replacing m by a power, we may assume that ψ̂(wm0 ) ∈ Z(H)◦. Since ψ ∈ ΦL,est,�
G , there

is a compact subgroup C ⊆ Z(H)◦ such that ψ̂(wm0 ) ∈ C · (Z(H)◦ ∩ Z(Ĝ)(C)). We write

ψ̂(wm0 ) = cz for c ∈ C and z ∈ Z(H)◦∩Z(Ĝ)(C). Since elements of Z(H)◦∩Z(Ĝ)(C) commute

with ψ(WF ), we have Z(H)◦ ∩ Z(Ĝ)(C) = Z(H)◦ ∩ Z0(Ĝ)(C). Replacing m again, we may

assume that z ∈ (Z(H)◦ ∩ Z0(Ĝ)◦(C)). We take z0 ∈ (Z(H)◦ ∩ Z0(Ĝ)◦(C)) such that zm0 = z.

Further we define χ as the unramified character sending w0 to z−1
0 . Then the image of (χψ)(WF )

in Ĝ(C) is contained in the image of
⋃m−1
i=0 ψ(IF )(χψ)(wi0)C in Ĝ(C), which is compact. �
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We now relate ΦL,est,�
G to the reductive centralizer locus of ΦWD,�

G .

Proposition 3.15. The containment ΦL,est,�
G ⊆ JM−1(ΦWD,rc,�

G ) holds.

Proof. Let ψ be an element of ΦL,est,�
G and set (ϕ,N) = JM(ψ). Then ψ is Frobenius semi-simple

by Proposition 3.12. We claim that Z
Ĝ(C)

(ψ) = Z
Ĝ(C)

(ϕ,N), from where we will be done by

Proposition 3.10. By Proposition 3.7, it suffices to show that UN (ϕ) is trivial. We assume that
UN (ϕ) is non-trivial and take a non-trivial weight vector v of Lie(UN (ϕ)) with respect to the
adjoint action of θ|T2 , where T2 is the standard maximal torus of SL2,C. We put u = exp(v).
For each w ∈ WF we have that ϕ(w) = ψ(w, 1)θ(i2(w)). Since ϕ(w) commutes with u, we see
that Int(ψ(w, 1)−1)(u) is equal to Int(θ(i2(w)))(u), and therefore

Ad(ψ(w, 1)−1)(v) = Ad(θ(i2(w)))(v).

But, observe that if w0 is a lift of arithmetic Frobenius in WF then i2(w2n
0 ) =

(
qn 0
0 q−n

)
. By

Proposition 3.3, we deduce that Ad(θ(i2(w2n
0 )))(v) = qjnv for some j > 1. Letting n tend

towards infinity, and using the fact that u is non-trivial, we deduce that the adjoint orbit of
WF on v is non-compact, which is a contradiction. �

We now state a corollary to Proposition 3.15. Before doing so, we recall an even smaller

subset of ΦL,est,�
G that will feature prominently below. Namely, recall that (ϕ,N) in ΦWD,�

G

(resp. ψ in ΦL,�
G ) is called discrete if the quotient

Z
Ĝ(C)

(ϕ,N)/Z0(Ĝ)(C)

(
resp. Z

Ĝ(C)
(ψ)/Z0(Ĝ)(C)

)
is finite. Denote by ΦWD,disc,�

G (resp. ΦL,disc,�
G ) the set of discrete parameters and ΦWD,disc

G (resp.

ΦL,disc
G ) its Ĝ(C)-quotient. Note that ΦL,disc,�

G is contained in ΦL,est,�
G (cf. [GR10, Lemma 3.1]

and [SZ18, Lemma 5.2]), and thus ψ is discrete if and only if JM(ψ) discrete as they have the
same centralizers by Proposition 3.15 and its proof.

Corollary 3.16. The map

JM : ΦL,est,�
G → ΦWD,�

G ,

(
resp. JM : ΦL,disc,�

G → ΦWD,disc,�
G

)
is a Ĝ(C)-equivariant injection (resp. bijection).

Note that implicit in the above is the following result of independent interest.

Proposition 3.17. Any element of ΦWD,disc,�
G (resp. ΦL,disc,�

G ) is Frobenius semi-simple.

Proof. The first claim is a special case of Proposition 5.11. The second claim follows from

ΦL,disc,�
G ⊆ ΦL,est,�

G and Proposition 3.12. �

We end this subsection by showing that one may apply Corollary 3.16 to show that the
assocation of ψ ◦ i to ψ is injective when restricted to the set of discrete L-parameters. This
result plays an important technical role in [BMY20].

Proposition 3.18. The maps

ΦWD,disc
G

(ϕ,N) 7→ϕ−−−−−−→ Hom(WF ,
LG(C))/Ĝ(C), ΦL,disc

G

ψ 7→ψ◦i−−−−→ Hom(WF ,
LG(C))/Ĝ(C)

are injective.

Proof. By Corollary 3.16 it suffices to show that the former map is injective. Fix λ in the set
Hom(WF ,

LG(C)). By Proposition 3.17 it then suffices to show that (if non-empty) the set

P (G,λ) :=
{

(ϕ,N) ∈ ΦWD,ss,�
G : ϕ = λ

}
13



intersects at most one Ĝ(C)-orbit of discrete parameters. As in [Vog93, §4], set Ĝ(C)λ to be
Z
Ĝ(C)

(λ), and

ĝλ(IF )
q :=

{
x ∈ ĝC :

(1) Ad(λ(w))(x) = x for all w ∈ IF
(2) Ad(w0)(x) = qx

}

where w0 is any lift of arithmetic Frobenius. Both P (G,λ) and ĝ
λ(IF )
q carry an action of Ĝ(C)λ,

and [Vog93, Proposition 4.5] establishes a Ĝ(C)λ-equivariant bijection P (G,λ) → ĝ
λ(IF )
q , and

that the latter space has only finitely many orbits. Therefore, P (G,λ) carries the structure of

a vector space on which Ĝ(C)λ acts algebraically and with only finitely many orbits.
Suppose then that (λ,N) is a discrete element of P (G,λ) and let O ⊆ P (G,λ) denote

its Ĝ(C)λ-orbit. Now, O is a locally closed subscheme of P (G,λ) (see [Mil17, Proposition

1.65 (2)]) of dimension dim(Ĝ(C)λ) − dim(H) where H is the isotropy subgroup of (λ,N) in

Ĝ(C)λ ([Mil17, Proposition 5.23 and Proposition 7.12]). But, note that H = Z
Ĝ(C)

(λ,N)

and so contains Z0(Ĝ)(C) as a finite index subgroup. We deduce that dim(O) is equal to

dim(Ĝ(C)λ) − dim(Z0(Ĝ)(C)). But, as Ĝ(C)λ acts through Ĝ(C)λ/Z0(Ĝ)(C), and has finitely

many (locally closed) orbits, we see that dimP (G,λ) is at most dim(Ĝ(C)λ)− dim(Z0(Ĝ)(C)).
Thus, we deduce that dim(O) = dim(P (G,λ)). As O is locally closed in P (G,λ) we deduce
that O is open. As P (G,λ) is a vector space it is irreducible, so open orbits are unique, and
the conclusion follows. �

4. The geometric and relative Jacobson–Morozov theorems

Before we can geometrize the Jacobson–Morozov theorem for parameters, we now first ge-
ometrize the Jacobson–Morozov theorem. After doing so, we derive a version of the Jacobson–
Morozov on the level of A-points. We fix for the remainder of this section a field k of charac-
teristic 0 and H a reductive group over k.

Remark 4.1. In this section we often assume that H is split. This will be sufficient for us

as Ĝ is a split group. That said, most of these statements admit obvious generalizations to
arbitrary reductive H, with similar proofs. The exception is Theorem 4.15, but we suspect
that the statement is still true and that one can employ a similar strategy to prove it.

4.1. The orbit separation space. Pivotal to our formulation of a geometric version of the
Jacobson–Morozov theorem is a certain construction which, in a precise sense, replaces a variety
with group action with the disjoint union of its orbits. Throughout this subsection we fix a
reduced quasi-projective scheme X over k equipped with an action of H. We also assume that
the map

X(k)/H(k)→ X(k)/H(k)

is surjective (although one may deal with the general case by Galois descent). Whenever we
speak of the class of x in X(k)/H(k) we assume without loss of generality that x is in X(k).

For each element x ofX(k) let us denote byOx the orbit scheme given as the fppf sheafification
of the presheaf

Algk → Set, A 7→ {g · x : g ∈ H(A)} ⊆ X(A).

Since X is itself an fppf sheaf, we see that Ox is an H-stable subsheaf of X.

Proposition 4.2. The orbit scheme is representable by a reduced locally closed subscheme of
X smooth over k. Moreover, the orbit map µx : H → Ox is smooth and surjective and identifies
Ox as the fppf sheaf quotient H/ZH(x).

Proof. Clearly the orbit map identifies Ox as the fppf sheaf quotient H/ZH(x). In [Mil17,
Proposition 1.65] it is shown that µx(H) is a locally closed subset of H, which one may endow
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with the reduced scheme structure. In [Mil17, Proposition 7.17] it is shown that µx(H) repre-
sents Ox. The smoothness of the orbit map is then confirmed by [Mil17, Proposition 7.15], and
the smoothness of Ox over k is handled by [Mil17, Corollary 5.26]. �

It will be useful to have a more explicit description of the A-points of Ox for a k-algebra A.

Proposition 4.3. For any k-algebra A, there are identifications

Ox(A) = {x ∈ X(A) : x and x lie in the same H(A)-orbit étale locally on A} ,
and

Ox(A)/H(A) = ker

(
H1

ét(Spec(A), ZH(x))→ H1
ét(Spec(A), H)

)
.

Proof. The first claim follows from the fact that the orbit map µx : H → Ox is a smooth
surjection and [EGA4-4, Corollaire 17.16.3.(ii)]. The second claim follows by combining [Gir71,
Chaptire III, Corollaire 3.2.3] with the fact that asHA and ZH(x)A are smooth overA, their étale
cohomology functorially agrees with their fppf cohomology (cf. [Gro68, Théorème 11.7]). �

When A is a reduced k algebra, one may give a simpler description. Say an element x of X(A)
is everywhere geometrically conjugate (egc) to x if for all geometric points Spec(k′)→ Spec(A)
one has that x and x have images in X(k′) belonging to the same H(k′)-orbit.

Proposition 4.4. For a reduced k-algebra A there is a functorial identification

Ox(A) = {x ∈ X(A) : x is egc to x} .

Proof. Evidently any element of Ox(A) is egc to x. If x is egc to x then the morphism
x : Spec(A) → X has the property that x(|Spec(A)|) ⊆ |Ox|. As Spec(A) is reduced this
implies that x factorizes through Ox as desired. �

We then assemble the spaces Ox into one as follows.

Definition 4.5. We define the orbit separation of X, denoted by Xt, to be the space

Xt :=
⊔

x∈X(k)/H(k)

Ox.

We have a tautological map Xt → X, and we have the following omnibus result concerning
its properties in the case when X(k)/H(k) is finite, which is the case of most interest to us.
Below, and in the sequel, we call a morphism of schemes f : Y → X weakly birational if there
exists a dense open subset U of X such that f−1(U)→ U is an isomorphism.

Proposition 4.6. Suppose that X(k)/H(k) is finite. Then, the map Xt → X is a weakly
birational surjective monomorphism and it is an isomorphism if and only if the action map
µ : H ×X → X is smooth.

As the last condition is equivalent to the claim that Ox is open for each x in X(k) (cf. [Bri21,
Lemma 3.5] and [Sta21, Tag 05VJ]), this is a special case of Lemma 4.7 below.

Lemma 4.7. Let f : Y → X be a morphism of reduced schemes finite type over k. Suppose that
Yk admits a scheme-theoretic decomposition

⊔
i Yi such that f |Yi is a locally closed immersion,

and f(Yi(k)) ∩ f(Yj(k)) is empty for i 6= j. Then,

(1) f is a monomorphism,
(2) f is weakly birational if and only if f(Y (k)) is dense in X,
(3) f is an isomorphism if and only if f(Y (k)) = X(k) and each Yi is open in Xk.

Proof. As all of these claims may be checked over k we may assume without loss of generality
that k is algebraically closed. The final claim is clear, thus we focus on the first two claims.
For the first claim, as each f |Yi is a monomorphism, it suffices to show that f(Yi) and f(Yj)
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are disjoint for i 6= j. But, as f(Yi) ∩ f(Yj) is locally closed, if non-empty it would contain a
k-point which is a contradiction.

To see the second claim, it suffices to show the if direction. For each irreducible component
Z of X note that {Yi∩Z} is a finite set of locally closed subsets with dense union. This implies
that there exists some i0 such that Yi0∩Z is open. Let C be the union of irreducible components
of X which intersect Z at a proper non-empty subset. Set UZ := (Yi0 ∩ Z) − C. Then, it is
clear that if U is the union of the UZ , then U is a dense open subset of X and as X is reduced
that f : f−1(U)→ U is an isomorphism. �

Finally, observe that the orbit separation space is a functorial construction. Namely, if Y is
another quasi-projective scheme over k equipped with an action of H with the same properties,
then for any H-equivariant morphism X → Y , the composition Xt → X → Y factorizes
uniquely through Y t → Y .

4.2. The geometric Jacobson–Morozov theorem. We now move to the geometrization of
the Jacobson–Morozov theorem. Let us now assume that H is split. To begin, observe that one
has a Jacobson–Morozov morphism

JM : Hom(SL2,k, H)→ N , θ 7→ dθ(e0).

We would like to apply the orbit separation construction from the last subsection to this map,
but before we do so, we should first observe that the actions of H on Hom(SL2,k, H) and N
satisfy the properties used in the last section.

Proposition 4.8. The maps

N (k)/H(k)→ N (k)/H(k), Hom(SL2,k, H)/H(k)→ Hom(SL2,k, Hk)/H(k)

are surjections.

Proof. By Theorem 3.1 it suffices to show the first map is a surjection. Let N be an element of
N (k). Bala–Carter theory (see [Jan04, §4]) says that there exists a Levi subgroup L of Hk and

a parabolic subgroup P of L such that N is conjugate to an element contained in the unique
open orbit of P acting on Lie(Ru(P )). Now, as H is split, we may assume up to conjugacy,
that L = Lk for a Levi subgroup L of H (see [Sol20]). As L is also split we may also assume,

up to conjugacy, that P = Pk for a parabolic subgroup P of L. As the unique open orbit of P
acting on Lie(Ru(P )) has a k-point, being a Zariski open of a vector k-space, we are done. �

Remark 4.9. The morphism N (k)/H(k) → N (k)/H(k) is rarely injective. As a concrete
example, if H = SL2,Q then ( 0 1

0 0 ) and
(

0 −1
0 0

)
are H(Q)-conjugate, but not H(Q)-conjugate.

Before we show that our two spaces with H-action have finitely many H(k)-orbits, we observe
the following.

Proposition 4.10. The morphism Hom(SL2,k, H)t → Hom(SL2,k, H) is an isomorphism.

Proof. It suffices to assume that k is algebraically closed. Then, by Proposition 2.6 the orbits
of k-points of Hom(SL2,k, H) are open. But, by Proposition 4.6 we deduce that the morphism
under consideration is a monomorphism which is locally on the source an open embedding, so
itself an open embedding. As the image contains every k-point it is an isomorphism. �

Proposition 4.11. The sets Hom(SL2,k, Hk)/H(k) and N (k)/H(k) are finite.

Proof. By Theorem 3.1 these two sets are in bijection, so it suffices to prove the finiteness of
either. The finiteness of the latter set is a classical result (e.g. see [Jan04, §2.8, Theorem 1]).
Alternatively, one may prove the finiteness of the former set by observing that by Proposition
4.10 the sets Hom(SL2,k, Hk)/H(k) and π0(Hom(SL2,k, Hk)) are equipotent. But, by Proposition

2.6 the scheme Hom(SL2,k, Hk) is finite type over k and thus π0(Hom(SL2,k, Hk)) is finite. �
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By the functoriality of the orbit separation construction the Jacobson–Morozov morphism
factors uniquely through Nt and we also denote the resulting map Hom(SL2,k, H) → Nt by
JM. But, unlike Hom(SL2,k, H), the orbit separation space Nt is essentially never equal to N .

Proposition 4.12. The morphism Nt → N is an isomorphism if and only if H is abelian.

Proof. If H is abelian then N is a single point. If Nt → N is an isomorphism then by
Proposition 4.6 the orbit of 0 is open, but as it is also closed and N is connected we deduce that
it is equal to N . As dim(N ) is equal to dim(H)− r(H), we see that H is a torus as desired. �

Example 4.13. The element N = ( 0 t
0 0 ) defines a point of NGL2,k

(k[t]) not in NtGL2,k
(k[t]).

To state our geometric Jacobson–Morozov theorem, note that by Theorem 3.1 the map

JM : Hom(SL2,k, H)/H(k)→ N (k)/H(k),

is a bijection. For each θ, writing N = JM(θ), define JMθ to be the map Oθ → ON which may
be described as the quotient map H/ZH(θ)→ H/ZH(N).

Theorem 4.14 (Geometric Jacobson–Morozov). Suppose that H is split. The morphism
JM : Hom(SL2,k, H)→ N factorizes through Nt, where it may be described as

⊔
θ JMθ.

4.3. The relative Jacobson–Morozov theorem. We now apply the geometric Jacobson–
Morozov theorem to obtain a more concrete result on the level of A-points.

Theorem 4.15 (Relative Jacobson–Morozov). Let A be a k-algebra. Then, the map

JM : Hom(SL2,A, HA)/H(A)→ N (A)/H(A)

is a bijection onto Nt(A)/H(A).

Proof. Assume first that Spec(A) is connected. By Theorem 4.14, it suffices to show that for
each θ the map JMθ induces a bijection Oθ(A)/H(A) → ON (A)/H(A). But, by Proposition
4.3 it suffices to show that the natural map H1

ét(Spec(A), ZH(θ)) → H1
ét(Spec(A), ZH(N)) is a

bijection. But, this follows from Proposition 3.3 and [GP13, Lemma 4.14]. For the general case
we reduce to the Noetherian case by standard approximation arguments, and then working on
each component to the case when Spec(A) is connected. �

We now pursue the analogue of Theorem 3.2 in the relative setting.

Definition 4.16. Let A be a k-algebra and a a Lie algebra over A. We call a triple of
elements (e, h, f) in a3 such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

an sl2-triple in a.

Denote by T (A) (or TH(A) when we want to emphasize H) the set of sl2-triples in hA.
Evidently T (A) carries a natural conjugation action by H(A).

Theorem 4.17. The following diagram is commutative and each arrow is a bijection

Hom(SL2,A, HA)/H(A)
θ 7−→ dθ //

JM

��

Hom(sl2,A, hA)/H(A)

ν 7→(ν(e0),ν(h0),ν(f0))

��
Nt(A)/H(A) T (A)/H(A).

e←−[ (e,h,f)oo

Proof. By Theorem 4.15 the left vertical arrow is a bijection. The right vertical arrow is clearly
a bijection, and the top horizontal arrow is a bijection by Proposition 2.6. We thus deduce that
the bottom horizontal arrow is well-defined (i.e. takes values in Nt(A)) and is bijective. �
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4.4. A relative version of Kostant’s characterization of sl2-triples. This final subsection
is dedicated to giving a proof of the following relative version of [Kos59, Corollary 3.5].

Proposition 4.18. Let A be a k-algebra and a a Lie subalgebra of hA. Then, for a pair (e, h)
in a2, there exists an sl2-triple of the form (e, h, f) in a if and only if the following conditions
hold:

(1) e ∈ Nt(A),
(2) h is in the image of ad(e) : a→ a,
(3) [h, e] = 2e.

Let us set

heA := ker (ad(e)|hA → hA) , ae := ker (ad(e)|a→ a) .

If ad(e)(x) is zero then ad(e)(ad(h)(x)) is also zero. Thus, ad(h) stabilizes heA and ae.

Lemma 4.19. The A-linear map ad(h) + 2: ae → ae is an isomorphism.

Proof. It suffices to show this result after passing to an etale cover Spec(B)→ Spec(A). Indeed,
since A → B is faithfully flat we have that (ae)B = aeB, and moreover that ker(ad(h) + 2) and
coker(ad(h) + 2) are trivial if and only if they are so after tensoring with B. Thus, we may
assume without loss of generality that e is an element of N (k). With notation as in Lemma 4.20
below, the A-algebra map A[T ]→ EndA(ae) sending T to ad(h) factorizes through A[T ]/(p(T )).
But, by the Chinese remainder theorem T + 2 is a unit in this ring. �

Lemma 4.20 (cf. [Kos59, Lemma 3.4]). Suppose that e is an element of N (k). Let m be the
smallest element such that ad(e)m+1 is trivial on h. Then, p(ad(h)|heA) = 0 where

p(T ) =

m∏
i=0

(T − i) .

Thus, a fortiori, we see that p (ad(h)|ae) = 0.

Proof. For each i = 0, . . . ,m+ 1 let us set

di := (ad(e)i(h) ∩ he)⊗k A.

Observe that

heA = d0 ⊇ · · · ⊇ dm+1 = 0.

We claim then that (ad(h)−i)(di) ⊆ di+1. Note that di is generated as an A-algebra by elements
of the form ad(e)i(z) for z in h. The exact same algebra as in [Kos59, Lemma 3.4] then shows
the desired containment, from where the claim is clear. �

Returning to the proof of Proposition 4.18, let us write h = ad(e)(f). Note that [[h, f ]+2f, e]
vanishes and thus [h, f ] + 2f is in ae. By Lemma 4.19 we may write [h, f ] + 2f = [h, g] + 2g for
some g in ae. So then, if we take f ′′ = f − g then

[h, e] = 2e, [h, f ′′] = [h, f ]− [h, g] = −2f ′′, [e, f ′′] = [e, f ]− [e, g] = h− 0 = h,

as desired.

5. Moduli spaces of Weil–Deligne parameters

To give a geometrization of the results of §3.2 it is useful to first develop a space intermedi-
ary between the moduli space of L-parameters (see §6) and the moduli space of Weil–Deligne
parameters. We give such a space in this section which, in short, parameterizes Weil–Deligne
parameters whose monodromy operator lies in Nt.

5.1. The moduli space of Weil–Deligne parameters. We first recall the moduli space of
Weil–Deligne parameters roughly following the presentation as in [Zhu20].
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Initial definitions. We begin by defining the relative analogue of a Weil–Deligne parameter.

Definition 5.1. For a Q-algebra A, we define a Weil–Deligne parameter over A to be a pair
(ϕ,N) where

(WDP1) ϕ : WF,A → CGA is a morphism of group A-schemes such that pC ◦ϕ = (‖ · ‖, id),

(WDP2) N is an element of N̂ (A) such that Ad(ϕ(w))(N) = ‖w‖N for all w ∈ WF (A).

We denote the set of Weil–Deligne parameters over A by WDPG(A) which clearly constitutes

a presheaf on Q-algebras. The presheaf WDPG has a natural action by Ĝ given by

g(ϕ,N)g−1 := (Int(g) ◦ ϕ,Ad(g)(N)).

So, for a Weil–Deligne parameter (ϕ,N) we may consider the centralizer group presheaf Z
Ĝ

(ϕ,N).

We define the morphism ϕ̌ : WF,A → ǦA of schemes as the composition of ϕ with the projec-

tion to ǦA. We denote by ϕ the homomorphism WF,A → (Ĝo Γ∗)A obtained by composing ϕ

with the quotient map CGA → (Ĝo Γ∗)A. Observe that while ϕ̌ may not be a homomorphism,
it becomes so after restriction to WF ∗,A. In particular, for any w ∈ WF (A) the restriction of ϕ̌
to 〈wm〉 is a homomorphism whenever [F ∗ : F ] divides m.

Let K be a finite extension of F ∗ Galois over F , and let us define for a Q-algebra A the set

WDPKG (A) :=
{

(ϕ,N) ∈WDPG(A) : IK,A ⊆ ker(ϕ̌|WF∗,A)
}
.

We observe that WDPKG forms a Ĝ-stable subfunctor of WDPG. In fact, one sees that there is
an equality of functors WDPG = lim−→WDPKG as K travels over all such extensions.

We finally observe that WDPG has a more familiar form over an extension k of Q containing

an element c such that c2 = q. More precisely, for a k-algebra A, we equip Ĝ(A) with the
discrete topology and put

WDP′G,k(A) :=

{
(ϕ,N) :

(1) ϕ : WF → Ĝ(A) oWF is a a continuous cross-section homomorphism,

(2) N ∈ N̂ (A) is such that Ad(ϕ(w))(N) = ‖w‖N for all w ∈WF

}
.

It is clear that WDP′G is a functor on the category of k-algebras and comes equipped with a

natural action of Ĝk. Let us also observe that if ic is the map from §2.2 then there is a morphism
iWD
c : WDP′G,k →WDPG,k which on A-points is given by sending (ϕ′, N) to the unique element

of WDPG(A) of the form (ϕ,N) which is equal to (ic ◦ ϕ′, N) on A-points.

Proposition 5.2. The morphism of functors iWD
c : WDP′G,k →WDPG,k is an isomorphism.

Proof. This follows from the cartesian diagram

LGk
ic //

��

CGk

pC

��
WF,k

(‖·‖,id) // Gm,k ×WF,k

and that any morphism WF,A → ǦA of schemes over A factors through (WF /IK)A for a finite
extension K of F . �

Representability. We now establish the representability of the functor WDPG. To this end,
let us fix K a finite extension of F ∗ Galois over F . Note that for a Q-algebra A and an element

(ϕ,N) of WDPKG (A) we may define an element φ of Z1(IF /IK , Ĝ)(A) as follows. First observe

that condition (WDP1) implies that ϕ|IF,A takes values in ĜA o IF,A. Then, as (ϕ,N) is

in WDPKG (A), the composition of ϕ|IF,A with the projection ĜA o IF,A → ĜA o (IF /IK)A

factorizes through a cross-section homomorphism (IF /IK)A → ĜA o (IF /IK)A. This gives an
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element φ of Z1(IF /IK , Ĝ)(A) since IF /IK ∼= IF /IK . This association defines a morphism of

presheaves WDPKG → Z1(IF /IK , Ĝ).
Let us now fix a lift w0 of arithmetic Frobenius in WF . Define a morphism of presheaves

jw0 : WDPKG → Ǧ× Z1(IF /IK , Ĝ)× N̂ , (ϕ,N) 7→ (ϕ̌(w0), φ,N).

On the other hand, we have a diagram

DWD : Ǧ× Z1(IF /IK , Ĝ)× N̂ //// Hom(IF /IK , Ĝ)×Gm,Q × N̂ [IF :IK ]+1

given by

(g, f,M) 7→
(

Int(g, w0) ◦ f, pGm(g), (Ad(f(i))(M))i∈IF /IK ,Ad(g, w0)(M)

)
(g, f,M) 7→

(
f ◦ Int(w0), q, (M)i∈IF /IK , qM

)
.

We then have the following explicit description of WDPKG .

Proposition 5.3. The morphism jw0 identifies WDPKG with the equalizer Eq(DWD). Thus,
WDPKG is representable by a finite type affine Q-scheme and jw0 is a closed embedding.

Observe that for an extension K ⊆ K ′ of Galois extensions of F containing F ∗ there is a

restriction morphism Z1(IF /IK′ , Ĝ)→ Z1(IK/IK′ , Ĝ). By Proposition 2.8 and Proposition 4.6
the subspace consisting of only the trivial homomorphism is a clopen subset of the target, and

thus so is its preimage in Z1(IF /IK′ , Ĝ), but this is precisely Z1(IF /IK , Ĝ). We deduce that the

natural inclusion of functors WDPKG →WDPK
′

G is a clopen embedding. From the identification
WDPG = lim−→K

WDPKG we deduce from Proposition 5.3 that WDPG is representable by a scheme
locally of finite type over Q, all of whose connected components are affine.

The following non-trivial result will play an important technical role below.

Theorem 5.4 ([BG19, Corollary 2.3.7] and [Zhu20, Corollary 3.1.10]). The schemes WDPKG
are reduced for all K, and thus, a fortiori, WDPG is reduced.

5.2. Semi-simplicity of parameters. As in the Theorem 3.6 one requires Frobenius semi-
simplicity conditions to get a Jacobson–Morozov result in the relative setting. Therefore, we
now develop a sufficient notion of Frobenius semi-simplicity for a Weil–Deligne and L-parameter
over a Q-algebra A.

Definition 5.5. Let R be a Q-algebra and H is a smooth group R-scheme such that H◦ is
reductive. We then say that an element h of H(R) is semi-simple if there exists some m > 1,
an étale cover Spec(S)→ Spec(R), and a torus T of H◦S such that hm is in T (S).

By [SGA3-1, Exposé VIB, Corollaire 4.4] H◦ is representable so the above makes sense.
Moreover, by [Con14, Proposition B.3.4] we may assume that T is split in the above definition.

Proposition 5.6. Let R be a Q-algebra and H is a smooth group R-scheme such that H◦ is
reductive, and let h be an element of H(R). Then, the following statements are true.

(1) If h is semi-simple, there exists an étale cover Spec(S) → Spec(R), an integer m > 1,
and a split maximal torus T of H◦S such that hm is in T (S).

(2) If Z is a closed subgroup R-scheme of Z(H◦) which is flat over R, then h is semi-simple
if and only if its image in (H/Z)(R) is semi-simple.

Proof. To show (1) let Spec(S′)→ Spec(R) be an étale cover and T ′ a torus of H◦S′ such that hm

is in T ′(S′). Note that ZH◦(T
′) is a reductive group (combine [Con14, Lemma 2.2.4] and [Mil17,

Corollary 17.59]). By [Con14, Corollary 3.2.7] there exists an étale cover Spec(S) → Spec(S′)
and a maximal torus T of ZH◦(T

′)S . Observe that T is also a maximal torus of H◦S . Indeed, it
is evidently a torus, and its maximality can be checked over each point x of Spec(S) over which
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it is clear. As T ′S is central in ZH◦
S′

(T ′)S it is clear that T contains T ′S and thus hm is contained

in T (S). As we may pass to a futher étale extension to split T the claim follows.
Let f : H◦ → H◦/Z be the tautological map. To prove (2) it is sufficient to note that for any

R-algebra S one has that the map T 7→ T/Z and T ′ 7→ f−1(T ′) are mutually inverse bijections
between the maximal tori of H◦S and (H◦/Z)S by [Con14, Corollary 3.3.5]. �

Consider a representation ρ : H → GL(M) where M is a finitely generated R-module. Let h
be an element of H(R) and I a finite subgroup of H(R) that is stable under conjugation by h.
For any R-algebra S and any λ in S× let us set

M I
S(h, λ) := ker

(
ρ(h)− λ|Mρ(I)

S →M
ρ(I)
S

)
.

Abbreviate M I
R(h, λ) to M I(h, λ), and further abbreviate to M I(λ) if h is clear from context.

Finally, we omit I from the notation if I is trivial. Evidently M I
S(h, λ)⊗SS′ is equal to M I

S′(h, λ)
for any flat map of R-algebras S → S′.

Proposition 5.7. Assume that h is semi-simple. Then, there exists a unique decomposition

M I =
⊕
λ∈R×

M I(h, λ)⊕M ′

such that for any flat map R→ S one has that⊕
λ∈S×−R×

M I
S(h, λ)

is a direct summand of M ′S, and such that this is an equality if for some m > 1:

(1) hm is contained in a split torus of H◦S and commutes with I,

(2) S is a Q(ζr)-algebra, where r := [〈h〉 : 〈hm〉] and ζr is a primitive rth-root of unity,
(3) and S contains an rth-root of all λ such that M(hr, λ) 6= 0.

Proof. Take an étale cover Spec(S)→ Spec(R) and m > 1 such that hm is contained in a split
torus T of H◦S and hm commutes with I. Then hr ∈ 〈hm〉 is contained in T and commutes with
I. By [CGP15, Lemma A.8.8] one may decompose MS into character spaces MS(χ). One then
observes that MS(hr, λ) is precisely the direct sum of those character spaces MS(χ) such that
χ(hr) = λ. So, MS admits a direct sum decomposition with respect to the spaces MS(hr, λ).

As MS is finitely generated, we know that MS(hr, λ) is trivial for all but finitely many

λ1, . . . , λe. In particular, we may further pass to the étale extension S′ := S[λ
1/r
1 , . . . , λ

1/r
e , ζr].

We extend the action of I on each nontrivial MS′(h
r, λ) by ρ to the action of the finite

group I o (〈h〉/〈hm〉) letting h act λ−1/rρ(h). As S′ is a Q(ζr)-algebra, we have a decom-
position of M I

S′(h
r, λ) into character spaces MS′(h

r, λ)[ν] where ν travels over the characters
I o (〈h〉/〈hm〉) → 〈h〉/〈hm〉 → S′. We then see that for each τ ∈ (S′)× such that τ r = λ the
space M I

S′(h, τ) admits a direct decomposition into the spaces MS′(h
r, λ)[ν] as ν ranges over

those characters with ν(h) = λ−1/rτ .
One may then check that the module

⊕
τ M

I
S′(h, τ) as τ ranges over those elements of

(S′)× − R× is stabilized under the étale descent data associated to M I
S′ , and therefore (see

[Sta21, Tag 023N]) descends to a submodule M ′ of M I . One sees that M ′ is a complement of⊕
λM

I(h, λ) as λ travels over the elements of R×, as this may be checked over the faithfully
flat extension S′. One may then check that M ′ is independent of all choices, and satisfies the
desired conditions. �

The following proposition will be helpful to define Frobenius semi-simple in a way that does
not require the choice of an explicit arithmetic Frobenius lift.

Proposition 5.8. Let ϕ : WF,A → CGA be a morphism of group schemes over a Q-algebra A.

Then there is a positive integer m divisible by [F ∗ : F ] such that the morphism WF,A → ǦA
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given by w 7→ ϕ̌(wm) admits a factorization

WF,A
d−→ ZA

ϕ̌m−→ ǦA

and ϕ̌m takes values in ZǦ(ϕ).

Proof. Take a finite extension K of F ∗ Galois over F such that ϕ̌|IK,A is trivial. Take a lift
w0 ∈WF of arithmetic Frobenius and choosem0 such that the image of wm0

0 inWF /IK is central.
Let m be the order of WF /IK〈wm0

0 〉. Then for any w ∈WF , since wm is trivial in WF /IK〈wm0
0 〉,

we have that wm = iw
d(w)m
0 for some i ∈ IK . Hence, the images of wm and w

md(w)
0 in WF ∗/IK

are the same. Since ϕ̌|WF∗,A factors through (WF ∗/IK)A, we have ϕ̌(wm) = ϕ̌(wm0 )d(w) for any

point w of WF,A. Hence we have the factorization ϕ̌m : ZA → ǦA. The composition

WF,A
ϕ−→ CG −→ ǦA o (WF /IK)A

factors through ϕK : (WF /IK)A → ǦAo (WF /IK)A. To show that ϕ̌m factors through ZǦ(ϕ),
it suffices to show ϕ̌(wm0 ) ∈ ZǦ(ϕK). Since the image of wm0 in WF /IK is central, we have

ϕK(wm0 ) ∈ ZǦAo(WF /IK)A
(ϕK). Since the image of (1, wm0 ) in ǦA o (WF /IK)A is central, we

obtain ϕ̌(wm0 ) ∈ ZǦA(ϕK). �

To define the notion of Frobenius semi-simple parameters, it is useful to have the following
analogue of Lemma 3.13.

Proposition 5.9. Let (ϕ,N) be an element of WDPG(A). Then, the following are equivalent:

(1) for any (equiv. one) lift w0 ∈WF of arithmetic Frobenius, ϕ(w0) is semi-simple,
(2) for some m as in Proposition 5.8, the morphism ϕ̌m étale locally factorizes through a

torus of ǦA.

Proof. By definition, (1) holds if and only if ϕ(w0) has the property that ϕ(w0)m étale locally
lies in a torus of (Ǧo Γ∗)

◦
A = ǦA for some m as in Proposition 5.8. But, as an element of ǦA,

one easily sees that ϕ(w0)m is precisely ϕ̌m(1). As it is clear that (2) is equivalent to claim that
étale locally on A there exists a torus containing ϕ̌m(1) the claim follows. �

Definition 5.10. For a Q-algebra A, we call an element (ϕ,N) of WDPG(A) Frobenius
semi-simple if it satisfies any of the equivalent conditions of Proposition 5.9.

For each Q-algebra A, let us denote by WDPss
G(A) (resp. WDPK,ssG (A)) the subset of WDPG(A)

(resp. WDPKG (A)) consisting of Frobenius semi-simple parameters. It is clear that this forms a

Ĝ-stable subpresheaf3 of WDPG (resp. WDPKG ). Note also that by Proposition 5.6, under the

bijection of WDPG(C) with ΦWD,�
G the set WDPss

G(C) corresponds to ΦWD,ss,�
G .

The following technical result will play an important role later in the paper.

Proposition 5.11. If A is a reduced Q-algebra and (ϕ,N) is an element of WDPG(A) such
that Z

Ĝ
(ϕ,N)◦x is reductive of dimension n for all x in Spec(A), then (ϕ,N) is Frobenius semi-

simple.

Proof. Define S(N) to be the closed subgroup scheme of ǦA cut out by the closed condition
gNg−1 = pGm(g)N . We have the equality Z

Ĝ
(ϕ,N) = ker(pGm |ZS(N)(ϕ)). Note that for all x in

Spec(A) one has a short exact sequence

1→ Z
Ĝ

(ϕ,N)x → ZS(N)(ϕ)x → Gm,x → 1,

and as Z
Ĝ

(ϕ,N)◦x is assumed to be reductive of dimension n for all x in Spec(A), that ZS(N)(ϕ)◦x
is reductive of dimension n + 1, and thus ZS(N)(ϕ)◦ is representable and smooth over A, and
thus reductive over A, by [SGA3-1, Exposé VIB, Corollaire 4.4] and [Mil17, Theorem 3.23].

3Note that one does not expect this presheaf to be representable as the semi-simple elements in algebraic
group form a constructible, but not locally closed, subset
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We take m as Proposition 5.8. Then ϕ̌m factors through ZS(N)(ϕ). Further it factors through
Z(ZS(N)(ϕ)), since ϕ(wm) and (1, wm) commutes with ZS(N)(ϕ) for any point w ofWF,A. Then

there is an m′ such that ϕ̌m
′

m = ϕ̌mm′ factors through Z(ZS(N)(ϕ)◦)◦. As ZS(N)(ϕ)◦ is reductive,
Z(ZS(N)(ϕ)◦)◦ is a torus. Hence (ϕ,N) is Frobenius semi-simple. �

5.3. The space WDPtG. In this section we study the moduli space of Weil–Deligne parameters
(ϕ,N) where N lies in Nt and show that this moduli space has an exceedingly simple structure.

Definition 5.12. We denote by WDPK,tG (resp. WDPtG) the space WDPKG ×N̂ N̂
t (resp.

WDPG ×N̂ N̂
t = lim−→K

WDPK,tG ).

Now, let us fix a finite extension K of F ∗ Galois over F and a lift w0 of arithmetic Frobenius.
Then, by Proposition 5.3 we have an identification jw0 of WDPKG (Q) with(γ, φ,N) ∈ Ǧ(Q)× Z1(IF /IK , Ĝ)(Q)× N̂ (Q) :

(1) Int(γ,w0) ◦ φ = φ ◦ Int(w0),

(2) pGm(γ) = q,

(3) Ad(φ(i))(N) = N for all i ∈ IF /IK ,
(4) Ad(γ,w0)(N) = qN

 .

Now, for (γ, φ,N) in WDPKG (Q) let us define Zφ,N := Z
Ĝ

(φ,N).

Definition 5.13. An element (γ′, φ′, N ′) in WDPKG (A), for a Q-algebra A, is locally movable

to (γ, φ,N) if there exists an étale cover Spec(A′) → Spec(A) and (g, h) ∈ (Ĝ × Z◦φ,N )(A′)

such that (γ′, φ′, N ′) = g(hγ, φ,N)g−1.

As this definition is clearly functorial, we observe that we may define a subpresheaf U(γ, φ,N)

of WDPK,t
G,Q whose A-points are given by

U(γ, φ,N)(A) :=
{

(γ′, φ′, N ′) ∈WDPK,t
G,Q(A) : (γ′, φ′, N ′) is locally movable to (γ, φ,N)

}
.

We then have the following.

Proposition 5.14. The morphism of presheaves U(γ, φ,N)→WDPK,t
G,Q is representable by an

open immersion. Moreover, the Q-scheme U(γ, φ,N) is smooth and irreducible.

Before we prove this proposition, we observe its major consequence. To this end, let us define
an equivalence relation on WDPKG (Q) by declaring that (γ, φ,N) is equivalent to (γ′, φ′, N ′) if

there exists some (g, h) ∈ (Ĝ × Zφ,N )(Q) such that (γ′, φ′, N ′) is equal to g(hγ, φ,N)g−1. Let
us denote an equivalence class under this relation by [(γ, φ,N)]. Observe that as we do not
require that h to actually lie in Z◦φ,N (Q) that [(γ, φ,N)] differs from U(γ, φ,N)(Q). For each

such equivalence class, let us choose an element (γ, φ,N). We consider π0(Zφ,N ) as a finite
abstract group, and we define an equivalence relation on it by declaring that c is equivalent to
c1cγc

−1
1 γ−1 for any c1 in π0(Zφ,N ). We denote by [c] an equivalence class for this relation.

Remark 5.15. The group 〈γ〉 acts on π0(Zφ,N ) by γ · c = γcγ−1. Note that 〈γ〉 ∼= Z since
pGm(γ) = q. Hence, the map z 7→ z(γ) for z ∈ Z1(〈γ〉, π0(Zφ,N )) induces a bijection between
H1(〈γ〉, π0(Zφ,N )) and equivalence classes in π0(Zφ,N ).

We then have the following decomposition of WDPK,t
G,Q into explicit connected components.

Theorem 5.16. The choice of (γ, φ,N) in each class [(γ, φ,N)] of WDPKG (Q) gives a scheme-
theoretic decomposition

WDPK,t
G,Q =

⊔
[(γ,φ,N)]

⊔
[c]

U(cγ, φ,N).
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Proof. From Proposition 5.14 we know that each U(cγ, φ,N) is an open subset of WDPK,t
G,Q. As

WDPK,t
G,Q is a finite type Q-scheme, it thus suffices to prove this claim at the level of Q-points.

But, note that by Proposition 5.3, if (γ, φ,N) satisfies the conditions to be in WDPKG (Q) then
(γ′, φ,N) does if and only if γ′ = hγ for h in Zφ,N (Q). Thus, we have a decomposition

WDPK,t
G,Q =

⊔
[(γ,φ,N)]

⋃
c∈π0(Zφ,N )

U(cγ, φ,N).

Next observe that an element (hγ, φ,N) may be written in the form g(h′γ, φ,N)g−1 if and only
if g is in Zφ,N (Q) and hγ = gh′γg−1 which implies that h = gh′γg−1γ−1. With this, it is easy
to see that ⋃

c∈π0(Zφ,N )

U(cγ, φ,N) =
⊔
[c]

U(cγ, φ,N)

from where the desired equality follows. �

From this we deduce the following non-trivial result. Let us denote the set of equivalence
classes for WDPKG (Q) (resp. π0(Zφ,N )) by [WDPKG (Q)] (resp. [π0(Zφ,N )]).

Corollary 5.17. The Q-scheme WDPK,tG is smooth, and there is a non-canonical ΓQ-equivariant
bijection

π0

(
WDPK,t

G,Q

) ∼−→ {
([(γ, φ,N)], [c]) :

(1) [(γ, φ,N)] ∈ [WDPKG (Q)]

(2) [c] ∈ [π0(Zφ,N )]

}
where the ΓQ action on the target is inherited from WDPK,tG and Ĝ.

The proof of Proposition 5.14. Define the morphism πK : WDPK,tG → Z1(IF /IK , Ĝ)× N̂t

by πK(ϕ,N) = (φ,N). This morphism is Ĝ-equivariant when the target is endowed with the

diagonal Ĝ-action. Now, by Proposition 2.8 there is a decomposition

Z1(IF /IK , Ĝ)Q × N̂
t
Q =

⊔
[(φ0,N0)]∈J

Oφ0 ×ON0

where J is the set of Ĝ(Q)2 orbits of (Z1(IF /IK , Ĝ)×N̂t)(Q). Observe though that if (ϕ,N) is

in WDPK,tG (Q) with πK(ϕ,N) = (φ,N) then φ centralizes N . So, if we set J ′ to be the subset
of J consisting of those [(φ0, N0)] with φ0 centralizing N0 then we may produce a factorization

πK : WDPK,t
G,Q −→

⊔
[(φ0,N0)]∈J ′

Oφ ×ON

which is Ĝ-equivariant. For each [(φ0, N0)] in J ′ let us set X(φ0, N0) := π−1
K (Oφ0×ON0), which

is a clopen subset of WDPK,t
G,Q.

Set L := Z
Ĝ

(φ) which, by Lemma 2.5, is a closed subgroup scheme of ĜQ with reductive
identity component. Let l be the Lie algebra of L. Define ON ∩ NL := ON ×N̂ NL. For each

M in (ON ∩NL)(Q) we denote by OL,M the locally closed L-orbit subscheme of (ON ∩NL)red.

Lemma 5.18. There exists a finite set {N = N1, N2, . . . , Nm} in (ON ∩NL)(Q) such that one
has an equality of schemes ON ∩NL =

⊔
iOL,Ni. In particular, ON ∩NL is reduced.

Proof. We first show that the claimed decomposition holds for (ON ∩ NL)red. Now, there are
only finitely many L(Q) orbits in (ON ∩ NL)(Q) as there are only finitely many L◦-orbits in
NL(Q). Let N = N1, . . . , Nm represent these orbits. By Proposition 4.6 it suffices to show
that each OL,Ni is open or, as they form a set-theoretic partition of (ON ∩ NL)red, that each
is closed. Then, by the Noetherian valuative criterion for properness (see [Sta21, Tag 0208]) it
suffices to show if R is a discrete valuation ring and f : Spec(R)→ (ON ∩NL)red is a morphism
with f(η) ∈ ONi,L then f(Spec(R)) ⊆ ONi,L. Assume not, and let f : Spec(R)→ (ON ∩NL)red
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be a morphism such that f(η) ∈ OL,Ni(k(η)) and f(s) ∈ OL,Nj (k(s)) with i 6= j. Note that f

corresponds to an element N in NL(R) which is, as an element of N̂ (R), lies in ON (R). Let us
consider ZL(N). On the one hand, ZL(N) cannot be flat, as its generic fiber (resp. special fiber)
is a twisted form of ZL(Ni) (resp. ZL(Nj)) which has dimension dim(L) − dim(OL,Ni) (resp.

dim(L) − dim(OL,Nj )). Note though that as f(s) lies in OL,Ni , whose Q-points are unions of

Q-points of orbits of smaller dimension (cf. [Mil17, Proposition 1.66]), dim(OL,Nj ) is strictly less
than dim(ONi,L), and thus the fibers of ZL(N) have different dimensions, and so it cannot be
flat over R (see [GW20, Corollary 14.95]). On the other hand, Z

Ĝ
(N) is flat as its étale locally

isomorphic to Z
Ĝ

(N) = Z
Ĝ

(N)R. But, by Lemma 2.5 this implies that Z
Ĝ

(N)φ(IF ) = ZL(N)
is flat, which is a contradiction.

As (ON ∩NL)red → ON ∩NL is a homeomorphism, there is a scheme-theoretic decomposition
ON ∩ NL =

⊔
i Ui where Ui is the open subscheme of ON ∩ NL with underlying space OL,Ni .

As these schemes are Noetherian, to finish it suffices to show that for all i and all Noetherian
Q-algebras A every morphism Spec(A) → Ui factorizes through OL,Ni . As ON = ONi we may
assume without loss of generality that i = 1, and so Ni = N . Let N be the element of lA
coresponding to Spec(A)→ Ui. We must then show that étale locally on A, N is conjugate to
N . Let I denotes the nilradical of A, and write A0 = A/I. As A is Noetherian, Im = (0) for
some m, and thus by inducting we may assume that I2 = (0). Now, as A0 is reduced the map
Spec(A0) → Ui factorizes through OL,N and thus NA0 is étale locally conjugate to N . As the
étale covers of A and A0 are equivalent (see [Sta21, Tag 04DY]), and we are free to work étale
locally on A, we may assume without loss of generality that Ad(l0)(NA0) = N for some l0 in
L(A0). As L is smooth, we may apply the infinitesimal lifting criterion to find a lift l in L(A) of
l0. Replacing N by Ad(l)(N) we may assume without loss of generality that NA0 = N . Now, as
Transp

Ĝ
(N, N) → Spec(A) is a Z

Ĝ
(N)-torsor, and thus smooth, we know by the infinitesimal

lifting criterion that there exists some g in Transp
Ĝ

(N, N)(A) lifting the identity. Using the

notation of [DG70, II, §4, №3, 3.7], we may write g = ex for x in I ĝA. Then, by [DG70, II, §4,
№4, 4.2] we have

N = Ad(g)(N) = N + ad(x)(N).

As N and N lie in lA, they are invariant for the action of the finite group φ(IF /IK), and so if
y denotes the average of x over the action of φ(IF /IK) then

N = N + ad(y)(N).

But, by loc. cit. this right-hand side is equal to Ad(ey)(N). By Lemma 2.5 we see that ey lies
in L(A), from where the claim follows. �

Let us now denote by (γuniv, φuniv, Nuniv) the universal object over X(φ,N). Consider the

transporter scheme Transp
Ĝ

(φuniv, φ)→ Z1(IF /IK , Ĝ) and set T to be the pullback to X(φ,N).

Set b : T → X(φ,N) to be the tautological map, which is smooth as T is visibly an L-torsor.
Note that we have a morphism a : T → ON ∩ NL given by a(g) = Ad(g)(Nuniv) and observe
then that we have a scheme-theoretic decomposition T =

⊔
i a
−1(OL,Ni). But, for each i we also

have a map κi : a
−1(OL,Ni) → π0(Z

Ĝ
(φ,N)) given by sending g to the component containing

Int(g)(γuniv)γ−1, and we define for each i and each c ∈ π0(Z
Ĝ

(φ,N)) the open subscheme

Ui,c := κ−1
i (c) of a−1(OL,Ni). We then obtain a decomposition T =

⊔
i,c Ui,c.

As b : T → X(φ,N) is smooth, we see that b(U1,id) is an open subset of X(φ,N) whose
A-points are precisely (by [EGA4-4, Corollaire 17.16.3.(ii)]) the set of A-points (γ′, φ′, N ′) of
X(φ,N) which are étale locally in the image of b. It is simple to see that this implies that
U(γ, φ,N) = b(U1,id), which implies U(γ, φ,N) is representable by an open immersion.

Finally, to show that U(γ, φ,N) is smooth and irreducible consider the natural morphism

Ĝ×Z◦φ,N → U(γ, φ,N). To simplify notation let us write S = Ĝ×Z◦φ,N . Note that, by definition,

S → U(γ, φ,N) is surjective as étale sheaves and thus a fortiori surjective as schemes, and thus
U(γ, φ,N) is irreducible. To see that U(γ, φ,N) is smooth, note that as S → U(γ, φ,N) is
surjective as étale sheaves there exists an étale cover V → U(γ, φ,N) such that p : SV → V
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admits a section. Note though that as SV → S is étale and the target is reduced, so is the
source (see [Sta21, Tag 025O]). But, as p has a section, this implies that V is reduced as the
morphism of sheaves of rings OV → p∗OS has a section and thus is injective. This implies that
U(γ, φ,N) is reduced by [Sta21, Tag 033F]. But, as we’re in characteristic 0, this implies that
U(γ, φ,N) is generically smooth over Q (see [Sta21, Tag 056V]). But, as S(Q) acts U(γ, φ,N)
by scheme automorphisms acting transitively on U(γ, φ,N)(Q) we deduce that every point of
U(γ, φ,N)(Q) has regular local ring, and thus U(γ, φ,N) is smooth over Q as desired (see
[Sta21, Tag 0B8X]). This completes the proof of Proposition 5.14.

6. The moduli space of L-parameters and the Jacobson–Morozov morphism

In this section we define the moduli space LPKG of L-parameters for G, show it has favorable

geometric properties, construct the Jacobson–Morozov morphism LPKG → WDPK,tG , and show
that an analogue of Theorem 3.6 holds for any Q-algebra A.

6.1. The moduli space of L-parameters. We begin with a slight modification of the Lang-
lands group scheme WF × SL2,Q better suited to arithmetic discussions over Q.

Definition 6.1. We call the Q-scheme representing the functor

AlgQ → Grp, A 7→ {(w, g) ∈ WF (A)×GL2(A) : ‖w‖ = det(g)}

the twisted Langlands group scheme and denote it Ltw
F .

To justify the naming of Ltw
F , note that if k is any extension of Q and c is any element of k

such that c2 = q, then the morphism

ηc : WF,k × SL2,k → Ltw
F,k, (w, g) 7→

(
w, g

(
c−d(w) 0

0 c−d(w)

))
,

is an isomorphism. For future reference, we observe that we have a morphism

ptw : Ltw
F → Gm,Q ×WF , (w, g) 7→ (‖w‖, w).

Let us also observe that there is a natural embedding of group schemes SL2,Q → Ltw
F given by

sending g to (1, g), as well as an embedding

ι : WF → Ltw
F w 7→

(
w,
(
‖w‖ 0

0 1

))
.

With these embeddings, we shall implicitly think of SL2,Q and IF as subfunctors of Ltw
F . Finally,

we observe that the embedding of WK into WF for any finite extension K of F gives rise to an
embedding of Ltw

K → Ltw
F which we implicitly use to think of Ltw

K as a subgroup scheme of Ltw
F .

Definition 6.2. For a Q-algebra A we define an L-parameter over A to be a homomorphism
of group A-schemes ψ : Ltw

F,A → CGA such that pC ◦ ψ = ptw.

Denote by LPG(A) the set of L-parameters over A, which is functorial in A. Note that LPG
has a natural conjugation action by Ĝ and so one has the centralizer group presheaf Z

Ĝ
(ψ).

For an L-parameter ψ over A we define the morphism ψ̌ : Ltw
F,A → ǦA as the composition of

ψ with the projection CGA → ǦA. We denote by ψ the homomorphism of group A-schemes

Ltw
F,A → (ĜoΓ∗)A obtained by composing ψ with the quotient homomorphism ǦA → (ĜoΓ∗)A.

Let us observe that while ψ̌ may not be a homomorphism, it becomes so after restriction to

Ltw
F ∗,A. Finally, by our assumptions on ψ the restriction to SL2,A takes values in ĜA and we

denote this resulting morphism SL2,A → ĜA by θ (or θψ when we want to emphasize ψ).
26

https://stacks.math.columbia.edu/tag/025O
https://stacks.math.columbia.edu/tag/033F
https://stacks.math.columbia.edu/tag/056V
https://stacks.math.columbia.edu/tag/0B8X


To relate this to more familiar objects, fix k to be an extension of Q containing an element

c such that c2 = q. For a k-algebra A, we endow Ĝ(A) with the discrete topology and set

LP′G,k(A) :=

WF × SL2(A)
ψ−→ Ĝ(A) oWF :

(1) ψ is a homomorphism over WF ,

(2) WF

ψ|WF→ Ĝ(A) oWF → Ĝ(A) is continuous,

(3) ψ|SL2(A) : SL2(A)→ Ĝ(A) is algebraic

 .

There is a morphism iLc : LP′G,k → LPG,k which on A-points is given by sending ψ′ to the

element ψ of LPKG (A) that is equal to ic ◦ψ′ ◦ η−1
c on A-points, where ψ is uniquely determined

by Proposition 2.6. We can show the following proposition in the same way as Proposition 5.2.

Proposition 6.3. The morphism iLc : LP′G,k → LPG,k is an isomorphism.

For a finite extension K of F ∗ Galois over F define

LPKG (A) :=
{
ψ ∈ LPG(A) : IK ⊆ ker

(
ψ̌|Ltw

F∗,A

)}
,

which clearly forms a subpresheaf of LPG. We have the equality of presheaves LPG = lim−→K
LPKG .

As in the case of Weil–Deligne parameters, may associate to an L-parameter ψ in LPKG (A) an

element φ of Z1(IF /IK , Ĝ)(A) and thus obtain a morphism of presheaves LPKG → Z1(IF /IK , Ĝ).
Fix a lift w0 of arithmetic Frobenius in WF and define a morphism of presheaves

jw0 : LPKG → Ǧ× Z1(IF /IK , Ĝ)×Hom(SL2,Q, Ĝ), ψ 7→
(
ψ̌
(
w0,

(
q 0
0 1

))
, φ, θ

)
.

On the other hand, we have a diagram

DL : Ǧ× Z1(IF /IK , Ĝ)×Hom(SL2,Q, Ĝ) // // Hom(IF /IK , Ĝ)×Gm,Q ×Hom(SL2,Q, Ĝ)[IF :IK ]+1

given by the two maps

(g, f, ν) 7→
(

Int(g, w0) ◦ f, pGm(g), (Int(f(i)) ◦ ν)i∈IF /IK , Int(g, w0) ◦ ν
)

(g, f, ν) 7→
(
f ◦ Int(w0), q, (ν)i∈IF /IK , ν ◦ Int

((
w0,

(
q 0
0 1

))))
.

We then have the following explicit description of LPKG .

Proposition 6.4. The morphism jw0 gives an identification of LPKG with Eq(DL). In particular,
LPKG is representable by a finite type affine Q-scheme and jw0 is a closed embedding.

As already observed, for an extension K ⊆ K ′ of finite extensions of F ∗ Galois over F , there

is a restriction morphism Z1(IF /IK′ , Ĝ) → Z1(IK/IK′ , Ĝ) which is a clopen embedding, and

thus LPKG → LPK
′

G is also a clopen embedding. As we have the identification of presheaves
LPG = lim−→K

LPKG we deduce from Proposition 5.3 that LPG is representable by a scheme locally
of finite type over Q, all of whose connected components are affine.

6.2. Decomposition into connected components. We now establish the analogue of Theo-
rem 5.16 for LPG. Let us fix K a finite extension of F ∗ Galois over F , and a lift w0 of arithmetic
Frobenius. Then, by Proposition 6.4 we have an identification jw0 of LPKG (Q) with(γ, φ, θ) ∈ Ǧ(Q)× Z1(IF /IK , Ĝ)(Q)×Hom(SL2,Q, Ĝ)(Q) :

(1) Int(γ,w0) ◦ φ = φ ◦ Int(w0),

(2) pGm(γ) = q,

(3) Int(φ(i)) ◦ θ = θ for all i ∈ IF /IK ,
(4) Int((γ,w0)) ◦ θ = θ ◦ Int

((
w0,

(
q 0
0 1

)))

 .

Now, for (γ, φ, θ) in LPKG (Q) let us define Zφ,θ to be Z
Ĝ

(φ, θ). This is a linear algebraic group over

Q whose identity component is reductive. Let us then say that an element (γ′, φ′, θ′) in LPKG (A),
for a Q-algebra A, is locally movable to (γ, φ, θ) if there exists an étale cover Spec(A′)→ Spec(A)
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and (g, h) ∈ (Ĝ × Z◦φ,θ)(A′) such that (γ′, φ′, θ′) = g(hγ, φ, θ)g−1. As this definition is clearly

functorial, we obtain a subpresheaf of LPK
G,Q as follows:

U(γ, φ, θ)(A) :=
{

(γ′, φ′, θ′) ∈ LPK
G,Q(A) : (γ′, φ′, θ′) is locally movable to (γ, φ, θ)

}
.

We then have the following, whose proof is identical to Proposition 5.14 except the analogue of
Lemma 5.18 is simpler considering Proposition 4.10.

Proposition 6.5. The morphism of presheaves U(γ, φ, θ)→ LPK
G,Q is representable by an open

immersion. Moreover, the Q-scheme U(γ, φ, θ) is smooth and irreducible.

Define an equivalence relation on LPKG (Q) by declaring that (γ, φ, θ) is equivalent to (γ′, φ′, θ′)

if there exists some (g, h) ∈ (Ĝ× Zφ,θ)(Q) such that (γ′, φ′, θ′) = g(hγ, φ, θ)g−1. Let us denote
an equivalence class under this relation by [(γ, φ, θ)]. Observe that here we do not require h to lie
in Z◦φ,θ(Q), so that these equivalence classes differ from U(γ, φ, θ)(Q). For each such equivalence

class, let us choose an element (γ, φ, θ). We consider π0(Zφ,θ) as a finite abstract group, and

we define an equivalence relation on it by declaring that c is equivalent to c1cγc
−1
1 γ−1 for any

c1 in π0(Zφ,θ). We denote by [c] an equivalence class for this relation.

We then have the following decomposition of LPK
G,Q into explicit connected components,

whose proof is exactly the same as that of Theorem 5.16.

Theorem 6.6. The choice of (γ, φ, θ) in each class [(γ, φ, θ)] of LPKG (Q) gives an identification

LPK
G,Q =

⊔
[(γ,φ,θ)]

⊔
[c]

U(cγ, φ, θ).

We derive from this two corollaries neither of which is a priori obvious.

Corollary 6.7. For all (γ, φ, θ) in LPKG (Q) the Q-scheme U(γ, φ, θ) is affine.

Denote the set of equivalence classes for LPKG (Q) (resp. π0(Zφ,θ)) by [LPKG (Q)] (resp. [π0(Zθ,N )]).

Corollary 6.8. The affine Q-scheme LPKG is smooth, and there is a non-canonical ΓQ-equivariant
bijection

π0

(
LPK

G,Q

) ∼−→ {
([(γ, φ, θ)], [c]) :

(1) [(γ, φ, θ)] ∈
[
LPKG (Q)

]
(2) [c] ∈ [π0(Zφ,θ)]

}
where the ΓQ action on the target is inherited from LPKG and Ĝ.

6.3. The Jacobson–Morozov morphism. We now come to the definition of the Jacobson–
Morozov map in the geometric setting.

Definition 6.9. The morphism JM : LPG →WDPG given by sending ψ to (ψ ◦ ι, dθψ(e0)) is
called the Jacobson–Morozov morphism.

It is clear that JM is Ĝ-equivariant. By Theorem 4.14 it is also clear that JM factorizes
uniquely through WDPtG. Moreover, for any finite extension K of F ∗ Galois over F , one
sees that JM−1(WDPKG ) is precisely LPKG and so we get factorizations LPKG → WDPKG and

LPKG →WDPK,tG . We denote all these factorizations also by JM.

Observe that over Q we may give a simpler description of the Jacobson–Morozov morphism
on each connected component. Namely, let us fix (γ, φ, θ) in LPKG (Q) as in the notation of
§6.2. Then, first observe that JM(γ, φ, θ) is equal to (γ, φ,N) where N = JM(θ). We may then
observe that JM restricted to U(γ, φ, θ) maps into U(γ, φ,N) and is the étale sheafification of
the map which on A-points is the map{

g(hγ, φ, θ)g−1 : (g, h) ∈ Ĝ(A)× Z◦φ,θ(A)
}
→
{
g(h′γ, φ,N)g−1 : (g, h′) ∈ Ĝ(A)× Z◦φ,N (A)

}
given by sending g(hγ, φ, θ)g−1 to g(hγ, φ,N)g−1.
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We also observe that if k is an extension of Q and c is an element of k such that c2 = q then
under the isomorphisms described in Proposition 5.2 and Proposition 6.3 that the Jacobson–
Morozov corresponds to the morphism LP′G,k → WDP′G,k sending ψ to the map on A-points of

(ψ ◦ ι′, dθψ(e0)) where

ι′ : WF,k →WF,k × SL2,k, w 7→
(
w,
(
c−d(w) 0

0 cd(w)

))
.

So, on the level of C-points we see that our Jacobson–Morozov map agrees with that from §3.2.
We now move towards stating the analogue of Theorem 3.6 at the level of A-points. To begin,

we must define the notion of semi-simplicity for L-parameters in the relative setting.

Proposition 6.10. Let ψ be an L-parameter over a Q-algebra A. Then there is a positive
integer m divisible by [F ∗ : F ] such that the morphism

WF,A → ǦA, w 7→ ψ̌
(
w2m,

(
q−md(w) 0

0 q−md(w)

))
admits a factorization

WF,A
d−→ ZA

ψ̌m−→ ǦA.

Proof. This is proved in the same way as Proposition 5.8. �

Definition 6.11. For A a Q-algebra, we call an element ψ of LPG(A) Frobenius semi-simple
if there exists an integer m as in Proposition 6.10 such that ψ̌m factors through a subtorus
of ǦA etale locally on A.

Let us denote by LPss
G(A) (resp. LPK,ssG (A)) the subset of Frobenius semi-simple elements of

LPG(A) (resp. LPKG (A)). This evidently forms a Ĝ-stable subfunctor of LPG (resp. LPKG ).

Remark 6.12. To understand the reasoning for this definition, observe that under the iso-
morphism in Proposition 6.3, this condition corresponds to an element ψ′ of LP′G,k(A) sat-

isfying the property that the projection of ψ′(w2m
0 , 1) to Ĝ(A) is semi-simple for some m as

in Proposition 6.10. In particular, this notion of semi-simple agrees with that from §3.2 for
C-points by Lemma 3.13.

We now prove the following surprisingly subtle semi-simplicity preservation property for the
Jacobson–Morozov morphism.

Proposition 6.13. Let A be a Q-algebra and ψ an element of LPG(A). Then, ψ is Frobenius
semi-simple if and only if JM(ψ) is.

Proof. Suppose that ψ is Frobenius semi-simple. As the conclusion is insensitive to passing to
an étale extension and conjugating, we do so freely. Take m as in Proposition 6.10 and a split
maximal torus T of ǦA such that ψ̌m factors through T . Note that the eigenspace ǧA(1) with
respect to ψ̌m(1) is the Lie algebra of a Levi subgroup L of ǦA such that ψ̌m factors through
Z(L). Indeed, we may assume that T = (T0)A for a maximal torus T0 of Ǧ. Let L′ be the Levi
subgroup of Ǧ generated by T0 and the root groups for the roots α which annihilate ψ̌m(1).
Then, we may take L = L′A, where ψ̌m factors through Z(L) by [Con14, Corollary 3.3.6].

Note that θ factorizes through L as by Proposition 2.6 it suffices to check this on the level of
Lie algebras, from where it is clear. Let T2 denote the standard diagonal subtorus of SL2,A. Since
θ factorizes through L, by [Con14, Lemma 5.3.6] we may assume that the map θ|T2 factorizes
through a maximal torus T ′ of L. But, as Z(L) ⊆ T ′ both θ|T2 and ψ̌m factorize through T ′.
Hence, if we write JM(ψ) = (ϕ,N) then the morphismWF,A → ǦA given by w 7→ ϕ(wm) factors
through T ′. This implies that JM(ψ) is Frobenius semi-simple.

Conversely, suppose that JM(ψ) = (ϕ,N) is Frobenius semi-simple. Let m be any integer as
Proposition 5.8. As above, we may build a reductive subgroup Lm of ǦA such that Lie(Lm)
is identified with ǧA(1) with respect to ϕ̌m(1). We claim that the group Lkm stabilizes for k
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sufficiently large. Indeed, the roots of α of Ǧ relative to T0 that annihilate ϕ̌km(1) = ϕ̌m(1)k

stabilize for k sufficiently large, from where the claim follows by the construction. Denote by
L the group Lkm for k sufficiently large, say for k > k0. Let us write Z for the torus Z(L)◦

(see [Con14, Theorem 3.3.4]). Observe that as ϕ̌km, for k > k0, centralizes Lie(L) that ϕ̌km
factors through Z(L). So then, for some k1 > k0 we have that ϕ̌k1m factors through Z. We put
m1 = k1m. We will be done if we can show that θ|T2 factorizes through the reductive group A-
scheme ZǦ(Z) (see [Con14, Lemma 2.2.4] and [Mil17, Corollary 17.59]). Indeed, in this case by
[Con14, Lemma 5.3.6], we know that after passing to an étale extension, θ|T2 factorizes through
a maximal torus T ′ of ZǦ(Z). Then θ|T2 and ϕ̌m1 factor through T ′. Hence

WF,A → ǦA, w 7→ ψ̌
(
w2m1 ,

(
q−m1d(w) 0

0 q−m1d(w)

))
factors through T ′. This implies that ψ is Frobenius semi-simple.

Working etale locally, and by passing to a Ǧ(A)-conjugate, we may assume that Z is equal
to Z ′A for a split subtorus Z ′ of Ǧ. Let R0 be the set of nontrivial characters of Z ′ appearing in
the adjoint action of Z ′ on ǧA. Note that these characters are already defined over Q. Consider
the functor on AlgQ with

Y (B) :=

{
z ∈ Z ′(B) :

(1) χ(z) 6= 1 for all χ ∈ R0,

(2) χ(z) = qm1 for all χ ∈ R0 such that χ(ϕ̌m1(1)) = qm1

}
.

Clearly Y defines a locally closed subscheme of Z ′ which is non-empty as ϕ̌m1(1) is an element
of Y (A). Take y ∈ Y (F ) for a finite extension F of Q. By passing to an étale extension, we may
assume that A contains F . We claim that inclusion ZǦ(Z) ⊆ ZǦ(y)◦A is an equality. As ZǦ(Z)
is flat over Spec(A), we know from the fibral criterion for isomorphism (see [EGA4-4, Corollaire
17.9.5]), that it suffices to check this after base change to every point of Spec(A). But, as A is
Q-algebra, and ZǦ(Z) and ZǦ(y)◦A are both connected, it then suffices to check they have the
same Lie algebra (e.g. see [Mil17, Corollary 10.16]), but this is true by construction.

In the following, we use the notation ǧA(λ) for λ ∈ A× with respect to ϕ̌m1(1). By construc-
tion, we know that Int(y) acts on ǧA(q±m1) by multiplication by q±m1 . Moreover, the SL2-triple
(N, f, h) associated to θ by Theorem 4.17 satisfies N ∈ ǧA(qm1), f ∈ ǧA(q−m1) and h ∈ ǧA(1).
Therefore, the sl2-triple attached to Int(y)◦θ is (qm1N, q−m1f, h). Thus, the sl2-triple attached
to Int(y) ◦ θ ◦ µ is (N, f, h) where

µ : SL2,A
∼−→ SL2,A,

(
a b
c d

)
7→
(

a q−m1b
qm1c d

)
.

By Theorem 4.17 Int(y) ◦ θ ◦ µ = θ, so θ|T2 factorizes through ZǦ(y)◦A = ZǦ(Z) as desired. �

We end this section by proving a relative version of Proposition 3.7. Fix a Q-algebra A and
let N be an element of Nt(A). Let us denote by uN the A-submodule im(ad(N))∩Ker(ad(N))
of ĝA, which we also treat as a subfunctor of ĝA in the obvious way. Note that uN is in fact a

closed subscheme of N̂A and for all A-algebras B there is an equality

uN (B) = im(ad(N ⊗ 1)) ∩Ker(ad(N ⊗ 1)).

As these claims are étale local, we may assume that N = gN0g
−1 for some N0 in N̂ (Q) and g

in Ĝ(A). Observe then that uN is equal to g(uN0)Ag
−1 where uN0 ⊆ ĝ is defined in the same

way as uN . As N̂A is Ĝ(A)-equivariant it suffices to show that uN0 factorizes through N̂ which
may be checked on Q-points which is then clear. One similarly proves the claimed equality.

As uN is a closed subscheme of N̂A, we obtain a closed subscheme UN := exp(uN ) of ĜA.

We claim that UN is a closed subgroup scheme of ĜA flat over A. As this may be checked
étale locally we are again reduced to checking that exp(uN0) is a closed subgroup Q-scheme of

Ĝ (automatically flat over Q), but this is true by Proposition 2.3. For an element (ϕ,N) of
WDPtG(A) we set

UN (ϕ) := UN ×
ĜA

Z
Ĝ

(ϕ).
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Concretely this means that for every A-algebra B one has an identification of UN (ϕ)(B) with

UN (B) ∩ Z
Ĝ

(ϕ)(B) where this intersection is taken in Ĝ(B).
Let us first establish the following relative version of Proposition 3.3, which follows easily

(using the same reduction arguments as already used above) from Proposition 3.3

Lemma 6.14. Let θ be an element of Hom(SL2,Q, Ĝ)(A) and define N = JM(θ). Then,

Z
Ĝ

(N) = UN o Z
Ĝ

(θ).

Proposition 6.15. Let A be a Q-algebra, ψ is an element of LPG(A), and set (ϕ,N) = JM(ψ).
Then, Z

Ĝ
(ϕ,N) = UN (ϕ) o Z

Ĝ
(ψ).

Proof. Let B be an A-algebra. Given Lemma 6.14 it clearly suffices to show that conjugation by
an element in the image of ϕ stabilizes UN , as the rest of the argument for Proposition 3.7 then
goes through verbatim. Let u = exp(n) be an element of UN (B) and observe that Int(ϕ(w))(u)
is equal to exp(Ad(ϕ(w))(n)), and so we are done as clearly Ad(ϕ(w))(n) ∈ uN (B). �

6.4. The relative Jacobson–Morozov theorem for parameters. We now arrive at the
relative analogue of Theorem 3.6. Let us set WDPt,ssG to be the presheaf whose A-points consist
of Frobenius semi-simple Weil–Deligne parameters (ϕ,N) such that N lies in Nt(A).

Theorem 6.16 (Relative Jacobson–Morozov theorem for parameters). The Jacobson–Morozov
morphism JM : LPss

G →WDPt,ssG is surjective, and induces an isomorphism of quotient presheaves

JM : LPss
G/Ĝ

∼−→WDPt,ssG /Ĝ.

Let us fix a Q-algebra A, an element (ϕ,N) of WDPt,ssG (A), and an arithmetic Frobenius lift

w0 ∈ WF,A. In the notation from Proposition 5.7, with ρ : (Ǧ o Γ∗)A → GL(ĝA) the adjoint

action, h = ϕ(w0), and I = φ(IF /IK), let h and h(λ) be ĝIA and ĝIA(λ) respectively.

Proposition 6.17 (cf. [GR10, Lemma 2.1]). There exists an sl2-triple in ĝA of the form (N, f, h)
where N ∈ h(q), f ∈ h(q−1), and h ∈ h(1). Moreover, any two such sl2-triples are conjugate by
an element of Z

Ĝ
(ϕ,N) étale locally on A.

Proof. By Theorem 4.17 there exists an sl2-triple (N,h−1, f−1) in ĝA. We take a finite extension
K of F ∗ Galois over F such that IK,A ⊆ ker(ϕ̌|WF∗,A). Observe that N is in h by definition

and if we set h0 to be the average over the action of φ(IF /IK), then h0 is also in h and (N,h0)
satisfies the conditions of Proposition 4.18 for h. Therefore there exists an sl2-triple in h of the
form (N,h0, f0). Given this, the decomposition result from Proposition 5.7, and Proposition
4.18, the existence argument as in [GR10, Lemma 2.1] goes through without further comment.

To show the uniqueness part of the statement, let (N,h1, f1) be another sl2-triple satisfying
the same conditions. We shall pass to an étale extension freely in the following. By Proposition

4.10, we may assume that there exists a morphism θ : SL2,Q → Ĝ such that (N,h, f) is the

associated sl2-triple. Set m := hN ∩ h(1), and for each i ∈ N set mi to be {x ∈ m : [h, x] = ix}.
We can check that m =

⊕
imi by using the adjoint action of θ|T2 and Lemma 6.18 below, where

T2 is the diagonal subtorus of SL2,Q. Let us now set u :=
⊕

i>0 mi. Then u is Lie subalgebra of

ĝA contained in N̂ (A) as it is contained in
⊕

i>0 ĝi,A, the base change to A of
⊕

i>0 ĝi where

ĝi = {x ∈ ĝ : [h, x] = ix}, and
⊕

i>0 ĝi is quickly checked to be contained in N̂ (Q). Consider
U := exp(u), which is a subgroup of H(A) by (3) of Proposition 2.3.

We claim that {Ad(u)(h) : u ∈ U} is equal to h + u. To see this, we note that if we write
u = exp(x) for x ∈ u then by (2) of Proposition 2.3 Ad(u)(h) is equal to

∑
n≥0

1
n!ad(x)n(h). We

need to show that for any x0 ∈ u there is x ∈ u such that x0 =
∑

n≥1
1
n!ad(x)n(h). We define a

filtration Fili(u) =
⊕

j>imj for i ≥ 1. It suffices to prove that there is xi ∈ u such that

x0 ≡
∑
n≥1

1

n!
ad(xi)

n(h) mod Fili(u)
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by induction on i. This is trivial for i = 1. We assume that it is proved for i. We take
x′i ∈ Fili(u) such that [x′i, h] = x0 −

∑
n≥1

1
n!ad(xi)

n(h). Then xi+1 = xi + x′i is seen to satisfy

x0 ≡
∑
n≥1

1

n!
ad(xi+1)n(h) mod Fili+1(u)

since [u,Fili(u)] ⊆ Fili+1(u).
Note now that y = h1 − h = [N, f1 − f ] is in u. Indeed, by inspection [N, y] = 0 so that

y is in hN , but since h1 and h are both in h(1), so is their difference y. Note though that as
y = [N, f1 − f ] we have y is in u. Indeed, it again suffices to show that ĝA ∩ [N, ĝA] is equal to⊕

i>0 ĝi,A which, again, may be verified over Q in which case it is again classical (cf. [GR10,
Proposition 2.2]). Thus, we know that there exists some u in U such that Ad(u)(h) = h+y = h1.
One then verifies that Ad(u)(f) = f1 as in loc. cit. Finally, we now observe that the inclusion
U ⊆ Z

Ĝ
(ϕ,N)(A) holds. Indeed, writing u = exp(x) we see that Ad(u)(N) = N since x is in

hN and using the formula from (2) of Proposition 2.3. Similarly, as Int(ϕ(w))(exp(x)) is equal
to exp(Ad(ϕ(w))(x)), this is just exp(x) as x is in h(1). �

Lemma 6.18. Let S be a scheme and H a smooth group S-scheme with Lie algebra h. Let
ρ : Gm,S → H be a morphism of group S-schemes. Set h = dρ(1), and for an integer i we set

hρ,i = {x ∈ h : Ad(ρ(z))x = zix for all z}, hh,i = {x ∈ h : ad(h)(x) = ix}.
Then we have hρ,i ⊆ hh,i. This is an equality if S is a Q-scheme.

Proof. We have d(Ad ◦ρ)(1) = ad(h) under the identification of the Lie algebra of GL(h) with
End(h). By taking the weight decomposition of h under Ad ◦ρ (cf. [CGP15, Lemma A.8.8]), we
obtain the claim from the fact that the derivative of the ith-power map Gm,S → Gm,S is the
multiplication-by-i map. The last claim follows from h =

⊕
i∈Z hρ,i and that hh,i for i ∈ Z are

linearly independent if S is a Q-scheme. �

To show the surjectivity claim in Theorem 6.16 let (N, f, h) be as in Proposition 6.17, and

consider the morphism θ : SL2,A → ĜA associated by Theorem 4.15. We then consider the
morphism of schemes

ψ : Ltw
F,A → CGA, (w, g) 7→ θ

(
g
(
‖w‖ 0

0 1

)−1
)
ϕ(w).

We claim that this a morphism of group A-schemes. To prove this, it suffices to show

Ad(ϕ(w))(θ(g)) = θ
(

Ad
((
‖w‖ 0

0 1

))
(g)
)

for w ∈ WF,A(B) and g ∈ SL2(B), where B is any A-algebra. This follows from Proposition
2.6 and the construction of θ. One then easily check that ψ is an element of LPG(A) such that
JM(ψ) = (ϕ,N) as desired.

We now show that JM induces a bijection LPss
G(A)/Ĝ(A) ∼−→ WDPt,ssG (A)/Ĝ(A), which now

only requires the demonstration of injectivity. By the Ĝ(A)-equivariance of JM it suffices to
show that if ψ1 and ψ2 are elements of LPss

G(A) such that JM(ψ1) and JM(ψ2) both equal (ϕ,N),

then ψ1 and ψ2 are Ĝ(A)-conjugate. Note that the sl2-triples associated to θψi for i = 1, 2 both
satisfy the conditions of Proposition 6.17 for (ϕ,N). Therefore, étale locally on A the sl2-triples
associated to ψ and ψ′ are conjugate in a way that centralizes (ϕ,N) and so ψ and ψ′ are étale
locally conjugate. From this we deduce that ψ2 defines a class in H1

ét(Spec(A), Z
Ĝ

(ψ1)) given
by Transp

Ĝ
(ψ1, ψ2). Note though that we have a natural map

H1
ét(Spec(A), Z

Ĝ
(ψ1))→ H1

ét(Spec(A), Z
Ĝ

(ϕ,N))

which maps Transp
Ĝ

(ψ1, ψ2) to the trivial element, and so Transp(ψ1, ψ2) belongs to

ker

(
H1

ét(Spec(A), Z
Ĝ

(ψ1))→ H1
ét(Spec(A), Z

Ĝ
(ϕ,N))

)
,
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and so we are done if this kernel is trivial. But, this follows from Proposition 6.15.

7. Geometric properties of the Jacobson–Morozov map

In this final section we use the material developed so far to prove that the Jacobson–Morozov

morphism satisfies favorable geometric properties. Namely, we show that JM : LPKG →WDPK,tG

(resp. JM : LPKG → WDPKG ) is birational (resp. weakly birational). We do this by exhibiting a
more explicit space which embeds into all three moduli spaces weakly birationally. This is the
geometric analogue of the reductive centralizer locus from §3.3. We then finally show that as
a particular application of these ideas one may prove that the Jacobson–Morozov map is an
isomorphism between the discrete loci in LPKG and WDPKG .

7.1. Birationality properties. To begin, note that as the morphism Nt → N is surjective

and satisfies the conditions of Lemma 4.7, WDPK,tG →WDPKG is then also surjective and satisfies
the same conditions. We therefore deduce from Lemma 4.7 the following.

Proposition 7.1. The morphism WDPK,tG →WDPKG is weakly birational.

We now give a more explicit effective version of this result. To start, we observe the following
where we denote by (ϕuniv, Nuniv) the universal pair over WDPKG .

Proposition 7.2. For each n > 0, the subset

WDPK,nG :=
{
x ∈WDPKG : Z

Ĝ
(ϕuniv, Nuniv)◦x is reductive of dimension n+ dim(Z0(Ĝ))

}
of WDPKG is locally closed, is open if n = 0, and is empty if n > dim(Ĝ/Z0(Ĝ)).

Proof. Consider the quotient Q := Z
Ĝ

(ϕuniv, Nuniv)/Z0(Ĝ)WDPKG
. By [SGA3-1, Exposé VIB,

Proposition 4.1], the function f : WDPKG → N given by f(x) = dim(Qx) is upper semi-continuous.
In particular the set Dn = f−1([0, n + 1)) ∩ f−1([n,∞)] of points where Qx is of dimension n
is locally closed, and as D0 = f−1([0, 1)), D0 is open. Let us endow Dn with the reduced
substructure. Let us then note that by [SGA3-1, Exposé VIB, Corollaire 4.4] for all n > 0 the
identity component functor Q◦Dn is representable and is smooth over Dn. Thus, by [Con14,
Proposition 3.1.9], we deduce that the locus of x in Dn where Q◦x is reductive is open, and thus

locally closed in WDPKG and open if n = 0. But, evidently this locus is equal to WDPK,nG . �

Definition 7.3. We define the reductive centralizer locus in WDPKG to be the Q-scheme

WDPK,rcG :=
⊔
nWDPK,nG (where each WDPK,nG is given the reduced subscheme structure).

We call the open subset WDPK,0G the discrete locus and denote it by WDPK,disc
G .

Let us observe that by the proof of Proposition 7.2, if A is a reduced Q-algebra and (ϕ,N)
is a Weil–Deligne parameter over A such that the corresponding morphism Spec(A)→ WDPKG
factorizes through WDPK,rcG , then Z

Ĝ
(ϕ,N)◦ is representable and reductive over A.

Now, while a priori unclear, we show now that the reducedness of WDPKG implies that Nuniv

pulled back to the reductive centralizer locus lies in Nt. More precisely, we have the following.

Proposition 7.4. The morphism WDPK,rcG →WDPKG factorizes through WDPK,tG .

Indeed, as WDPKG is reduced by Theorem 5.4 this follows from the following proposition.

Proposition 7.5. If A is a reduced Q-algebra, and (ϕ,N) is an element of WDPG(A) such that
Z
Ĝ

(ϕ,N)◦x is a reductive group scheme of dimension n for all x in Spec(A), then (ϕ,N) is an

element of WDPtG(A).

Proof. We break the argument into several steps to make the structure clear.

Step 1: It suffices to prove that if A is a strictly Henselian discrete valuation ring, then N is

egc to some N0 in N̂ (Q). Indeed, we must show that the map Spec(A)→ N induced by (ϕ,N)
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factorizes through Nt. By standard Noetherian approximation arguments we may assume that
A is Noetherian. We may then assume that A is connected, in which case we must show that this
morphism factorizes through some ON . As A is reduced, it suffices to show that Spec(A)→ N
factorizes through some ON set-theoretically. As A is connected, any two points of Spec(A)
may be connected by a finite chain of specialization and generalizations. This reduces us to
showing that if x is a generalization of y in Spec(A) then these points map into a common ON .
We are then reduced to the case of a discrete valuation ring by [Sta21, Tag 054F], and then
trivially to the case of a strictly Henselian discrete valuation ring.

Step 2: We claim we may assume that (ϕ,N) is in WDPK,disc
G (A). Write η (resp. s) for the

generic point (resp. special) of Spec(A). As Z
Ĝ

(ϕ,N) has constant fiber dimension, the same is
true for Z

Ĝder(ϕ,N) and so again [SGA3-1, Exposé VIB, Corollaire 4.4] shows that Z
Ĝder(ϕ,N)◦

is representable and reductive over A. As A is strictly Henselian, for any reductive group over
A, all its tori are split, all its maximal tori are conjugate, and all its Borel subgroups are

conjugate. Then, as CG is equal to LG̃ the arguments in [Bor79, Lemma 3.5] show that if T is a
maximal torus of Z

Ĝder(ϕ,N)◦ there exists some g ∈ Ǧ(A) and a Levi subgroup H of G∗ (where

G∗ is the quasi-split inner form of G) such that gZCGA(T )g−1 = CHA. Therefore g−1(ϕ,N)g

factorizes through CHA. We claim then that (ϕ,N) is in WDPK,disc
H (A). By Proposition 5.11

g−1(ϕη, Nη)g and g−1(ϕs, Ns)g are Frobenius semi-simple. Moreover, the argument given in
[Bor79, Proposition 3.6] shows that neither g−1(ϕη, Nη)g nor g−1(ϕs, Ns)g factorizes through a
proper Levi (in the sense of loc. cit.) which, as they are both Frobenius semi-simple, implies by
the usual arguments (cf. [Kot84, Lemma 10.3.1]) that they are discrete. As N is in Nt(A) if
and only if g−1Ng is, the claimed reduction follows.

Step 3: We now show that we may assume Ns 6= 0. If both Ns and Nη are zero we’re done,
and so it suffices to show that if Nη 6= 0 then Ns 6= 0. To see this, assume otherwise. But
the inequality dimZǦ(ϕη) 6 dimZǦ(ϕs) = dimZǦ(ϕs, Ns) holds by [SGA3-1, Exposé VIB,
Proposition 4.1]. That said, dimZǦ(ϕη, Nη) < dimZǦ(ϕη). Indeed, it suffices to note that
if w0 is any lift of arithmetic Frobenius then (as in Propoistion 5.8) for m sufficiently large
ϕ̌η(w

m
0 ) defines a point of ZǦ(ϕη) but, as Nη 6= 0, does not define a point of ZǦ(ϕη, Nη) and

thus ZǦ(ϕη, Nη)
◦ ( ZǦ(ϕη)

◦ from where the claim follows. But, observe that dim(ZǦ(ϕη, Nη))
(resp. dim(ZǦ(ϕη, Nη))) is equal to dim(Z

Ĝ
(ϕη, Nη)) + 1 (resp. dim(Z

Ĝ
(ϕs, Ns)) + 1) and so we

arrive at a contradiction.

Step 4: Replacing G with Gder we may assume that Z0(Ĝ) is finite. Proposition 5.11 together
with Theorem 6.16 imply that (ϕη, Nη) (resp. (ϕs, Ns)) comes from an L-parameter ψ1 (resp.
ψ2). Write µi for the restriction of θψi to the diagonal maximal torus. Fix w0 to be an arithmetic
Frobenius lift. By Frobenius semi-simplicity and the fact that A is strictly Henselian, there is,
up to conjugacy, a positive integer m0 divisible by [F ∗ : F ] such that ϕ̌(wm0

0 ) is contained in

the A-points of a maximal torus T of ǦQ. By the relationship between ψi and ϕi and the

argument of [GR10, Lemma 3.1], we see that up to replacing m0 by a power, we may further

assume that ϕ̌η(w
2m0
0 ) = µ1(qm0) and ϕ̌s(w

2m0
0 ) = µ2(qm0). From this first equality it is simple

to see that µ1 factorizes through Tη, and thus there exists a unique lift µA of µ1 to TA where
µ is a cocharacter of T . We note as Ns 6= 0, that µ2 is characterized by the property that the
image of µ2 contains ϕ̌s(w

2m0
0 ) and Ad(µ2(qm0))(Ns) = q2m0Ns. As ǦA and ĝA are separated

over A, we have that the image of µ contains ϕ(w2m0
0 ) and Ad(µ(qm0))(N) = q2m0N . Hence,

µs satisfies the above characterization of µ2, so µs = µ2. Let P (µ) be the parabolic subgroup

of ĜQ associated to µ. Define ĝη(j) (resp. ĝs(i)) using µη (resp. µs) as in [Car85, §5.7]. Then

by [Car85, Proposition 5.7.3] Nη (resp. Ns) is in the unique open P (µ)η-orbit (resp. P (µ)s) of⊕
i≥2 ĝη(i) (resp.

⊕
i≥2 ĝs(i)). But, by the uniqueness of this open orbit, we then see that Nη

and Ns are both conjugate to any Q-point of the unique open orbit of P (µ) on
⊕

i≥2 ĝ(i), from
where the conclusion follows. We are then done by Proposition 4.8. �

We next show the pleasant property that WDPK,rcG actually has dense image in WDPK,tG .
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Lemma 7.6. Let k be a field, X an irreducible finite type k-scheme equipped with an action of
an algebraic k-group H, and Y an irreducible locally closed subscheme of X. Assume that the
action morphism µ : H × Y → X is dominant. Then there is a dense open subset U of Y such
that dimZH(y) 6 dim(H) + dim(Y )− dim(X) for all y ∈ U .

Proof. By [GW20, Corollary 14.116] there exists a dense open subset V of X with the property
that dimµ−1(y) = dimH+dimY −dimX for all y ∈ V . As µ is H-equivariant when H is made
to act on the first component of H×Y , we may assume that V is H-stable. We put U = V ∩Y ,
which is non-empty as µ is dominant and V is H-stable. As ZH(y)× {y} ⊆ µ−1(y) for y ∈ U ,
we obtain the claim. �

Proposition 7.7. The set

{x ∈WDPK,tG : Z
Ĝ

(ϕuniv, Nuniv)◦x is a torus}

contains an open dense subset of WDPK,tG .

Proof. Observe that this may be checked over Q, as the morphism Spec(Q) → Spec(Q) is
surjective and universally open (see [Sta21, Tag 0383]). Thus, from Theorem 5.16 it suffices
to show that for each (γ, φ,N) in WDPKG (Q) corresponding to (ϕ,N), one has that the set of
points x in U(γ, φ,N) such that Z

Ĝ
(ϕuniv, Nuniv)◦x is a torus contains a dense open subset.

Let H be the normalizer of φ in (Ĝ o Γ∗)Q. Then H◦ = Z
Ĝ

(φ)◦ which is a reductive group

by Lemma 2.5. Consider the linear algebraic Q-group S′H(N) representing the functor

AlgQ → Grp, A 7→
{

(h, z) ∈ H(A)×A× : Ad(h)(N) = z2N
}
,

which is clearly seen to be a closed subgroup scheme of ((Ĝ×Gm)oΓ∗)Q by changing the order

of the components. Let SH(N) be the image of S′H(N) in (Ǧ o Γ∗)Q. Let s0u0 be the Jordan

decomposition of ϕ(w0) in SH(N). Then the image of u0 in Gm,Q is trivial. Hence u0 is an

element of Z◦φ,N . Replacing γ by u−1
0 γ, we may assume that ϕ is Frobenius semi-simple from

the beginning.
Let ψ be an element of LPKG (Q) such that JM(ψ) = (ϕ,N) and write θ = θψ. Let UH(N) be

the unipotent radical of ZH(N). Then, as in Proposition 3.3, we have ZH(N) = UH(N)oZH(θ).
We take a maximal quasi-torus T of ZH(θ) in the sense of [HP18, Definition 8.6]. Set s1 to

be the image of
(
θ
((

q1/2 0

0 q−1/2

))
, q1/2

)
in Ǧ(Q). Then Z◦φ,Nγs

−1
1 ⊆ ZH(N). So we can

write T ∩ Z◦φ,Nγs
−1
1 = t1T

◦ for some t1 ∈ T (Q) by [HP18, Theorem 8.10 (d)]. Then, we have
Z◦φ,Nγ = t1Z

◦
φ,Ns1.

We let T t1 be the closed subgroup scheme of T of elements commuting with t1. For t0 in
(T t1)◦(Q), we consider the morphism

Λt0 : ZH(N)◦ × (T t1)◦ → ZH(N)◦, (h, t) 7→ (t1t0)−1ht1t0ts1h
−1s−1

1 .

This induces

Lie(Λt0) : Lie(ZH(N)◦)×Lie((T t1)◦)→ Lie(ZH(N)◦), (x, y) 7→ ad((t1t0)−1)x+y−ad(s1)x.

This is identified with the direct sum of

Lie(Λt0)1 : Lie(ZH(θ)◦)× Lie((T t1)◦)→ Lie(ZH(θ)◦), (x, y) 7→ ad((t1t0)−1)x+ y − x,
Lie(Λt0)2 : Lie(UH(N)◦)→ Lie(UH(N)◦), z 7→ ad((t1t0)−1)z − ad(s1)z.

In the proof of [HP18, Theorem 8.9 (c)], it is shown that the morphism

ZH(θ)◦ × t1(T t1)◦ → t1ZH(θ)◦, (g, t) 7→ gtg−1

is dominant. Therefore, by Lemma 7.6 and the fact that (T t1)◦ ⊆ ZZH(θ)◦(t1t0)◦ for any

t0 ∈ (T t1)◦, there is an open dense subset Ut1,1 ⊆ (T t1)◦ such that ZZH(θ)◦(t1t0)◦ = (T t1)◦ for
t0 ∈ Ut1,1. This implies that Lie(Λt0)1 is surjective for t0 ∈ Ut1,1.
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The eigenvalues of the diagonalizable ad(s1) on Lie(UH(N)) are contained in {qi/2}1≤i≤n0

for some n0 by Proposition 3.3. Let m1 be the order of t1 in π0(T ). Then there is a positive

integer m such that the eigenvalues of the diagonalizable ad(t−1−mm1
1 ) on Lie(UH(N)) are

disjoint from {qi/2}1≤i≤n0 . Since t−1−mm1
1 and s1 are commutative, ad(t−1−mm1

1 ) and ad(s1)
are simultaneously diagonalizable. Hence we have the surjectivity of Lie(Λtmm1

1
)2. Since the

surjectivity of Lie(Λt0)2 defines an open subset on (T t1)◦, which we now know is non-empty,
there is an open dense subset Ut1,2 ⊆ (T t1)◦ such that Lie(Λt0)2 is surjective for t0 ∈ Ut1,2.

We put Ut1 = Ut1,1 ∩ Ut1,2. Then, for t0 ∈ Ut1 , the map Lie(Λt0) is surjective, hence Λt0 is
dominant. This implies that

ZH(N)◦ × t1(T t1)◦s1 → t1ZH(N)◦s1, (g, t) 7→ gtg−1

is dominant. Further, for t0 ∈ Ut1 , the surjectivity of Lie(Λt0) implies that the kernel of

Lie(ZH(N)◦)→ Lie(ZH(N)◦), x 7→ ad((t1t0)−1)x− ad(s1)x

is equal to Lie((T t1)◦). This means that for t0 ∈ Ut1 , we have ZZH(N)(t1t0s1)◦ = (T t1)◦. So we
have toral centralizer for all points in the image of the dominant map

ZH(N)◦ × t1Ut1s1 → t1ZH(N)◦s1, (g, t) 7→ gtg−1,

whose target is equal to Z◦φ,Nγ, and so the conclusion follows from Chevalley’s theorem (see

[GW20, Theorem 10.19]). �

From this, together with Proposition 7.1 and Lemma 4.7, we deduce that the two maps

WDPK,rcG →WDPK,tG and WDPK,rcG →WDPKG are weakly birational. To connect this discussion

to the Jacobson–Morozov map, we now show that JM is an isomorphism over WDPK,rcG .

Proposition 7.8. The morphism JM : JM−1(WDPK,rcG )→WDPK,rcG is an isomorphism.

Proof. Let A be a Q-algebra. As JM is Ĝ(A)-equivariant, to show that this map is a bijection
on A-points it suffices to prove that the map on A-points is a bijection upon quotienting both

sides by Ĝ(A), and that for all ψ in JM−1(WDPK,rcG (A)) the equality Z
Ĝ

(ψ) = Z
Ĝ

(ϕ,N) holds
where (ϕ,N) = JM(ψ). For the bijectivity on quotient sets, it suffices by Theorem 6.16 to show

that every element of WDPK,rcG (A) belongs to WDPK,t,ssG (A). But, this follows from Proposition

5.11 and Proposition 7.4. Suppose now that ψ is an element of JM−1(WDPK,rcG (A)). To show

that Z
Ĝ

(ψ) = Z
Ĝ

(ϕ,N) it suffices by Proposition 6.15 to show that UN (ϕ) is trivial. Applying

the fiberwise criterion for isomorphism (see [Con14, Lemma B.3.1]) to identity section of UN (ϕ)
it suffices to show that UN (ϕ)x is trivial for all x in Spec(A). But, as UN (ϕ)x is unipotent it
is contained in Z(ϕ,N)◦x, and as it is also normal it must be trivial by our assumption that
Z(ϕ,N)◦x is reductive. �

We deduce that WDPK,rcG also admits a weakly birational monomorphism to LPKG . So, we
now come to our main geometric result concerning the Jacobson–Morozov morphism.

Theorem 7.9. The morphism JM : LPKG → WDPK,tG (resp. JM : LPKG → WDPKG ) is birational
(resp. weakly birational).

Proof. The weak birationality of both maps is clear from the above discussion, and therefore it

suffices to show that the map JM : LPKG → WDPK,tG induces a bijection on irreducible compo-

nents. It clearly suffices to check this after base changing to Q. By Theorem 5.16 and Theorem

6.6 the connected components of LPK
G,Q and WDPK,t

G,Q are irreducible, so it suffices to show

that the map JM : π0(LPK
G,Q) → π0(WDPK,t

G,Q) is bijective. To do this we first show that the

Jacobson–Morozov map induces a bijection [LPKG (Q)] → [WDPKG (Q)]. By Proposition 7.7 and
Proposition 5.11 every equivalence class of the target contains a Frobenius semi-simple element
and thus surjectivity follows from Theorem 6.16. To show injectivity suppose that (γi, φi, θi)
for i = 1, 2 are elements of LPKG (Q) such that (γi, φi, Ni) are equivalent in WDPKG (Q). Without
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loss of generality, we may assume that φ1 = φ2 =: φ and N1 = N2 =: N and that γ2 = hγ1

with h in Zφ,N (Q). By Proposition 6.17 there exists z in Zφ,N (Q) such that zθ1z
−1 = θ2. Note

then that (γ2, φ, θ2) = z(sγ1, φ, θ1)z−1 where s = z−1γ2zγ
−1
1 . Writing s = z−1hγ1zγ

−1
1 one

sees from the fact that z−1 and h both centralize φ and γ1 normalizes φ that s centralizes φ.
On the other hand, one can just as easily check that as γ1 centralizes θ1 and γ2 centralizes θ2

that s = z−1γ2zγ
−1
1 also centralizes θ1. Therefore as (γ2, φ, θ2) = z(sγ1, φ, θ1)z−1 we deduce

that (γ2, φ, θ2) and (γ1, φ, θ1) are equivalent in LPKG (Q) as desired. But, for (γ, φ, θ) with image
(γ′, φ,N) under the Jacobson–Morozov map, one has π0(Zφ,N ) = π0(Zθ,N ) as follows quickly
from Proposition 6.15. These observations together with Corollary 5.17 and Corollary 6.8 give
the desired conclusion. �

Let us finally note that as a possibly useful corollary of the above results, we also obtain the
density of Frobenius semi-simple parameters in all three of these moduli spaces.

Corollary 7.10. The subsets

LPss
G(Q) ⊆ LPG, WDPt,ssG (Q) ⊆WDPtG, WDPss

G(Q) ⊆WDPG

are dense.

7.2. Isomorphism over the discrete locus. In this final section we apply the material to give
a geometric analogue of Corollary 3.16 or, in other words, we show that the Jacobson–Morozov
morphism is an isomorphism over the discrete loci in LPKG and WDPKG .

We have defined the discrete locus WDPK,disc
G in Definition 7.3, and we now do so for LPKG .

Definition 7.11. Let ψuniv be the universal L-parameter over LPKG . Then, the discrete locus
in LPKG is the subset

LPK,disc
G :=

{
x ∈ LPKG : Z

Ĝ
(ψuniv)x/Z0(Ĝ)x → Spec(k(x)) is finite

}
.

The same argument as in the proof of Proposition 7.2 shows that LPK,disc
G is an open subset

of LPKG and we endow it with the open subscheme structure. The following relates the discrete
loci in WDPKG and LPKG , giving a geometrization of Corollary 3.16.

Proposition 7.12. The equality JM−1(WDPK,disc
G ) = LPK,disc

G holds.

Proof. As these are both open subsets of the finite type affine Q-scheme LPKG , it suffices to show
that they have the same Q-points. In other words, we must show that for an element LPKG (Q)
one has that Z

Ĝ
(ψ) is finite (as a set) if and only if Z

Ĝ
(JM(ψ)) is finite. Choosing an embedding

Q→ C one then quickly deduces this from Proposition 3.15 and its proof. �

From this, and Proposition 7.8 we deduce the following.

Theorem 7.13. The morphism JM : LPK,disc
G →WDPK,disc

G is an isomorphism.
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groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam,
1970, avec un appendice ıt Corps de classes local par Michiel Hazewinkel.

[DHKM20] J.-F. Dat, D. Helm, R. Kurinczuk and G. Moss, Moduli of Langlands Parameters, 2020,
arXiv:2009.06708.

[Elk72] G. B. Elkington, Centralizers of unipotent elements in semisimple algebraic groups, J. Algebra 23
(1972), 137–163.

[FS21] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence, 2021,
arXiv:2102.13459.
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