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Abstract

We construct the Langlands correspondence for connected reductive groups
over finite fields, which we call the finite Langlands correspondence. We dis-
cuss also its relation with the categorical local Langlands correspondence.

1 Introduction

In [IV25], we formulate the Langlands correspondence for connected reductive
groups over finite fields, which we call the finite Langlands correspondence, in-
troducing Langlands parameters for connected reductive groups over finite fields.
In the GLn-case, this correspondence is essentially due to Macdonald [Mac80]. See
also [Aub25] for a more relevant description. In [Col25], the finite Langlands cor-
respondence is constructed for SLn, and its relation to the local Langlands corre-
spondence is studied in details. In this paper we construct the finite Langlands
correspondence.

Let G be a reductive group over a finite field k. Let ` be a prime different from
the characteristic of k. We write Rep(G(k)) for the category of finite dimensional
representations of G(k) over Qℓ. Actually we first show the following theorem on a
categorical equivalence.

Theorem 1.1 (Theorem 4.5). We fix a Whittaker datum of G◦. Then there is a
natural equivalence

Rep(G(k)) ∼=
⊕
o

⊕
c

⊕
β∈B◦

c,Ωc

ShGc,τβ(Gc)Ωc,β

of abelian categories, where o runs thorough the semisimple parameters of G, c runs
thorough the unipotent parameters of G with respect to o. Here B◦

c,Ωc
and Gc are a

finite set and a finite group determined from c, and ShGc,τβ(Gc)Ωc,β is a category of
Gc-equivarinat sheaves on Gc with equivariant structure with respect to an action of
a finite group Ωc,β.

Because of the importance of disconnected groups in Langlands program (cf.
[Kal22]), we include disconnected groups in Theorem 4.5 as well. A key input is
Proposition 4.1, where we describe the category of unipotent representations of a
connected reductive group. Then we construct the finite Langlands correspondence
in Theorem 5.3 using Theorem 4.5. The categorical equivalence in Proposition 4.1 is
crucial even if one is finally interested only in the isomorphism classes (for example,
the finite Langlands correspondence) by the following reason: A parametrizatin of
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irreducible representations of G(k) is reduced to that of unipotent representations
of a disconnected group involving an endoscopic group. To extend the parametriza-
tion of unipotent representations from a connected group to a disconnected group
canonically, we need functoriality of the categorial equivalence in Proposition 4.1,
which we can not see from a bijection between sets of isomorphism classes.

Using Theorem 4.5, we also deduce a parametrizatin of irreducible represen-
tations of G(k) in the style of [Lus84] in Theorem 4.12. In [Lus84, (13.2.1)], the
center of G is assumed to be connected. See [Lus88], [DM90] and [Lus08] for the
general case. Our result is new if the center of G is disconnected in the sense that
the parametrization is uniquely rigidified. This is possible thanks to functoriality
of the categorial equivalence in Proposition 4.1 as explained above.

In Section 6, we formulate a conjecture relating the finite Langlands correspon-
dence with the categorical local Langlands correspondence.
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2 Whittaker datum

We recall a definition of Whittaker datum. Let p be a prime number. In this
section, F is a non-archimedean local field of residue characteristic p or a finite
field of characteristic p. Let G be a connected quasi-split reductive group over F .
Let Λ be a ring.

Definition 2.1. Let B be a Borel subgroup of G. A smooth character ψ : Ru(B)(F )→
Z[1/p]/Z is called generic if it factors through Ru(B)ab(F ) and the stabilizer of ψ
in G(F ) is Z(G)(F )Ru(B)(F ).

If ψ : Ru(B)(F ) → Z[1/p]/Z is a generic character and there is an injective
homomorphism Im(ψ) ↪→ Λ×, then the obtained homomorphism Ru(B)(F ) → Λ×

is also called a generic character.

Remark 2.2. If F is non-archimedean local field, any smooth character Ru(B)(F )→
Z[1/p]/Z factors through Ru(B)ab(F ) by [BH02, 4.1 Theorem]. This may not be
true in general when |F | ≤ 3 (cf. [How74, Lemma 7]).

Definition 2.3. A Whittaker datum of G is a G(F )-conjugacy class of (B,ψ),
where B is a Borel subgroup of G, and ψ is a generic character of Ru(B)(F ).

We recall the following well-known fact (cf. [DR10, §3]):

Proposition 2.4. The set of Whittaker data of G forms a Gad(F )/G(F )-torsor.

Proof. It suffices to show that the conjugate action of Gad(F ) is transitive on the
set of Whittaker data of G. Therefore we may assume that G is adjoint.

Let B be a Borel subgroup. We take a maxmal torus T of G contained in B. It
suffices to show that the generic characters of Ru(B)(F ) are conjugate under the
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action of T (F ). Let ∆ be the set of simple roots of GF sep with respect to BF sep and
TF sep . We take a representative α1, . . . , αm ∈ ∆ of ΓF\∆. For 1 ≤ i ≤ m, let Fi be
the finite separable extension of F such that ΓFi

is the stabilizer of αi in ΓF . Then
we have an isomorphism

Ru(B)ab ∼=
∏

1≤i≤m

ResFi/F Ga. (2.1)

If ψ is a generaic character, then it induces a character of
∏

1≤i≤mGa(Fi) via
(2.1), and its restriction to each factor Ga(Fi) is non-trivial by the definition of
a generic character. We note that the action of Gm(Fi) on Ga(Fi) induces a tran-
sitive action of Gm(Fi) on the set of non-trivial characters Ga(Fi) → Z[1/p]/Z
(cf. [BH06, 1.7 Proposition]). Therefore it suffices to show that the morphism
T →

∏
1≤i≤mResFi/F Gm induced by conjugate action via (2.1) is an isomorphism.

It is enough to show this after the base change to F sep, where it follows from the
adjointness of G.

Corollary 2.5. If F is a finite field and Z(G) is connected, the Whittaker datum
of G is unique.

Proof. This follows from Proposition 2.4 because H1(F,Z(G)) is trivial by Lang’s
theorem.

3 Langlands parameters

We recall the definition of Langlands parameters for reductive groups over finite
fields from [IV25].

Let k be a finite field with q elements. Let k be an algebraic closure of k. Let
σq ∈ Gal(k/k) be the q-th power arithmetic Frobenius element.

Definition 3.1. We put
Ik = lim←−

k′

k′×

where k′ runs through the finite extensions of k in k and the transition maps are
the norm maps. We define the Weil group of k by

Wk = Ik ⋊ 〈σq〉

where the conjugation by σq acts on Ik as q-th power.

Next we recall a definition of a Weil–Deligne group for a finite field.

Definition 3.2. The Weil–Deligne group of the finite field k is the locally pro-
algebraic group scheme

WDk = Ga ⋊Wk

over Q, where (σnq , w) ∈ Wk acts on Ga by the multiplication by qn.

Let G be a connected reductive algebraic group over k. Let Λ be an algebra
over Q. We write LG for the L-group of G over Λ.
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Definition 3.3. Assume that Λ is a field of characteristic zero. An L-parameter
of Weil–Deligne type is a morphism of

ϕ : WDk → LG

group schemes over Λ which is compatible with the projections to Gal(k/k).
We say that the L-parameter ϕ is special if ϕ|Ga(K)(1) is a special unipotent

element of Ĝφ(Ik). We say that ϕ is Frobenius semisimple if ϕ(σq) is semisimple in
LG.

We put

AZ
Ĝ
(φ(Ik))◦(ϕ(Ga)) = π0(ZZ

Ĝ
(φ(Ik))◦(ϕ(Ga))/Z(ZĜ(ϕ(Ik))

◦)).

We define Lusztig’s canonical quotient AZ
Ĝ
(φ(Ik))◦(ϕ(Ga)) of AZ

Ĝ
(φ(Ik))◦(ϕ(Ga)) as

in [Lus84, 13.1] using the isomorphism given by [IV25, Lemma 4.2]. We put ϕ0 =
ϕ|Ga×Ik and

A(ϕ0) = π0

(
ZĜ(ϕ0)/Z(Ĝ)

)
.

Further we put

A(ϕ0) = A(ϕ0)/Ker(AZ
Ĝ
(φ(Ik))◦(ϕ(Ga))→ AZ

Ĝ
(φ(Ik))◦(ϕ(Ga))).

We put

Z̃(ϕ0) = {(g, σmq ) ∈ LG | Ad((g, σmq ))(ϕ0(x)) = ϕ0(Ad(σ
m
q )(x)) for all x ∈ Ga × Ik}.

Further we put
Ã(ϕ0) = Z̃(ϕ0)/Ker(ZĜ(ϕ0)→ A(ϕ0)).

We have ϕ(σq) ∈ Z̃(ϕ0). Let ϕ(σq) be the image of ϕ(σq) under the natural
projection

Z̃(ϕ0)→ Ã(ϕ0).

We say that two L-parameters ϕ and ϕ′ of Weil–Deligne type are equivalent if the
following condition is satisfied: there is g ∈ Ĝ such that Ad(g)(ϕ0) = ϕ′

0 and ϕ(σq)

corresponds to ϕ′(σq) under the bijection

Ã(ϕ0) ∼= Ã(ϕ′
0)

induced by Ad(g), where ϕ0 = ϕ|Ga×Ik and ϕ′
0 = ϕ′|Ga×Ik . Let ΦΛ(G) be the

equivalence classes of Frobenius semisimple L-parameters over Λ of G. We write
ΦΛ(G)sp ⊂ ΦΛ(G) for the equivalence classes of special ones.

We put
Aφ = ZA(φ0)

(ϕ(σq)).

In the finite Langlands correspondence, the irreducible representation of Aφ will
parametrizes the L-packet of ϕ.
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4 Categorical equivalence

Let H be a connected reductive algebraic group over k with Frobenius endomor-
phism F with respect to k. Let c be a two-sided cell of the Weyl group of H such
that F(c) = c. Let ` be a prime number different from p. We write Repc

u(H
F)

for the category of representation of HF over Qℓ which are finite direct sums of
unipotent representations whose associated two-sided is c.

Let uc be an unipotent element in the unipotent conjugacy class of Ĥ over Qℓ

corresponding to c. Let σ be the automorphism of Ĥ given by the Frobenius struc-
ture of H. We define Gc as the Lusztig’s canonical quotient of π0(ZĤ(uc)/Z(Ĥ)).
This is isomorphic to the finite group attached to c constructed in [Lus84, Chapter

4] by [Lus84, (13.1.3)] (cf. [Lus14]). We take hc ∈ Ĥ such that Ad(hc)(σ(uc)) = uc.
We define σc ∈ Aut(Gc) by Ad(hc) ◦ σ.

For a finite group G with an automorphsim τ , let ShG,τ (G) be the category of
G-equivalent sheaves of finite dimensional Qℓ-vector spaces over G with respect to
the τ -twisted conjugation action of G on G. If τ is the identity, we simply write
ShG(G) for ShG,id(G).

Proposition 4.1. There is a canonical equivalence

Repc
u(H

F) ∼= ShGc,σc(Gc)

of abelian categories.

Proof. By [DM20, Proposition 11.3.8] and the definition of Gc, both sides do not
change even if we replace H by the adjoint quotient. Hence we may assume that
H is adjoint simple. By [Lus15, 6.3 (a)], we have an equivalence

Repc
u(H

F) ∼= Zσ(CcB2)

of abelian categories, where CcB2 is a monoidal abelian category defined in [Lus15,
1.6, 6.1], and Zσ is the categorical center relative to σ defined in [BV12, §5.5].

For each left cell Γ in c, we attach a subgroup HΓ of Gc as [Lus87, 3.8 Proposi-
tion]. We put Xc =

∐
Γ Gc/HΓ, where Γ run through the left cells in c.

Let CohGc(Xc) be the category of Gc-equivariant sheaves of finite dimensional
Qℓ-vector spaces over Xc. Let FunGc(Xc, Xc) be the monoidal category of all Qℓ-
linear functors CohGc(Xc) → CohGc(Xc) (cf. [BO04, 5.1]). We recall that Gc ∼=
Z/2Z if c is exceptional (cf. [Ost14, 1]). Let ω ∈ H3(Gc, {±1}) be the unique
nontrivial cohomology class if c is exceptional, and the trivial one otherwise. Let
FunGc,ω(Xc, Xc) be the tensor category obtained from FunGc(Xc, Xc) by twisting
the associativity isomorphisms by ω. By [BFO09, Theorem 4], [BO04, 5.1 Remark]
and [Ost14, Remark 2.20], we have an equivalence

CcB2 ∼= FunGc,ω(Xc, Xc)

of tensor categories (cf. Proof of [BFO12, Corollary 5.4]).
We take a minimum positive integer n such that σnc acts trivially on Gc. We note

that n = 1 when c is exceptional. We note that σc is centralizable in the sense of
[BV12, §5.1] by [BV12, Proposition 5.3] and [KL01, Proposition 5.1.7]. By [BV12,
Theorem 5.12, Theorem 6.5], Zσc(FunGc,ω(Xc, Xc)) is equivalent to the degree 1 part
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of Z(FunGc⋊σZ/nZ
c ,ω

(Xc, Xc)). By [EGNO15, Example 7.12.19, Corollary 7.16.2],

Z(FunGc⋊σZ/nZ
c ,ω

(Xc, Xc)) is equivalent to Z(VecGc⋊σZ/nZ
c ,ω

), where VecGc⋊σZ/nZ
c ,ω

is

the monoidal category of (Gc ⋊ σ
Z/nZ
c )-graded finite dimensional vector spaces over

Qℓ with the associativity isomorphisms twisted by ω. Further Z(VecGc⋊σZ/nZ
c ,ω

) is

equivalent to ShGc⋊σZ/nZ
c (Gc ⋊ F Z/nZ) as abelian categories. The degree 1 part of

this category is ShGc,σc(Gc).

Remark 4.2. If h′c is another choice of hc, we have other automorphicm σ′
c of Gc

and equivalence
Repc

u(H
F) ∼= ShGc,σ′

c(Gc)
as Proposition 4.1. Two equivalences are related by the translation under the image
of h′ch

−1
c in Gc.

In the rest of this section, let G be a reductive group over k such that each
connected component of G is defined over k.

We take a Borel pair (B, T ) of G. Let W and W ◦ be the Weyl group of G and
G◦ with respect to T respectively. Let Ch(T ) be the abelian group of isomorphism
classes of character sheaves on T . We have an isomorphsim

Ch(T ) ∼= Hom(T (k),Q×
ℓ ) (4.1)

by [Yun14, A.3.3 Theorem].
In the following, when we use results in [LY20], we refer [LY21], which is a

corrected version of [LY20].

Definition 4.3. (1) A semisimple parameter of G is a W -orbit o ⊂ Ch(T ) which
contains an F -stable W ◦-orbit.

(2) Let o be a semisimple parameter of G. A unipotent parameter of G with respect
to o is a union c ⊂ W ◦×o of a W -orbit of F -stable two-sided cells c◦ ⊂ W×o◦
in the sense of [LY21, 11.4], where o◦ ⊂ o is an F -stable W ◦-orbit.

For L ∈ Ch(T ), let WL and (W ◦)L be the stabilizer of L in W and W ◦ respec-
tively. We put

ΦL = {α ∈ Φ(G, T ) | (α∨)∗L is trivial}, Φ+
L = ΦL ∩ Φ+(G, T ).

Let (WL)
◦ be the Weyl group of ΦL. We put

ΩL = WL/(WL)
◦, Ω◦

L = (W ◦)L/(WL)
◦.

Lemma 4.4. Let c be a unipotent parameter of G with respect to a semisimple
parameter o of G. Let L be a representative of o. Then there is a two-sided cell
c ⊂ (WL)

◦ such that c ∩ ((WL)
◦ × {L}) = ΩLc× {L}.

Proof. We put o◦ = W ◦L. We take a two-sided cell c◦ ⊂ W ◦ × o◦ as Definition 4.3
(2). Further, we take a two-sided cell c ⊂ (WL)

◦ such that c◦ ∩ ((WL)
◦ × {L}) =

Ω◦
Lc× {L} as [LY21, 11.4]. Then we have

c ∩ ((WL)
◦ × {L}) = (Wo◦c

◦) ∩ ((WL)
◦ × {L}) = (WLc

◦) ∩ ((WL)
◦ × {L})

= WL(c
◦ ∩ ((WL)

◦ × {L})) = ΩLc× {L}

by c ∩ (W ◦ × o◦) = Wo◦c
◦ and WL/(W

◦)L ∼= Wo◦/W
◦.
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We put

LW
◦
FL = {w ∈ W ◦ | L = wFL}, LW

◦
FL = (WL)

◦\LW ◦
FL.

Then each β ∈ LW
◦
FL contains an element wβ uniquely characterized by wβ(Φ+

L) ⊂
Φ+(G, T ) as [LY21, 4.2 Lemma]. For a two-sided cell c of (WL)

◦, we put

B◦
c = {β ∈ LW

◦
FL | wβσc = c}, Ωc = StabΩL(c).

There is a σ-twisted conjugation action Adσ of ΩL on LW
◦
FL defined by

Adσ(γ)(β) = γβσ(γ)−1,

because the action of F on π0(G) is trivial. This restricts to an action of Ωc on
B◦

c, which is also denoted by Adσ. For β ∈ B◦
c, let Ωc,β be the stabilize of β in Ωc

under Adσ.
Let HL be the connected reductive algebraic group over k with a maximal torus

identified with Tk and the root system Φ(H,Tk) = ΦL as [LY21, 9.1]. For each
β ∈ LW

◦
FL, we define an Frobenius endomorphism Fβ on HL as in [LY21, 12.1].

Let σβ be the automorphism of ĤL given by the Frobenius structure Fβ. We have

σβ = Ad(ẇβ)σ. We take hβ ∈ ĤL such that Ad(hβ)(σβ(uc)) = uc, and define an
automorphism τβ of Gc by Ad(hβ) ◦ σβ.

Let Rep(G(k)) denote the category of finite dimensional representations of G(k)
over Qℓ.

Theorem 4.5. We fix a Whittaker datum of G◦. Let B◦
c,Ωc

be a set of representative
of B◦

c/Adσ(Ωc). Then there is a natural equivalence

Rep(G(k)) ∼=
⊕
o

⊕
c

⊕
β∈B◦

c,Ωc

ShGc,τβ(Gc)Ωc,β

of abelian categories, where o runs thorough the semisimple parameters of G, c runs
thorough the unipotent parameters of G with respect to o and we take c for each c
as Lemma 4.4.

Proof. By the decomposition into Lusztig series (cf. [DM20, Proposition 11.3.2]),
we have

Rep(G(k)) ∼=
⊕
o

Repo(G(k)),

where o runs thorough the semisimple parameters of G.
Let o be a semisimple parameter of G. We take a representative L of o, and

put o◦ = W ◦L. For each unipotent parameter c of G with respect to o, we take c
as Lemma 4.4.

By [Sol25, (3.3),(3.4)], we have

Repo(G(k))
∼= Repo(G

◦(k))π0(G) ∼= Repo◦(G
◦(k))π0(G)o◦ .

These induce

Repc
o(G(k))

∼= Repc
o(G

◦(k))π0(G) ∼= RepWo◦ c
◦

o◦ (G◦(k))π0(G)o◦

∼= Repc◦

o◦(G
◦(k))π0(G)o◦,c◦ (4.2)
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by the construction and c ∩ (W ◦ × o◦) = Wo◦c
◦. By [LY21, 12.7 Corollary], (4.2) is

equivalent to ⊕
β∈B◦

c,Ω◦
c

Repc
u(H

Fβ

L )Ω
◦
c,β

π0(G)o◦,c◦

∼=


⊕
β∈B◦

c

Repc
u(H

Fβ

L )

Ω◦
c


π0(G)o◦,c◦

,

where B◦
c,Ω◦

c
is a set of representative of B◦

c/Adσ(Ω
◦
c). We note that a Whittaker

datum is used in [LY21, 5.11] to rigidify IC sheaves, which are used in the construc-
tion of the equivalence of categories in [LY21, 12.7 Corollary]. This is equivalent
to ⊕

β∈B◦
c

Repc
u(H

Fβ

L )

Ωc

using π0(G)o◦,c◦ ∼= Ωc/Ω
◦
c. Therefore we have

Repc
o(G(k))

∼=
⊕

β∈B◦
c,Ωc

Repc
u(H

Fβ

L )Ωc,β .

Hence the claim follows from Proposition 4.1.

Remark 4.6. The Whittaker datum in Theorem 4.5 is unique if Z(G◦) is connected
by Corollary 2.5.

Lemma 4.7. Let R be a normal, local, Noetherian domain with infinite residue
field. Let G be a split reductive group scheme over R. Assume that the characteristic
of the residue field is good for G. Let s be a point of SpecR. Let n ∈ LieGk(s) be
a nilpotent element. Then there is an equidimensional nilpotent section X of LieG
such that Xs is Gk(s)-conjugate to n.

Proof. By taking the adjoint quotient, we may assume that G is adjoint and simple
by [SGA3-3, XXIV, Proposition 5.10]. If G is not type A, the claim follows from
[McN08, 5.4 Theorem] since G is D-standard in the sense of [McN08, 3.9]. In the
type A case, we are reduced to the case where G = GLn. Then the claim follows
from [McN08, 5.4 Theorem] since GLn is D-standard by [McN08, (3.9.3)].

Lemma 4.8. Let R be a normal, local, Noetherian domain. Let G be a reductive
group scheme over R. Assume that the characteristic of the residue field is good for
G. Let X be an equidimensional nilpotent section of LieG. Then we have a natural
isomorphism

π0((ZG(X)/Z(G))s) ∼= π0((ZG(X)/Z(G))t)

for any points s, t of SpecR.

Proof. By replacing R by an etale extension, we may assume that G is split. Then
we are reduced to the simple adjoint type A case in the same way as the proof of
Lemma 4.7 using [McN08, 7.2 Theorem]. In that case, both groups are trivial. So
the proof is complete.
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For a finite group Γ, let IrrQℓ
(Γ) be the set of isomorphism classes of irreducible

representations of Γ over Qℓ.
Let H be a reductive group over a field Λ. Let u ∈ H◦ be a special unipotent

element. We put
AH◦(u) = π0 (ZH◦(u)/Z(H◦)) .

Lemma 4.9. Let H be a connected reductive group over k, with Frobenius morphism
FH . Let C be an F -stable unipotent conjugacy class of H. Then there is u ∈ CFH

such that FH on AH(u) is trivial.

Proof. Let Cad be the image of C in Had. Then we have C ∼= Cad. Hence the claim
follows from the adjoint case in [DM20, Proposition 13.2.7].

Assume that the characteristic of Λ is good for H. Let AH◦(u) be the Lusztig’s
canonical quotient of AH◦(u) defined in [Lus84, 13.1]. We put

AH(u) = ZH(u)/Ker(ZH◦(u)→ AH◦(u)).

Let χL : T (k) → Q×
ℓ be a character corresponding to L under (4.1). Let

φL,0 : Ik → T̂ be the restriction to Ik of the L-parameter corresponding to χL
under [IV25, Proposition 3.8]. We put H = ZĜ(φL,0).

Lemma 4.10. We have an equivalence

Rep(ZAH(uc)
(ghβẇβσq)) ∼= Rep(ZGc(gτβ))

Ωc,β (4.3)

of abelian categories.

Proof. It suffices to show

ZAH(uc)
(ghβẇβσq)/ZGc(gτβ)

∼= Ωc,β.

We have the isomorphism

ZAH(uc)
(ghβẇβσq)/ZGc(gτβ)

∼= ZAH(uc)
(hβẇβσq)/ZAH◦ (uc)

(hβẇβσq) (4.4)

given by the conjugation by g. We have a natural isomorphism

AH(uc)/AH◦(uc) ∼= Ωc. (4.5)

We put

Z̃H(uc) = {(g, σmq ) ∈ ZLG(uc) | Ad((g, σmq ))(φL,0(x)) = φL,0(Ad(σ
m
q )(x)) for all x ∈ Ik}.

Further we put

ÃH(uc) = Z̃H(uc)/Ker(ZH(uc)→ AH(uc)).

Let ÃH(uc)m be the subset of ÃH(uc) defined by the condition that the second
component is σmq . Then we have a natural bijection

ÃH(uc)1/AH◦(uc) ∼= B◦
c. (4.6)

Under the isomorphism (4.5) and the bijection (4.6), the conjugate action of AH(uc)

on ÃH(uc)1/AH◦(uc) is compatible with the action Adσ of Ωc on B◦
c. Therefore we

have
ZAH(uc)

(hβẇβσq)/ZAH◦ (uc)
(hβẇβσq) ∼= Ωc,β. (4.7)

The claim follows from (4.4) and (4.7).
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In the remaining of this section, we assume that p is a good prime. Assume
that H be a reductive group over k with Frobenius morphism FH given by a form
of H over k. Further assume that u ∈ (H◦)FH . The morphism FH naturally acts

on AH(u) as an automorphism. We put ÃH(u) = AH(u)⋊ FZ
H .

We put

M
(
AH(u) ⊂ ÃH(u)

)
=

{(x, ρ) | x ∈ AH(u) · FH , ρ ∈ IrrQℓ
(ZAH(u)(x))}/∼,

where the equivalence is defined by the conjugacy action of ÃH(u) (cf. [Lus84,
4.16, 4.21]). Here we may replace the conjugacy action by that of AH(u) because
for x = x0FH with x0 ∈ AH(u) we have Ad(FH)(x) = Ad(x−1

0 )(x) and the actions
of Ad(FH) and Ad(x−1

0 ) on ZAH(u)(x) are same.

Let G∗ be the dual group of G over k.

Definition 4.11. Let g ∈ G∗. Let s and u be the semisimple and unipotent parts
of g under the Joradan decomposition.

(1) We say that g is special if u is special in ZG∗(s)◦.

(2) If g is special, we put

M
(
AG∗(g) ⊂ ÃG∗(g)

)
:= M

(
AZG∗ (s)(u) ⊂ ÃZG∗ (s)(u)

)
.

Let F∗ : G∗ → G∗ be the Frobenius map determined by the rationality of G. We
write

T ∗
0 ⊂ B∗

0

for the Borel pair specified by the pinning in the definition of G∗.
We fix an isomorphism

colimk′ Hom(k′×,Q×
ℓ )
∼= k

×
, (4.8)

where k′ runs through the finite extensions of k in k and the transition maps are
induced by the norm maps.

Theorem 4.12. We fix a Whittaker datum of G. We have a bijection

IrrQℓ
(G(k)) ∼=

∐
C

M
(
AG∗(g) ⊂ ÃG∗(g)

)
where C runs over the set of F∗-stable special conjugacy classes in G∗.

Proof. Let o be a semisimple parameters of G, and L ∈ o. Let s ∈ T (k) be the
element corresponding to L under (4.1) and (4.8). We put H = ZG∗(s). Then H◦

is identified with ĤL. Let Φ
+
s be the set of the positive roots of H◦ with respect to

T ∗
0 and H◦ ∩ B∗

0 . We have a natural bijection

π0(H) ∼= {w ∈ W (G∗, T ∗
0 ) | w(s) = s, w(Φ+

s ) = Φ+
s } (4.9)
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by [DM90, 1.1 Proposition].
Let c be a unipotent parameters of G with respect to o. We take c for c as

Lemma 4.4. Let C be the unipotent conjugacy classes of H◦ corresponding to c.
We write F∗

0 : G
∗ → G∗ for the Frobenis map determined by the split form of

G∗ over k. Then we have F∗
β = σβ ◦ F∗

0 on H◦. We take u0 ∈ CF∗
0 such that

the action of F∗
0 on AH◦(u0) is trivial. By (4.9), the action of F∗

0 on A is trivial.
Therefore the action of F∗

0 on AH(u0) is trivial since it is naturally isomorphic to
AH◦(u0)⋊ Stabπ0(H)(C).

We take u ∈ CF∗
β and h ∈ H◦ such that Ad(h)(u0) = u. Then we have

Ad(F∗
0(h))(u0) = Ad(F∗

0(h))(F
∗
0(u0)) = F∗

0(Ad(h)(u0)) = F∗
0(u)

and the commutative diagram

AH(u)
F∗
0 // AH(F

∗
0(u))

AH(u0).

Ad(h)

OO

Ad(F∗
0(h))

88qqqqqqqqqq

Therefore we have the commutative diagram

AH(u)

F∗
0

��

σβ //

F∗
β

''NN
NNN

NNN
NNN

AH(σβ(u))

Ad(σβ(F
∗
0(h)h

−1))
��

AH(F
∗
0(u))

σβ // AH(u).

(4.10)

We writeW (k) for the ring of Witt vectors over k. Let H be the split reductive
group over W (k) lifting H◦. Let n ∈ Lie(H) be the nilpotent element corresponding
to u under the Springer isomorphism. By Lemma 4.7, we can take an equidimen-
sional nilpotent section n̂ of LieH over W (k) lifting n.

We show that TransH (σβ(n̂), n̂) is smooth, where Trans is defined as [McN08,
2.3]. Since TransH (σβ(n̂), n̂) is a torsor under ZH (n̂), the smoothness follows from
[McN08, 5.2 Proposition].

By the smoothness of TransH (σβ(n̂), n̂) over W (k), we may lift

σβ(F
∗
0(h)h

−1) ∈ TransH (σβ(n̂), n̂)(k)

to
ĥβ ∈ TransH (σβ(n̂), n̂)(W (k)).

Taking an embedding W (k) ↪→ Qℓ. Let uc ∈ ĤL be the unipotent element cor-

responding under the Springer isomorphism to the image of n̂ in Lie ĤL by the
embedding W (k) ↪→ Qℓ. By Lemma 4.8, we have

AH◦(uc) ∼= AH◦(u). (4.11)

By (4.5), (4.11) and

AH(u)/AH◦(u) ∼= Stabπ0(H)(C) ∼= Ωc,

11



we have
AH(uc) ∼= AH(u). (4.12)

Let hβ ∈ ĤL be the image of ĥβ. Using this hβ, we define τβ in Theorem 4.5.

Then the conjugate action of hβẇβσq on AH(uc) is is compatible with the action of
F ∗
β on AH(u) under (4.12) by (4.10) and the construction of hβ. Therefore we have

ZAH(uc)
(ghβẇβσq) ∼= ZAH(u)

(gF ∗
β ). (4.13)

The claim follows from Lemma 4.10 and (4.13).

5 Langlands correspondence for finite fields

Let G be a reductive algebraic group over k. The aim of this section is constructing
the Langlands correspondence for G, which is a natural map

LG : IrrQℓ
(G(k))→ ΦQℓ

(G)sp. (5.1)

This is correspondence concerning L-parameters of Weil–Deligne type explained in
Section 3. However, for a technical reason, we need to use auxiliary L-parameters
of SL2-type, which we explain below, in the course of our construction of (5.1).

Let Λ be a field of characteristic zero, and LG the L-group of G over Λ.

Definition 5.1. An L-parameter of SL2-type is a morphism

ψ : SL2×Wk → LG

of group schemes over Λ which is compatible with the projections to Gal(k/k).
We say that the L-parameter ψ is special if ψ|Ga(K)(1) is a special unipotent

element of Ĝψ(Ik). We say that ψ is Frobenius semisimple if ψ(σq) is semisimple in
LG. We say that ψ is unipotent if ψ(Ik) is trivial.

We put ψ0 = ψ|SL2 ×Ik and

A(ψ0) = π0

(
ZĜ(ψ0)/Z(Ĝ)

)
.

For ϕ0 defined by

ϕ0(a, w) = ψ0

((
1 a
0 1

)
, w

)
for (a, w) ∈ Ga × Ik, we have a natural isomorphism A(ψ0) ∼= A(ϕ0) since ZĜ(ϕ0)
is a semidirect product of ZĜ(ψ0) with a connected unipotent group by [BMIY24,
Proposition 3.3]. Then we define A(ψ0) as the quotient of A(ψ0) corresponding to
Lusztig’s canonical quotient A(ϕ0) of A(ϕ0).

We put

Z̃(ψ0) = {(g, σmq ) ∈ LG | Ad((g, σmq ))(ψ0(x)) = ψ0(Ad(σ
m
q )(x)) for all x ∈ SL2×Ik}.

12



Further we put
Ã(ψ0) = Z̃(ψ0)/Ker(ZĜ(ψ0)→ A(ψ0)).

We have ψ(σq) ∈ Z̃(ψ0). Let ψ(σq) be the image of ψ(σq) under the natural
projection

Z̃(ψ0)→ Ã(ψ0).

We say that two L-parameters ψ and ψ′ are equivalent if the following condition is
satisfied: there is g ∈ Ĝ such that Ad(g)(ψ0) = ψ′

0 and ψ(σq) corresponds to ψ
′(σq)

under the bijection
Ã(ψ0) ∼= Ã(ψ′

0)

induced by Ad(g), where ψ0 = ψ|SL2 ×Ik and ψ′
0 = ψ′|SL2 ×Ik . Let ΨΛ(G) be the

equivalence classes of Frobenius semisimple L-parameters over Λ of G. We write
ΨΛ(G)sp ⊂ ΨΛ(G) for the equivalence class of special ones.

We put
Aψ = ZA(ψ0)

(ψ(σq)).

We assume and fix q1/2 ∈ Λ.

Proposition 5.2. Sending an L-parameter ψ of SL2-type to ϕ defined by

ϕ(a, w) = ψ

((
1 a
0 1

)(
|w|1/2 0
0 |w|−1/2

)
, w

)
,

we have bijections ΨΛ(G) ∼= ΦΛ(G) and ΨΛ(G)sp ∼= ΦΛ(G)sp. Further we have a
natural isomorphism Aψ ∼= Aφ for ψ and ϕ as above.

Proof. Sending ψ to ϕ, we have a bijection between the Ĝ-equivalence classes of
the Frobenius semisimple L-parameters of SL2-type and the Ĝ-equivalence classes of
the Frobenius semisimple Weil–Deligne L-parameters by [BMIY24, Theorem 6.16]
and [Ima24, Proposition 1.7]. We have a natural isomorphism A(ψ0) ∼= A(ϕ0) by
the definition of A(ψ0). Therefore

Z̃(ψ0)→ Z̃(ϕ0); (g, σ
m
q ) 7→ ψ0

((
|σq|m/2 0

0 |σq|−m/2
)
, 1

)
(g, σmq ) (5.2)

induces the isomorphism Ã(ψ0) ∼= Ã(ϕ0), where (5.2) is a group homomorphism

because any element of ZĜ(ψ0) commutes with ψ

((
|σq|m/2 0

0 |σq|−m/2
)
, 1

)
. There-

fore we obtain the claims.

Theorem 5.3. We fix a Whittaker datum of G. Then we have a natural map

LG : IrrQℓ
(G(k))→ ΦQℓ

(G)sp,

and a natural bijection between L−1
G (ϕ) and IrrQℓ

(Aφ) for ϕ ∈ ΦQℓ
(G)sp.

Proof. We construct a map

LΨ
G : IrrQℓ

(G(k))→ ΨQℓ
(G)sp.
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Let π ∈ IrrQℓ
(G(k)). Let Fπ be an irreducible object of ShGc,τβ(Gc)Ωc,β correspond-

ing to π under Theorem 4.5 for some o, c and β ∈ B◦
c,Ωc

. This gives an element
g ∈ Gc and a representaion of ZGc(gσβ) with Ωc,β-equivariant structure.

Let L be a representative of o. Recall that H = ZĜ(φL,0). Let uc ∈ H◦

an element of the unipotent conjugacy classs corresponding to c. We have an
identification AH◦(uc) ∼= Gc. Let g̃ ∈ ZH◦(uc) be a lift of g.

We define ψ by

ψ|Ik = φL,0, ψ

(
1 1
0 1

)
= uc, ψ(σq) = g̃hβẇ

β ⋊ σq.

We note that

Ad(ψ(σq))(φL,0) = φqL,0.

We also have Ad(ψ(σq))(uc) = uc. We put LΨ
G(π) = ψ.

We have natural bijections

Aψ ∼= ZAH(uc)
(ψ(σq)) ∼= ZAH(uc)

(ghβẇβσq). (5.3)

By (5.3) and Lemma 4.10, we have

Rep(Aψ) ∼= Rep(ZGc(gτβ))
Ωc,β . (5.4)

By the construction and (5.4), the fiber (LΨ
G)

−1(ψ) is parametrized by the isomor-
phism classes of the irreducible representations of Aψ.

We define LG as the composite of LΨ
G and the natural bijection ΨQℓ

(G)sp ∼=
ΦQℓ

(G)sp in Proposition 5.2.

6 Relation with the categorical local Langlands

We discuss relation with the categorical local Langlands formulated in [BZCHN24],
[FS21], [Hel23], [Zhu20]. Actually, we need only the tame part of the categorical
local Langlands, which is constructed in [Zhu25].

Let F be a non-archimedean local field with the residue field k. Let G be a
reductive group scheme over OF whose special fiber is G. Let G be the generic
fiber of G. We note that Ĝ is the dual group of G. Let IF and PF be the inertia
subgroup and wild inertia subgroup of the Weil group WF of F .

Let B be a Borel subgroup of G. Let B ⊂ G and B ⊂ G be the Borel subgroups

corresponding to B. Let ψ : Ru(B)(F ) → Q×
ℓ be a generic character such that the

restriction of ψ to Ru(B)(OF ) induces a generic character ψ of Ru(B)(k).
Let π be an irreducible representation of G(k) overQℓ. Let [ϕ] be the equivalence

class of L-parameters corresponding to π. Let σ̃q ∈ WF be a lift of σq. Then we
have

WF/PF ∼= (IF/PF )⋊ Z ∼= Wk, (6.1)

where the first isomorphism is given by σ̃q. Let

pσ̃q : WDF →WDk
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be the natural morphism given by (6.1).
We say that a tame L-parameter ϕ̃ for G is a lift of [ϕ] if ϕ̃ is given by a

representative of [ϕ] and pσ̃q : WDF →WDk for some lift σ̃q of σq.

Let Z1(WF , Ĝ) be the moduli of L-parameters over Qℓ for G. Let C[φ] be the
connected components which contain a lift of [ϕ]. Let

uG : Z
1(WF , Ĝ)→ NĜ

be the unipotent monodromy morphism in [FS21, VIII.2.1], where NĜ is the nilpo-

tent cone of Lie(Ĝ). Let N[φ] be the image of the set of the lifts of [ϕ]. We write
N [φ] for the closure of N[φ] in NĜ. We define X≤[φ] as C[φ] ∩ u−1

G (N [φ]).

Let Sπ be the coherent sheaf on the moduli of L-parameters given by c-Ind
G(F )
G(OF ) π

under the tame categorical local Langlands correspondence.
Let ϕ̃ be a lift of [ϕ] with respect to σ̃q. We define

hφ̃ : Ĝ× ZĜ(ϕ0)→ Z1(WF , Ĝ)

by hφ̃(g, g
′)|IF = Ad(g)(ϕ0) and hφ̃(g, g

′)(σ̃q) = Ad(g)(ϕ̃(σ̃q)g
′). Let X[φ] be the

image of hφ̃. We note that X[φ] is independent of the choice of the lift ϕ̃. Then hφ̃
is a ZĜ(ϕ0)-torsor over X[φ] as in [DHKM25, §2.3], where the action of ZĜ(ϕ0) on

Ĝ× ZĜ(ϕ0) is given by

g′′ · (g, g′) = (gg′′−1, ϕ̃(σ̃q)
−1g′′ϕ̃(σ̃q)g

′g′′−1).

Let ρπ be the representation of Aφ corresponding to π by Theorem 5.3 with

respect to ψ. We define ρ̃π as the inflation of Ind
A(φ0)
Aφ

ρπ under ZĜ(ϕ0) → A(ϕ0).
Let V (ρ̃π) be the vector bundle on X[φ] given by ρ̃π and the ZĜ(ϕ0)-torsor hφ̃.

Conjecture 6.1. The support of Sπ is contained in X≤[φ]. The restriction of Sπ
to X[φ] is isomorphic to V (ρ̃π).

Remark 6.2. If ϕ|Ga is trivial, X≤[φ] = X[φ]. Hence Conjecture 6.1 gives a full
description of Sπ in this case.

Remark 6.3. When π is principal representation, Sπ should appear as a direct sum-
mand of the Springer coherent sheaf studied in [BZCHN24], [Hel23] and [Zhu20]. If
G is GL2 or PGL2 and π is a unipotent principal representation such a decomposi-
tion is known by [Hel23, Proposition 4.27] and [Zhu20, Example 4.4.4]. In general,
Sπ is not locally free on X≤[φ] by [Hel23, Remark 4.28].

References

[Aub25] A.-M. Aubert, On the Macdonald correspondence, 2025,
arXiv:2501.02332.

[BFO09] R. Bezrukavnikov, M. Finkelberg and V. Ostrik, On tensor categories
attached to cells in affine Weyl groups. III, Israel J. Math. 170 (2009),
207–234.

15



[BFO12] R. Bezrukavnikov, M. Finkelberg and V. Ostrik, Character D-modules
via Drinfeld center of Harish-Chandra bimodules, Invent. Math. 188
(2012), no. 3, 589–620.

[BH02] C. J. Bushnell and G. Henniart, On the derived subgroups of certain
unipotent subgroups of reductive groups over infinite fields, Transform.
Groups 7 (2002), no. 3, 211–230.

[BH06] C. J. Bushnell and G. Henniart, The local Langlands conjecture for
GL(2), vol. 335 of Grundlehren der Mathematischen Wissenschaften,
Springer-Verlag, Berlin, 2006.

[BMIY24] A. Bertoloni Meli, N. Imai and A. Youcis, The Jacobson–Morozov Mor-
phism for Langlands Parameters in the Relative Setting, Int. Math.
Res. Not. IMRN (2024), no. 6, 5100–5165.

[BO04] R. Bezrukavnikov and V. Ostrik, On tensor categories attached to cells
in affine Weyl groups. II, in Representation theory of algebraic groups
and quantum groups, vol. 40 of Adv. Stud. Pure Math., pp. 101–119,
Math. Soc. Japan, Tokyo, 2004.

[BV12] A. Bruguières and A. Virelizier, Quantum double of Hopf monads and
categorical centers, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1225–
1279.

[BZCHN24] D. Ben-Zvi, H. Chen, D. Helm and D. Nadler, Coherent Springer
theory and the categorical Deligne-Langlands correspondence, Invent.
Math. 235 (2024), no. 2, 255–344.

[Col25] E. Collacciani, A Reduction over finite fields of the tame local Lang-
lands correspondence for SLn, 2025, arXiv:2501.09085.

[DHKM25] J.-F. Dat, D. Helm, R. Kurinczuk and G. Moss, Moduli of Langlands
parameters, J. Eur. Math. Soc. (JEMS) 27 (2025), no. 5, 1827–1927.

[DM90] F. Digne and J. Michel, On Lusztig’s parametrization of characters of
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