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Abstract

We define etale cohomology of the moduli spaces of mixed characteristic local
shtukas so that it gives smooth representations including the case where the rel-
evant elements of the Kottwitz set are both non-basic. Then we relate the etale
cohomology of different moduli spaces of mixed characteristic local shtukas using
convolution morphisms, duality morphisms and twist morphisms. As an applica-
tion, we show the Kottwitz conjecture in some new cases including the cases for all
inner forms of GL3 and minuscule cocharacters. We study also some non-minuscule
cases and show that the Kottwitz conjecture is true for any inner form of GL2 and
any cocharacter if the Langlands parameter is cuspidal. On the other hand, we
show that the Kottwitz conjecture does not hold as it is in non-minuscule cases if
the Langlands parameter is not cuspidal. Further, we show that a generalization
of the Harris–Viehmann conjecture for the moduli spaces of mixed characteristic
local shtukas does not hold in Hodge–Newton irreducible cases.

Introduction

The Kottwitz conjecture says that etale cohomology of Rapoport–Zink spaces or more
generally local Shimura varieties realize the local Langlands correspondence (cf. [Rap95,
Conjecture 5.1], [RV14, Conjecture 7.4]). In [SW20], Scholze constructs local Shimura
varieties as special cases of moduli spaces of mixed characteristic local shtukas. The
Kottwitz conjecture makes sense also for the moduli spaces of mixed characteristic local
shtukas. A weak version of the conjecture is studied by Hansen–Kaletha–Weinstein in
[HKW22]. In the weak version, we ignore the action of the Weil groups and have an
equality up to representations which have trace 0 on regular elliptic elements.

Let p be a prime number. Let G be a connected reductive group over a p-adic
number field F . For b, b′ ∈ G(F̆ ) and a system µ• = (µ1, . . . , µm) of cocharacters of
G, we define a moduli space Shtµ•

b,b′ of mixed characteristic local shtukas. See §2 for the
precise definition.

In this paper, we introduce convolution morphisms, duality morphisms and twist
morphisms between moduli spaces of mixed characteristic local shtukas. The convolution
morphism is related to a convolution morphism on affine Grassmannians. Using these
morphisms and the convolution products in the geometric Satake equivalence for B+

dR-
Grassmannians, we relate the etale cohomology of different moduli spaces of mixed
characteristic local shtukas. More concretely, we show the following:
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Theorem 1 (Corollary 5.2). Assume that G is quasi-split and take a Borel pair T ⊂ B of
G. Let µ• = (µ1, . . . , µm) be a system of dominant cocharacters of T and b0, bm ∈ G(F̆ ).
Let E be a finite extension of F containing the fields of definition of µi for 1 ≤ i ≤ m.
We have∑

([bi])1≤i≤m−1∈Iµ•b0,bm

H∗

(
m−1∏
i=1

Gbi(F ),
⊗

1≤i≤m

H∗
c (Sht

µi

bi−1,bi
)⊗

⊗
1≤i≤m−1

δbi

)

=
∑

λ∈X∗(T )+/Γ

V λ
µ• ⊗H∗

c (Sht
λ
b0,bm

)

as virtual representations of Gb0(F )×Gbm(F )×WE, where Iµ•
b0,bm

is a finite set defined
in §5.

We note that even if b0 and bm are basic, non-basic elements appear in Iµ•
b0,bm

and
there are contributions from cohomology of non-basic moduli spaces of local shtukas.
For a derived category version of the above statement, see Proposition 5.1.

As an application of Theorem 1 (or its derived category version) together with duality
morphisms and twist morphisms, we show new cases of the Kottwitz conjecture for the
moduli spaces of mixed characteristic local shtukas. In particular, we show the following:

Theorem 2 (Corollary 7.6). Let G be an inner form of GL3 over F . Let (G, b, µ) be
a local shtuka datum such that µ is minuscule and b is basic. Let ϕ : WF → L GL3 be
a discrete local L-parameter. Let π and πb be the irreducible smooth representations of
G(F ) and Gb(F ) corresponding to ϕ via the local Langlands correspondence. Then we
have

H∗ (RHomG(F )

(
RΓc(Sht

µ
1,b), π

))
' πb ⊠ (rµ ◦ ϕ)

as representations of Gb(F )×WF .

It is remarkable that the proof of Theorem 2 requires moduli spaces of local shtukas for
non-minuscule cocharacters, even though the statement involves only minuscule cochar-
acters: Using a derived category version of Theorem 1, we can calculate a sum of coho-
mology of moduli spaces of local shtukas for a minuscule cocharacter and a non-minuscule
cocharacter. Then we separate them into each term using the duality isomorphism. We
also note that it is essential to introduce convolution morphisms for moduli spaces of
mixed characteristic local shtukas with multiple legs in §4, because we use it in the proof
of a compatibility result, Proposition 6.2, which plays an important role in the proof of
Theorem 2.

Theorem 1 is useful also for studying non-minuscule cases. We give inductive formulas
that enable us to calculate the cohomology of moduli spaces of local shtukas for inner
forms of GL2. We can summarize the results in §8 as the following theorem:

Theorem 3. Let G be an inner form of GL2 over F . Let (G, b, µ) be a local shtuka
datum. Let ρ be a discrete series representation of Gb(F ). We put

H•
c (Sht

µ
1,b)[ρ] =

∑
i,j∈Z

(−1)i+j ExtiGb(F )

(
RjΓc(Sht

µ
1,b), ρ

)
.

Then we can calculate H•
c (Sht

µ
1,b)[ρ] by inductive formulas. In particular, when b is basic,

we see the following:
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(1) The Kottwitz conjecture for Shtµ1,b holds if the L-parameter is cuspidal or G is not
quasi-split.

(2) The Kottwitz conjecture for Shtµ1,b does not hold in general if the L-parameter is
not cuspidal and G is quasi-split.

We note that in the first statement of Theorem 3, b can be non-basic and µ can be
non-minusucle. Even if we are interested only in H•

c (Sht
µ
1,b)[ρ] for a basic b, the inductive

formulas for the calculation of H•
c (Sht

µ
1,b)[ρ] involve moduli spaces of local shtukas for

non-basic elements. Therefore it is important to study non-basic cases at the same time.
We note that Theorem 3 is compatible with the result in [HKW22], since the error

term involves only representations which have trace 0 on regular elliptic elements. We
remark also that this error term supports that the expectation [Far16, Remark 4.6] in
the geometrization of the local Langalnds correspondence is true.

Further, we see that the Harris–Viemann conjecture for the moduli spaces of mixed
characteristic local shtukas does not hold as it is in Example 8.10 and Remark 8.11.
We note that Harris–Viemann conjecture for the moduli spaces of mixed characteristic
local shtukas is proved in [GI16] and [Han21a] under the Hodge–Newton reducibility
condition. On the other hand, the Hodge–Newton reducibility condition is not satisfied
in Example 8.10.

In §1, we collect results on relative homologey and the geometric Satake correspon-
dence. In §2, we give a definition of a moduli space of mixed characteristic local shtukas.
The definition which we give here is slightly different from that in [SW20]. Our defi-
nition is suitable to construct convolution morphisms between moduli spaces of mixed
characteristic local shtukas in §4. In §3, we construct a twist morphism between moduli
spaces of mixed characteristic local shtukas, which has an origin in the twist of a vector
bundle by a line bundle. In §5, we discuss a relation between cohomology of different
moduli spaces of mixed characteristic local shtukas using convolution morphisms. In §6,
we construct a duality morphism, which has an origin in the dual of a vector bundle. In
§7, we give an application to the Kottwitz conjecture. In §8, we give some inductive for-
mulas on cohomology and discuss more about the Kottwitz conjecture in non-minuscule
cases.

After we put a former version of this paper on arXiv, a preprint [Han21b] by Hansen
appeared, where a cohomology version of Theorem 2 is proved for cuspidal local L-
parameters of GLn using a result in [ALB21]. A merit of Theorem 2 is that it works for
discrete local L-parameters.
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Notation

For a field F , let ΓF denote the absolute Galois group of F . For a non-archimedean local
field F , let F̆ denote the completion of the maximal unramified extension of F . For an
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object XY over an object Y , its base change by the morphism Y ′ → Y is denoted by
XY ′ .

1 Sheaves in `-adic coefficients

1.1 Relative homology

Let p be a prime number. Let Λ be a solid Ẑp-algebra. For a small v-stack X, we
define D■(X,Λ) as [FS21, Definition VII.1.17]. There is a symmetric monoidal structure

−
■
⊗L

Λ− onD■(X,Λ) constructed by [FS21, Proposition VII.2.2]. In the sequel, we simply

write ⊗L
Λ for

■
⊗L

Λ. For a morphism f : X → Y of small v-stacks, let

f♮ : D■(X,Λ)→ D■(Y,Λ)

be a left adjoint to f ∗ : D■(Y,Λ)→ D■(X,Λ) constructed by [FS21, Proposition VII.3.1].
The following lemma is already known (cf. the proof of [FS21, Proposition VII.6.3]).

Lemma 1.1. Let f : X → Y be a quasi-compact, quasi-separated morphism of small
v-stacks. Assume that Λ = lim←−n∈I Z/nZ, where I is a filtered set of positive integers
which are prime to p. Then we have

f♮Λ ' lim←−
n∈I

f♮(Z/nZ).

Proof. We recall a proof. We may assume that Y is a spatial diamond. Then Λ is a
pseudo-coherent object on X (cf. [Kra20, Definition 7.2]) by the assumption on f . Since
f♮ preserves pseudo-coherent objects, f♮Λ is also a pseudo-coherent object. Since each
cohomology sheaf of f♮Λ is a finitely presented solid sheaf, we have

f♮Λ ' lim←−
n∈I

(f♮Λ⊗L
Λ Z/nZ) ' lim←−

n∈I
f♮(Z/nZ)

by [FS21, Theorem VII.1.3, Proposition VII.3.1].

Lemma 1.2. Let f : X → Y be a morphism of small v-stacks. Let F be a solid Ẑp-sheaf
on X. Let {Ui}i∈I be a filtered direct system of quasi-compact open substacks of X such
that X =

⋃
i∈I Ui. Let fi and Fi be the restriction to Ui of f and F for i ∈ I. Then we

have
f♮F ' lim−→

i∈I
fi♮Fi.

Proof. Let ji : Ui → X be the inclusion for i ∈ I. Since f♮ commutes with a direct limit,
it suffices to show F ' lim−→i∈I ji♮Fi. By the projection formula, we may assume that

F = Ẑp. For any solid Ẑp-sheaf G on X, we have

Hom(lim−→
i∈I

ji♮Ẑp,G) ' lim←−
i∈I

Hom(ji♮Ẑp,G) ' lim←−
i∈I
G(Ui) ' G(X) ' Hom(Ẑp,G).

Hence we obtain the claim.
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Lemma 1.3. Let F be a non-archimedean field with residue characteristic p. Let d be a
positive integer, and n a positive integer prime to p.

(1) Let

f :
(
Spa(OF [[x

1/p∞

1 , . . . , x
1/p∞

d ]])×Spa(OF ) Spa(F )
)⋄ → Spa(F )⋄

be the natural morphism. Then we have f♮Λ ' Λ. We also have f!(Z/nZ) '
(Z/nZ)(−d)[−2d]. Further, the geometric Frobenius morphism xi 7→ xp

i induces
the multiplication by pd on f!(Z/nZ).

(2) Let
f : (Ad

F )
⋄ → Spa(F )⋄

be the natural morphism. Then we have f♮Λ ' Λ. We also have f!(Z/nZ) '
(Z/nZ)(−d)[−2d]. Further, the geometric Frobenius morphism xi 7→ xp

i induces
the multiplication by pd on f!(Z/nZ).

Proof. We show the first claim of (1). We may assume that Λ = Ẑp and F is algebraically

closed of characteristic p. We write Spa(OF [[x
1/p∞

1 , . . . , x
1/p∞

d ]]) ×Spa(OF ) Spa(F ) as a

union of affinoids isomorphic to Spa(F 〈x1/p∞

1 , . . . , x
1/p∞

d 〉). By Lemma 1.2, it is reduced

to show that g♮Ẑp ' Ẑp for

g : Spa(F 〈x1/p∞

1 , . . . , x
1/p∞

d 〉)→ Spa(F ).

By Lemma 1.1 and [FS21, Proposition VII.5.2], the claim follows from that g!(Z/nZ) '
(Z/nZ)(−d)[−2d] for any integer n prime to p. The claim on f!(Z/nZ) follows from the
case for g!(Z/nZ) in a similar way.

We can show the claim (2) similarly.

Let ` be a prime number different from p.

Lemma 1.4. Let G be a locally pro-p group. Let H(G) be the Hecke algebra of G with
coefficients in Λ. Let f : X → Y be a morphism of small v-stacks which is a G-torsor.
For a pro-p open subgroup K of G, let fK : X/K → Y be the morphism induced by f .
Let g : Y → Z be a morphism of small v-stacks. The morphisms f ∗

K and (g ◦ fK)♮ induce

lim−→
K

(g ◦ fK)♮f ∗
K : D■(Y,Λ)→ D■(Z,H(G))

(1) For A ∈ D■(Y,Λ), we have

(lim−→
K

fK,♮f
∗
KA)⊗L

H(G) Λ
∼= A.

(2) Assume that A ∈ D■(Y,Λ) is obtained from V ∈ Db(G,Λ). Then we have(
lim−→
K

(g ◦ fK)♮(Λ)⊗Λ V
)
⊗L

H(G) Λ ' g♮A.

Proof. (1) We have

(lim−→
K

fK,♮f
∗
KA)⊗L

H(G) Λ
∼= ((lim−→

K

fK,♮Λ)⊗L
Λ A)⊗L

H(G) Λ
∼= ((lim−→

K

fK,♮Λ)⊗L
H(G) Λ)⊗L

Λ A.
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Hence it suffices to show that the natural morphism (lim−→K
fK,♮Λ) ⊗L

H(G) Λ → Λ is an

isomorphism. We can check this v-locally on Y by [FS21, Proposition VII.3.1 (iii)].
Hence the claim follows.
(2) The morphism g♮ induces

g♮ : D■(Y,H(G))→ D■(Z,H(G)).

By [FS21, Proposition VII.3.1 (i)], we have(
lim−→
K

(g ◦ fK)♮(Λ)⊗Λ V
)
⊗L

H(G) Λ
∼= g♮

(
lim−→
K

fK,♮(Λ)⊗Λ V
)
⊗L

H(G) Λ

∼= g♮

((
lim−→
K

fK,♮(Λ)⊗Λ V
)
⊗L

H(G) Λ
)
∼= g♮

((
lim−→
K

fK,♮(V )
)
⊗L

H(G) Λ
)
.

Combined with (1), it remains to show

lim−→
K

fK,♮(V ) ∼= lim−→
K

fK,♮f
∗
KA.

We can check that the morphism

lim−→
K

fK,♮(V )→ lim−→
K

fK,♮f
∗
KA

induced by V ↠ V K ↪→ f ∗
KA is an isomorphism.

Let Λ be a Zℓ-algebra. For an Artin v-stack X, let Dlis(X,Λ) be the category defined
in [FS21, Definition VII.6.1].

Lemma 1.5. Let f : X → Y be an `-cohomologically smooth morphism of Artin v-stacks.

(1) We have f♮(Dlis(X,Λ)) ⊂ Dlis(Y,Λ).

(2) For A ∈ D■(Y,Λ), we have (f ∗A)lis ∼= f ∗(Alis).

Proof. The claim (1) follows from [FS21, Definition VII.6.1]. For B ∈ D■(Y,Λ), we have

Hom(B, (f ∗A)lis) ∼= Hom(B, f ∗A) ∼= Hom(f♮(B), A)

∼= Hom(f♮(B), Alis) ∼= Hom(B, f ∗(Alis)),

where we use (1) at the third isomorphism. Hence the claim (2) follows.

Lemma 1.6. Let

X ′ f ′
//

g′

��

Y ′

g

��
X

f // Y

be a cartesian diagram of Artin v-stacks. Assume that g is `-cohomologically smooth.
Then we have

g∗Rflis ∗A ∼= Rf ′
lis ∗g

′∗A

for A ∈ Dlis(X,Λ).
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Proof. This follows from [FS21, Proposition VII.2.4] and Lemma 1.5.

Lemma 1.7. Let f : X → Y be an `-cohomologically smooth morphism of Artin v-stacks.
Let A,B ∈ Dlis(Y,Λ). Then we have f ∗RHom lis(A,B) ∼= RHom lis(f

∗A, f ∗B).

Proof. This follows from [FS21, Proposition VII.2.4] and Lemma 1.5.

Lemma 1.8. Let f : X → Y be a morphism of Artin v-stacks. Let A ∈ Dlis(X,Λ) and
B ∈ Dlis(Y,Λ).

(1) We have RHom lis(B,Rflis ∗(A)) ∼= Rflis ∗RHom lis(f
∗B,A).

(2) If f is `-cohomologically smooth, then we have

RHom lis(f♮(A), B) ∼= Rflis ∗RHom lis(A, f
∗B).

Proof. (1) For C ∈ Dlis(Y,Λ), we can check

RHom(C,RHom lis(B,Rflis ∗(A))) ∼= RHom(C,Rflis ∗RHom lis(f
∗B,A))

by adjoint. The claim (2) is proved similarly.

For an `-cohomologically smooth morphism f : X → Y , we put

Df = (lim←−
n

Rf !(Z/`nZ))⊗Zℓ
Λ

and
f!(A) = f♮(A⊗D−1

f )

for A ∈ Dlis(X,Λ). For an `-cohomologically smooth morphism f : X → ∗, we write
DX for Df . For f : X → ∗ and A ∈ Dlis(X,Λ), we put RΓ♮(X,A) = f♮(A). For
f : X → SpaC and A ∈ Dlis(X,Λ) where C is an algebraically closed non-archimedean
field of characteristic p, we put RΓ♮,C(X,A) = f♮(A).

1.2 Geometric Satake equivalence

We recall the geometric Satake equivalence for B+
dR-Grassmannians by Fargues–Scholze

(cf. [FS21, VI, IX]).
Let Cp be the completion of the algebraic closure of Qp. Let F be a finite extension

of Qp in Cp with the residue field Fq. For an algebraic field extension k of Fq, let Perfk
denote the category of perfectoid spaces over k with v-topology in the sense of [Sch17,
§8].

Let G be a connected reductive group over F . We define v-sheaves LG and L+G
over SpdF by sending S = Spa(R,R+) ∈ PerfFq with an untilt S♯ = Spa(R♯, R♯,+) to
BdR(R

♯) and B+
dR(R

♯), where BdR(R
♯) and B+

dR(R
♯) are defined as in [Far16, Definition

1.32]. We put GrG = LG/L+G and

HckG = [L+G\LG/L+G].

For A1, A2 ∈ D■(HckG,Λ), let A1 ? A2 denote the convolution product of A1 and A2.

Let Q be a finite quotient of WF such that the action of WF on Ĝ factors through Q.
Let

S ′ : RepΛ(Ĝ⋊Q) −→ D■(HckG,Λ)
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denote the functor that gives the geometric Satake equivalence (cf. [FS21, IX.2]). This
functor is symmetric monoidal functor by the construction (cf. [FS21, Proposition VI.10.2]).

For V1, V2 ∈ RepΛ(Ĝ⋊Q), let

cV1,V2 : S ′(V1) ? S ′(V2) ' S ′(V2) ? S ′(V1)

be the commutativity constraint uniquely characterized by

S ′(V1) ? S ′(V2)
cV1,V2 //

��

S ′(V2) ? S ′(V1)

��
S ′(V1 ⊗ V2)

S′(σV1,V2
)

// S ′(V2 ⊗ V1),

where σV1,V2 : V1 ⊗ V2 → V2 ⊗ V1 is the isomorphism switching V1 and V2.
Assume that µ ∈ X∗(T )

+. Let Eµ be the reflex field. Let Qµ ⊂ Q be the image of

WEµ . Let rG,µ be the highest weight µ irreducible representation of Ĝ⋊Qµ. We simply
write rµ for rG,µ if there is no confusion. We write Vµ for the representation space of rµ.
We put IC′

µ = S ′(Vµ), where S ′ is the one for GEµ . We use the same notation IC′
µ for

the pullback of IC′
µ to other spaces.

2 Moduli of local shtukas

Let S = Spa(R,R+) ∈ PerfFq . We put WOF
(R+) = W (R+) ⊗W (Fq) OF . Take an

topological nilpotent unit $R in R. Let Y(0,∞)(S) be the adic space defined by the
condition p 6= 0 and [$R] 6= 0 in Spa(WOF

(R+),WOF
(R+)). Then Y(0,∞)(S) has an

action of the q-th power Frobenius element ϕS induced by the q-th power map on R.
The quotient

XS = Y(0,∞)(S)/ϕ
Z
S

is called the relative Fargues–Fontaine curve for S (cf. [SW20, Definition 15.2.6]). The
construction glues together to give XS for any S ∈ PerfFq .

We define a continuous map

κS : Y(0,∞)(S) −→ (0,∞)

by

κS(x) =
log|[$R]|x̃
log|p|x̃

where x̃ is the maximal generalization of x ∈ Y(0,∞)(S) and | · |x̃ denotes the valuation
corresponding to x̃. For an interval I in (0,∞), let YI(S) denote the interior of κ−1

S (I).
For S ∈ PerfFq , we put B(S) = O(Y(0,∞)(S)). Then B is a v-sheaf by [FS21, Proposition
II.2.1].

Let G be a connected reductive group over F . Let b ∈ G(F̆ ). We define an algebraic
group Gb over F by

Gb(R) = {g ∈ G(F̆ ⊗F R) | g(bσ ⊗ 1) = (bσ ⊗ 1)g}

for any F -algebra R. We define a G-bundle Eb,XS
on XS by

(GF̆ ×Spa(F̆ ) Y(0,∞)(S))/((bσ)× ϕS)
Z.
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If b′ = g−1bσ(g) for b, b′, g ∈ G(F̆ ), then the left multiplication by g−1 induces an
isomorphim

tg : Eb,XS
→ Eb′,XS

. (2.1)

We define a sheaf J̃b on PerfFq
by

J̃b(S) = Aut(Eb,XS
)

for S ∈ PerfFq
. In the sequel, we simply write Eb for Eb,XS

if there is no confusion. We

define J̃>0
b as in [FS21, III.5]. Then we have J̃b = J̃>0

b ⋊ Gb(F ) by [FS21, Proposition

III.5.1]. If b is basic, we have J̃b = Gb(F ).

Let b, b′ ∈ G(F̆ ). Let µ1, . . . , µm be cocharacters of G. We put µ• = (µ1, . . . , µm).
For 1 ≤ i ≤ m, let Ei be the field of definition of µi.

Definition 2.1. We define the presheaf Shtµ•
G,b,b′ by sending S = Spa(R,R+) ∈ PerfFq

to
the isomorphism classes of the following objects;

• an untilt S♯
i of S over Ĕi for 1 ≤ i ≤ m,

• a G-torsor P on Y(0,∞)(S) with an isomorphism

ϕP : (ϕ
∗
SP)|Y(0,∞)(S)\

⋃m
i=1 S

♯
i
' P|Y(0,∞)(S)\

⋃m
i=1 S

♯
i

which is meromorphic along the Cartier divisor
⋃m

i=1 S
♯
i ⊂ Y(0,∞)(S) and the rela-

tive position of ϕ∗
SP and P at S♯

i is bounded by
∑

j|S♯
j=S♯

i
µj at all geometric rank

1 points for all 1 ≤ i ≤ m,

• an isomorphism
ι[r,∞) : P|Y[r,∞)(S) ' G× Y[r,∞)(S)

for large enough r under which ϕP is identified with b× ϕS and an isomorphism

ι(0,r′] : P|Y(0,r′](S)
' G× Y(0,r′](S)

for small enough r′ under which ϕP is identified with b′ × ϕS.

If there is no confusion, we simply write Shtµ•
b,b′ for Sht

µ•
G,b,b′ . If µ• = (µ), we simply

write ShtµG,b,b′ for Sht
µ•
G,b,b′ . We use similar abbreviations also for other spaces.

We define the right action of J̃b × J̃b′ on Shtµ•
G,b,b′ by

(ι[r,∞), ι(0,r′]) 7→ (g−1 ◦ ι[r,∞), g
′−1 ◦ ι(0,r′])

for (g, g′) ∈ J̃b × J̃b′ .
We define GrtwG,SpdE1×···×SpdEm,≤µ• as in [SW20, Definition 23.4.1]. It is a spacial

diamond by [SW20, Proposition 23.4.2]. We have a morphism

πµ•
G,b,b′ : Shtµ•

G,b,b′ → Grtw
G,Spd Ĕ1×···×Spd Ĕm,≤µ•

defined by forgetting ι(0,r′]. The morphism πµ•
G,b,b′ is a J̃b′-torsor over a locally spatial

subdiamond of Grtw
G,Spd Ĕ1×···×Spd Ĕm,≤µ•

by [Sch17, Proposition 11.20]. Hence, Shtµ•
G,b,b′ is

a diamond by [Sch17, Proposition 11.6] and [Far16, 2.5, 2.6.2].
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We have a natural inversing morphism

Shtµ•
G,b,b′ → Shtµ

−1
•

G,b′,b (2.2)

compatible with the action of J̃b × J̃b′ .
Let B(G) be the set of σ-conjugacy classes in G(F̆ ). We write B(G)bas for the set

of the basic elements in B(G). Let µ be a cocharacter of G. We define B(G,µ) as in
[Kot97, 6.2].

Assume that G is quasi-split. We fix subgroups A ⊂ T ⊂ B of G where A is
a maximal split torus, T is a maximal torus and B is a Borel subgroup. We write
X∗(A)

+ and X∗(T )
+ for the dominant cocharacter of A and T . For b ∈ G(F̆ ), we define

νb ∈ X∗(A)
+
Q as in [Far16, 2.2.2] using the slope morphism constructed in [Kot85, 4.2].

Let B(G,µ, [b]) be the set of acceptable neutral elements in B(G) for (µ, [b]) (cf. [GI16,
Definition 4.3]).

Lemma 2.2. Assume that b is basic. The map

G(F̆ )→ G(F̆ ) = Gb(F̆ ); g 7→ gb−1

induces bijections B(G)→ B(Gb), B(G)bas → B(Gb)bas and B(G,µ, [b])→ B(Gb, µ).

Proof. The claim follows from the equality

(g′gσ(g′)−1)b−1 = g′(gb−1)(bσ(g′)b−1)−1

for g, g′ ∈ G(F̆ ).

Proposition 2.3. Assume that b′ is basic. We have a natural isomorphism

Shtµ•
G,b,b′

∼−→ Shtµ•
Gb′ ,bb

′−1,1

which is compatible with the action of J̃b × J̃b′.

Proof. We can view Shtµ•
G,b,b′ as a moduli space of modifications of G-torsors on a Fargues–

Fontaine curve. The category of G-torsor is equivalent to the category of Gb′-torsor on a
Fargues–Fontaine curve as explained in the proof of [SW20, Corollary 23.2.3]. The claim
follows from this equivalence.

Remark 2.4. Assume that b, b′ are basic and m = 1. Then a weak version of Kottwitz
conjecture for Shtµ•

G,b,b′ holds by [HKW22, Theorem 1.0.4], Lemma 2.2 and Proposition
2.3.

Remark 2.5. Assume that b, b′ are basic and m = 1. Under the isomorphism in Propo-
sition 2.3, the inversing morphism (2.2) is identified with the Faltings–Fargues isomor-
phism proved in [SW20, Corollary 23.2.3].

Lemma 2.6. Assume that b′ is basic. If ShtµG,b,b′ is not empty, then we have [b] ∈
B(G,µ, [b′]).

Proof. By Proposition 2.3, we may assume that b′ = 1 dropping the assumption that G
is quasi-split. Then the claim follows from [CS17, Proposition 3.5.3].
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We define a Weil descent datum of J̃b by

J̃b → J̃σ(b) = σ∗(J̃b); f 7→ tb ◦ f ◦ t−1
b ,

where tb is defined in (2.1). Let ρG denote the half-sum of the positive roots of G with
respect to T and B. We put Nb = 〈2ρG, νb〉.

Lemma 2.7. Let Λ be a solid Ẑp-algebra. Let f : J̃>0
b → ∗ be the structure morphism.

Then we have an isomorphism f♮Λ ' Λ compatible with the actions of WF .

Proof. This is proved in the same way as [GI16, Lemma 4.17] using Lemma 1.3 and the
definition of the Weil descent datum.

Let δb : Gb(F )→ Λ× be the character obtained by the action of Gb(F ) on Df , where

f : J̃>0
b → ∗.

3 Cohomology of moduli of local shtukas

Let µ• = (µ1, . . . , µm) ∈ (X∗(T )
+)m. Let E be the field of definition of µ•. The space

Shtµ•
G,b,b′ is the moduli space of (S♯,Eb → Eb′), where S♯ is an ultilt over Ĕ and Eb → Eb′

is a modification bounded by µ• along the Cartier divisor defined by S♯.
Let C♭

p denote the tilt of Cp. The untilt Cp of C♭
p determines a morphism SpaC♭

p →
SpdQp. For the arithmetic Frobenius element σE ∈ Gal(Eur/E), we take m such that
σE|Fur = σm and define a Weil descent datum of Shtµ•

G,b,b′ by

Shtµ•
G,b,b′ → Shtµ•

G,σm(b),σm(b′) = σ∗
E(Sht

µ•
G,b,b′);

(S♯,Eb
f→ Eb′) 7→ (S♯,Eσm(b)

t−1
m,b−−→ Eb

f−→ Eb′
tm,b′−−→ Eσm(b′))

where we put tm,b = tσm−1(b) ◦ · · · ◦ tb : Eb → Eσm(b) using (2.1).
We have fiber products

M̃◦
b

j̃b //

��

M̃b

��

∗ĩboo

��
M◦

b

jb //

��

Mb

πb

��

[∗/Gb(F )]
iboo

hb

��

Bun<b
G

jb // BunG Bunb
G

iboo

and morphisms qb :Mb → [∗/Gb(F )] and q̃b : M̃b → ∗ as [FS21, V.3]. Here ib and ĩb are

sections of qb and q̃b respectively explained in [FS21, Proposition V.3.6]. Then ib, jb and
πb factor through

i′b : Bunb
G → Bun≤b

G , j ′b : Bun<b
G → Bun≤b

G , π′
b :Mb → Bun≤b

G .

Lemma 3.1. The functors hb,♮ and Rhb,∗ are quasi-inverses of the equivalence

h∗
b : Dlis(Bun

b
G,Λ)→ Dlis([∗/Gb(F )],Λ)

of categories.
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Proof. Since h∗
b is an equivalence of categories by [FS21, Proposition VII.7.1], its left

adjoint hb,♮ and right adjoin hb,∗ give quasi-inverses.

We define ĩb,! : Dlis(∗,Λ)→ Dlis(M̃b,Λ) and ĩ!b : Dlis(M̃b,Λ)→ Dlis(∗,Λ) by

ĩb,! = cone(j̃b,♮j̃
∗
b → id) ◦ q̃∗b , ĩ!b = Rq̃b,lis ∗ ◦ fib(id→ Rj̃b,lis ∗j̃

∗
b ).

Then ĩb! is a left adjoint of ĩb,!. We define ib,! : Dlis([∗/Gb(F )],Λ) → Dlis(Mb,Λ) and

i!b : Dlis(Mb,Λ)→ Dlis([∗/Gb(F )],Λ) by

ib,! = cone(jb,♮j
∗
b → id) ◦ q∗b , i!b = Rqb,lis ∗ ◦ fib(id→ Rjb,lis ∗j

∗
b ).

Then ib! is a left adjoint of ib,!. Further we define i′b! : Dlis(Bun
b
G,Λ) → Dlis(Bun

≤b
G ,Λ)

and i′b,! : Dlis(Bun
≤b
G ,Λ)→ Dlis(Bun

b
G,Λ) by

i′b! = π′
b,♮ ◦ ib,! ◦ h∗

b , i′b,! = Rhb,∗ ◦ i!b ◦ π′∗
b .

Then i′b! is a left adjoint of i′b,!. We define ib! : Dlis(Bun
b
G,Λ) → Dlis(BunG,Λ) and

ib,! : Dlis(BunG,Λ)→ Dlis(Bun
b
G,Λ) by

ib! = j≤b
♮ ◦ i

′b
! , ib,! = i′b,! ◦ j≤b,∗.

Then i′b! is a left adjoint of i′b,!.

Lemma 3.2. For A ∈ Dlis(Bun
≤b
G ,Λ), there is a distinguished triangle A1 → A→ A2 →

where A1 ∈ jb♮Dlis(Bun
<b
G ,Λ) and A2 ∈ ib!Dlis(Bun

b
G,Λ). Further, the full subcategories

jb♮Dlis(Bun
<b
G ,Λ) and ib!Dlis(Bun

b
G,Λ) of Dlis(Bun

≤b
G ,Λ) are equivalent to Dlis(Bun

<b
G ,Λ)

and Dlis(Bun
b
G,Λ) by the restrictions respectively.

Further similar claims hold for M̃b andMb.

Proof. The claim for Bun≤b
G is proved in the proof of [FS21, Proposition VII.7.3]. The

claims for M̃b andMb are proved in the same way.

Lemma 3.3. (1) We have isomorphisms

cone(j̃b,♮j̃
∗
b → id) ∼= ĩb,!̃i

∗
b , Rĩb,lis ∗̃i

!
b
∼= fib(id→ Rj̃b,lis ∗j̃

∗
b ).

(2) We have isomorphisms

cone(jb,♮j
∗
b → id) ∼= ib,!i

∗
b , Rib,lis ∗i

!
b
∼= fib(id→ Rjb,lis ∗j

∗
b ).

(3) We have isomorphisms

cone(j′b♮ j
′b,∗ → id) ∼= i′b! i

′b,∗, Ri′blis ∗i
′b,! ∼= fib(id→ Rj′blis ∗j

′b,∗).

Proof. Let A ∈ Dlis(Mb,Λ). By Lemma 3.2, there is A1 ∈ Dlis(M◦
b ,Λ) and A2 ∈

Dlis([∗/Gb(F )],Λ) such that jb,♮A1 → A→ ib,!A2 → is a distinguished triangle. By taking
j∗b and i∗b , we have A1

∼= j∗bA and A2
∼= i∗bA. Hence we obtain the first isomorphism in

(2). The second isomorphism in (2) follows from the first one by taking the right adjoint.
The other claims are proved in the same way using Lemma 3.2.
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Lemma 3.4. For A ∈ Dlis(Mb,Λ) and B ∈ Dlis([∗/Gb(F )],Λ), we have an isomorphism

ib,!(i
∗
b(A)⊗L B) ∼= A⊗L ib,!(B).

Proof. We have

A⊗L ib,!(B) ∼= cone(jb,♮j
∗
b (A⊗L q∗bB)→ A⊗L q∗bB) ∼= ib,!i

∗
b(A⊗L q∗bB) ∼= ib,!(i

∗
b(A)⊗L B),

where we use Lemma 3.3 (2) at the second isomorphism.

Lemma 3.5. We have fib(Dqb → Rjb,lis ∗j
∗
bDqb)

∼= Rib,lis ∗Λ.

Proof. By the change of coefficient and the inverse limit, we may assume that Λ is
torsion. Then we have fib(Dqb → Rjb,lis ∗j

∗
bDqb)

∼= Rib,lis ∗i
!
bq

!
bΛ
∼= Rib,lis ∗Λ.

Lemma 3.6. We have D ◦ ib,! = ib,∗ ◦ D and i!b ◦ D = D ◦ i∗b .

Proof. Let A ∈ Dlis(Mb,Λ). We have

(i!b ◦ D)(A) = i!bRHom lis(A,Dqb)
∼= Rqb,lis ∗(RHom lis(A, fib(Dqb → Rjb,lis ∗j

∗
bDqb))).

By Lemma 3.5, this is isomorphic to

Rqb,lis ∗(RHom lis(A, ib,lis ∗Λ)) ∼= Rqb,lis ∗(Rib,lis ∗RHom lis(i
∗
bA,Λ))

∼= RHom lis(i
∗
bA,Λ)) = (D ◦ i∗b)(A).

Hence we have i!b ◦ D = D ◦ i∗b . Another claim follows from this by adjoint.

The following lemma is already known (cf. [FS21, IX.3]).

Lemma 3.7. We have D ◦ ib! = ib∗ ◦ D and ib,! ◦ D = D ◦ ib,∗.

Proof. Let A ∈ Dlis(BunG,Λ). We have

h∗
b((i

b,! ◦ D)(A)) ∼= i!bπ
∗
bRHom lis(A,DBunG)

∼= i!bRHom lis(π
∗
bA, π

∗
bDBunG)

∼= i!bD((π∗
bA)⊗Dπb

) ∼= D(i∗bπ∗
bA)⊗ i∗bD

−1
πb
,

where we use Lemma 3.4 at the second isomorphism and Lemma 3.6 at the fourth
isomorphism. On the other hand we have

h∗
b((i

b
∗ ◦ D)(A)) ∼= h∗

bRHom lis(i
b,∗A,DBunbG

) ∼= RHom lis(h
∗
bi

b,∗A, h∗
bDBunbG

)

∼= D(i∗bπ∗
bA)⊗D−1

hb
,

where we use Lemma 3.4 at the second isomorphism. Hence ib,! ◦ D = D ◦ ib,∗ follows
from [Sch17, Proposition 23.12]. Another claim follows from this by adjoint.

Lemma 3.8. We have ĩ!b
∼= ĩ∗b(fib(id → Rj̃b,lis ∗j̃

∗
b )), i!b

∼= i∗b(fib(id → Rjb,lis ∗j
∗
b )) and

i′b,! ∼= i′b,∗(fib(id→ Rj′blis ∗j
′b,∗)).

Proof. For A ∈ Dlis(Mb,Λ) and B ∈ Dlis([∗/Gb(F )],Λ), we have

Hom(ib,!(B), A) ∼= Hom(ib,!(B), fib(A→ Rjb,lis ∗j
∗
bA))

∼= Hom(B, i∗b(fib(A→ Rjb,lis ∗j
∗
bA)))

by Lemma 3.2. Hence we obtain the second claim. Other claims are proved similarly.
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Lemma 3.9. We have ĩ!b̃ib,!
∼= id, i!bib,!

∼= id and i′b,!i′b!
∼= id.

Proof. We can check these using Lemma 3.8.

Lemma 3.10. We have ĩb,! ∼= Rĩb,lis ∗, ib,! ∼= Rib,lis ∗ and i′b!
∼= Ri′blis ∗.

Proof. By Lemma 3.3, Lemma 3.8 and Lemma 3.9, we have

i∗bRib,lis ∗ ∼= i∗bRib,lis ∗i
!
bib,!
∼= i∗b fib(id→ Rjb,lis ∗j

∗
b )ib,!

∼= i!bib,!
∼= id .

Hence ib,! ∼= ib,lis ∗ follows from Lemma 3.2 using Lemma 1.6. Other claims are proved
similarly.

For a compact open subgroup K of Gb(F ), we consider the fiber products

Shtµ•
G,b,K,b′,C♭

p

fK //

��

Hckµ•
b′

fb′ //

��

SpaC♭
p

tb′

��
Hckµ•

p2,X //

p1

��

BunG×DivmX

[∗/K]
hK // Bunb

G
ib // BunG

where hK and tb′ are the compositions

[∗/K]
hK,Gb(F )−−−−−→ [∗/Gb(F )]

hb−→ Bunb
G,

SpaC♭
p −→ Bunb′

G×DivmX −→ BunG×DivmX

of the natural morphisms. Let p1,b′ : Hck
µ•
b′ → Hckµ• p1→ BunG. We put

fK,!Λ = p∗1,b′i
b
!hK,!Λ.

Remark 3.11. If b is basic, fK is etale, in particular `-cohomologically smooth. In this
case, the above definition of fK,!Λ coincides with the general definition before.

We put
RΓc(Sht

µ•
G,b,K,b′) = fb′,♮

(
(fK,!Λ)⊗L IC′

µ•

)
.

We can view
RΓc(Sht

µ•
G,b,K,b′)

∼= t∗b′Tµ•(i
b
!hK,!Λ)

as an object ofD(Gb(F )×WE) by [FS21, Corollary IX.2.3]. For a compact open subgroup
K ′ of Gb′(F ), we define RΓc(Sht

µ•
G,b,b′,K′) in the symmetric way. Since ICµ• and IC−µ•

corresponds under the natural isomorphism Shtµ•
G,b,b′ ' Sht−µ•

G,b′,b, we have

RΓc(Sht
µ•
G,b,b′,K′) ∼= t∗bT−µ•(i

b′

! hK′,!Λ).

Remark 3.12. If b is basic, RΓc(Sht
µ•
G,b,K,b′) is identified with (fb′ ◦ fK)♮(IC′

µ•). We
define RΓc(Sht

µ•
G,b,K,b′) as above since we do not have a good definition of

fK,! : Dlis(Sht
µ•
G,b,K,b′,C♭

p
,Λ)→ Dlis(Hck

µ•
b′ ,Λ)

for a general b.
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We put
RΓc(Sht

µ•
G,b,b′) = lim−→

K⊂Gb(F )

RΓc(Sht
µ•
G,b,K,b′).

Lemma 3.13. We have qb,! ◦ ib,! = id.

Proof. Let B ∈ Dlis([∗/Gb(F )],Λ). Then we have ib,!(B) ∼= cone(jb,♮j
∗
bΛ → Λ) ⊗L q∗bB.

Hence we have

(qb,! ◦ ib,!)(B) ∼= qb,♮(cone(jb,♮j
∗
bΛ→ Λ)⊗D−1

qb
)⊗L B.

It remains to show qb,♮(cone(jb,♮j
∗
bΛ → Λ) ⊗ D−1

qb
) ∼= Λ. It suffices to show this after

taking a pullback via SpaC♭
p → [∗/Gb(F )] since the induced actions of Gb(F ) on the

both sides are trivial. Let jU : U → M̃b,C♭
p
be a quasicompact open neighborhood of

ĩb(SpaC♭
p). We have

q̃b,♮(cone(j̃b,♮j̃
∗
bΛ→ Λ)⊗ (q̃!bΛ)

−1) ∼= (q̃b ◦ jU)♮j∗U(Rĩb,lis ∗(Λ)⊗D−1
q̃b
).

Then the question is reduced to the torsion case by by Lemma 1.1, since q̃b ◦ jU is quasi-
compact, separated by [FS21, Proposition V.3.5]. In the torsion case, the claim follows
from [FS21, Proposition VII.5.2] and cone(jb,♮j

∗
bΛ→ Λ) ∼= ib,!(Λ).

Lemma 3.14. For A ∈ Dlis(Mb,Λ) and B ∈ Dlis([∗/Gb(F )],Λ), we have an isomor-

phism qb,♮(A⊗L ib,!B) ∼= i∗b(A⊗Dqb)⊗L B.

Proof. We have

A⊗L ib,!B ∼= cone(jb,♮j
∗
bA→ A)⊗L q∗bB

∼= cone(jb,♮j
∗
b (A⊗Dqb)→ A⊗Dqb)⊗D−1

qb
⊗L q∗bB

∼= (ib,!i
∗
b(A⊗Dqb))⊗D−1

qb
⊗L q∗bB,

where we use Lemma 3.3 (2) at the last isomorphism. Hence we have

qb,♮(A⊗L ib,!B) ∼= qb,♮((ib,!i
∗
b(A⊗Dqb))⊗D−1

qb
)⊗L B

∼= qb,!(ib,!i
∗
b(A⊗Dqb))⊗L B ∼= i∗b(A⊗Dqb)⊗L B,

where we use Lemma 3.13 at the last isomorphism.

Lemma 3.15. Let A ∈ Dlis(BunG,Λ) and B ∈ Dlis(Bun
b
G,Λ). Then we have

RΓ♮(BunG, A⊗L ib!B) ∼= RΓ♮([∗/Gb(F )], h∗
b(i

b,∗A⊗L B)⊗L i∗bDqb).

Proof. We have

RΓ♮(BunG, A⊗L ib!B) ∼= RΓ♮(Mb, π
∗
bA⊗L ib,!h

∗
bB)

∼= RΓ♮([∗/Gb(F )], i∗b(π
∗
bA⊗Dqb)⊗L h∗

bB)

∼= RΓ♮([∗/Gb(F )], h∗
b(i

b,∗A⊗L B)⊗L i∗bDqb),

where we use Lemma 3.14 at the second isomorphism.
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Proposition 3.16. We have a natural isomorphism

RΓc(Sht
µ•
G,b,K,b′)K′ ∼= RΓc(Sht

µ•
G,b,b′,K′)K .

Proof. We consider the following diagram:

[SpaC♭
p/Gb(F )]

hb

��

[SpaC♭
p/K]

hK,boo

hK

wwnnn
nnn

nnn
nnn

n
[SpaC♭

p/K
′]

hK′,b′ //

hK′

''PP
PPP

PPP
PPP

PP
[SpaC♭

p/Gb′(F )]

hb′
��

Bunb
G,C♭

p

ib // BunG,C♭
p

Hckµ•
C♭
p

p2 //p1oo BunG,C♭
p

Bunb′

G,C♭
p

ib
′

oo

We have

RΓ♮,C♭
p
(Hckµ•

C♭
p
, p∗1i

b
!hK,!Λ⊗L p∗2i

b′

! hK′,!Λ⊗L IC′
µ•) (3.1)

∼= RΓ♮,C♭
p
(BunG,C♭

p
, Tµ•(i

b
!hK,!Λ)⊗L ib

′

! hK′,!Λ)

∼= RΓ♮,C♭
p
([SpaC♭

p/Gb′(F )], h∗
b′(i

b,∗Tµ•(i
b
!hK,!Λ)⊗L hK′,!Λ)⊗ i∗b′Dqb′

), (3.2)

where we use Lemma 3.15 at the last isomorphism. We have

h∗
b′hK′,!Λ⊗ i∗b′Dqb′

∼= h∗
b′hb′,♮((hK′,b′,♮Λ)⊗D−1

hb′
)⊗ i∗b′Dqb′

∼= hK′,b′,♮h
∗
K′,b′(D

−1
hb′
⊗ i∗b′Dqb′

),
(3.3)

where we use Lemma 3.1 at the last isomorphism. By [HI24, Proposition 3.15, (4.1)],
we have D−1

hb′
⊗ i∗b′Dqb′

∼= Λ. Hence (3.2) is isomorphic to

RΓ♮,C♭
p

(
[SpaC♭

p/Gb′(F )], h∗
b′i

b′,∗Tµ•(i
b
!hK,!Λ)⊗L hK′,b′,♮Λ

) ∼= RΓc(Sht
µ•
G,b,K,b′)K′

by (3.3). Since (3.1) is symmetric with respect to (b,K) and (b′, K ′), the claim follows.

Corollary 3.17. We have RΓc(Sht
µ•
G,b,b′)

∼= RΓc(Sht
−µ•
G,b′,b).

Proof. This follows from Proposition 3.16.

Proposition 3.18. (1) If K is pro-p, then RΓc(Sht
µ•
G,b,K,b′) is a compact object in

D(Gb′(F ),Λ).

(2) For i ∈ Z, H i
c(Sht

µ•
G,b,K,b′) is finitely generated smooth Gb′(F )-representation.

(3) If ρ is an admissible representation of Gb′ over Λ, then RHomGb′
(RΓc(Sht

µ•
G,b,K,b′), ρ)

is a perfect complex of Λ-modules.

(4) If Λ = Qℓ and ρ is a finite length representation of Gb′(F ) over Qℓ, then

lim−→
K⊂Gb(F )

Ri HomGb′ (F )(RΓc(Sht
µ•
G,b,K,b′), ρ)

is finite length representation of Gb(F ) for i ∈ Z.
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Proof. We have

lim−→
K⊂Gb(F )

RHomGb′ (F )(RΓc(Sht
µ•
G,b,K,b′), ρ)

∼= lim−→
K⊂Gb(F )

RHomGb′ (F )(t
∗
b′Tµ•(i

b
!hK,!Λ), ρ)

∼= lim−→
K⊂Gb(F )

RHomGb(F )(hK,Gb(F ),!Λ, h
!
bi

b,!Tµ∨
•Rib

′

lis ∗Rhb′,∗[ρ])

∼= h!
bi

b,!Tµ∨
•Rib

′

lis ∗Rhb′,∗[ρ].

Then the claims are proved in the same way as [FS21, IX.3] using Lemma 3.7.

We put

H∗
c (Sht

µ•
G,b,b′) =

∑
i∈Z

(−1)iRiΓc(Sht
µ•
G,b,b′).

4 Convolution morphism and twist morphism

4.1 Convolution morphism

Let ∆m,SpdF denote the diagonal subspace of (SpdF )m. For 1 ≤ i < j ≤ m, let
pri,j : (SpdF )m → (SpdF )2 denote the projection to the (i, j)-component. We put

Um = (SpdF )m \
⋃

1≤i<j≤m

pr−1
i,j

 ⋃
n∈Z\{0}

(ϕ× 1)n(∆2,SpdF )

 .

This is an open subspace of (SpdF )m which contains ∆m,SpdF .

Let b0, . . . , bm ∈ G(F̆ ) and µ• = (µ1, . . . , µm) where µi ∈ X∗(T ) for 1 ≤ i ≤ m. We
put

Shtµ•
G,b0,bm,Um

= Shtµ•
G,b0,bm

×(SpdF )mUm.

We define the convolution morphism

mb•,µ•,Um : (Shtµ1

G,b0,b1
× · · · × Shtµm

G,bm−1,bm
)×(SpdF )m Um → Shtµ•

G,b0,bm,Um

over Spd Ĕ1 × · · · × Spd Ĕm as follows. Let S = Spa(R,R+) ∈ PerfFq
and

(S♯
i ,Pi, ϕPi

, ι(0,r],i, ι[r′,∞],i)1≤i≤m

be objects giving an S-valued point of

(Shtµ1

G,b0,b1
× · · · × Shtµm

G,bm−1,bm
)×(SpdF )m Um.

Define P by gluing P1|Y(0,r](S) and Pm|Y[r′,∞)(S)
by the following modifications:

• Modifications occur only at
⋃m

i=1

⋃
n≥0 ϕ

−n(S♯
i ).

• Take 1 ≤ i0 ≤ m. Put

Ii0 = {1 ≤ i ≤ m | S♯
i = S♯

i0
}.

Define the modification at S♯
i0
by the composite of the modifications at S♯

i0
given

by ϕPi
for all i ∈ Ii0 . For n > 0, the modification at ϕ−n(S♯

i0
) is given by the

pullback under ϕn of the modification at S♯
i0
.
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Then P is naturally equipped with an isomorphism

ϕP : (ϕ
∗
SP)|“S×SpaF”\

⋃m
i=1 S

♯
i
' P|“S×SpaF”\

⋃m
i=1 S

♯
i
.

Further, we have isomorphisms

P|Y(0,r](S) = P1|Y(0,r](S)

ι(0,r],1−−−→ G× Y(0,r](S),

P|Y[r′,∞)(S)
= Pm|Y[r′,∞)(S)

ι[r′,∞),m−−−−−→ G× Y[r′,∞)(S).

These gives an S-valued point of Shtµ•
G,b0,bm,Um

. Thus we obtain mb•,µ•,Um .
We define

GrG,SpdE1×···×SpdEm,≤µ• , G̃rG,SpdE1×···×SpdEm,≤µ•

as in [SW20, Definition 20.4.4]. Then we have a convolution morphism

mµ• : G̃rG,SpdE1×···×SpdEm,≤µ• −→ GrG,SpdE1×···×SpdEm,≤µ•

by [SW20, Proposition 20.4.5]. Note that

GrG,SpdE1×···×SpdEm,≤µ• ×(SpdF )mUm ' GrtwG,SpdE1×···×SpdEm,≤µ• ×(SpdF )mUm.

Then we have a morphism

Shtµ1

G,b0,b1
× · · · × Shtµm

G,bm−1,bm
−→ G̃rG,Spd Ĕ1×···×Spd Ĕm,≤µ•

by looking at a modification at each S♯
i . Then we have the commutative diagram

(Shtµ1

G,b0,b1
× · · · × Shtµm

G,bm−1,bm
)×(SpdF )m Um

mb•,µ•,Um //

��

Shtµ•
G,b0,bm,Um

��
G̃rG,Spd Ĕ1×···×Spd Ĕm,≤µ•

×(SpdF )m Um
// GrG,Spd Ĕ1×···×Spd Ĕm,≤µ•

×(SpdF )mUm

where the bottom morphism is induced by mµ• .

4.2 Twist morphism

Let Z0 be the identity component of the center of G. Let a, a′ ∈ Z0(F̆ ) and λ ∈ X∗(Z
0).

Let E be a finite extension of F in Cp containing the fields of definition of µ and λ. We
define the morphism

tµ,λb,b′,a,a′ : Shtµ
G,b,b′,Spd Ĕ

×Spd Ĕ Shtλ
Z0,a,a′,Spd Ĕ

−→ Shtµ−λ

G,ab,a′b′,Spd Ĕ

as follows. Let (S♯,Eb → Eb′) and (S♯,Ea → Ea′) be modifications defining points in
ShtµG,b,b′ and ShtλZ0,a,a′ . Then the diagonal arrow in the diagram

Eb ×Z0
Ea′

////

''NN
NNN

NNN
NNN

Eb′ ×Z0
Ea′

Eb ×Z0
Ea

OO

// Eb′ ×Z0
Ea

OO

defines the image of (
(S♯,Eb → Eb′), (S

♯,Ea → Ea′)
)

under tµ,λb,b′,a,a′ in Shtµ−λ

G,ab,a′b′,Spd Ĕ
. Note that we have equalities Gb(F ) = Gab(F ) and

Gb′(F ) = Ga′b′(F ).
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Proposition 4.1. We have(
RΓc(Sht

µ
G,b,b′)⊗

L RΓc(Sht
λ
Z0,a,a′)

)
⊗L

Z0(F ) Qℓ ' RΓc(Sht
µ−λ
G,ab,a′b′)

in the derived category of representations of Gb(F )×Gb′(F )×WE.

Proof. This follows from Lemma 1.4 and that tµ,λb,b′,a,a′ is a Z0(F )-torsor.

5 Formula on cohomology

Let b0, . . . , bm ∈ G(F̆ ) and µ1, . . . , µm ∈ X∗(T )
+. Let E be a finite extension of F in Cp

containing Ei for 1 ≤ i ≤ m. Let

mb•,µ• : Shtµ1

b0,b1,Spd Ĕ
×Spd Ĕ · · · ×Spd Ĕ Shtµm

bm−1,bm,Spd Ĕ
→ Sht

|µ•|
b0,bm,Spd Ĕ

be the pullback of the convolution morphism mb•,µ•,Um defined in §4 under the morphism

Spd Ĕ = ∆m,Spd Ĕ ↪→ (Spd Ĕ)m −→ Spd Ĕ1 × · · · × Spd Ĕm.

The morphism mb•,µ• coincides with the morphism defined by the composition of modi-
fications. This induces

mb•,µ• : (Sht
µ1

b0,b1,Spd Ĕ
×Spd Ĕ · · ·×Spd Ĕ Sht

µm

bm−1,bm,Spd Ĕ
)/(J̃b1×· · ·× J̃bm−1)→ Sht

|µ•|
b0,bm,Spd Ĕ

,

where J̃bi for 1 ≤ i ≤ m− 1 acts diagonally on the factor

Shtµi

bi−1,bi,Spd Ĕ
×Spd Ĕ Sht

µi+1

bi,bi+1,Spd Ĕ

and trivially on the other factors.
Let

G̃rG,Spd Ĕ,≤µ•

mµ•−−→ GrG,Spd Ĕ,≤|µ•|

be the pullback of

mµ• : G̃rG,SpdE1×···×SpdEm,≤µ• −→ GrG,SpdE1×···×SpdEm,≤µ•

under
Spd Ĕ = ∆m,Spd Ĕ ↪→ (Spd Ĕ)m −→ SpdE1 × · · · × SpdEm.

We define mµ•,b0,bm : Shtµ•
b0,bm,Spd Ĕ

→ Sht
|µ•|
b0,bm,Spd Ĕ

by the fiber product

Shtµ•
b0,bm,Spd Ĕ

mµ•,b0,bm //

��

Sht
|µ•|
b0,bm,Spd Ĕ

��
G̃rG,Spd Ĕ,≤µ•

mµ• // GrG,Spd Ĕ,≤|µ•|.

Then Shtµ•
b0,bm

is a moduli space of modifications

Eb0

f1−→ E1
f2−→ · · · fm−1−−−→ Em−1

fm−→ Ebm

19



at S♯ such that fi is bounded by µi for 1 ≤ i ≤ m. We define a subspace Sht
b1,...,bm−1,µ•

b0,bm,Spd Ĕ
⊂

Shtµ•
b0,bm,Spd Ĕ

as a moduli space of modifications

Eb0

f1−→ E1
f2−→ · · · fm−1−−−→ Em−1

fm−→ Ebm

at S♯ such that fi is bounded by µi for 1 ≤ i ≤ m and Ei is isomorphic to Ebi geometric
fiberwisely for 1 ≤ i ≤ m− 1.

We put

Iµ•
b0,bm

= {([b1], . . . , [bm−1]) ∈ B(G)m−1 | Shtµi

bi−1,bi
6= ∅ for 1 ≤ i ≤ m}.

We take µm+1 such that [bm] ∈ B(G,µm+1, [1]). Then Iµ•
b0,bm

is a finite set, since it is

contained in
∏

1≤i≤m−1 B(G,
∑m+1

j=i+1 µj, [1]) by Lemma 2.6. For λ ∈ X∗(T )
+/ΓF , we put

V λ
µ• = HomLG(Vλ,

⊗
1≤i≤m

Vµi
).

For ([bi])1≤i≤m−1 ∈ Iµ•
b0,bm

, we put Nb• =
∑

1≤i≤m−1 Nbi . We write Gr
(∞)
G,SpdE,≤µ for the

inverse image of GrG,SpdE,≤µ under LGSpdE → GrG,SpdE.

Proposition 5.1. The sum ∑
λ∈X∗(T )+/Γ

V λ
µ• ⊗

L RΓc(Sht
λ
b0,bm

)

is decomposed into( ⊗
1≤i≤m

RΓc(Sht
µi

bi−1,bi
)⊗L

⊗
1≤i≤m−1

δbi

)
⊗L∏m−1

i=1 Gbi
(F )

Λ[2Nb• ]

for ([bi])1≤i≤m−1 ∈ Iµ•
b0,bm

by distinguished triangles in the derived category of representa-
tions of Gb0(F )×Gbm(F )×WE.

Proof. Let ICµ• be the external twisted product of ICµ1 , . . . , ICµm on G̃rSpd Ĕ,≤µ•
. By the

construction of convolution product [FS21, VI.8] in geometric Satake equivalence and
[FS21, Proposition VII.4.3], we have

(mµ•)♮ICµ• =
∑

λ∈X∗(T )+/Γ

V λ
µ• ⊗

L ICλ.

Hence the sum ∑
λ∈X∗(T )+/Γ

V λ
µ• ⊗

L RΓc(Sht
λ
b0,bm

)

is isomorphic to RΓc(Sht
µ•
b0,bm

, ICµ•).

We put µ′
• = (µ1, . . . , µm−2). Let {[bjm−1]}1≤j≤n be the image of the projection

Iµ•
b0,bm

→ B(G) to the (m− 1)-th component. It suffices to show that RΓc(Sht
µ•
b0,bm

, ICµ•)
is decomposed into(

RΓc(Sht
µ′
•

b0,b
j
m−1

)⊗L RΓc(Sht
µm

bjm−1,bm
)⊗L δbjm−1

)
⊗L

G
b
j
m−1

(F ) Λ[2Nbjm−1
] (5.1)
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for 1 ≤ j ≤ n.
Let K ⊂ Gb0(F ) be enough small compact open subgroup. Then

RΓc(Sht
µ•
b0,K,bm

, ICµ•)
∼= t∗bmi

∗
bmTµ•ib0,!(hK,!Λ) ∼= t∗bmi

∗
bmTµm−1Tµ′

•ib0,!(hK,!Λ)

is decomposed into
t∗bmi

∗
bmTµm−1ibjm−1,!

i∗
bjm−1

Tµ′
•ib0,!(hK,!Λ)

for 1 ≤ j ≤ n by Lemma 3.3 (3). This is isomorphic to

t∗bmi
∗
bmTµm−1ibjm−1,!

(
δbjm−1

[2Nbjm−1
]⊗L hbjm−1,!

h∗
bjm−1

i∗
bjm−1

Tµ′
•ib0,!(hK,!Λ)

)
(5.2)

by Lemma 2.7. By Lemma 1.4,

h∗
bjm−1

i∗
bjm−1

Tµ′
•ib0,!(hK,!Λ) ∼=

( lim−→
K′⊂G

b
j
m−1

(F )

hK′,♮Λ
)
⊗L RΓc(Sht

µ′
•

b0,K,bjm−1

)

⊗L
H(G

b
j
m−1

(F ))Λ.

Hence (5.2) is isomorphic to(
RΓc(Sht

µ′
•

b0,K,bjm−1

)⊗L RΓc(Sht
µm

bjm−1,bm
)⊗L δbjm−1

)
⊗L

G
b
j
m−1

(F ) Λ[2Nbjm−1
]

since t∗bmi
∗
bm
Tµm−1ibjm−1,!

commutes with direct limits, tensors and changes of coefficients.

Therefore we obtain the claim.

Corollary 5.2. We have∑
([bi])1≤i≤m−1∈Iµ•

b0,bm

H∗

(
m−1∏
i=1

Gbi(F ),
⊗

1≤i≤m

H∗
c (Sht

µi

bi−1,bi
)⊗L

⊗
1≤i≤m−1

δbi

)

=
∑

λ∈X∗(T )+/Γ

V λ
µ•⊗

LH∗
c (Sht

λ
b0,bm

)

as virtual representations of Gb0(F )×Gbm(F )×WE.

Proof. This follows from Proposition 5.1 by taking cohomology.

Lemma 5.3. Assume that m = 2. Let π be a smooth representation of Gb0(F ). Then
we have

RHomGb0
(F )

(
(RΓc(Sht

µ1

b0,b1
)⊗L RΓc(Sht

µ2

b1,b2
)⊗L δb1)⊗L

Gb1
(F ) Λ, π

)
' RHomGb1

(F )

(
RΓc(Sht

µ2

b1,b2
), RHomGb0

(F )

(
RΓc(Sht

µ1

b0,b1
), π
)
⊗L δ−1

b1

)
in the derived category of representations of Gb2(F )×WE for [b1] ∈ I

(µ1,µ2)
b0,b2

.

Proof. We have

RHomGb0
(F )

(
RΓc(Sht

µ1

b0,b1
)⊗RΓc(Sht

µ2

b1,b2
)⊗L δb1 ⊗L

Gb1
(F ) Λ, π

)
' RHomGb0

(F )×Gb1
(F )

(
RΓc(Sht

µ1

b0,b1
)⊗RΓc(Sht

µ2

b1,b2
)⊗L δb1 ,Λ⊠ π

)
' RHomGb0

(F )×Gb1
(F )

(
RΓc(Sht

µ2

b1,b2
)⊗L δb1 ,Hom

(
RΓc(Sht

µ1

b0,b1
), π
))

' RHomGb1
(F )

(
RΓc(Sht

µ2

b1,b2
), RHomGb0

(F )

(
RΓc(Sht

µ1

b0,b1
), π
)
⊗L δ−1

b1

)
in the derived category of representations of Gb2(F )×WE.
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6 Duality morphism

Assume that 2 is invertible in Λ. We take a pinning P = (G,B, T,Xα) of G. Then
define a duality involution ιG,P on G as in [Pra19, Definition 1]. We simply write ι for
ιG,P . Note that µ = −ι ◦ µ in X∗(T )/WG(T ) ∼= X∗(T )

+. We define an anti-involution θ
on G by θ(g) = ι(g)−1. We define the duality morphism

θb,b′ : ShtµG,b,b′ −→ ShtµG,ι(b′),ι(b)

by sending f : Eb → Eb′ to ι(f)−1 : Eι(b′) → Eι(b). The above isomorphism is compatible

with actions of J̃b × J̃b′ and J̃ι(b′) × J̃ι(b) under the isomorphism

J̃b × J̃b′ −→ J̃ι(b′) × J̃ι(b); (g, g′) 7→ (ι(g′), ι(g)).

Then θb,ι(b) is an involution on ShtµG,b,ι(b). On the other hand, θ induces a morphism
θ : HckG → HckG. Let E be the field of definition of µ. We have a natural morphism

pµb,b′ : ShtµG,b,b′ −→ HckG,Spd Ĕ .

We have the commutative diagram

ShtµG,b,b′

pµ
b,b′

��

θb,b′ // ShtµG,ι(b′),ι(b)

pµ
ι(b′),ι(b)

��
HckG,Spd Ĕ

θ //HckG,Spd Ĕ .

We have S ′(rµ ◦ ad(ρ̂(−1))) ∼= θ∗ IC′
µ by [FS21, Proposition VI.12.1]. Hence ρ̂(−1) : rµ ◦

ad(ρ̂(−1))→ rµ induces Mµ : θ
∗ IC′

µ → IC′
µ. Hence we obtain the isomorphism

RΓc(Sht
µ
G,ι(b′),ι(b))→ RΓc(Sht

µ
G,b,b′)

induced by θb,b′ .

Lemma 6.1. The isomorphism

RΓc(Sht
µ
G,ι(b′),ι(b))→ RΓc(Sht

µ
G,b,b′)

is compatible with actions of J̃b × J̃b′ and J̃ι(b′) × J̃ι(b) under the isomorphism

J̃b × J̃b′ −→ J̃ι(b′) × J̃ι(b); (g, g′) 7→ (ι(g′), ι(g)).

Proof. This follows from the definition.

Further, we have an involution

θb : ShtµG,b,1× ShtµG,1,ι(b) −→ ShtµG,b,1× ShtµG,1,ι(b); (x, x′) 7→ (θ1,ι(b)(x
′), θb,1(x)).

We have a decomposition

Vµ ⊗ Vµ = Sym2 Vµ ⊕
2∧
Vµ.
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Let

Ψb,µ :
(
RΓc(Sht

µ
b,1)⊗RΓc(Sht

µ
1,ι(b))

)
⊗L

G(F ) Λ→
∑

λ∈X∗(T )+/Γ

V λ
µ• ⊗RΓc(Sht

λ
b,ι(b))

be the morphism given by Proposition 5.1. Let sb,µ be the involution on the source of
Ψb,µ induced by θb and the multiplication by (−1)⟨2ρ̂,µ⟩. On the other hand, let tb,µ be
the involution on the target of Ψb,µ induced by the permutation σVµ,Vµ on Vµ ⊗ Vµ and

θb,ι(b) : Shtλb,ι(b) → Shtλb,ι(b).

Proposition 6.2. The morphism Ψb,µ is compatible with the involutions sb,µ and tb,µ.

Proof. By the characterization of the commutativity constraint, the equality

IC′
µ ? IC

′
µ =

∑
λ∈X∗(T )+/Γ

V λ
µ• ⊗ IC′

λ

is compatible with the involutions cVµ,Vµ and σVµ,Vµ . Hence the target of Ψb,µ is equal to

H∗
c (Sht

2µ
b,ι(b), IC

′
µ ? IC

′
µ) with the involution given by cVµ,Vµ and θb,ι(b). Let σ2,X : (Div1X)

2 →
(Div1X)

2 and σ2,G : Hck {1,2}
G → Hck {1,2}

G be the permutation of two Cartier divisors. Let

IC′
µ ∗ IC′

µ be the fusion product on Hck {1,2}
G . Here we use the notation at the beginning

of [FS21, VI.9]. Then we have the morphism

c̃Vµ,Vµ : σ
∗
2,G(IC

′
µ ∗ IC′

µ)→ IC′
µ ∗ IC′

µ

extending cVµ,Vµ .

The morphism θ induces θ{1},{2} : Hck {1,2};{1},{2}
G → Hck {1,2};{1},{2}

G switching two
Cartier divisors. Here we use the notation in the proof of [FS21, Proposition VI.9.4].
Then we have a morphism

Sµ,µ : θ
{1},{2}∗(IC′

µ ⊠ IC′
µ)→ IC′

µ ⊠ IC′
µ

induced byMµ and switching two factors of IC′
µ. The morphism θ induces θ{1,2} : Hck {1,2}

G →
Hck {1,2}

G switching two Cartier divisors. Then we have

S ′
µ,µ = m♮(Sµ,µ) : θ

{1,2}∗(IC′
µ ∗ IC′

µ)→ IC′
µ ∗ IC′

µ .

Since θ{1,2} ◦ σ2,G is the automorphism of Hck {1,2}
G over (Div1X)

2 induced by θ, we also
have Mµ,µ : (θ

{1,2} ◦ σ2,G)
∗(IC′

µ ∗ IC′
µ)→ IC′

µ ∗ IC′
µ defined in the same way as Mµ.

Then it suffices to show that

θ{1,2},∗(IC′
µ ∗ IC′

µ)
σ∗
2,G(Mµ,µ)
−−−−−−→ σ∗

2,G(IC
′
µ ∗ IC′

µ))
c̃Vµ,Vµ−−−→ IC′

µ ∗ IC′
µ

and S ′
µ,µ are equal. It suffices to check this on Hck {1,2}

G ×(Div1X){1,2}(Div
1
X)

{1,2};{1},{2} by
[FS21, Proposition VI.9.3]. This follows from the constructions of c̃Vµ,Vµ , S

′
µ,µ and Mµ,µ.
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7 Kottwitz conjecture

Definition 7.1. Let ϕ : WF → LG be an `-adic local L-parameter for G (cf. [Ima24,
Definition 1.14]). We put

Sφ = {g ∈ Ĝ(Qℓ) | gϕg−1 = ϕ}.

We say that ϕ is discrete if Sφ/Z(Ĝ)ΓF is finite (cf. [Far16, Definition 4.1]).

Let b, b′ ∈ GLn(F̆ ) such that [b] ∈ B(G,µ, [b′]). We put

H•
c (Sht

µ
b,b′)[π] =

∑
i,j∈Z

(−1)i+j ExtiGb(F )

(
RjΓc(Sht

µ
b,b′), π

)
for an irreducible smooth representation π of Gb(F ).

The following is a version of Kottwitz conjecture for moduli spaces of mixed charac-
teristic local shtukas in GLn-case (cf. [RV14, Conjecture 7.4]):

Conjecture 7.2. Assume that b, b′ are basic. Let ϕ : WF → L GLn be a discrete local L-
parameter. Let πb and πb′ be the irreducible smooth representations of Gb(F ) and Gb′(F )
corresponding to ϕ via the local Langlands correspondence. Then we have

H•
c (Sht

µ
b,b′)[πb] = πb′ ⊠ (rµ ◦ ϕ)

in Groth(Gb′(F )×WF ).

For an object C in a derived category, we put H∗(C) =
⊕

i∈ZHi(C). The following
conjecture is motivated by [Dat07, Théorème A].

Conjecture 7.3. Assume that b, b′ are basic. Let ϕ : WF → L GLn be a discrete local L-
parameter. Let πb and πb′ be the irreducible smooth representations of Gb(F ) and Gb′(F )
corresponding to ϕ via the local Langlands correspondence. Then we have

H∗ (RHomGb(F )

(
RΓc(Sht

µ
b,b′), πb

))
' πb′ ⊠ (rµ ◦ ϕ)

as representations of Gb′(F )×WF .

Lemma 7.4. Assume that b is basic. Let πb and πι(b) be the irreducible smooth repre-
sentations of Gb(F ) and Gι(b)(F ) corresponding via the local Jacquet–Langlands corre-
spondence. Then the pullback of πι(b) under the isomorphism ι : Gb(F ) → Gι(b)(F ) is
isomorphic to π∗

b .

Proof. By [Pra19, Corollary 1], we may assume that ι(g) = tg−1. If b = 1, the calim
follows from a theorem of Gelfand and Kazhdan (cf. [BZ76, 7.3. Theorem]). If regular
elements g ∈ GLn(F ) and g′ ∈ Gb(F ) have the same reduced characteristic polyno-
mial, then ι(g) ∈ GLn(F ) and ι(g′) ∈ Gι(b)(F ) are regular and have the same reduced
characteristic polynomial. Hence the claim follows from the case where b = 1 and the
characterization of the local Jacquet–Langlands correspondence.

We put κ(b) = vF (det(b)). For m1, . . . ,mn ∈ Z, let (m1, . . . ,mn) denote the cochar-
acter of GLn or its standard Levi subgroup defined by z 7→ diag(zm1 , . . . , zmn).
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Theorem 7.5. Conjecture 7.3 is true in the following cases:

(1) κ(b) ≡ κ(b′) mod n and

µ =
κ(b)− κ(b′)

n
(1, . . . , 1).

(2) κ(b) ≡ 0, 1, κ(b) ≡ κ(b′) + 1 mod n and

µ =
κ(b)− κ(b′)− 1

n
(1, . . . , 1) + (1, 0, . . . , 0).

(3) κ(b) ≡ 0,−1, κ(b) ≡ κ(b′)− 1 mod n and

µ =
κ(b)− κ(b′) + 1

n
(1, . . . , 1) + (0, . . . , 0,−1).

(4) κ(b) ≡ 1, κ(b′) ≡ −1 mod n and

µ =
κ(b)− κ(b′)− 2

n
(1, . . . , 1) +

{
(2, 0, . . . , 0),

(1, 1, 0, . . . , 0).

(5) κ(b) ≡ −1, κ(b′) ≡ 1 mod n and

µ =
κ(b)− κ(b′) + 2

n
(1, . . . , 1) +

{
(0, . . . , 0,−2),
(0, . . . , 0,−1,−1).

Proof. By the inversing isomorphism (2.2), the claims (3) and (5) are reduced to the
claims (2) and (4). By Proposition 4.1, we may assume that κ(b) = κ(b′) = 0 in (1),
κ(b) = 0,−1, κ(b) = κ(b′) + 1 in (2) and κ(b) = −1, κ(b′) = 1 in (4). Further, we may
assume that κ(b) = 0 in (2) by Lemma 6.1 and Lemma 7.4. Then the claim (1) is trivial.
The claim (2) follows from the proof of [Dat07, Thoérème A] taking care the degree in
[Dat07, Thoérème 4.1.2].

We show the claim (4). We may assume that b′ = ι(b). We put

µ1 = (1, 0, . . . , 0), µ2 = (2, 0, . . . , 0), µ1,1 = (1, 1, 0, . . . , 0).

Note that we have I
(µ1,µ1)
b,ι(b) = {[1]}. Let π1 be the irreducible smooth representations of

GLn(F ) corresponding to ϕ via the local Langlands correspondence. By Proposition 5.1,
Lemma 5.3, the claim (2) and [Dat07, Corollaire 4.2.1], we have

(V µ2

(µ1,µ1)
)∗ ⊗H∗

(
RHomGι(b)(F )

(
RΓc(Sht

µ2

ι(b),b), πι(b)

))
+(V

µ1,1

(µ1,µ1)
)∗ ⊗H∗

(
RHomGι(b)(F )

(
RΓc(Sht

µ1,1

ι(b),b), πι(b)

))
' H∗

(
RHomGι(b)(F )

(
RΓc(Sht

µ1

ι(b),1)⊗RΓc(Sht
µ1

1,b)⊗
L
GLn(F ) Qℓ, πι(b)

))
' H∗

(
RHomGLn(F )

(
RΓc(Sht

µ1

1,b), RHomGι(b)(F )

(
RΓc(Sht

µ1

ι(b),1), πι(b)

)))
' H∗

(
RHomGLn(F )

(
RΓc(Sht

µ1

1,b),H
∗
(
RHomGι(b)(F )

(
RΓc(Sht

µ1

ι(b),1), πι(b)

))))
' H∗ (RHomGLn(F )

(
RΓc(Sht

µ1

1,b), π1 ⊠ ϕ
))

' πb ⊠ (ϕ⊗ ϕ) ' πb ⊠
(
(rµ2 ◦ ϕ)⊕ (rµ1,1 ◦ ϕ)

)
.

Using Proposition 6.2, we can separate the above equality to obtain the claim.
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Corollary 7.6. Conjecture 7.3 is true if n ≤ 3 and µ is minuscule.

Proof. All the cases are contained in Theorem 7.5.

8 Inductive formula

For a smooth representation π of G(F ) and the unipotent radical N of a parabolic
subgroup of G, let πN denote the Jacquet module of π with respect to N .

Assume that G = GL2. Let T be the diagonal torus and B be the upper triangle Borel
subgroup of GL2. Let N be the unipotent radical of B, and Nop be the the unipotent

radical of the opposite Borel subgroup Bop. Let δB : T (F ) → Q×
ℓ be the modulus

character with respect to B. For b =

(
$m 0
0 $l

)
with m < l, let δb : Gb(F ) → Q×

ℓ be

the character determined by δB and the natural isomorphism Gb(F ) ∼= T (F ).

Lemma 8.1. Let m ∈ Z. We put

b =

(
$m 0
0 $m

)
, b′ =

(
$m−1 0
0 $m

)
.

Let π be an admissible representation of G(F ). Then we have

R• HomG(F )

(
R•Γc(Sht

(1,0)
b,b′ ), π

)
= −R• HomT (F )

(
R•Γc(Sht

(1,0)
T,b,b′), πNop

)(1

2

)
.

Proof. By [Cas82, A.11 Proposition, A.12 Theorem], [GI16, Theorem 4.25] (cf. [Han21a])
and [Ren10, III.2.7 Théorème, VI.9.6 Proposition], we have

R• HomG(F )

(
R•Γc(Sht

(1,0)
b,b′ ), π

)
= R• HomG(F )

(
π∗, R•Γc(Sht

(1,0)
b,b′ )∗

)
= R• HomG(F )

(
π∗,−

(
Ind

G(F )
B(F ) R

•Γc(Sht
(1,0)
T,b,b′)⊗ δ−1

b′

(
1

2

))∗)
= −R• HomT (F )

(
(π∗)N ,

(
R•Γc(Sht

(1,0)
T,b,b′)⊗ δB

)∗)
⊗ δb′

(
−1

2

)
= −R• HomT (F )

(
R•Γc(Sht

(1,0)
T,b,b′)⊗ δB, πNop

)
⊗ δb′

(
−1

2

)
= −R• HomT (F )

(
R•Γc(Sht

(1,0)
T,b,b′), πNop ⊗ δ−1

B

)
⊗ δb′

(
−1

2

)
= −R• HomT (F )

(
R•Γc(Sht

(1,0)
T,b,b′), πNop

)(1

2

)
.

Proposition 8.2. Let χ1, χ2 : F
× → Q×

ℓ be characters. Let ϕχi
: WF → Q×

ℓ be the
character corresponding to χi. We put ρ = χ1 ⊠ χ2 as representations of T (F ). Let
m ≥ 0 and m/2 ≥ l ≥ 0. We put

b =

(
$l 0
0 $m−l

)
, b1 =

(
$l−1 0
0 $m−l

)
, b2 =

(
$l−1 0
0 $m−1−l

)
.
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(1) Assume m 6= 2l. We put

b′1 =

(
$l 0
0 $m−l−1

)
.

If l = 0, then we have

H•
c (Sht

(m,0)
b,1 )[ρ] = (−1)m(IndG(F )

B(F ) ρ)⊠ ϕm
χ2

(m
2

)
.

If l ≥ 1, then we have

H•
c (Sht

(m,0)
b,1 )[ρ]

= −H•
c (Sht

(m−1,0)
b1,1

)[ρ]⊗ ϕχ1

(
−3

2

)
−H•

c (Sht
(m−2,0)
b2,1

)[ρ]⊗ ϕχ1 ⊗ ϕχ2{
−H•

c (Sht
(m−1,0)

b′1,1
)[Ind

G(F )
B(F ) ρ]⊗ ϕχ2

(
1
2

)
if m = 2l + 1

−H•
c (Sht

(m−1,0)

b′1,1
)[ρ]⊗ ϕχ2

(
1
2

)
if m ≥ 2l + 2.

(2) Assume m = 2l. If l = 0, then we have

H•
c (Sht

(0,0)
b,1 )[Ind

G(F )
B(F ) ρ] = (Ind

G(F )
B(F ) ρ)⊠ 1.

If l ≥ 1, then we have

H•
c (Sht

(m,0)
b,1 )[Ind

G(F )
B(F ) ρ] = −H•

c (Sht
(m−1,0)
b1,1

)[ρ]⊗ ϕχ1

(
−1

2

)
−H•

c (Sht
(m−1,0)
b1,1

)[ρw ⊗ δ−1
B ]⊗ ϕχ2

(
1

2

)
−H•

c (Sht
(m−2,0)
b2,1

)[Ind
G(F )
B(F ) ρ]⊗ ϕχ1 ⊗ ϕχ2 .

Proof. First we show the claim (1). If l = 0, we have

R• HomGb(F )

(
RΓc(Sht

(m,0)
b,1 ), ρ

)
= R• HomGb(F )

(
RΓc(Sht

(0,−m)
1,b ), ρ

)
= (−1)mR• HomGb(F )

(
Ind

G(F )
B(F ) R

•Γc(Sht
(0,−m)
T,1,b )⊗ δ−1

b , ρ
)(
−m

2

)
= (−1)m Ind

G(F )
B(F )

(
R• HomGb(F )

(
R•Γc(Sht

(0,m)
T,b,1 )⊗ δ−1

b , ρ
)
⊗ δ−1

B

)(
−m

2

)
= (−1)m Ind

G(F )
B(F )

(
R• HomGb(F )

(
R•Γc(Sht

(0,m)
T,b,1 ), ρ⊗ δb

)
⊗ δ−1

B

)(
−m

2

)
= (−1)m

(
Ind

G(F )
B(F ) ρ

)
⊠ ϕm

χ2

(m
2

)
,

where we use Sht
(m−1,1)
1,b = ∅ and [GI16, Theorem 4.25] at the second equality. We assume

that l ≥ 1. By Proposition 5.1 and Lemma 5.3, the sum

R• HomGb(F )

(
RΓc(Sht

(m,0)
b,1 ), ρ

)
+R• HomGb(F )

(
RΓc(Sht

(m−1,1)
b,1 ), ρ

)
is equal to the sum

R• HomGb1
(F )

(
RΓc(Sht

(m−1,0)
b1,1

), RHomGb(F )

(
RΓc(Sht

(1,0)
b,b1

), ρ
)
⊗ δ−1

b1

)
+R• HomGb′1

(F )

(
RΓc(Sht

(m−1,0)

b′1,1
), RHomGb(F )

(
RΓc(Sht

(1,0)

b,b′1
), ρ
)
⊗ δ−1

b′1

)
.
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Since the fiber of the natural morphism Sht
(1,0)
b,b1
→ Sht

(1,0)
T,b,b1

is isomorphic to Bφ=ϖm+1−2l
,

we have

R• HomGb(F )

(
RΓc(Sht

(1,0)
b,b1

), ρ
)
= −R• HomGb(F )

(
RΓc(Sht

(1,0)
T,b,b1

)⊗ δ−1
b , ρ

)(
−1

2

)
= −(ρ⊗ δb1)⊠ ϕχ1

(
−3

2

)
.

Further, we have

R• HomGb1
(F )

(
RΓc(Sht

(m−1,0)
b1,1

), RHomGb(F )

(
RΓc(Sht

(1,0)
b,b1

), ρ
)
⊗ δ−1

b1

)
= −R• HomGb1

(F )

(
RΓc(Sht

(m−1,0)
b1,1

), ρ
)
⊠ ϕχ1

(
−3

2

)
.

If m = 2l + 1, we have

R• HomGb(F )

(
RΓc(Sht

(1,0)

b,b′1
), ρ
)
= −

(
Ind

G(F )
B(F ) ρ

)
⊠ ϕχ2

(
1

2

)
by the claim in the case where l = 0.

Ifm ≥ 2l+2, since the fiber of the natural morphism Sht
(1,0)

b,b′1
→ Sht

(0,1)

T,b,b′1
is isomorphic

to Bφ=ϖm−2l
, we have

R• HomGb(F )

(
RΓc(Sht

(1,0)

b,b′1
), ρ
)
= −R• HomGb(F )

(
R•Γc(Sht

(0,1)

T,b,b′1
)⊗ δ−1

b , ρ
)(
−1

2

)
= −(ρ⊗ δB)⊠ ϕχ2

(
1

2

)
.

Therefore

R• HomGb(F )

(
RΓc(Sht

(m,0)
b,1 ), ρ

)
= R• HomGb1

(F )

(
RΓc(Sht

(m−1,0)
b1,1

), RHomGb(F )

(
RΓc(Sht

(1,0)
b,b1

), ρ
)
⊗ δ−1

b1

)
+R• HomGb′1

(F )

(
RΓc(Sht

(m−1,0)

b′1,1
), RHomGb(F )

(
RΓc(Sht

(1,0)

b,b′1
), ρ
)
⊗ δ−1

b′1

)
−R• HomGb(F )

(
RΓc(Sht

(m−1,1)
b,1 ), ρ

)
= −H•

c (Sht
(m−1,0)
b1,1

)[ρ]⊗ ϕχ1

(
−1

2

)
−H•

c (Sht
(m−2,0)
b,1 )[ρ]⊗ ϕχ1 ⊗ ϕχ2{

−H•
c (Sht

(m−1,0)

b′1,1
)[Ind

G(F )
B(F ) ρ]⊗ ϕχ2

(
1
2

)
if m = 2l + 1,

−H•
c (Sht

(m−1,0)

b′1,1
)[ρ]⊗ ϕχ2

(
1
2

)
if m ≥ 2l + 2.

Next we show the claim (2). The claim is trivial if l = 0. Assume that l > 0. We

put π = Ind
G(F )
B(F ) ρ and

b′1 =

(
0 $l−1

$l 0

)
.

By Proposition 5.1 and Lemma 5.3, the sum

R• HomG(F )

(
RΓc(Sht

(m,0)
b,1 ), π

)
+R• HomG(F )

(
RΓc(Sht

(m−1,1)
b,1 ), π

)
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is equal to the sum

R• HomGb1
(F )

(
RΓc(Sht

(m−1,0)
b1,1

), RHomG(F )

(
RΓc(Sht

(1,0)
b,b1

), π
)
⊗ δ−1

b1

)
+R• HomGb′1

(F )

(
RΓc(Sht

(m−1,0)

b′1,1
), RHomG(F )

(
RΓc(Sht

(1,0)

b,b′1
), π
)
⊗ δ−1

b′1

)
.

We have
R• HomG(F )

(
RΓc(Sht

(1,0)

b,b′1
), π
)
= 0

by [Dat07, Théorème A].
By Lemma 8.1 and the geometric lemma (cf. [Ren10, VI.5.1 Théorème]), we have

R• HomGb1
(F )

(
RΓc(Sht

(m−1,0)
b1,1

), RHomG(F )

(
RΓc(Sht

(1,0)
b,b1

), π
)
⊗ δ−1

b1

)
= −R• HomGb1

(F )

(
RΓc(Sht

(m−1,0)
b1,1

), R• HomT (F )

(
R•Γc(Sht

(1,0)
T,b,b1

), πNop

)(1

2

)
⊗ δ−1

b1

)
= −R• HomGb1

(F )

(
RΓc(Sht

(m−1,0)
b1,1

), R• HomT (F )

(
R•Γc(Sht

(1,0)
T,b,b1

), (ρ⊗ δB) + ρw
)(1

2

)
⊗ δ−1

b1

)
= −R• HomGb1

(F )

(
RΓc(Sht

(m−1,0)
b1,1

), ρ
)
⊗ ϕχ1

(
−1

2

)
−R• HomGb1

(F )

(
RΓc(Sht

(m−1,0)
b1,1

), ρw ⊗ δ−1
B

)
⊗ ϕχ2

(
1

2

)
.

Hence

H•
c (Sht

(m,0)
b,1 )[π] = −H•

c (Sht
(m−1,1)
b,1 )[π]−H•

c (Sht
(m−1,0)
b1,1

)[ρ]⊗ ϕχ1

(
−1

2

)
−H•

c (Sht
(m−1,0)
b1,1

)[ρw ⊗ δ−1
B ]⊗ ϕχ2

(
1

2

)
.

Therefore we obtain the claim.

By Proposition 8.2, we can calculate H•
c (Sht

(m,0)
b,1 )[ρ] and H•

c (Sht
(m,0)
b,1 )[Ind

G(F )
B(F ) ρ] in

Proposition 8.2 inductively. We do not pursue the explicit formula here, but record the
following corollary.

Corollary 8.3. The GL2(F )-representations H•
c (Sht

(m,0)
b,1 )[ρ] and H•

c (Sht
(m,0)
b,1 )[Ind

G(F )
B(F ) ρ]

in Proposition 8.2 are linear combinations of proper parabolic inductions.

Proof. This follows from Proposition 8.2 by induction.

Proposition 8.4. We put

b1 =

(
0 1
$ 0

)
and bm = bm1 for m ∈ Z. For an odd integer m, we put

b′m =

(
$

m−1
2 0

0 $
m+1

2

)
.
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Assume that m ≥ 2. If m is odd or ϕ is cuspidal, we have

H•
c (Sht

(m,0)
bm,1 )[πbm ] = H•

c (Sht
(m−1,0)
bm−1,1

)[πbm−1 ]⊗ ϕ−H•
c (Sht

(m−2,0)
bm−2,1

)[πbm−2 ]⊗ (r(1,1) ◦ ϕ).

If m is even and ϕ is not cuspidal, we have

H•
c (Sht

(m,0)
bm,1 )[πbm ] = H•

c (Sht
(m−1,0)
bm−1,1

)[πbm−1 ]⊗ ϕ−H•
c (Sht

(m−2,0)
bm−2,1

)[πbm−2 ]⊗ (r(1,1) ◦ ϕ)

−H•
c (Sht

(m−1,0)

b′m−1,1
)[χ⊠ χ]⊗ ϕχ

(
−1

2

)
where χ is a character of F× such that πbm ' Stχ.

Proof. Assume that m is odd. By Proposition 5.1 and Lemma 5.3, the sum

R• HomGL2(F )

(
RΓc(Sht

(m,0)
bm,1 ), πbm

)
+R• HomGL2(F )

(
RΓc(Sht

(m−1,1)
bm,1 ), πbm

)
is equal to

R• HomGbm−1
(F )

(
RΓc(Sht

(m−1,0)
bm−1,1

), RHomGL2(F )

(
RΓc(Sht

(1,0)
bm,bm−1

), πbm

))
.

Hence the claim follows from Corollary 7.6.
Assume that m is even. By Proposition 5.1 and Lemma 5.3, the sum

R• HomGL2(F )

(
RΓc(Sht

(m,0)
bm,1 ), πbm

)
+R• HomGL2(F )

(
RΓc(Sht

(m−1,1)
bm,1 ), πbm

)
is equal to the sum

R• HomGbm−1
(F )

(
RΓc(Sht

(m−1,0)
bm−1,1

), RHomGL2(F )

(
RΓc(Sht

(1,0)
bm,bm−1

), πbm

))
+R• HomGb′m−1

(F )

(
RΓc(Sht

(m−1,0)

b′m−1,1
), RHomGL2(F )

(
RΓc(Sht

(1,0)

bm,b′m−1
), πbm

)
⊗ δ−1

B

)
.

Hence, by Corollary 7.6, it suffices to show that

RHomGL2(F )

(
RΓc(Sht

(1,0)

bm,b′m−1
), πbm

)
=

{
0 if ϕ is cuspidal,

−((χ⊠ χ)⊗ δB)⊗ ϕχ

(
−1

2

)
if ϕ is not cuspidal.

By Lemma 8.1, we have

R• HomGL2(F )

(
RΓc(Sht

(1,0)

bm,b′m−1
), πbm

)
= −R• HomT (F )

(
R•Γc(Sht

(1,0)

T,bm,b′m−1
), (πbm)Nop

)(1

2

)
.

Hence the claim follows from (Stχ)Nop ' (χ⊠ χ)⊗ δB.

Proposition 8.5. We put

b1 =

(
0 1
$ 0

)
and bm = bm1 for m ∈ Z. For m ≥ 1, we have

R• HomGbm (F )

(
RΓc(Sht

(m+1,0)
bm,b−1,

), πbm

)
= R• HomGL2(F )

(
RΓc(Sht

(1,0)
1,b−1

), RHomGbm (F )

(
RΓc(Sht

(m,0)
bm,1 ), πbm

))
−R• HomGbm−2

(F )

(
RΓc(Sht

(m−1,0)
bm−2,b−1

), πbm−2

)
⊗ (r(1,1) ◦ ϕ).
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Proof. This follows from Proposition 5.1 and Lemma 5.3.

Theorem 8.6. Assume that n = 2. Then Conjecture 7.2 is true if κ(b) is odd or ϕ is
cuspidal.

Proof. We put

b1 =

(
0 1
$ 0

)
.

To show the claim, we may assume that µ = (m, 0) for some m ≥ 0 and b is 1 or b1 by
twisting.

Assume that ϕ is cuspidal. If b = 1, we can show the claim by induction using
Proposition 8.4. If b = b1, we can show the claim by induction using Proposition 8.5 and
the case for b = 1.

It remains to treat the case where ϕ is not cuspidal and b = b1. First, we can show
that

H•
c (Sht

(m,0)
b′,1 )[πb′ ]− π1 ⊠ (r(m,0) ◦ ϕ)

is a linear combination of proper parabolic inductions as representations of GL2(F ) using
Corollary 8.3 and Proposition 8.4. Hence, the claim follows from Proposition 8.5 and
[Dat07, Théorème A].

On the other hand, the following example shows that Conjecture 7.2 is not true if µ
is not minuscule and ϕ is not cuspidal.

Example 8.7. Let µ = (2, 0) and b be a basic element such that κ(b) = 2. Assume that
ϕ is not cuspidal and take a character χ of F× such that π1 ' Stχ. We put

b1 =

(
0 1
$ 0

)
.

We note that

R• HomGb1
(F )

(
RΓc(Sht

µ
b1,1

), πb1

)
= Stχ

(
−1

2

)
− (χ ◦ det)

(
1

2

)
by [Dat07, Théorème 4.1.2]. Then we have

R• HomGb(F )

(
RΓc(Sht

µ
b,1), πb

)
= π1 ⊠ (rµ ◦ ϕ)−

(
Ind

GL2(F )
B(F ) (χ⊠ χ)

)
⊠ (r(1,1) ◦ ϕ)(1)

by Proposition 8.2 and Proposition 8.4.

Remark 8.8. Example 8.7 is compatible with the main theorem of [HKW22], since the

representation Ind
GL2(F )
B(F ) (χ⊠ χ) has trace 0 on regular elliptic elements.

Remark 8.9. The error term in Example 8.7 supports that the expectation in [Far16,
Remark 4.6] is true.

Example 8.10. Let χ1, χ2 : F
× → Q×

ℓ be characters. Let ϕχi
: WF → Q×

ℓ be the char-

acter corresponding to χi. We put b =

(
$ 0
0 $2

)
and µ = (3, 0). We put ρ = χ1 ⊠ χ2

as representations of T (F ). Then we have

H•(ShtµG,b,1)[ρ] = −(Ind
G(F )
B(F ) ρ)⊠ ϕχ1 ⊗ ϕ2

χ2

(
−1

2

)
.
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Proof. We put

b1 =

(
1 0
0 $2

)
, b′1 =

(
$ 0
0 $

)
, b2 =

(
1 0
0 $

)
.

By Proposition 8.2, we have

H•
c (Sht

(3,0)
b,1 )[ρ]

=−H•
c (Sht

(2,0)
b1,1

)[ρ]⊗ ϕχ1

(
−3

2

)
−H•

c (Sht
(1,0)
b2,1

)[ρ]⊗ ϕχ1 ⊗ ϕχ2

−H•
c (Sht

(2,0)

b′1,1
)[Ind

G(F )
B(F ) ρ]⊗ ϕχ2

(
1

2

)
=− Ind

G(F )
B(F )(ρ)⊠ ϕχ1 ⊗ ϕ2

χ2

(
−1

2

)
+ (Ind

G(F )
B(F ) ρ)⊠ ϕχ1 ⊗ ϕ2

χ2

(
1

2

)
+H•

c (Sht
(1,0)
b2,1

)[ρ]⊗ ϕχ1 ⊗ ϕχ2 +H•
c (Sht

(1,0)
b2,1

)[ρw ⊗ δ−1
B ]⊗ ϕ2

χ2
(1)

+H•
c (Sht

(0,0)
1,1 )[Ind

G(F )
B(F ) ρ]⊗ ϕχ1 ⊗ ϕ2

χ2

(
1

2

)
,

=− Ind
G(F )
B(F )(ρ)⊠ ϕχ1 ⊗ ϕ2

χ2

(
−1

2

)
using Ind

G(F )
B(F )(ρ

w ⊗ δ−1
B ) = Ind

G(F )
B(F )(ρ) in Groth(G(F )).

Remark 8.11. We use notation in Example 8.10. We define Ib,µ,T in the same way as
[RV14, (31)]. Then we have Ib,µ,T = ∅. Therefore Example 8.10 shows that the non-
minuscule generalization of [RV14, Conjecture 8.5] does not hold as it is. We note that
([b], µ) is not Hodge–Newton reducible (cf. [RV14, Definition 4.28]).
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