ON THE GEOMETRIZATION OF THE LOCAL LANGLANDS
CORRESPONDENCE

NAOKI IMAI

ABSTRACT. This is a survey paper on the geometrization of the local Langlands corre-
spondence by Fargues—Scholze.

1. INTRODUCTION

The purpose of this paper is to explain about Fargues—Scholze’s monumental paper [24]
on the geometrization of the local Langlands correspondence, which implements and ad-
vances the ideas Fargues gave in [20]. From the viewpoint of the local Langlands cor-
respondence, the main results are the construction of semisimple L-parameters and the
formulation of the geometric categorical local Langlands conjecture. The former and the
latter realize Lafforgue’s construction [52] in the function field case, and a formulation of
Arinkin—Gaitsgory’s categorical conjecture [4] in the geometric Langlands correspondence,
respectively, for non-archimedean local fields. The most basic idea is to replace algebraic
curves in the geometric Langlands correspondence by Fargues-Fontaine curves, which are
arithmetic curves introduced in [23]. However, unlike algebraic curves, relative Fargues—
Fontaine curves do not have structure morphisms, so it is necessary to consider not only
the Fargues—Fontaine curve itself but also the moduli space of Cartier divisors on it (cf. Re-
mark 7.1). When G is a connected reductive algebraic group over a non-Archimedean local
field, the moduli space of G-bundles and that of Cartier divisors on the Fargues—Fontaine
curve are formulated as spaces in positive characteristics, and we need various concepts of
spaces introduced in [60] and [62] to deal with them. The reason why we may consider the
spaces in positive characteristics when we want to deal with the problem of a p-adic field
in characteristic 0 is fundamentally due to the tilting equivalence introduced in [59], which
relates the characteristics 0 and p.

There are several formulations of the local Langlands correspondence, but the formulation
([10], [42]) using the Kottwitz set B(G) of G is most compatible with the geometrization
of the local Langlands correspondence explained in this paper. This is related to the fact
that the isomorphism classes of G-bundles on the Fargues—Fontaine curve can be classified
using B(G). In the formulation using B(G), we take a quasi-split G and consider the inner
forms of G determined from the elements of B(G). However, not all connected reductive
algebraic groups appear as such inner forms, and a formulation with rigid inner forms [43]
is necessary to deal with general connected reductive algebraic groups!. A generalization of
the geometrization of the local Langlands correspondence to the rigid inner forms is given
in [22], but we will not discuss it further in this paper.

Perhaps the best overview of the geometrization of the local Langlands correspondence
is the introduction of [24]. Readers who are interested should read it as well, since it is
very well written including historical information. Fargues—Scholze themselves also wrote
an overview paper [25], in which they explain a Jacobian criterion, one of the key technical
points. In this paper, we have tried to explain contents which are not covered in these
overviews. In [33], more advanced topics of the categorical conjecture are discussed.

'However, it is known that the two formulations are equivalent in some sense ([44]).
1
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2. LocAL LANGLANDS CORRESPONDENCE

In this section, we will explain the statement of the local Langlands correspondence.
First, we explain L-groups. A Borel pair is a pair of a Borel subgroup and a maximal torus
contained in the Borel subgroup of a reductive group scheme 2. For the splitting reductive
group scheme G and its Borel pair (B, 7)) over a connected scheme, we denote the attached

based root data® by BR(G, B, T) ([63, XXIII, 1.5]). For a split torus 7 over a field, we denote
by X*(T) and X, (7T) the character group and the cocharacter group of 7. For a Borel pair
(B, T), (B',T") of asplit connected reductive algebra group G over a field k, let g € G(k) such
that Ad(g)(B,T) = (B',T’), then the isomorphism BR(G,B,7T) = BR(G,B’,T’) induced
by Ad(g) is independent of the choice of g. Using these as transition morphisms, we put
BR(G) = colim BR(G, B, T).
We write BR(G) = (Xg, &g, Ag, Xg, Pg, Ag), and define its dual by
BR(G)" = (Xg, ®g, Ag, Xg, Bg, Ag)

(cf. [14, §15]).

Let F' be a non-Archimedean local field, O be a ring of integers in F', and mg be the
maximal ideal of Op. Let kr be the residue field of F' and let ¢ be the order of kr. Let F™P be
a separable closure of F and k%" be its residue field. Let o € Gal(k="/kr) be the g-th power
Frobenius map. Let I be the kernel of the natural surjection Gal(F*?/F) — Gal(kx"/kFr)
and Wr be the inverse image of (o) under this surjection. We equip I with the topology
induced by Gal(F*® /F'), and Wg with the topology such that I C W is an open subgroup.
We call Ip the inertia group of F' and Wgr the Weil group of F. For w € Wg, we define
dr(w) € Z so that the image of w in Gal(k3"/ky) is o).

Let G be a connected reductive algebraic group on F. ThenAVI{\F Ects/\naturally on
BR(Gps»). We take a pinned reductive algebraic group scheme (G, B,T,{Xa}aea,) and
an isomorphism BR(CA;, B , T ) = BR(Gpser)” using the equivalence of categories [63, XXV,
Théoreme 1.1]. These are unique up to uniquely determined isomorphisms. By

Wr — Aut(BR(Gpeen)) = Aut(BR(Gpeer)¥) = Aut(BR(G, B, T))
= Aut(G, B, T, {Xo}aea,) = Aut(G)

we define the action of Wr on G. We call G the dual group of G over Z. Let Wp be the
Weil group scheme ([64, (4.1)]) over Z. Then Wy acts on G. We put “G = G x Wy and
call it the L-group of G.

Next, we explain the L-parameters following [11, §8]. Let C be an algebraically closed
field of characteristic 0.

Definition 2.1. Let P be a subgroup scheme of “Ga. If P — “*Gc — Wrc is a surjection
and PN Ge is a parabolic subgroup of @C, then we say that P is a parabolic subgroup of
LGC

Let P be a parabolic subgroup of “*G¢. For w € Wp, taking (g,w) € P(C), we have

w(PNGe) = Ad(g (PN Gc) because Ad((g,w))(P N Ge) = P N Ge. Hence the G(C)-
conjugacy class of P N Gc is We-stable. Using the correspondence between the conjugacy
classes of parabolic subgroups and sets of simple roots ([12, 5.14]), the G (C)-conjugacy class
of PN @C and A@c &~ AGFSCP = Ageer determine a Wp-stable G psep-conjugacy class of
parabolic subgroups of Gpsep. If this G(F®®P)-conjugacy class contains a parabolic subgroup

2A reductive group scheme is a flat group scheme whose fibers are connected reductive algebraic groups.

3This is what is called donnee radicielle in [63, XXIII, 1.5]. Here we follow the terminology of [14, 1.5].
Also, although [63, XXIII, 1.5] defines the based root data for pinned reductive algebraic group schemes,
only Borel pairs are actually used in the construction.
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of G defined over F, we say that G(F®P)-conjugacy class is relevant. If G is quasi-split,
then any parabolic subgroup of “G¢ is relevant ([12, 6.3]).

Definition 2.2. We define a finite Galois extension F* of F' by Wg« = Ker(Wp — Aut(@)).
We say that g € *G(C) is semisimple if its image in Gc x Gal(F*/F) is semisimple.

Definition 2.3. An L-parameter of SLo-type in C-coefficients for G is the morphism
¢: SLa.c xWrc — G of the group scheme over C that satisfies the following:

(1) ¢ is compatible with the projection on Wgc.

(2) For any element w of Wr(C), ¢(1,w) is semisimple.

(3) If ¢ factors through a parabolic subgroup P of LG, then P is relevant.

We say that two L-parameters are equivalence if they are conjugate under @(C)

The condition of Definition 2.3 (2) is equivalent to the condition that the image of a lift
of the Frobenius element is semisimple, which is called Frobenius semisimplicity.

Definition 2.4. Let ¢ be an L-parameter and Sy = Z@C(¢).

(1) We say that ¢ is discrete if S¢/Z(§C)WF is finite.
(2) We say that ¢ is cuspidal if ¢ is discrete and the restriction of ¢ to SLy ¢ is trivial.

Let ®(G) be the set of isomorphisms classes of L-parameters of G. For a locally profinite
group G, let TI(G) denote the isomorphism classes of smooth? irreducible representations
over C of G. First, we state the claim of the local Langlands correspondence in a crude
form.

Conjecture 2.5. We fix c € C such that ¢ = q. Then, there exists a finite-to-one natural
surjection

LLe: II(G(F)) — &(Q).

For various expected properties that LLg of Conjecture 2.5 should satisfy, see [11, §10].
For 7 € II(G(F)), we call LLg(m) the L-parameter of m. Furthermore, the pullback of
LLg(7) under

SL SL : o .
2.C XWF,C — 2,C XWF,Cv (97 w) = 0 cr(w) W

is called the semisimple L-parameter of 7.

Next, we explain a refinement of the local Langlands correspondence. Let F denote
the completion of the maximal unramified extension F'"* of F'. The ¢-th power Frobenius
map o can be regarded as an element of Gal(F"/F') by the isomorphism Gal(F™/F) =

Gal(k? /kp), and act on I naturally. For b, b’ € G(F'), we say that b and b/ are o-conjugate
if there exists some g € G(F') such that ¥ = gbo(g)~*. The set of o-conjugacy classes in
G(F) is denoted by B(G), and is called the Kottwitz set of G. There exists a map

ket B(G) = X*(Z(Ge)"r)

constructed in [51, Lemma 6.1], which is called the Kottwitz map. For b € G(F), we define
an algebraic group Gy, over F' by

Gy(R) = {g € G(Rp F) | Ad(b)(0(9)) = g}.

4The action of G on an additive group M is smooth if for any m € M, the stabilizer of m is an open
subgroup of G.

"We define it this way because we want to consider an L-parameter obtained from the corresponding
Weil-Deligne L-parameters by forgetting the monodromy operator.
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If Gy is an inner form of GG, we say that b € G(F ) is a basic element. The set of o-conjugacy
classes of the basic elements of G(F) is denoted by B(G)pasic. Then

K6 Bt B(Gbasic = X*(Z(Ge)"*)

is a bijection ([50, 5.6. Proposition]).

If b0 € G(F) is o-conjugate, we have an isomorphism Ad(g): G, = Gy taking g € G(F)
such that &/ = gbo(g)~', and the bijection I1(G}) = TI(Gy ) determined by this isomorphism
is independent of the choice of g. Using this bijection, we put Il = @b’e[b} II(Gy).

In the rest of this section, we assume that G is quasi-split.

Definition 2.6. Let A be a ring. Let B be a Borel subgroup of G and R, (B) be the unipotent
radical of B. A smooth character 1p: Ry(B)(F) — A* is called generic if it satisfies

{9 € B(F) | Ad(g9)¢ = v} = Z(G)(F)Ru(B)(F).

The pair of Borel subgroup B and generic character i is called a Whittaker datum in A-
coefficients for G.

Definition 2.7. Let o be the G(F')-conjugacy class of Whittaker data in C-coefficients
for G. Let m be a smooth irreducible representation of G(F') over C. We say that 7 is
-generic if there exist (B,v) € w and a non-zero morphism m|p, (3yry — ¥ of Ru(B)(F)-
representations.

The next conjecture is a refinement of the local Langlands correspondence following [10],
[42, Conjecture 2.4.1].

Conjecture 2.8. We fiz c € C such that ¢* = q and a G(F)-conjugacy class v of Whittaker
data in C-coefficients for G. Then, there exist a finite-to-one natural map

LL[b]Z H[b] — (I)(G)
for each [b] € B(G) and a bijection i, making the diagram

H[b}eB(G) Hp),6 : Irr(Sy)

l |

B(G) —— X*(2(Gc)"™)

commutative for each L-parameter ¢ of G, where we put Il o = LL[le([qﬁ]), Irr(Sy) denotes
the set of isomorphism classes of algebraic irreducible representations of Sy, the left vertical
morphism is the natural projection, the right vertical morphism is a map determined by the
restriction of the central character. Under the natural bijection Iy = II(G), the map LLp,
and LL¢ in Conjecture 2.8 are identified. Furthermore, if ¢ is discrete®, then there exists
a unique element of Iljy) 4, which is w-generic, and that element corresponds to the trivial
representation of Sy under ty,.

3. SATAKE ISOMORPHISM

In this section, we explain the relationship between the Satake isomorphism describing
the unramified Hecke algebra and the local Langlands correspondence.

Let G be a locally profinite group. Let C°(G, Q) be the Q-vector space of all compactly
supported constant functions on G that take values in Q. For f € C°(G,Q) and g € G, we

define (g) f,7(9)f € C=(G, Q) by (I(g)f)(x) = f(g~"x) and (r(g)f)(x) = f(xg).

6In fact, this should hold for a class of L-parameters broader than discrete.
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Proposition 3.1 ([66, 1.2.4]). There exists i € Homg(C*(G, Q), Q) such that uc(l(g)f) =
uc(f) for any f € C(G,Q) and g € G and ug(K) > 0 for any compact open subgroup K
of G. Moreover, such ug is unique up to positive rational multiples.

We call pg in Proposition 3.1 the left Haar measure of G. For g € G, there exists uniquely
dc(g) € Qso such that ug(r(g)f) = da(g9)uc(f) for any f € C°(G,Q), since f — ug(r(g)f)

is also a left Haar measure. This define dg: G — Q-+, which is called the modulus character
of G.

For a compact open subgroup K of G, we have let H(G, K) denote the ring of bi-K-
invariant compactly supported C-valued functions on G with product given by

(fu % fo)(@) = / H@) e Ducly) (2 €G).

This is called the Hecke algebra of G with respect K. By [66, 1.3.4], there is an isomorphism
(3.1) End(c-Ind% 1) = H(G, K)

of rings over C.
We say that G is unramified if G extends to a reductive group scheme over Op. In this
section, we assume that G is unramified.

Definition 3.2. Let K be a subgroup of G(F). We say that K is a hyperspecial subgroup
of G(F) if G extends to a reductive group scheme G over Op and K coincides with G(OF).

Let K be a hyperspecial subgroup of G(F'), and we take G as the above definition. By
[14, Corollary 5.2.14] and [63, XXVI, Corollaire 2.3], we can take a Borel pair (B,7T) of G.
We put B = Br and T = T, and let U be the unipotent radical of B.

We fix ¢ € C such that ¢? = g and set (¢")/? = ¢" for ¢ € ¢”. Take the left Haar measure
pu ey of U(F) such that fU(F)ﬂK lugry = 1, and define S: H(G(F), K) — H(T(F), T (OF))
by

S(N(1) = by (0)F [ fltu)uor),
U(F)
Let A C T be the maximal split torus. Then there is an isomorphism C[X,(A)] =
H(T(F), T (OF)) of C-algebras determined by the isomorphism

X.(A) = T(F)/T(OF); pr [u(w)]
of [11, 9.5]. We put pWW = Ng(A)/T. Then pW acts naturally on X.(A).

Theorem 3.3 (|58, Remark 2 of Theorem 3], [67, B.4]). The map S induces an isomorphism
H(G(F),K) — C[X.(A)]*" of C-algebras, called the Satake isomorphism.

Next, we explain a relationship between the Satake isomorphism and the local Langlands
correspondence.
By [11, 6.7], thedual T — Aof A — T'and T' — Gxo; t — (t,0) induces an isomorphism

(3.2) Ac | PW = (Ge % o) || Ge

(cf. [15, Proposition 4.19]), where // denotes the GIT quotient. By Theorem 3.3 and the
isomorphism (3.2), we have isomorphisms

H(G(F), K) = CIX.(A)Y = CIX* ()Y
~T(Ac | pW,0) 2 T((Ge x o) /| Ge, O).

We assume that an L-parameter ¢ of GG is unramified, namely that

(3.3)

IF,C X SLQ,C — WF,C X SLQ,C i) LGC — @C X (WF/IF)C
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is trivial. Then (g,0) € G(C) x o is given as the image of ¢-th power Frobenius element
under Wy /Ip — G(C) x Gal(F"*/F) induced by ¢. By this and the isomorphism (3.3), we
have
t9¢,KZ H(G(F),K) = F((GC X O') // Gc,0> — C.

Let 7y i be the smooth irreducible representation of G(F') corresponding under [66, 1.8.9]
to the simple H(G(F), K)-module given by 64 . We note that the isomorphism class of
T4,k depends only on the G(F')-conjugacy class of K.

By [71, Proposition 4.2.6]", we can attach a G(F)-conjugacy class HS,, of hyperspecial
subgroups of G(F') to a G(F')-conjugacy class to of Whittaker data in C-coefficients for G.

For an unramified L-parameter ¢ of GG, Conjecture 2.5 and Conjecture 2.8 should satisfy
the following:

e LL;'(¢) is the isomorphism classes of smooth irreducible representations of G(F)
such that each of them is isomorphic to 74 g for some hyperspecial subgroup K.

e For K € HS,, the element |7y x| € Iy corresponds to the trivial representation
of Sy under ¢y

4. MODULI SPACE OF L-PARAMETERS

We explain the moduli space of L-parameters constructed in [15], [24], [71]. Here we
follow the formulation in [24].

Definition 4.1. Let Prof be the site of profinite sets with coverings given by finite families
of morphisms such that the union of the images of the morphisms in each finite family is
the whole set. Then the sheaf of sets on Prof is called a condensed set’. A condensed group,
a condensed ring, etc. are defined in the same way.

If T is a topological space, we define the condensed set T, by associating C°(S,T) to a
profinite set S, where C°(—, —) denotes the set of continuous maps. If T is a topological
group or a topological ring, T is defined as a condensed group or a condensed ring similarly.

Let ¢ be a prime number different from p. In the following, we consider the dual group
of G over Z, and denote it by the same symbol G. For a commutative ring A over Z;, we
write Agise for A with discrete topology, and put Ace = Adisc,e @24 gioec Lt,e-

Definition 4.2. For a commutative ring A over Zy, a section Wg. — @(AM) X Wr, of the

natural projection @(Acyg) XWge — Wre of condensed groups is called an ¢-adic L-parameter
in A-coefficients.

More concretely, an f-adic L-parameter in A-coefficients is a section Wr — @(A) X Wg

of the natural projection G(A) x Wr — W such that there are some embedding G — GL,,
and a finitely generated sub-Z,-module M of A satisfying that

I < Wr — G(A) x Wp = G(A) = GL,(A) < M,(A)

factors through M, (M) and the factored map is continuous if M is equipped with the ¢-adic
topology.

Theorem 4.3. The functor sending a commutative ring A over Z, to the set of (-adic
L-parameters in A-coefficients is represented by a flat locally complete intersection scheme

ZYWr, G) over Zy.

If @ is unramified, being absolutely special parahoric in [71, Remark 4.2.2] is equivalent to being
hyperspecial. This follows from [65, 1.10.2].

8By this, there is a surjection from the set of G (F)-conjugacy classes of hyperspecial subgroups of G(F')
to LL™!(¢). This map is studied in [56], and is not an injection in general

IWe ignore set-theoretic issues here, but see [61, Appendix to Lecture II] for a precise treatment.
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We explain the construction of Z!'(Wpg, @) First, the following holds.

Lemma 4.4. Suppose that I' is a discrete group and I' — Aut G is gwen. The functor
sending a commutative ring A on Zy to the set of sections of G(A) x I' = T' is represented
by an affine scheme Z' (T, G) over Z,.

Proof. By taking a generating system S of I and associating the images of the elements of
S, we can see that it is represented by a closed subscheme of G*. O

Let Pr be the wild inertia group defined as the maximal pro-p-subgroup of Ir. We take
a lift & € Wy /Pr of o and a topological generator t of Ir/Pr, and write (Wg/Pr)° for the
subgroup of Wr/Pr generated by & and ¢. Let W2 denote the inverse image of (Wg/Pr)°
in Wg. Then we put

ZI(WF7§) :U21<W}2/P7§>7
P

where P runs over open subgroups of Pr- that are normal subgroups of W, and Z*(W2/P, G )
on the right hand side is the one constructed by Lemma 4.4. We can say that W2/P is
a kind of discretization of Wg/P, and by using this discretization, it is reduced to the
situation where no topology or condensed group appears'®. R

We explain the difference between the L-parameters considered in Z' (W, G) and the L-
parameters in Definition 2.3. The condition of Definition 2.3 (3) is a condition to guarantee
that each L-parameter comes from an element of II(G(F')), so we do not consider it in the
moduli'!. Since we do not impose Frobenius semisimplicity in the moduli of L-parameters,
it is represented by a scheme'?. Also, in the above moduli, we are considering /-adic L-
parameters instead of L-parameters of SLo-type. If we impose Frobenius semisimplicity,
then there is a one-to-one correspondence between the equivalence class of L-parameters
SL,-type in Q,-coefficients and the equivalence class of f-adic L-parameters in Q,-coefficients
as in [41, Proposition 1.13, Proposition 1.16], so either of them can be used when we consider
the local Langlands correspondence. On the other hand, they are very different when we
consider the moduli of L-parameters: the moduli of /-adic L-parameters allows us to capture
the change of the monodromy action continuously. Moreover, if Frobenius semisimplicity
is not imposed, there exist f-adic L-parameters that do not come from L-parameters of
SLo-type even at Q,-valued points, as shown in [9, Example 3.5].

We put LPs = [Zl(Wp,@)/@] as a quotient stack. If G is unramified, we define

~

ZY(Wg,G)"™ as an open and closed subscheme of Z'(Wg, G) determined by the condition
that
Ire = Wie = G(Aey) ¥ Wre = G(Aey) 3 (Wr/Ir).

is trivial, and put LPY = [ZY(Wg, G)™/G]. We write IndCoh(LP g,) for the Ind-completion
of the derived category of coherent sheaves on LP;5,. For a locally profinite group G, let
D(G, A) denote the derived category of smooth representations of G over A. The following
conjecture is a kind of categorification of the local Langlands correspondence.

Conjecture 4.5 ([35, Conjecture 3.6, [71, Conjecture 4.5.1]'%). We fir ¢ € Q, such that
2 = q. Assume that G is quasi-split, and fir a G(F)-conjugacy class vo of Whittaker data

10T he idea of discretization has already appeared in [36, §4].

Hgince the L-group does not change even if G is replaced by a quasi-split inner form, we can say that
we only need to consider the case where G is quasi-split, in which case all parabolic subgroups are relevant,
and we may ignore that condition.

12This is related to the fact that the set of semisimple element in an algebraic group is not necessarily
locally closed.

BIn [71, Conjecture 4.5.1], a more general conjecture is stated using the moduli space of L-parameters
over Z[1/p].
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in C-coefficients for G. Then there is a fully faithful functor
Ag: D(G(F),Q,) — IndCoh(LPg,)
satisfying the following:
G(F) ~
(1) For (B,v) € w, we have Ac(c-Ind o) V) = OLPG,@Z’
(2) If G is unramified, then ng(c—Indf{(F) 1) = (’)Lpg@ for K € HSy,.
el
As for the Iwahori block part of Conjecture 4.5, there is a result [6] by Ben-Zvi-Chen—
HelmNadler'4,
We explain the relation between Conjecture 4.5 and the Satake isomorphism assuming

that G is unramified. By associating the images of ¢-th power Frobenius elements, we have
ZYNWpg,G)" = G x . Then we have

End(c-Ind i 1) = H(G(F), K) = T((Gg, x o) // Gg,, O)
F(@@z X 0, O)G@z ~ f0 End(OLpg@ )
el

I

by (3.1) and (3.3). Hence the Satake isomorphism means the degree 0 part of the fully
faithfulness

End(c-Ind%) 1) = End (g (c-Ind S 1))
of the functor g in Conjecture 4.5. Thus, although the Satake isomorphism is a clas-
sical result, we can say that it already implies a categorification of the local Langlands
correspondence.

The source of the functor s in Conjecture 4.5 is a category of representations, but
this is replaced by a geometric one to make an equivalence of categories in the geometric
categorical local Langlands conjecture, which will be explained later.

Also, in [19], an analogue of Conjecture 4.5 in p-adic coefficients is formulated for GL,,
using the Emerton-Gee stack ([18]), which is the moduli of etale (¢, I')-modules.

5. PERFECTOID SPACE

In this section, we explain the theory of perfectoid spaces. The basic reference is [59],
but we follow [26] for the definition of perfectoid rings. The perfectoid space is defined as
an adic space ([37]) by Huber, so we first explain adic spaces.

Definition 5.1. Let R be a topological commutative ring. We say that R is an f-adic ring
if there exists a finitely generated ideal I of an open subring of R such that {I"},>0 is a
fundamental system of open neighbourhoods of 0. If an f-adic ring R has a topologically
nilpotent invertible element, we say that R is a Tate ring.

Let R be an f-adic ring. Let Cont(R) be the set of equivalence classes of continuous
valuations on R, and we equip it with the topology generated by

{I-| € Cont(R) | [f] <9l #0}  (f,9 €R).

A subset S of R is said to be bounded if for any open neighborhood U of 0, there exists some
open neighborhood V' of 0 such that V.S C U. We put R° = {r € R | {r"},>0 is bounded},
R*° = {topologically nilpotent elements of R}. Then R° is an integrally closed, open sub-
ring of R.

Definition 5.2. A Huber pair is a pair (R, R*) of an f-adic ring R and an open subring
R* of R such that R" is integrally closed in R and R C R°. We say that a Huber pair
(R, R") is complete if R is complete.

1A result by Hemo-Zhu is also announced in [71].
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For a complete Huber pair (R, RT), we put
Spa(R, R") = {|:| € Cont(R) | |r| <1 for any r € R"}

and equip it with the topology induced from Cont(R). For a complete f-adic ring R, we
write Spa(R) for Spa(R, R°).

For X = Spa(R, R™), we can construct presheaves Oy, O of complete topological rings
over X such that Ox(X) = R, O%(X) = R" (c¢f. [37, §1]). If Ox is a sheaf, we say that
X is an affinoid adic space. An adic space is defined by gluing affinoid adic spaces (c¢f. [37,
§2]). We write |X| for the underlying topological space of X.

Definition 5.3. Let X be an adic space. We say that X s analytic if, for any v € X, there
exists an open affinoid adic space U C X containing x such that Ox(U) is a Tate ring.

Definition 5.4. Let f: X — Y be a morphism of analytic adic spaces. We say that f is a
finite etale if, for any point y of Y, there exists an affinoid open neighborhood U of y such
that V.= f~Y(U) is an affinoid adic space, Oy (V) is finite etale over Oy (U) and OF (V)
is the integral closure of OF(U). We say that f is etale if, for any point x of X, there
exists an open neighborhood U of z, an open neighborhood V of f(x) and a factorization
U—W =V of flu such that U — W is an open immersion and W — V is finite etale.

We can define the etale site X of an analytic adic space X using coverings by etale
morphisms (c¢f. [45, Definition 8.2.19)).

Definition 5.5. A complete Tate ring R is said to be perfectoid if the following conditions
are satisfied:

(1) R°/p — R°/p; x> aP is a surjection.

(2) R° is a bounded subset of R.

(3) There is a topologically nilpotent invertible element w of R such that p € wPR°.

A perfectoid ring that is a non-archimedean field is called a perfectoid field.

A Huber pair (R, R") where R is perfectoid is called a perfectoid Huber pair. If (R, R™)
is a perfectoid Huber pair, then Spa(R, RT) is an affinoid adic space ([46, Corollary 3.3.19],
[59, Theorem 6.3]), which is called an affinoid perfectoid space. An adic space that is locally
isomorphic to an affinoid perfectoid space is called a perfectoid space. For an affinoid adic
space Spa(R), let Perfg denote the category of perfectoid spaces over Spa(R).

For a p-adic complete ring A, we put A’ = lé'_mexp A as monoids with respect to the
product. Then the natural map A> — @mHmP A/pA is is an isomorphism of monoids (cf.
(23, Proposition 2.1.2]). Furthermore, we define
(5'1) rt+y= ( lim (xi—n + yi—n)pn>

00 i<0
for ¥ = (2:)i<0,y = (¥i)i<o € A°. Then A’ — l'&lxﬁﬂ A/pA is an isomorphism of perfect
rings of characteristic p (¢f. [23, Corollaire 2.1.4]).

Let (R, RT) be a perfectoid Huber pair. We put B> = fm R and R = fm Rt
as topological monoids with respect to the product, and define addition as (5.1). Then
(R’, R*") is a perfectoid Huber pair of characteristic p. We say that (R>, R*”) is a tilt of
(R, R"). By this, we have the tilting functor

b: Perfp, — Perfy,; Spa(R, R") — Spa(R’, R™).

Definition 5.6. For S € Perf,,., an untilt of S over O is a pair of S* € Perfp, and an
isomorphism (S¥)" = S in Perfy,..

In the following, we explain a description untilts. We define the functor

Wo, : (category of perfect rings over kr) — (category of mp-adic complete rings over Op)
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by

Wo,(R) = ~
or (1) R®4.,.Or (if the characteristic of F' is p.)

Then Wp,, is a left adjoint functor of the functor

{W(R) Ow(kr) Or  (if the characteristic of F' is 0)

b: (category of mp-adic complete rings over O)
— (category of perfect rings over kr); A — A

(cf. [23, Proposition 2.1.7]). Hence, for an mpg-adic complete ring A over Op, there is the
adjoint morphism 64 : W, (A") — A.

Definition 5.7. Let (R, R") be a perfectoid Huber pair over kr. An element of
[R*°] + (mp — mE)[(RT)*] + mipWo, (RT)

is called a primitive element of degree 1 in Wo,.(R™). An ideal of Wo,(R") generated by a
single primitive element of degree 1 is called a primitive ideal of degree 1 in Op-coefficients.

Theorem 5.8 ([46, Theorem 3.3.8]). The functor
(R,R*) = (R’, R™’ Kerfp+)

from the category of perfectoid Huber pairs over Op to the category of pairs of a perfectoid
Huber pair over kg and a primitive ideal of degree 1 in Op-coefficients gives an equivalence
of categories, whose quasi-inverse functor is given by

(R, R* 1) = (Wop(R)/I)[[wr] '], Wo . (RT)/1),
where wg is a topologically nilpotent invertible element of R.

Definition 5.9. Let X be a perfectoid space. We say that X is strictly totally disconnected
if X is quasi-compact, quasi-separated and any etale covering of X splits.

The following proposition will be used later in Definition 6.18.

Proposition 5.10. Let X be a strictly totally disconnected perfectoid space. If X' is a
perfectoid space which is etale over X, then there exists an open covering {U;}ier of X'
such that U; — X is an open immersion for any i € I. Thus, the etale topos of X and the
topos of | X| are equivalent.

Proof. 1t suffices to show the first claim. By writing the etale morphism f: X' — X as a
composition of an open embedding X’ — Y and a finite etale morphism Y — X locally on
X and X', and replacing X’ by Y, we may assume that f is finite etale. We may further
replace X by Im f and assume that f is a finite etale covering. Since f splits, we can write
X=X X{ and X| — X is a finite etale morphism. We can replace X with the image of
X] — X and repeat the same process. O

6. DIAMOND AND V-STACK

Definition 6.1. We say that a morphism Spa(B, B™) — Spa(A, A™) of affinoid perfectoid
spaces is affinoid pro-etale if there is a directed inverse system {Spa(A;, Al ) }ier of affinoid
perfectoid spaces which are etale over Spa(A, AT), and (B, BY) is isomorphic to the com-
pletion of colimer(A;, AT). We say that a morphism f: Y — X of perfectoid spaces is
pro-etale if for any y € Y, there exists an affinoid open neighborhood U of f(y) and an
affinoid open neighborhood V-C f~Y(U) of y such that f|v: U — V is affinoid pro-etale.

Definition 6.2. Let € be a class of morphisms of perfectoid spaces. We say that a family
{fi: Y; = X}ier of morphisms of perfectoid spaces is € -covering if the following holds:
(1) For anyi € I, we have f; € €.



ON THE GEOMETRIZATION OF THE LOCAL LANGLANDS CORRESPONDENCE 11

(2) For any quasi-compact open subset U of X, there exists a finite subset J C I and a
family of quasi-compact open subsets {V; C Y;}jes such that U =, f;(V;)-

If we consider all the pro-etale morphisms as % in Definition 6.2, %-covering is called
pro-etale covering '°. Thus we can define a pro-etale sheaf. By [60, Corollary 8.6],

hx: Perfy — Sets; Y + Hom(Y, X)
is a pro-etale sheaf for X € Perfp,. Let k£ be an algebraic field extension of kp.

Definition 6.3. We say that a pro-etale sheaf D on Perty is a diamond over k if there are
X, R € Perf and pro-etale morphisms s,t: R — X such that hs4): hg — hx x hx gives
an equivalence relation and D = hy /hg.

For X € Perfy, the pro-etale sheaf hy is a diamond, for which we simply write X in the
following.

If we consider all the morphisms of perfectoid spaces as € in Definition 6.2, € -covering
is called v-covering. Thus we can define a v-sheaf.

Example 6.4. Let T be a topological space. We write I for the functor sending S € Perfy,
to C°(|S|,T). By [38, Lemma 1.1.10] and [60, Lemma 2.5|, T is a v-sheaf.

A stack with respect to the topology given by v-covering on Perf, is called a v-stack over
k.

Definition 6.5. we say that a morphism f: X — 'Y of v-stacks over k is an open immersion
if X Xy Y' =Y is an open immersion in Perfy for any Y' € Perf, and Y’ — Y.

For v-sheaf and v-stack, we consider the following notions given by set-theoretic condi-

tions'®.

Definition 6.6. We say that a v-sheaf X on Perfy is a small v-sheaf if there exist some
Y € Perfy, and a surjection Y — X of v-sheaves.

By [60, Proposition 11.9] and Definition 6.3, a diamond over k is a small v-sheaf on Perf.
Also, as we can see from the definition, any open sub-v-sheaf of a diamond is a diamond*”.

Definition 6.7. We say that a v-stack X over k is a small v-stack if there exist some
Y € Perfy, and a surjection Y — X of v-stacks such that' Y Xx Y s a small v-sheaf.

Let X be a small v-stack over k. We put
| X| = {Spa(K,K") = X}/~,

where (K, K™) is a Huber pair such that K is a perfectoid field over k, and ~ is an
equivalence relation generated by relations that Spa(K, K*) — X and Spa(K’, K't) —
Spa(K, K*) — X are equivalent if Spa(K’, K't) — Spa(K, K) is surjective. If we take
Y as Definition 6.7, R € Perf, and a surjection R — Y X x Y of v-sheaves, then there
is a natural bijection |Y|/|R| = |X| and the topology on |X| induced by this bijection
is independent of Y, R (c¢f. [60, Proposition 12.7]). We call |X| with this topology the
underlying topological space of X. Associating a morphism from S € Perf, to X with the
induced morphism |S| — |X|, we have

(6.1) X = |X].

1511 Definition 6.2, if all morphisms in % are open maps, then the condition of (2) can be replaced
by X = U,c; fi(Y;). However, since pro-etale morphisms are not necessarily open maps, we impose the
condition (2).

16T hese concepts make substantial sense only when we put set-theoretic conditions like [60, §4] on
perfectoid spaces, but here we give definitions to adjust terminologies to [24] and [60].

17Actually, more strongly, it is known by [60, Proposition 11.10] that any sub-v-sheaf of a diamond is a
diamond.
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Definition 6.8. We say that a morphism f: X —Y of v-stacks over k is a closed immer-
sion if X xy Y' — Y is a quasi-compact'® injection of v-sheaves and | X xy Y'| — |Y'| is
a closed immersion for any small v-sheaf Y' on Perf, and Y' — Y.

Definition 6.9. We say that a morphism f: X — Y of v-stacks over k is separated if the
diagonal morphism Ay: X — X Xy X is a closed immersion.

Definition 6.10. Let X be a v-sheaf on Perf,,. If X is quasi-compact, quasi-separated®® and
{|U|}vex gives a open basis of | X| when U runs through quasi-compact open sub-v-sheaves
of X, then X is said to be spatial. We say that X is locally spatial if X has an open cover
by spatial v-sheaves.

Definition 6.11. Let f: X — Y be a locally separated morphism®' of diamonds. We say
that f is etale if X xy Y’ € Perf, and X xyv Y’ — Y’ is etale for any Y' € Perf;, and
Y' —>Y.

Using coverings by etale morphism, we can define an etale site X of a locally spatial
diamond X ([60, Definition 14.1]).
For an adic space X over Spa(OF), we define X< : Perf}” — Sets by

X9(8) = {(5%, (8% = 5,8 = X))},
where (S*, (S¥)” 2 S) is an untilt of S over Of, and S* — X is a morphism over Spa(Op).

Theorem 6.12 ([60, Lemma 15.6]). If X is an analytic adic space over Spa(Or), then X©
is a locally spatial diamond over kr and |X| = |X©|. Furthermore, the functor < induces
an equivalence Xy = Xéi of sites.

Example 6.13. Let X = Spa(Q,(T), Z,(T)). Then X = Spa(QWe(THP™), ZYe(THP™)) is
a perfectoid space which is a (Z); x Z,)-covering of X, and we have X0 =~ )?b/Z; X Ly,
where Z5¥° is the p-adic completion of Zy(py~), Q5 = Z57°[1/p] and the action of Z) and

Z,, on X is given by the natural actions on i~ and TYP™ | respectively.

Definition 6.14. Let f: X — Y be a locally separated morphism of diamonds. We say
that f is quasi-pro-etale if X xy Y’ € Perfy, and X xy Y' — Y’ is pro-etale for any strictly
totally disconnected perfectoid space Y' andY' =Y.

If we take a diamond D and X, R as in Definition 6.3, the natural morphism X — D is
quasi-pro-etale (cf. [24, Proposition 11.3]). We can also define a quasi-pro-etale site Xproet
of a diamond X (cf. [60, Definition 14.1]).

Definition 6.15. Let X be a small v-stack over k. We define X, to be the site whose
objects are small v-sheaves Y over X and coverings are families {Y; — Y }ier of morphisms

over X such that \J,.;Y; =Y is a surjection of v-sheaves.
Let A be a ring. For a topos T, let D(T, A) denote the derived category of sheaves of
A-modules on T'.

Proposition 6.16 ([60, Proposition 14.10]). If X € Perfy is strictly totally disconnected,
then D(Xe, A) — D(Xy, A) given by pullback is fully faithful.

1Bgee [1, VI Définition 1.1, Définition 1.7] for definitions of sheaves and morphisms between them being
quasi-compact.

19This definition is equivalent to [60, Definition 10.7 (ii)] by [60, Corollary 10.6]. See also [62, Definition
17.4.2] for a definition in the case of v-sheaves.

208ee [1, VI Définition 1.13] for a definition of sheaves being quasi-separated.

2Lywe say that f is locally separated if it is separated on some open covering of X. If X € Perfy, then f
is always locally separated.
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Definition 6.17. Let X be a small v-stack. We define Do (X, ) as the full subcategory
of D(Xy, ) consisting of every object A of D(X,, ) such that f*A € D(Y,,A) is in the
essential image of D(Yy, A) for any strictly totally disconnected Y € Perfy, and f: Y — X.

If X is a strictly totally disconnected perfectoid space, then Dy (X, A) = D(X, A) as
seen from the definition, and we have D(Xe, A) = D(]X]|, A) by Proposition 5.10.

Definition 6.18. Let X be a small v-stack. We say that A € D (X, A) is perfectly con-
structible if, for any strictly totally disconnected Y € Perfy and f:Y — X, there is a
decomposition [[,.; Si of |Y| as sets by finite families of constructible locally closed sets
such that the image of f*A under De(Y,A) = D(Ye, A) = D(|Y|,A) is isomorphic to a
complex of constant sheaves associated with a perfect complex of A-modules on each S;.

Assume that there exists a positive integer n prime to p such that nA = 0. Then there is
a six functor formalism for Dy (—, A) (¢f. [60, §17, §22, §23]).

Definition 6.19. Let f: X — S a morphism of locally spatial diamonds which is compact-
ifiable (cf. [60, Definition 22.2]) and dim. trg f < oo locally on S (cf. [60, Definition 21.7]).
We say that A € Dy (X, ) is over locally acyclic over S is the following conditions are
satisfied:
(1) For any geometric points of S, geometric point T of X over s and geometric point
t of S that is a generalization of 3, the natural morphism RIU(Xz, A) — RU(Xz X,
Sz, A) is an isomorphism.
(2) For any separated etale morphism j: U — X such that f o j is quasi-compact,
R(f o j)j*A € De (S, A) is perfectly constructible.

Definition 6.20. Let f: X — S be a morphism of small v-stacks which is compactifiable,
dim. trg f < oo locally on S and representable by locally spatial diamonds®, and let A €
D (X, N). We say that A is universally locally acyclic over S if the pullback A’ € Dt (X X 5
S N) of A is locally acyclic over S’ for any locally spatial diamond S’ and S" — S.

If f: X — S is a morphism satisfying the condition in Definition 6.20, we put
AY = R#omp(A,N), Dx/s(A) = R#omy(A, Rf'A)

for A € D (X, A), and call them the dual of A and the relative Verdier dual of A with
respect to f, respectively. If A is universally locally acyclic over S, then so is Dx,/g(A), and
we have A = Dy /s(Dx/s(A)) (cf. [24, Corollary IV.2.25]).

Definition 6.21. Let f: X — S be a morphism of small v-stacks which is compactifiable,
dim. trg f < oo locally on S and representable by locally spatial diamonds. We say that f is
(-cohomologically smooth if Fy € Do (X, Fy) is universally locally acyclic over S and Rf'F,
is invertible®®.

Definition 6.22. A small v-stack X is called an Artin v-stack if it satisfies the following
conditions:

(1) The diagonal morphism Ax: X — X x X is representable by locally spatial dia-
monds.

(2) There are a locally spatial diamond U and an (-cohomologically smooth surjection
U— X.

The notion of /-cohomologically smooth morphism is also defined for morphisms of Artin

v-stacks that are not necessarily representable by locally spatial diamond as follows>.

22This means that X x ¢S’ is a locally spatial diamond for any locally spatial diamond S” and morphism
S = S.

23This definition is equivalent to [60, Definition 23.8] by [24, Proposition 1V.2.33].

24We can see that this definition is consistent with Definition 6.21 by [60, Proposition 23.13].
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Definition 6.23. Let f: X — Y be a morphism of Artin v-stacks. We say that f is (-
cohomologically smooth if there exist a locally spatial diamond U and an ¢-cohomologically
smooth surjection g: U — X such that fog: U — Y is {-cohomologically smooth.

7. MODULI SPACE OF (G-BUNDLES OVER THE FARGUES—FONTAINE CURVE

Fargues—Fontaine curves are curves introduced in the study of p-adic Galois represen-
tations in [23], and are defined as a scheme and as an adic space. Here, we define the
moduli space of G-bundles over Fargues-Fontaine curves using a relative version of Fargues—
Fontaine curves as adic spaces.

In the following, ¢ denotes the ¢g-th power Frobenius map on a ring of characteristic p.
For an affinoid perfectoid space S = Spa(R, RT) over Spa(kr), we put

Ys = {|:| € Spa(Wo,.(R")) | |rr[wr]| # 0}, Xs=Ys/¢",
where mp is a uniformizer of F', wg is a topologically nilpotent invertible element of R,
we equip Wo, (RT) with (7p, [owg])-adic topology and ¢ acts on Yg via the action on R*.
They glue together and gives adic spaces Ys and Xg over F for any S € Perfy,, where Xg

is called the relative Fargues—Fontaine curve for S.
We put Spd F' = Spa(F, Or)®. We define the action of ¢ on Spd F' by

©
(S, (8% = 5,5% — Spa(F, OF)) = (S, (S%)" = 5 = 5, 5% — Spa(F, OF)).

Let d be a nonnegative integer, and let »; denote the d-th symmetric group. We put
Div_‘fmF = (Spd F/¢%)?/%,. As a consequence of Theorem 5.8, if S € Perfy,, we can
associate an element of Divgl(,kF (S) with a closed Cartier divisor on Xg (c¢f. [62, Definition
5.3.7]), and the Cartier divisor thus obtained is called a closed Cartier divisor of degree d
on X 525. 5

In the following, let & be the residue field of F' and Divy = Div_‘kaF Qipk. As in [24,
Proposition VI.9.2], a local system on Div_‘f< corresponds to a continuous representation of
W, so Divy plays the role of an algebraic curve in the geometric Langlands correspondence.

Remark 7.1. When X is an algebraic curve over a field, X itself can be regarded as a
moduli space of effective Cartier divisors of degree 1 on X by considering sections of the
structural morphism. In the case of Fargues—Fontaine curves, for S € Perfy,, there is no
structural morphism from Xg to S, and we cannot consider S-valued points in Xg, so the
situation is very different and Div appears.

Let b € G(F). For S € Perfy, we define the G-bundle &, x, over Xg by G s Y5/ (box ).

We define the v-sheaf G, on Perf; by éb(S) = Aut(& x,). We define Bung: Perfy, —
Groupoids by
Bung(S) = (the groupoid of G-bundles over Xg).

Then Bung is an ¢-cohomologically smooth Artin v-stack over Spd k (¢f. [24, Proposition
IV. 1.19]).

Theorem 7.2 ([2, Theorem 10], [21, Théoreme 5.1]). Let (C,C*) be a Huber pair such
that C' is an algebraically closed perfectoid field over k. Then b — &, x induces a

Spa(C,Cct)
bijection B(G) — Bung(Spa(C,CT))/~.

By the bijection in Theorem 7.2, we have a bijection B(G) — |Bung|. For [b] € B(G),
we put
Bung' = Bung X jpung| {8}

Z5We use this terminology because a closed Cartier divisor of degree d is written as the sum of d closed
Cartier divisors of degree 1 v-locally on S, and a closed Cartier divisor of degree 1 is determined from a
primitive ideal of degree 1 in Op-coefficients.



ON THE GEOMETRIZATION OF THE LOCAL LANGLANDS CORRESPONDENCE 15

using the morphism of (6.1). Let * = Spd k. By [24, Theorem I11.0.2], the natural morphism
it Bun[g — Bung is a locally closed immersion and we have

(7.1) Bunl 2 [+/G,).
There exists a natural isomorphism 7,(|Gy|) 2 Gy(F), which and (6.1) give
(7.2) Gy — |Gy = Go(F).

(7.2) is a surjection, and is an isomorphism if b is a basic element (cf. [24, Proposition
I11.5.1]). By (7.1) and (7.2), there is a natural morphism

(7.3) Bun[Gb] — [%/Gy(F)].

8. GEOMETRIC SATAKE EQUIVALENCE

For a perfectoid space S over Divk, we write Dg for the corresponding closed Cartier
divisor on Xg, and Zg for its invertible ideal sheaf. By shrinking S, we can make Dg an
affinoid adic space. For an affinoid perfectoid space S over Div% such that Dg is an affinoid
adic space, we put

Bgivgl( (S) = {the global sections of the completion of Ox, along Zs},
1
_ pt
BDiVSl((S) — BDivdX (S) |:E:| )

where Ig denotes the ideal of BE;. 4 (S) determined by Zg. By this, we obtain v-sheaves
IVX

Bgivg( and Brpyq over Div%. For an affinoid perfectoid space S over Div% such that Dy is

an affinoid adic space, we define Hck, 4 (S) by
{the groupoid of G-bundles &, & over B]; . (9)
VX
and an isomorphism between & and & over Bpa (5)},
and Grg e (9 ) by

{the groupoid of a G-bundle £ over Bgivgl( (5) and a trivialization of & over Bp,.a (S)}.

By this, we obtain small v-stacks Hckq e and Grg p;,a over Div%, and Gre piya 1s equiv-
. . ’ -X . ’ X ’ . ‘X

alent to the v-sheaf obtained by taking isomorphism classes (cf. [24, Proposition VI.1.7,

Proposition VI.1.9]). We call Hck pa a local Hecke stack, and Grg ;¢ a Beilinson-

Drinfeld Grassmannian. By definition, we have a natural morphism Grg, ;¢ — Hekg piya -

By interchanging & and & that appear in the definition of HcijDivg( , We obtain an iso-

morphism

For a small v-stack S over Div_‘ff, we put
GrG,S/DivdX = GrG,DivdX XDivdX‘Sv Hekg g Divd, = /HCkG,Divgl( X Divd, S,
and define v-sheaves L{G, LsG over S by putting
(LsG)(S') = G(BLa (5),  (LsG)(S") = G(Bpyg (9)

for a perfectoid space S’ over S.
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Remark 8.1. Let F' be a finite subextension of F*P/F. For S € Perfy, we have X§ =
Xg @p F' writing Xg for the relative Fargues—Fontaine curve for S determined from F'.
Let Div%, be the v-sheaf of closed Cartier divisors of degree d determined from F'. For
an affinoid perfectoid space S over Div, such that Dg is an affinoid adic space, the rings
Bgivg((S) over F and Bgiv§,<s) over F' are isomorphic as rings over F, so there is a

correspondence between G-bundles over Bf. , (S) and Gpi-bundles over BY. , (S). Thus
v Wser

Hek sppive, = Hekg,, g/ Divd, for a small v-stack S over Div,. When we consider v-locally

on S or geometric pointwisely, we can use this isomorphism to reduce it to the case where
G splits.

Let (X, ®,A, X, ®, A) = BR(Gpser). We put
Xt ={peX| (ua)>0forany a € A}.

We assume that G is split for a while. For a geometric point 5 of Div%, we have

(3.2) e (5) 2 [ (L4 )5\ (Lot ) ) / (L,4. G 5)]

(cf. [24, Proposition VI.1.7]), where the right hand side of (8.2) is the groupoid whose
objects are (LDiV% G)(5) and morphisms from g to ¢’ for g,¢' € (LDiV% G)(3) are (g1, 92) €
(LB. d G) (5)? such that g1gg, ' = ¢’. For a geometric point 5 of Divgl(, we define

IVX

(8.3) (Bi)i<i<r,  (di)1<izr

by letting 3, ...,3, be the different points in d geometric point of Div}, given by 3, and d;
be the multiplicity of 5; for 1 <4 < r. Then we have

Bl (5) = ] B ), Bowg 3) = [ | Bowy (50,
i=1 i=1

+
and BDivﬁ{

1 <1 < r. Hence we obtain a bijection

(8.4) Hek pive, (3)/~ = (XF)"

(5i) is a complete discrete valuation ring, and Bp (5;) is its quotient field for

by (8.2) and the Cartan decomposition. For pu,y’ € X, if p— p' € Zso - A, we say that
is less than or equal to u, and write ¢/ < p. If ¢/ < p and @/ # p, we write p/ < p.

Definition 8.2. Let J be a set of d elements, and pe = (j1)je; with u; € XT. Then, for
S € Perfy, we define Hekg piya <., (S) C Hekg pia (S) by the following condition:

For any geometric point s of S, if we define (5;)1<i<r and (d;)1<i<, from's — S —
Hekgpiva — Div% as (8.3), there is a decomposition [[,_, J; of J such that |J;| = d; and
the element of (X¥)" corresponding to's — S — Hck piya under (8.4) is less than or equal

to (3 ez Mi)i<i<r componentwisely.

As [24, Proposition VL.2.7], Hcke piya <., C Hekgpia defined in Definition 8.2 is a
closed substack. For a small v-stack S over Divgl(, we put

HCkG,S/ Div

4 <pe = HKGDIvE <0 XDivg, S

For ;i € Xt and a small v-stack S over Div}, we put

HCkG,S/ Divi,pu = IHCkG,S/Div}(,S,u \ U IHCkG,S/Divk,g,u"
W<p



ON THE GEOMETRIZATION OF THE LOCAL LANGLANDS CORRESPONDENCE 17

For a geometric point 5 of Div%, we define (3;)1<i<, and (d;)i<i<, as (8.3). Then, for
(Hi)1<i<r € (XT)", the locally closed substack of Hek¢ 5, pia determined by

T T
H Hekgs,pivtu; C H Heka s, ypivt, = Hekg s pive

i=1 i=1
is called the Schubert cell corresponding to (14;)1<i<r-

Let G again be a general connected reductive algebraic group over F. Let F’ be a finite
subextension of F*P/F such that Gy is split?® and let Div%, be the v-sheaf of closed
Cartier divisors of degree d determined from F’. Let S be a small v-stack over Divy. We
put S =8 Xp;a Div%.,.

Definition 8.3. If the pullback of A € De(Hckg g piya, ) to De(Heke g piva, A) =
Det(HCkGF,,S//Divgl{,vA) is obtained as the pushforward from the union of HCkGF,,S//Divg(,,gu.

for a finite number of pe € Xt, we say that A is bounded.
Let Det(Hckg s/ pive A)P be the full subcategory of bounded objects of Dey(Hck g g Divd s V).
Definition 8.4. If A € De(Hckg g/piva, A) is bounded, and its pullback to Grg g/ piya 15

universally locally acyclic over S, we say that A is universally locally acyclic.
For A € Det(Hckg g Dive. s A), the condition that A is universally locally acyclic is equiv-

alent to that sw*A is universally locally acyclic (cf. [24, Proposition 6.6.2]).
Let DM (Hck o /pive, A) denote the full subcategory of universally locally acyclic ob-
) X

jects of Det(Hcke g/ piva, A). We put p = 2> e+ @, where & denotes the set of positive
roots of ®.
Proposition 8.5 ([24, Proposition VI.7.1]). There exists a unique t-structure (P D= P D=0)
of Det(Heke s)pivi AP such that A € Det(Hck 5/ piva » A)P belongs to PD=" if and only
if the following condition is satisfied:

For any geometric point s of S’, if we define a sequence (5;)1<i<, of different geometric
points and (d;)1<i<, from 5 — S' — Div%, as (8.3), the cohomological dimension of the
pullback of A to the Schubert cell of Hekz/pive = Heke,, 5, Divd, corresponding to arbitrary

(1) 1<i<r € (XY s less than or equal to > (2p, ;).

We define a t-structure (?D=°,?D=°) of Dey(Hcke g/pivg M) as Proposition 8.5, and
put
Perv(Hek s/ pivt s A) = PD=" NPD=" C Dey(Hek g g)pive , M)

An object of Perv(Hck g/ pive , A) is called a perverse sheaf.

Definition 8.6. We say that A € Det(Hckg g pivi . A) is flat perverse if A Q% M is a
perverse sheaf for any A-module M.

Definition 8.7. We write Sat(?-[ckas/ Dive. A) for the full subcategory of universally locally
acyclic, flat perverse objects of Det(HCkQS/Dng(, A), and call it the Satake category.

For a set I of d elements, we put
Hekg = Hekg ivt)yr)pive» Grg = Gre pivi)r) Dive,» Satg(A) = Sat(Hckg, A).
Let ]_[Zil I; be a decomposition of a set I of d elements. In the following, we construct

(8.5) Satl(A) x --- x SatZ (A) — Sat5(A).

26The t-structure of Definition 8.3 or Proposition 8.5 does not depend on the choice of F’.
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Let (Divy)/#In (DlVX) be the closed sub-v-sheaf defined by the condition that the
i-th component and the -th component are different if 1 < j < j' <m, i € I; and i’ € Ij.
We put

Sa,tl Il» ’ (A) = Sat <HCkG,(DiV§()I;Il ,,,,, Im/DiV§(7A) .

Since we have an isomorphism

Hek(; X ivyyr (Divi) i 2 [T Hekg < gy (Divi) /et
=1
over (Divy)l1In  we obtain
(8.6) Sat2(A) x --- x Satl(A) — SatS" " (A)

by exterior tensor products. By [24, Proposition VI1.9.3], the restriction functor Sat5(A) —
Sat "' (A) is fully faithful. Furthermore, (8.6) factors through Sath(A) and gives (8.5)
(cf. [24, Proposition VI.9.4]). In particular, we have

(8.7) Sath(A) x Sath(A) — Satg ! (A).

The morphism
Hekg, = Hek e X iy yyror (Divy)' — Hek !

obtained from the natural surjection I LI I — I gives SatZ* (A) — Sat5(A). Composing it
with (8.7), we obtain the fusion product

*: Satg(A) x Satg(A) — Satg(A).

Let Al,AQ € SatG(A). By the isomorphism swapping the 1-st and 2-nd components of
(Divy )™ = (Divy)! x (Divy)!, we obtain A} x Ay & Ay x A;. We have a decomposition
Hekl, = (HekE o)V I (Hcké)"dd into open and closed substacks according to the parity of
the dimension of the Schubert cell contained in the base change to a geometric point of
(Divy)!. Using this decomposition, we decompose as A; = A @ A9 A, = ASr @ A3,
and define ca, 4,: A1 x Ay = Ay x Ay modifying Ay x Ay = Ay + Ay by the —1 multiplication
on the decomposition factor A9 % A3 =2 Agdd x A9dd By this, Sats(A) has a symmetric
monoidal structure. For a group scheme G over a commutative ring R, let Repz(G) denote
the category of finite projective R-modules with action of G.

Theorem 8.8 ([24, Theorem 1.6.3]). We fit ¢ € A such that ¢*> = q. Then there is an
equivalence

S: Rep,(MGh) — SatS(A)
of symmetric monoidal categories, called the geometric Satake equivalence.

In Theorem 8.8, the coefficient ring A is torsion, but by taking the projective limit and
extending the coefficients, we can obtain the equivalence in Q,-coefficients. We explain a
relation between this geometric Satake equivalence and the Satake isomorphism explained
in Section 3. In the rest of this section, we assume that G is unramified and consider the
case where I = {*} and A = Q,. In this case, there is another form of the geometric Satake
equivalence

sWitt. Repg ( Gr) = Satyy"(Qy)

proved by Zhu in [70] (cf. [68, §3.4]), where Sat}y*(Q,) on the right hand side is a Satake cat-
egory defined using a Witt vector affine Grassmannian Gryy ™, which is a perfect scheme over
kr, instead of the Beilinson—Drinfeld Grassmannian. Roughly speaking, Fargues—Scholze’s
geometric Satake equivalence uses the part such that 7r # 0 among the whole untilts over
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Op, and Zhu’s geometric Satake equivalence uses the part such that 7 = 0*. We can
construct an equivalence Sat{G*} = Sa‘cgitt of symmetric monoidal categories geometrically,
so that the two geometric Satake equivalences are compatible ([5]). Furthermore, Zhu’s
geometric Satake equivalence and the Satake isomorphism is related by the commutative
diagram

Ko(Repg, (“G)) ———— Ky(Saty ™ (Q,))

Ko (SWitt)

| |

I'((Gg, % 0) /| Gg,,0) ~ H(G(F), K)

(33)

([68, §3.5], [69, Appendix]), where K denotes the K-group of degree 0, the left vertical
morphism is a morphism given by characters, and the right vertical morphism is given by

~Y

taking the trace of ¢-th power Frobenius element and the natural bijection Grgitt(k‘p) =
G(F)/K.

9. DERIVED CATEGORY OF /-ADIC SHEAVES

For geometrization of the local Langlands correspondence, we need Q,-sheaves on Bung
that are related with smooth Q,-representations of G3,(F) through the morphism (7.3). The
theory in [60] is about the sheaves of torsion coefficients, and although it is possible to extend
the coefficients to Q, by taking inverse limits, the sheaves obtained in such a way are related
to the Banach representations of Gy(F’), which are different from what we want. There is
also the problem that a smooth Q,-representation of G;(F) is not necessarily defined on Z,
in general. To overcome these problems, [24, VII| uses the idea of solid modules introduced
by Clausen—Scholze to construct a derived category of sheaves in need. First, we define a
solid module according to [61, Definition 5.1] as follows:

Definition 9.1. Let M be a condensed module. we say that M 1is solid if, for any inverse
limit S = @iel S; of finite sets, the the morphism

Hom <1'&nZ[Si]C, M) — M(S5)
iel

induced from the natural morphism S, — l‘&lieIZ[Si]C is an isomorphism, where 7S]

denotes the free module generated by .S;.

With this definition in mind, we define a solid sheaf as follows:

Definition 9.2. Let X be a spatial diamond and F be a quasi-pro-etale sheaf of Z-modules
over X. We say that F is solid if, for any quasi-pro-etale j: U — X which can be written
as the projective limit of a directed inverse system {j;: U; — X }ier of quasi-compact, quasi-
separated etale morphisms, the morphism

Hom | lim j;\Z, F | — F(U)

induced from the natural morphism 7 — 7" @ie] ji,;z 18 an isomorphism, where ji,,i de-
notes lim Ji(Z/nZ).

2TAs explained below, Zhu’s geometric Satake equivalence is directly related to the Satake isomorphism.
On the other hand, the main advantage of Fargues—Scholze’s geometric Satake equivalence is that we can
move untilts such that mp # 0, which allows us to consider fusion products.
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Definition 9.3. Let X be a small v-stack and F be a v-sheaf of mogf\ules on X. We say
that F is solid if f*F is isomorphic to the pullback of a solid sheaf of Z-modules on X[ e
for any spatial diamond X' and f: X' — X.

Let A be a commutative ring over Z,.

Definition 9.4. Let X be a small v-stack, and let D(Xy, A.y) denote the derived category
of sheaves of condensed A -module on X,. We define Da(X,A) as the full subcategory of
D(X,,Acy) consisting of every object A of D(Xy, Acy) such that the cohomology sheaves in

all degree of the images of A in D(X,, 2) are solid.

If f: X — Y is a morphism of small v-stacks, there are 4 functors f*, f,, <§.§>, R3¢ 0omg on
Da(—, ) as [24, VIL.2]®®, and additionally the left adjoint functor

fh: l).<A)(7 A) — l).(}/7 A)
of f* (cf. [24, Proposition VIIL.3.1]).

Definition 9.5. Let X be an Artin v-stack. Let Dys(X, A) be the smallest full triangulated
subcategory of Da(X, ) that satisfies the following conditions®:

(1) It is stable under arbitrary direct sum.
(2) It contains fyMAcy for any separated, (-cohomologically smooth morphism f: X' — X
that is representable by locally spatial diamonds.

If f: X — Y is a morphism of Artin v-stacks, there are 4 functors f*, fis, <§.§>, R7€omy;s
on Dys(—, A) as [24, VIL6]*
For b € G(F'), there is an equivalence of derived categories

(9.1) D(Gy(F),A) = Dy(Bun, A)

induced by the morphism (7.3) ([24, Proposition VIL.7.1]). Through this equivalence, we
can consider geometrization of representations of p-adic reductive algebraic groups and
operations between them. For example, the geometrization of a parabolic induction is
given by the geometric Eisenstein functor ([30, §9], [31, §4.3]3').

Asin [24, IX.1], we can equip Dg(—, A) and Djs(—, A) with structures of condensed stable
oo-categories, and write them for Dg(—, A) and Dy;s(—, A). The above functors on Dg(—, A)
and Dys(—, A) can be defined naturally on Dg(—, A) and Dys(—, A) as well.

10. HECKE FUNCTOR
We put Zg[\/q] = Z[X]/(X? — q). Using Theorem 8.8, we consider

(10.1) Repz, ("G, ) — Pa(HekG, Zy/a); Vo Im D(S(V/ V)Y,

where D is the relative Verdier dual with respect to Hckg — [(Divi)!/ L(+Div§() ,G]. Let A

be a commutative ring over Z[,/q]. (10.1) induces
(10.2) Rep, (“GL) — Da(Hckg, A)

28 Among these, the pull-back and push-out functors are denoted by the same symbols as those on v-site
because they are consistent by [24, Proposition VII.2.1].

29The subscript lis comes from the French word lisse.

30The functors of pull-back and tensor are denoted by the same symbols as those on Dg(—, A) because
they are consistent by [24, Proposition VIL.6.2]. The functors of push-out and homomorphism are obtained
by composing with the lis-functor in [24, Proposition VII.6.3].

3176 be precise, coefficients are torsion in these literature.
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A-linearly. We define a small v-stack Hcké by
Hck}(S) = {the groupoid of G-bundles &, & over Xg,

S — (Div)" and an isomorphism &|xg\ps = Ea|xs\ns
for S € Perf,. We call Hcky, the global Hecke stack. We define p,: Hck,, — Bung and
P Hcké — Bung x(Divy)! by sending (&1, &, S — (Divﬁc)I,El\XS\DS = &)|xq\pg) to &

and (&, S — (Divk)?), respectively. For an affinoid perfectoid space S over Div% such that
Dy is an affinoid adic space, we define Hek’ (S) — Hck(S) by the restriction to B . (9).
IVX

Thus we obtain
(10.3) Hekl, — Heky,.
By (10.2) and the pull-back under (10.3), we define
Rep, (FGL) — Da(Heky, A); V = Sy,
For V € Rep, (*GY), the functor

(10.4) Diss(Bung, A) — Da(Bung x (Divk)!, A); A poy(piA ® S))
gives

TV : DHS(Bung, A) — Dlis<BU_Il(;, A)
(cf. [24, Proposition 1X.2.1]).

Theorem 10.1 ([24, Theorem IX.2.2]). Let V € Rep,(YGL). Then the functor Ty €
End(Dys(Bung, A)) preserves limits, colimits and compact objects, and we have

Momhs(TV(A), A) &= Tsw*vv Moth(A, A)

for A € Dys(Bung, A), where V¥ denotes the dual of V', and sw denotes the involution of
L@y induced by (8.1) and Theorem 8.8.

The global Hecke stack used in the construction of the Hecke functor is closely related
to the local Shimura variety and its generalization in a certain sense, the moduli space of
mixed characteristic shtukas. Therefore, results for the Hecke functor contain information
on the cohomology of these spaces. For example, using Theorem 10.1, we can deduce results
on the finiteness of the f-adic etale cohomology of those spaces (cf. [24, IX.3], [40, §3]).

Let Dys(Bung, A)¥ be the full condensed stable co-subcategory of compact objects of
Dys(Bung, A). This gives a structure of a condensed oco-category on End(Djs(Bung, A)¥),
and Aut(F) has a structure of a condensed animated group® for F € End(Dys(Bung, A)*).
Let End(Dys(Bung, A))“BYF be the oo-category of pairs of F € End(Dys(Bung, A)*) and
a morphism (W}). — Aut(F) of condensed animated groups. Then, by (10.4), we have a
Rep, (WE) 4)-linear monoidal functor

(10.5) T: Repy(*GL) — Enda(Dys(Bung, A)*)PWr: V s Ty,

which is functorial with respect to I (cf. [24, Corollary 1X.2.4]), where Rep,((W£E)a)-
linearity means that there is a natural isomorphism

for W € Rep, (WE)a) and A € Dys(Bung, A)~.

32 Animation is an operation that creates an co-category from a category that satisfies appropriate con-
ditions (cf. [13, 5.1.4]). See [13, Example 5.1.6] for animated group.
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11. CONSTRUCTION OF SEMISIMPLE L. PARAMETERS

Let P be an open subgroup of Pp+ which is a normal subgroup of Wr. For n > 0, let F,,
denote the free group generated by n elements. For n > 0 and homomorphism F,, — W2/P,
we consider the induced morphism

(11.1) O(ZN(F,,G)) — O(Z'(W°/P,G))

(¢f. Lemma 4.4), where the action of F, on G is given by F, — W2/P. The morphism
(11.1) is G-equivariant with respect to the conjugate action of G. The morphism

colimy, g, wo,mO(Z (F,, G)) — O(Z'(Wp/P,G))
obtained by taking the colimit of (11.1) with respect to transition/\morphisms induced by
morphisms F,,, — F,, over W2 /P is an isomorphism of rings with G-actions. We put
Exc(W2/P,G) = colim, , wa,p)O(Z (F, G))C.
The morphism
Exc(WQ/P,G) — O(Z (W2 P.G))°

induced by (11.1) is a universally homeomorphism, and becomes an isomorphism after
inverting ¢ (cf. 24, VIIL.3.2]). Further, we put

Exc(W, G) = lim Exc(Wp/P, G)
P

and call it the excursion algebra.
(11.2) Exc(Wr, G) — O(ZY(Wp, G))®
is also a universally homeomorphism, and becomes an isomorphism after inverting ¢. We
put
deom(G7 A) = To End(ians(BunG,A))

and call it the geometric Bernstein center of GG. In the following, we construct a natural
morphism

~

(11.3) Exc(Wg, G)n — Z8°"(G, A).

Let Cp C Dys(Bung, A)* be the full oco-subcategory of A € Dy (Bung, A)¥ such that the
action of P! on Ty (A) is trivial for any V' € Rep, (YGY). Since, for any A € Dy (Bung, A)~,
there exists P such that A € Cp by [24, Proposition 1X.5.1], constructing (11.3) is reduced
to constructing

(11.4) Exc(W2/P,G) — m End(ide,.).

Let Q be the image of Wp — Aut(G). In the construction of (11.4), an excursion data®
defined below are used.

Definition 11.1. A tuple (I,V, o, B,7) of a finite set I, V € Reng((émQ)I), a:l—=V|a,
B:V|g— 1landy € (W2/P)! is called an excursion data, where V|5 denotes the restriction
of V' by the diagonal morphism G — (G x Q)!.

33For the origin of the term excursion, see the diagram (11.5).
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Let D = (I,V,«, 3,7) be an excursion data. Let a: Indng lg — V|@NQ and 3 V|@NQ —

Indng 15 be the morphisms induced by « and 8 respectively. We define an endomorphism
SD of id(;P by

(10.6) T,

: — Q ~ -~

ldCP o TléxQ I TléxQ ® Indl 1= 7—'IndgNQ 1a - TV'@XQ - TV
(11.5) ~y

. 0 (10.6) TE -

1dCP - Tl@xQ = Tl@xQ ® Indl 1 = CTIndg;NQ 1a = TV'@MQ - TV

where the first and last morphisms are induced from the natural morphisms 1¢ — Ind%2 1
and Indi2 1 — 1g of Q-representations, and two isomorphisms TV'@XQ = Ty are given by
the functoriality of T" with respect to I.

For f € O(G\(G x Q)!/G), let Vi C O((G x Q) /G) be the sub-(G x Q) -representation
generated by f. We have ay: 1 — Vy|g given by f, and Bf: V¢|s — 1 given by substituting
1€ (G x Q). Forye (W2/P), we put D, s = (I,Vy,ay, Bf, ) and define

0,: O(G\(G % Q)!/G) — 7o End(ide,); f— Sp. .

we have O(Z(F,, CA;))a — 7o End(id¢,. ). Taking the colimit of this, we obtain (11.4).
Next, we construct a semisimple L-parameter using (11.3). Let C be an algebraically
closed field over Z,[,/q] and 7 be a smooth irreducible representation of G(F) over C.

Considering F, € DliS(Bun[Gl],C) corresponding to m under (9.1), Z&*°™(G,C) acts on
iél]}",r € Dyis(Bung, C) by a scalar multiple since 7 is irreducible. By this action and (11.3),
we have Exc(Wp, G)c — C. Furthermore, we obtain a C-valued point of Z'(Wg, G) | G

-~

by the universally homeomorphism (11.2). The C-valued points of Z'(Wp,G) /| G corre-

spond to the closed Gg-orbits of Z' (W, G)c, and further to the G(C)-conjugacy classes
of semisimple f-adic L-parameters in C-coefficients ([24, Proposition VIII.3.2]). Thus we
have constructed the semisimple L-parameter of .

It is an important question whether the semisimple L-parameters constructed in this way
are compatible with the already known constructions of the local Langlands correspondence.
In the following, we discuss the case C = Q,. The compatibility is proved in [24, Theorem
IX.7.4] if G is GL,. If F is mixed characteristic, it is proved in [34, Theorem 6.6.1] in
the case where GG is an inner form of GL,, the cases of GSp, and GU,, are studied in
[29] and [8], respectively. For general G, if F' is mixed characteristic and the irreducible
representation of G(F') has a non-zero parahoric fixed vector, then it is shown in [53]. In
the equal characteristic case, it is proved in [54] that the Fargues—Scholze’s construction
is compatible with the Lafforgue’s construction [52] in the case of a function field, and
coincides with the construction [28] by Genestier—Lafforgue.

Other applications of the morphism (11.3) include results on the finiteness of Hecke
algebras of p-adic reductive algebraic groups in [16], [17]. It is remarkable that although
(11.3) is constructed geometrically, the assertion of the results on the finiteness of Hecke
algebras are purely algebraic.
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12. SINGULAR SUPPORT OF COHERENT SHEAVES

In the geometric categorical local Langlands conjecture, a condition on the singular sup-
ports of coherent sheaves is used, following the formulation of the geometric Langlands
correspondence in [4]. In this section, we explain singular support.

Let S be a regular affine scheme and X be a disjoint union of flat locally complete
intersection affine schemes over S. Let Lx/g be the cotangent complex of X over S ([39, II
(1.2.7.1)]). By [39, III Proposition 3.2.6], Lx/s is isomorphic to a complex of vector bundles
which is zero at degrees outside [—1, 0], locally on X. We put

Singy /s = SpecSymg, H' (IL/s).

Then Sing /g is a group scheme affine over X that represents the functor sending X-scheme
X' to H ' (Lx/s ®p, Ox), and has a natural action of Gy,. By [39, III Proposition 3.1.2,
Corollaire 3.2.7], for z € X, the triviality of Sing x/s Xx @ 1s equivalent to the smoothness
of X — S at x.

By the product Ox ®o, Ox — Ox, we view Ox as an Ox ®p, Ox-module, and put

HH.(X/S) == EXtE?X@OSOX(OX’ Ox)
We have
(12.1) H'(LY,s) = HH*(X/S)

by [39, IIT Théoreme 1.2.3] and [55, Theorem X.3.1]. We write D, for the derived category
of coherent sheaves. Let £ € DP, (X). By

coh
RHOHl@X®OSOX (Ox, Ox) — RHOIH(/)X (OX ®E(5X 5, Ox ®]léx 5) = RHomox(é', g)
we have
(12.2) HH*(X/S) — Extt_(£,€).

By (12.1) and (12.2), Exty, (£, ) has a structure of Symg, H' (LY ¢)-algebra, and define
a Gy-equivariant quasi-coherent sheaf yEnd(E) over Singy,g. The support of pEnd(€) is
called the singular support of £, and denoted by SingSupp(€). By [24, Theorem VIII.2.9],
& is a perfect complex if and only if SingSupp(€) is contained in the zero section of Sing y /.

13. CATEGORICAL CONJECTURE

We assume one of the following:

e A is an algebraic field extension of Qq[,/q|.
e A is the ring of integers in an algebraic field extension of Q[,/g], and ¢ does not

~

divide the order of 71 (G)yor-

Let Perf(LP¢ ) denote the stable co-category of perfect complexes over LP¢ 4. Then,
by [24, Theorem X.0.1], we can naturally construct a A-linear action of Perf(LPg ) on
Dyis(Bung, A)“ such that its composition with

Repy (“G}) = Perf(LP¢ ) "V5: Vs (O 4y, ), ® V)/Ga

coincides with the functor (10.5). This action is called spectral action. This is what should
exist if we assume the categorical conjecture explained later, and we can actually construct
it, but we can also use the spectral action to define a functor that is expected to give the
equivalence of categories in the categorical conjecture. The spectral action is very useful,
and its application to the Eichler—Shimura relation for local Shimura varieties is given in
[47], and its application to the vanishing of the cohomology of local Shimura varieties and
Shimura varieties is given in [48].
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By [24, Corollary VIII.2.3], there is a natural immersion
(13.1) Sing /1 gy, 0 < Lie(G)i xa Z'(Wp, G)a.

Let N5 C Lie(@)* be the closed subset given by the union of all G-orbits whose closure
contain the origin. Let D?(;(}fNilp<LPG» A) be the stable co-category of bounded complexes of
quasi-coherent sheaves over LPg o whose cohomology in each degree satisfies the following
conditions:

e It has support in a finite number of connected components.

e [t is coherent on each connected component.

e After the pullback to Zl(WF,@) A, its singular support is contained in Nz, xa

Z (W, G)a under the immersion (13.1)3
Let Perf®(LP¢ o) be the full stable co-subcategory of Perf(LP¢ 5 ) consisting of every ob-

ject which has support in a finite number of connected components. By the extension of the

spectral action preserving colimits, we have an action of Ind Perf(LP¢ ) on Dys(Bung, A).
The next is the categorical conjecture formulated by Fargues—Scholze.

Conjecture 13.1. We assume that G is quasi-split, and fix a Whittaker datum (B, ) in
A-coefficients for G. By (9.1), we view C—Indgl(f(?])g)(F) Y as an object of DhS(BunG],A) and
put

Wy, = Zhll (c- Indg(fB ) ¥) € Dis(Bung, A).
Then, the restriction to Dys(Bung, A)¥ of the right adjoint functor of
ay: Ind Perf(LPg A) — Dis(Bung, A)
giwen the action of Ind Perf®(LP¢ ) to Wy, induces an equivalence
Dyis(Bung, A)* & Dy, (LPa )
of stable co-categories that is compatible with the actions of Perf(LPg ).

Since the moduli of L-parameters can be viewed as the moduli of local systems on the
Fargues—Fontaine curve, in Conjecture 13.1, the left side is the category of etale objects on
the moduli of coherent objects, and the right side is the category of coherent objects on the
moduli of etale objects, so we can see a kind of symmetry. If G is a torus, Conjecture 13.1
is proved in [72].

We explain some of the relevant conjectures. In the following, G and LG are considered
over Q, and denoted by the same symbols. We assume that G is quasi-split. We fix a
Whittaker data (B,1) in Q,-coefficients for G, and write tv for its G(F)-conjugacy class.
First, we describe the Fargues conjecture stated in [20, Conjecture 4.4]%. Let ¢ be a discrete
L-parameter of SLo-type in Q,-coefficients for G, and let ¢ be the corresponding (-adic L-
parameter. We put S, = Zz(p). Then S, = S, as in the proof of [9, Proposition 3.15]%.
For a cocharacter u of G peen, let B, be the reflex field of G/(F*°P)-conjugacy class of p1, and

we put 7, = IndGGW .» where 77, is the G x W, -representation of highest weight p ([49,
(2.1.2)]).

Conjecture 13.2 (Fargues conjecture). There exists F,, € Dys(Bung, Q) with action of
Sy, which satisfy the following conditions:

34This condition regarding singular support is automatically satisfied if A is an algebraic field extension
of Qe[\/q] ([24, Proposition VIII.2.11]).
SIn [20, Conjecture 4.4], a conjecture on the local-global compatibility is also stated, but we omit it
here.
36Tf ¢ is not discrete, then Sg and S, are different in general ([9, Example 3.8]).
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(1) For a cocharacter ji of Gpser, we have
Pos(piFp ® 8. ) = F, B (ry 0 0) € Da(Bung x Divk, Q).
(2) For a basic element b € G(F), we have
i F, = @ P& Tob,ps

pelrr(Sg).pl ; aywp =r(b)

where T,y , denotes 1y (p) € Iy in Conjecture 2.5.
(3) If ¢ is cuspidal, F, = jyj*F, where j: Bung — Bung is the natural open immer-
S10N.

The condition (1) of Conjecture 13.2 is called the Hecke eigensheaf property. If the L-
parameter is cuspidal, Conjecture 13.2 is proved in [27] for GLy and minuscule p, and in
3], [32] for GL,. In [57], it is proved for L-parameters of GL, which are not necessarily
cuspidal, under certain genericity condition.

Next, we explain a relationship between Conjecture 13.2 and a,, appearing in Conjecture
13.1. Let

fo: SpecQ, — LP.3g,
be the morphism given by ¢, and we put

g&p = ftp,*@[ - ,choh(LPG7@€) = Ind Perqu(LPG7@e),

where Dyeon denotes the stable oco-category of quasi-coherent sheaves, and its equivalence
with Ind Perf® follows from [7, Corollary 3.22]. Since f,, factors through i,: [Spec Q,/S,] —
LP g, there is a natural action of S, on &,. Further we put

Aut<p = aw(&p) S Dlis(BUHG,@z)-
Then the action of S, on Aut, is also induced.
Conjecture 13.3. Aut,, gives F, in Conjecture 13.2.

It is easy to verify that Aut, satisfies the Hecke eigensheaf property, and a question is
whether it satisfies the condition of (2) in Conjecture 13.2.

In the following, we assume that ¢ is cuspidal, and explain a conjecture that categorifies
the bijection ¢y, in Conjecture 2.8. The unramified twists of ¢ gives a connected component
Cy of LP;g,. Considering the idempotent element of EXC(WF,@) determined from the
connected component corresponding to C, under (11.2), let

Dg:’ (Bung, Qy)” C Dyis(Bung, Q,)“
be the direct summand given by the action of that idempotent. Let ¢**: Wi — £G2" be the
L-parameter of G* determined from ¢, and x be the corresponding character of Z(G)°(F).
Let DI?S"”X (Bung, Q) be the full stable co-subcategory of objects of D%(Bung, Q,)* such
that, after the pullback to Bun[g, the actions of Z(Gy)°(F) = Z(G)°(F') on the correspond-
ing representations are y for any [b] € B(GQ)pasic. For W € Perf([Spec Q,/S,]), we write
Acty for the spectral action of the object of Perf (LPG,@) given by the pullback of W under

the natural morphism C, — [Spec@Q,/S,] and the pushforward along C, — LP;3,-

Conjecture 13.4. There exists a unique generic representation w of G(F') whose L-parameter
s @, and the functor

Perf([Spec Q,/S,]) — DCWX(BUHQ@K)W; W = ACtW@ﬁ”)

lis
is an equivalence of stable oo-categories. Furthermore, for p € Irr(S,), if we take [b] €
B(G)pasic such that the restriction of p to Z(G)WF is equal to kg([b]), then, the object of
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Dokpvx

52X (Bung, Qp)“ given by p € Trr(S,) under the above equivalence coincides with the image

of 1ot (p) € Uy in Conjecture 2.5 under igb].

ACKNOWLEDGEMENTS

The author is grateful to Jean-Frangois Dat, Laurent Fargues, Teruhisa Koshikawa, Peter
Scholze and Xinwen Zhu for answering questions during the writing of this paper. He also
thanks the referees for their helpful comments.

REFERENCES

[1] Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270,
Springer-Verlag, Berlin-New York, 1972, séminaire de Géométrie Algébrique du Bois-Marie 1963-1964
(SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki,
P. Deligne et B. Saint-Donat.

[2] J. Anschiitz, Reductive group schemes over the Fargues-Fontaine curve, Math. Ann. 374 (2019), no.
3-4, 1219-1260.

[3] J. Anschiitz and A.-C. Le Bras, Averaging functors in Fargues’ program for GL,, 2021,
arXiv:2104.04701.

[4] D. Arinkin and D. Gaitsgory, Singular support of coherent sheaves and the geometric Langlands con-
jecture, Selecta Math. (N.S.) 21 (2015), no. 1, 1-199.

[5] K.Bando, Two monoidal structures on Satake category in mixed characteristic, 2023, arXiv:2302.07376.

[6] D. Ben-Zvi, H. Chen, D. Helm and D. Nadler, Coherent Springer theory and the categorical Deligne-
Langlands correspondence, Invent. Math. 235 (2024), no. 2, 255-344.

[7] D. Ben-Zvi, J. Francis and D. Nadler, Integral transforms and Drinfeld centers in derived algebraic
geometry, J. Amer. Math. Soc. 23 (2010), no. 4, 909-966.

[8] A. Bertoloni Meli, L. Hamann and K. H. Nguyen, Compatibility of the Fargues—Scholze correspondence
for unitary groups, 2022, arXiv:2207.13193.

[9] A. Bertoloni Meli, N. Imai and A. Youcis, The Jacobson-Morozov Morphism for Langlands Parameters
in the Relative Setting, Int. Math. Res. Not. IMRN (2024), no. 6, 5100-5165.

[10] A. Bertoloni Meli and M. Oi, The B(G)-parametrization of the local Langlands correspondence, 2022,
arXiv:2211.13864.

[11] A. Borel, Automorphic L-functions, in Automorphic forms, representations and L-functions (Proc.
Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math.,
XXXIII, Amer. Math. Soc., Providence, R.I., 1979 pp. 27-61.

2] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Etudes Sci. Publ. Math. (1965), no. 27, 55-150.

[13] K. Cesnavicius and P. Scholze, Purity for flat cohomology, Ann. of Math. (2) 199 (2024), no. 1, 51-180.

4] B. Conrad, Reductive group schemes, in Autour des schémas en groupes. Vol. I, vol. 42/43 of Panor.

Syntheses, pp. 93444, Soc. Math. France, Paris, 2014.

[15] J.-F. Dat, D. Helm, R. Kurinczuk and G. Moss, Moduli of Langlands Parameters, 2020,
arXiv:2009.06708.

[16] J.-F. Dat, D. Helm, R. Kurinczuk and G. Moss, Finiteness for Hecke algebras of p-adic groups, J.
Amer. Math. Soc. 37 (2024), no. 3, 929-949.

[17] J.-F. Dat, D. Helm, R. Kurinczuk and G. Moss, Local Langlands in families: The banal case, 2024,
arXiv:2406.09283.

[18] M. Emerton and T. Gee, Moduli stacks of étale (¢,I')-modules and the existence of crystalline lifts,
vol. 215 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, [2023] (©)2023.

[19] M. Emerton, T. Gee and E. Hellmann, An introduction to the categorical p-adic Langlands program,
2022, arXiv:2210.01404.

[20] L. Fargues, Geometrization of the local Langlands correspondence: An overview, 2016,
arXiv:1602.00999.

1] L. Fargues, G-torseurs en théorie de Hodge p-adique, Compos. Math. 156 (2020), no. 10, 2076-2110.

[22] L. Fargues, Sur la gerbe de Kaletha, la courbe et 'ensemble de Kottwitz, 2022, preprint.

3] L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque

(2018), no. 406, xiii+382, with a preface by Pierre Colmez.

[24] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence, 2021,
arXiv:2102.13459.

[25] L. Fargues and P. Scholze, The Langlands program and the moduli of bundles on the curve, 2022,
preprint.



28

26]
27]
28]
[20]
30]
31)

[32
33

NAOKI IMAI

J.-M. Fontaine, Perfectoides, presque pureté et monodromie-poids (d’aprés Peter Scholze), Astérisque
352 (2013), Exp. No. 1057, x, 509-534, séminaire Bourbaki. Vol. 2011/2012. Exposés 1043-1058.

[. Gaisin and N. Imai, Non-semi-stable loci in Hecke stacks and Fargues’ conjecture, 2016,
arXiv:1608.07446.

A. Genestier and V. Lafforgue, Chtoucas restreints pour les groupes réductifs et paramétrisation de
Langlands locale, 2017, arXiv:1709.00978.

L. Hamann, Compatibility of the Fargues-Scholze and Gan-Takeda Local Langlands, 2022,
arXiv:2207.13193.

L. Hamann, Geometric Eisenstein Series, Intertwining Operators, and Shin’s Averaging Formula, 2022,
arXiv:2209.08175.

L. Hamann and N. Imai, Dualizing complexes on the moduli of parabolic bundles, 2024,
arXiv:2401.06342.

D. Hansen, On the supercuspidal cohomology of basic local Shimura varieties, 2021, preprint.

D. Hansen, Beijing notes on the categorical local Langlands conjecture, 2023, arXiv:2310.04533.

D. Hansen, T. Kaletha and J. Weinstein, On the Kottwitz conjecture for local shtuka spaces, Forum
Math. Pi 10 (2022), Paper No. el3, 79.

E. Hellmann, On the derived category of the Iwahori-Hecke algebra, Compos. Math. 159 (2023), no. 5,
1042-1110.

D. Helm, Curtis homomorphisms and the integral Bernstein center for GL,,, Algebra Number Theory
14 (2020), no. 10, 2607—2645.

R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z. 217 (1994), no. 4,
513-551.

R. Huber, Etale cohomology of rigid analytic varieties and adic spaces, Aspects of Mathematics, E30,
Friedr. Vieweg & Sohn, Braunschweig, 1996.

L. Hlusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-
Verlag, Berlin-New York, 1971.

N. Imai, Convolution morphisms and Kottwitz conjecture, 2019, arXiv:1909.02328.

N. Imai, Local Langlands correspondences in ¢-adic coefficients, Manuscripta Math. 175 (2024), no.
1-2, 345-364.

T. Kaletha, Supercuspidal L-packets via isocrystals, Amer. J. Math. 136 (2014), no. 1, 203—239.

T. Kaletha, Rigid inner forms of real and p-adic groups, Ann. of Math. (2) 184 (2016), no. 2, 559-632.
T. Kaletha, Rigid inner forms vs isocrystals, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 1, 61-101.

K. S. Kedlaya and R. Liu, Relative p-adic Hodge theory: foundations, Astérisque 371 (2015), 239.

K. S. Kedlaya and R. Liu, Relative p-adic Hodge theory, II: Imperfect period rings, 2016,
arXiv:1602.06899.

T. Koshikawa, Eichler-Shimura relations for local Shimura varieties, 2021, arXiv:2106.10603.

T. Koshikawa, On the generic part of the cohomology of local and global Shimura varieties, 2021,
arXiv:2106.10602.

R. E. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), no. 3, 287-300.
R. E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201-220.
R. E. Kottwitz, Shimura varieties and A-adic representations, in Automorphic forms, Shimura varieties,
and L-functions, Vol. I (Ann Arbor, MI, 1988), vol. 10 of Perspect. Math., pp. 161-209, Academic
Press, Boston, MA, 1990.

V. Lafforgue, Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale, J. Amer.
Math. Soc. 31 (2018), no. 3, 719-891.

Q. Li, Compatibility of semisimple local Langlands parameters with parahoric Satake parameters,
Manuscripta Math. 172 (2023), no. 3-4, 669-683.

S. D. Li-Huerta, Local-global compatibility over function fields, 2023, arXiv:2301.09711.

S. Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1975
edition.

M. K. Mishra, Structure of the unramified L-packet, ProQuest LLC, Ann Arbor, MI, 2013, thesis
(Ph.D.)-Purdue University.

K. H. Nguyen, On categorical local Langlands program for GL,, 2023, arXiv:2309.16505.

I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Inst. Hautes
Etudes Sci. Publ. Math. (1963), no. 18, 5-69.

P. Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Etudes Sci. 116 (2012), 245-313.

P. Scholze, Etale cohomology of diamonds, 2017, arXiv:1709.07343.

P. Scholze, Lectures on  Condensed  Mathematics, 2019, https://people.mpim-
bonn.mpg.de/scholze/Condensed.pdf.



[62]

[63]

[64]

[68]
[69]

[70]

[71]
[72]

ON THE GEOMETRIZATION OF THE LOCAL LANGLANDS CORRESPONDENCE 29

P. Scholze and J. Weinstein, Berkeley lectures on p-adic geometry, vol. 207, Princeton, NJ: Princeton
University Press, 2020.

Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie
Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture
Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970.

J. Tate, Number theoretic background, in Automorphic forms, representations and L-functions (Proc.
Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math.,
XXXIII, pp. 3-26, Amer. Math. Soc., Providence, R.I., 1979.

J. Tits, Reductive groups over local fields, in Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure
Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979 pp. 29-69.

M.-F. Vignéras, Représentations [-modulaires d’un groupe réductif p-adique avec [ # p, vol. 137 of
Progress in Mathematics, Birkhduser Boston, Inc., Boston, MA, 1996.

M.-F. Vignéras, Correspondance de Langlands semi-simple pour GL(n, F') modulo ¢ # p, Invent. Math.
144 (2001), no. 1, 177-223.

L. Xiao and X. Zhu, Cycles on Shimura varieties via geometric Satake, 2017, arXiv:1707.05700.

X. Zhu, The geometric Satake correspondence for ramified groups, Ann. Sci. Ec. Norm. Supér. (4) 48
(2015), no. 2, 409-451.

X. Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of Math. (2)
185 (2017), no. 2, 403—-492.

X. Zhu, Coherent sheaves on the stack of Langlands parameters, 2020, arXiv:2008.02998.

K. Zou, The categorical form of Fargues’ conjecture for tori, 2022, arXiv:2202.13238.

Naoki Imai

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-
ku, Tokyo, 153-8914, Japan

naoki@ms.u-tokyo.ac.jp



