Convolution morphisms and Kottwitz conjecture
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Abstract

We define etale cohomology of the moduli spaces of mixed characteristic local
shtukas so that it gives smooth representations including the case where the rel-
evant elements of the Kottwitz set are both non-basic. Then we relate the etale
cohomology of different moduli spaces of mixed characteristic local shtukas using
convolution morphisms, duality morphisms and twist morphisms. As an applica-
tion, we show the Kottwitz conjecture in some new cases including the cases for all
inner forms of GL3 and minuscule cocharacters. We study also some non-minuscule
cases and show that the Kottwitz conjecture is true for any inner form of GLy and
any cocharacter if the Langlands parameter is cuspidal. On the other hand, we
show that the Kottwitz conjecture does not hold as it is in non-minuscule cases if
the Langlands parameter is not cuspidal. Further, we show that a generalization
of the Harris—Viehmann conjecture for the moduli spaces of mixed characteristic
local shtukas does not hold in Hodge—Newton irreducible cases.

Introduction

The Kottwitz conjecture says that etale cohomology of Rapoport—Zink spaces or more
generally local Shimura varieties realize the local Langlands correspondence (c¢f. [Rap95,
Conjecture 5.1, [RV14, Conjecture 7.4]). In [SW20], Scholze constructs local Shimura
varieties as special cases of moduli spaces of mixed characteristic local shtukas. The
Kottwitz conjecture makes sense also for the moduli spaces of mixed characteristic local
shtukas. A weak version of the conjecture is studied by Hansen—Kaletha—Weinstein in
[HKW22]. In the weak version, we ignore the action of the Weil groups and have an
equality up to representations which have trace 0 on regular elliptic elements.

Let p be a prime number. Let G be a connected reductive group over a p-adic
number field F. For b,i' € G(F) and a system e = (pu1, ..., ftm) of cocharacters of
G, we define a moduli space Sht;i 3, of mixed characteristic local shtukas. See §2 for the
precise definition.

In this paper, we introduce convolution morphisms, duality morphisms and twist
morphisms between moduli spaces of mixed characteristic local shtukas. The convolution
morphism is related to a convolution morphism on affine Grassmannians. Using these
morphisms and the convolution products in the geometric Satake equivalence for Bjj-
Grassmannians, we relate the etale cohomology of different moduli spaces of mixed
characteristic local shtukas. More concretely, we show the following:

2010 Mathematics Subject Classification. Primary: 11F70; Secondary: 14G35.



Theorem 1 (Corollary 5.2). Assume that G is quasi-split and take a Borel pair T C Buof
G. Let e = (1, ..., pm) be a system of dominant cocharacters of T' and by, b,, € G(F).
Let E be a finite extension of F' containing the fields of definition of u; for 1 < i < m.
We have

Z . (HGbL(F)’ ® H:(Shtsiil’bi)(@ ® 6bi)

([bi])lgif”"*lelﬁ)’,bm 1<i<m 1<i<m—1

= ) Vi®HI(Sht,, )
AeX.(T)*+/T

as virtual representations of Gy, (F') X Gy,,(F)) X Wg, where I}*, is a finite set defined
mn §5.

We note that even if by and b, are basic, non-basic elements appear in [éﬁ) *p,, and
there are contributions from cohomology of non-basic moduli spaces of local shtukas.
For a derived category version of the above statement, see Proposition 5.1.

As an application of Theorem 1 (or its derived category version) together with duality
morphisms and twist morphisms, we show new cases of the Kottwitz conjecture for the
moduli spaces of mixed characteristic local shtukas. In particular, we show the following:

Theorem 2 (Corollary 7.6). Let G be an inner form of GL3 over F. Let (G,b,u) be
a local shtuka datum such that p is minuscule and b is basic. Let ¢: Wr — ¥ GLs3 be
a discrete local L-parameter. Let m and m, be the irreducible smooth representations of
G(F) and Gy(F) corresponding to ¢ via the local Langlands correspondence. Then we
have

H* (RHomgpy (RT(Sht! ), 7)) ~ m B (r, o ¢)

as representations of Gy(F) x Wp.

It is remarkable that the proof of Theorem 2 requires moduli spaces of local shtukas for
non-minuscule cocharacters, even though the statement involves only minuscule cochar-
acters: Using a derived category version of Theorem 1, we can calculate a sum of coho-
mology of moduli spaces of local shtukas for a minuscule cocharacter and a non-minuscule
cocharacter. Then we separate them into each term using the duality isomorphism. We
also note that it is essential to introduce convolution morphisms for moduli spaces of
mixed characteristic local shtukas with multiple legs in §4, because we use it in the proof
of a compatibility result, Proposition 6.2, which plays an important role in the proof of
Theorem 2.

Theorem 1 is useful also for studying non-minuscule cases. We give inductive formulas
that enable us to calculate the cohomology of moduli spaces of local shtukas for inner
forms of GL,;. We can summarize the results in §8 as the following theorem:

Theorem 3. Let G be an inner form of GLy over F. Let (G,b, ) be a local shtuka
datum. Let p be a discrete series representation of Gy(F'). We put

H;(Shtlf,b)[P] = Z (_1)i+j EXtiGb(F) (RjFC(Sht’ib), P) .
ijez

Then we can calculate HE (Shty,)[p] by inductive formulas. In particular, when b is basic,
we see the following:



(1) The Kottwitz conjecture for Sht‘f’b holds if the L-parameter is cuspidal or G is not
quasi-split.

(2) The Kottwitz conjecture for Sht’f}b does not hold in general if the L-parameter is
not cuspidal and G is quasi-split.

We note that in the first statement of Theorem 3, b can be non-basic and p can be
non-minusucle. Even if we are interested only in H¢(Sht,)[p] for a basic b, the inductive
formulas for the calculation of H¢(Sht,)[p] involve moduli spaces of local shtukas for
non-basic elements. Therefore it is important to study non-basic cases at the same time.

We note that Theorem 3 is compatible with the result in [HKW22], since the error
term involves only representations which have trace 0 on regular elliptic elements. We
remark also that this error term supports that the expectation [Farl6, Remark 4.6] in
the geometrization of the local Langalnds correspondence is true.

Further, we see that the Harris—Viemann conjecture for the moduli spaces of mixed
characteristic local shtukas does not hold as it is in Example 8.10 and Remark 8.11.
We note that Harris—Viemann conjecture for the moduli spaces of mixed characteristic
local shtukas is proved in [GI16] and [Han2la] under the Hodge Newton reducibility
condition. On the other hand, the Hodge-Newton reducibility condition is not satisfied
in Example 8.10.

In §1, we collect results on relative homologey and the geometric Satake correspon-
dence. In §2, we give a definition of a moduli space of mixed characteristic local shtukas.
The definition which we give here is slightly different from that in [SW20]. Our defi-
nition is suitable to construct convolution morphisms between moduli spaces of mixed
characteristic local shtukas in §4. In §3, we construct a twist morphism between moduli
spaces of mixed characteristic local shtukas, which has an origin in the twist of a vector
bundle by a line bundle. In §5, we discuss a relation between cohomology of different
moduli spaces of mixed characteristic local shtukas using convolution morphisms. In §6,
we construct a duality morphism, which has an origin in the dual of a vector bundle. In
§7, we give an application to the Kottwitz conjecture. In §8, we give some inductive for-
mulas on cohomology and discuss more about the Kottwitz conjecture in non-minuscule
cases.

After we put a former version of this paper on arXiv, a preprint [Han21b] by Hansen
appeared, where a cohomology version of Theorem 2 is proved for cuspidal local L-
parameters of GL,, using a result in [ALB21]. A merit of Theorem 2 is that it works for
discrete local L-parameters.
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Notation

For a field F , let I'p denote the absolute Galois group of F. For a non-archimedean local
field F', let I’ denote the completion of the maximal unramified extension of F'. For an



object Xy over an object Y, its base change by the morphism Y’ — Y is denoted by
Xy

1 Sheaves in /-adic coefficients

1.1 Relative homology

Let p be a prime number. Let A be a solid @”—algebra. For a small v-stack X, we
define Dg(X, A) as [FS21, Definition VII.1.17]. There is a symmetric monoidal structure

n
— @k — on Da(X, A) constructed by [FS21, Proposition VII.2.2]. In the sequel, we simply

[
write ®% for ®%. For a morphism f: X — Y of small v-stacks, let
Lﬁi l).()(VA) — I)I(Y:IX)

be a left adjoint to f*: Dm(Y,A) — Dm(X, A) constructed by [FS21, Proposition VIL.3.1].
The following lemma is already known (cf. the proof of [FS21, Proposition VII.6.3]).

Lemma 1.1. Let f: X — Y be a quasi-compact, quasi-separated morphism of small
v-stacks. Assume that A = l‘ﬁlnel Z/nZ, where I is a filtered set of positive integers
which are prime to p. Then we have

fid = lim £,(Z/nZ).

nel

Proof. We recall a proof. We may assume that Y is a spatial diamond. Then A is a
pseudo-coherent object on X (cf. [Kra20, Definition 7.2]) by the assumption on f. Since
fi preserves pseudo-coherent objects, fyA is also a pseudo-coherent object. Since each
cohomology sheaf of f;A is a finitely presented solid sheaf, we have

JiA = lm(f,A @ Z/nZ) =~ lim f,(Z/nZ)

nel nel

by [FS21, Theorem VII.1.3, Proposition VII.3.1]. O

Lemma 1.2. Let f: X — Y be a morphism of small v-stacks. Let F be a solid Zp-sheaf
on X. Let {U,;}ier be a filtered direct system of quasi-compact open substacks of X such

that X = J,c; Ui. Let f; and F; be the restriction to U; of f and F for i € I. Then we
have
JoF =~ hglfzh]:z
iel

Proof. Let j;: Uy — X be the inclusion for ¢ € I. Since f; commutes with a direct limit,
it suffices to show F ~ @ie ; JigFi- By the projection formula, we may assume that

~

F = 7”. For any solid ZP-sheaf G on X, we have

Hom(ligjihip, g) ~ LmHonl(jith, G) ~1lmG(U;) ~ G(X) ~ Hom(Z”,G).

icl el 1€l

Hence we obtain the claim. O



Lemma 1.3. Let F' be a non-archimedean field with residue characteristic p. Let d be a
positive integer, and n a positive integer prime to p.

(1) Let
o (Spa(Or[lzy, ... 2Y""]]) Xspaor) SPA(F))” — Spa(F)°
be the natural morphism. Then we have fyA ~ A. We also have fi(Z/nZ) =~

(Z/nZ)(—d)[—2d]. Further, the geometric Frobenius morphism z; — ¥ induces
the multiplication by p® on fi(Z/nZ).

(2) Let
fi(AR)” — Spa(F)°
be the natural morphism. Then we have fyA ~ A. We also have fi(Z/nZ) ~

(Z/nZ)(—d)[—2d]. Further, the geometric Frobenius morphism z; — ¥ induces
the multiplication by p® on fi(Z/nZ).

Proof. We show the first claim of (1). We may assume that A = 7P and F is algebraically

closed of characteristic p. We write Spa(Op|[z;”" ... ,:L'}/poo]]) XSpa(0p) SPa(F) as a

union of affinoids isomorphic to Spa(F(a:i/poc, . ,x;/poo>). By Lemma 1.2, it is reduced

to show that gth ~ 7P for

(e'o]

g: Spa(F (", ..., 2}/"")) = Spa(F).

By Lemma 1.1 and [FS21, Proposition VIIL.5.2], the claim follows from that g(Z/nZ) ~
(Z/nZ)(—d)[—2d] for any integer n prime to p. The claim on f,(Z/nZ) follows from the
case for gi(Z/nZ) in a similar way.

We can show the claim (2) similarly. O

Let ¢ be a prime number different from p.

Lemma 1.4. Let G be a locally pro-p group. Let H(G) be the Hecke algebra of G with
coefficients in A. Let f: X — Y be a morphism of small v-stacks which is a G-torsor.
For a pro-p open subgroup K of G, let fx: X/K — Y be the morphism induced by f.
Let g: Y — Z be a morphism of small v-stacks. The morphisms fj. and (go fx), induce

li%l(g o fx)yfic: Dm(Y,A) = Du(Z, H(Q))
(1) For A € Du(Y,\), we have
(1% freaficA) @yay A = A,
(2) Assume that A € Du(Y,\) is obtained from V € DP(G,A\). Then we have

(hﬂ(g o fx)y(A) ®a V) ®H7:[(G) A~ g A
K

Proof. (1) We have

(i frepfred) @yc) A = ((lin frp) ©F A) @5y A = (U fr i) ©5q) A) @ A
K K K



Hence it suffices to show that the natural morphism (hg i SN ®H;L(G) A — Ais an
isomorphism. We can check this v-locally on Y by [FS21, Proposition VII.3.1 (iii)].
Hence the claim follows.

(2) The morphism g, induces

92 Du(Y, H(G)) = Du(Z, H(G)).
By [FS21, Proposition VII.3.1 (i)], we have
(lim(g o fi)s(A) @4 V) @3y A = gy (i frep(A) @4 V) @3 A
K K
= g, ((timy fics (M) @4 V) @y A) = g5 (limg fres(V)) @y A).
K K

Combined with (1), it remains to show

lim frep (V) = lim frep fieA.

K K
We can check that the morphism

lim freq(V) = lim frpfrcA
K K

induced by V — VE «— f* A is an isomorphism. O

Let A be a Zg-algebra. For an Artin v-stack X, let Djs(X, A) be the category defined
in [FS21, Definition VII.6.1].

Lemma 1.5. Let f: X — Y be an {-cohomologically smooth morphism of Artin v-stacks.
(1) We have fy(Dys(X,A)) C Dys(Y, A).
(2) For A € Du(Y, ), we have (f*A)ls = f*(Als).

Proof. The claim (1) follows from [F'S21, Definition VII.6.1]. For B € Du(Y, A), we have

Hom(B, (f*A)"™) = Hom(B, f*A) = Hom(f,(B), A)
= Hom(f,(B), A™) = Hom(B, f*(A™)),

where we use (1) at the third isomorphism. Hence the claim (2) follows. O

Lemma 1.6. Let
x Loy

Pl
x—1.y

be a cartesian diagram of Artin v-stacks. Assume that g is {-cohomologically smooth.

Then we have
g*Rflis*A = Rfllis *g/*A

for A € Dys(X,A).



Proof. This follows from [FS21, Proposition VII.2.4] and Lemma 1.5. O

Lemma 1.7. Let f: X — Y be an {-cohomologically smooth morphism of Artin v-stacks.
Let A, B € Dys(Y,A). Then we have f*R #omys(A, B) = R Zomys(f*A, f*B).

Proof. This follows from [FS21, Proposition VII.2.4] and Lemma 1.5. O

Lemma 1.8. Let f: X — Y be a morphism of Artin v-stacks. Let A € Dys(X,A) and
B € Dys(Y, A).

(1) We have R 7#omys(B, Rfiis«(A)) = Rfis« R Homys(f*B, A).
(2) If f is £-cohomologically smooth, then we have
Réfomhs(fu(A)7 B) = Rflis *R %OWHS(A, f*B>

Proof. (1) For C € Dys(Y, A), we can check
RHom(C, R #omys(B, Rfiis«(A))) = RHom(C, R fiis« R 7 omys(f*B, A))
by adjoint. The claim (2) is proved similarly. O
For an /-cohomologically smooth morphism f: X — Y, we put

Dy = (lm Rf'(Z/'Z)) @z, A

and

fi(4) = fy(A® D7)
for A € Dys(X,A). For an f-cohomologically smooth morphism f: X — %, we write
Dx for Dy. For f: X — % and A € Dys(X,A), we put RI'\(X,A) = f,(A). For
f: X = SpaC and A € Dy(X,A) where C is an algebraically closed non-archimedean
field of characteristic p, we put RI'; o(X, A) = f,(A).

1.2 Geometric Satake equivalence

We recall the geometric Satake equivalence for Bjz-Grassmannians by Fargues-Scholze
(cf. [FS21, VI, IX]).

Let C, be the completion of the algebraic closure of QQ,. Let F' be a finite extension
of Q, in C, with the residue field F,. For an algebraic field extension k of [y, let Perfy,
denote the category of perfectoid spaces over k with v-topology in the sense of [Sch17,
§8].

Let G be a connected reductive group over F. We define v-sheaves LG and LG
over Spd F' by sending S = Spa(R, R") € Perfg, with an untilt S* = Spa(R*, R*™) to
Bar(R*) and Bj;(R*), where Bar(R*) and Bl (R*) are defined as in [Far16, Definition
1.32]. We put Grg = LG/LTG and

Heke = [LTG\LG/L*G).

For Ay, Ay € Du(Hckg, A), let A; x Ay denote the convolution product of A; and A,.
Let @ be a finite quotient of Wr such that the action of W on G factors through Q.
Let

S': Rep, (G x Q) — Da(Hcka, A)
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denote the functor that gives the geometric Satake equivalence (cf. [FS21, IX.2]). This
functor is symmetric monoidal functor by the construction (cf. [FS21, Proposition VI.10.2]).
For V1, V5 € Rep, (G % Q), let

iy S’ (V1) x 8'(V2) = S'(Va) + 8'(VA)
be the commutativity constraint uniquely characterized by

vy, Vo

S' (V1) x S'(Va)

|

S'(Vi® Va)

S'(Va) x 8" (V1)

|

S' (Ve @ V1),

S/(le,VQ)

where oy, v,: Vi @ Vo — Vo ® V) is the isomorphism switching V; and V5.
Assume that p € X, (T)". Let E, be the reflex field. Let @, C @ be the image of

Wg,. Let rg, be the highest weight  irreducible representation of G x Q,. We simply
write r,, for rq , if there is no confusion. We write V), for the representation space of r,.
We put IC;i = 8§'(V,), where &' is the one for Gg,. We use the same notation IC; for
the pullback of IC; to other spaces.

2 Moduli of local shtukas

Let S = Spa(R,R*) € Perfr,. We put Wo,(R*) = W(R") Qw,) Op. Take an
topological nilpotent unit wp in R. Let Yoo0)(S) be the adic space defined by the
condition p # 0 and [wg] # 0 in Spa(Wo, (R"), Wo,(R")). Then Vo) (S) has an
action of the g-th power Frobenius element g induced by the ¢-th power map on R.
The quotient

Xs = Vo,00)(9) /6%

is called the relative Fargues-Fontaine curve for S (cf. [SW20, Definition 15.2.6]). The
construction glues together to give Xg for any S € Perfy, .
We define a continuous map

kst V0,0 (S) — (0, 00)
by
1y loellill

~ loglplz

where 7 is the maximal generalization of z € Vp.«)(S) and |- |z denotes the valuation
corresponding to Z. For an interval I in (0, 00), let V;(S) denote the interior of xg'(I).
For S € Perfr,, we put B(S) = O(Y0,00)(S)). Then B is a v-sheaf by [FS21, Proposition
I1.2.1].

Let G be a connected reductive group over F. Let b € G (]5 ). We define an algebraic
group Gy over F' by

Gy(R) = {9 € G(F®r R) | g(bo ® 1) = (bo ® 1)g}
for any F-algebra R. We define a G-bundle &, x, on Xg by
(G Xspa(it) Y0.0) (9))/((b0) x 5)".
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If ¥ = g tbo(g) for b,b,g € G(F), then the left multiplication by ¢~! induces an
isomorphim
tgi &,XS — (g{}b’,XS' (21)

We define a sheaf J, on Perfg by

Jo(S) = Aut(&,x,)

for S € Perqu. In the sequel, we simply write &, for &, x, if there is no confusion. We
define jb>0 as in [FS21, IIL5]. Then we have J, = jb>0 x Gy(F) by [FS21, Proposition
I11.5.1]. If b is basic, we have J, = G,(F).

Let b,V € G(F) Let gy, ..., um be cocharacters of G. We put pe = (i1, -, fm)-
For 1 <i <m, let E; be the field of definition of ;.

Definition 2.1. We define the presheaf Sht, , by sending S = Spa(R, RT) € Perfg_ to
the isomorphism classes of the following objects;

o an untilt Sf of S over E for1<i<m,

o a G-torsor P on Y000\ (S) with an isomorphism

PP (8037))|y(0,00)(5)\uy;1 st = 7D|y(o,oo>(S)\U””‘ st

=14

which is meromorphic along the Cartier divisor | JI", S* C Yi0,00)(:S) and the rela-

tiwe position of P and P at Sf s bounded by Zﬂsqzsg w; at all geometric rank
J 7

1 points for all 1 < i < m,

e an isomorphism
Uroo) * Pl (9) = G X Vo) (5)

for large enough r under which @p is identified with b X g and an isomorphism
1017 Pl is) = G X V()
for small enough r' under which ¢p is identified with b’ X @g.

If there is no confusion, we simply write Sht}s, for Sht?’, ,,. If ue = (1), we simply
write Shté’b’b, for Sht‘é:b’b,. We use similar abbreviations also for other spaces.

We define the right action of J, x J, on Sht¢r, by

(tfr00) t0a]) = (9710 Uroo), 97 © L0])
for (g,4") € Jy X Jy.
We define Gr¥s,q g, ... xSpd £,.<pe 85 0 [SW20, Definition 23.4.1]. It is a spacial
diamond by [SW20, Proposition 23.4.2]. We have a morphism

tw

He . He
Tawy* SWGy = GG S 4 By xSpd B <pie

defined by forgetting ¢(p,,. The morphism ﬂé:b’b, is a jb/—torsor over a locally spatial
subdiamond of GrthtSpdélx-uxsladEm,Su. by [Sch17, Proposition 11.20]. Hence, Sht’é:b,b, is
a diamond by [Sch17, Proposition 11.6] and [Farl6, 2.5, 2.6.2].
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We have a natural inversing morphism
—1
Shtlé.,bb’ - Shté.,b’,b (2.2)

compatible with the action of jb X jb/.

Let B(G) be the set of o-conjugacy classes in G(F). We write B(G)pas for the set
of the basic elements in B(G). Let p be a cocharacter of G. We define B(G, i) as in
[Kot97, 6.2].

Assume that G is quasi-split. We fix subgroups A C T C B of G where A is
a maximal split torus, 7" is a maximal torus and B is a Borel subgroup. We write
X, (A)* and X, (T)" for the dominant cocharacter of A and T. For b € G(F'), we define
vy € X.(A)g as in [Farl6, 2.2.2] using the slope morphism constructed in [Kot85, 4.2].
Let B(G, p, [b]) be the set of acceptable neutral elements in B(G) for (u, [b]) (cf. [GI16,
Definition 4.3]).

Lemma 2.2. Assume that b is basic. The map
G(F) = G(F) = Gy(F); g gb™!
induces bijections B(G) — B(Gy), B(G)vas = B(Gp)bas and B(G, i, [b]) — B(Gy, ).

Proof. The claim follows from the equality

(9'90(g") )b~ = g'(gb™") (b ()b~ ")~
for g,¢ € G(F). O
Proposition 2.3. Assume that V' is basic. We have a natural isomorphism

He ~ He
Shty e — Shte 1y

which 1s compatible with the action of jb X jb/.

Proof. We can view Shté’,b,b/ as a moduli space of modifications of G-torsors on a Fargues—
Fontaine curve. The category of G-torsor is equivalent to the category of Gy -torsor on a
Fargues—Fontaine curve as explained in the proof of [SW20, Corollary 23.2.3]. The claim
follows from this equivalence. Il

Remark 2.4. Assume that b,b’ are basic and m = 1. Then a weak version of Kottwitz
conjecture for Sht, ,, holds by [HKW22, Theorem 1.0.4], Lemma 2.2 and Proposition
2.3.

Remark 2.5. Assume that b,b' are basic and m = 1. Under the isomorphism in Propo-
sition 2.3, the inversing morphism (2.2) is identified with the Faltings—Fargues isomor-
phism proved in [SW20, Corollary 23.2.3].

Lemma 2.6. Assume that U is basic. If Shty,,, is not empty, then we have [b] €
B(G, p, []).

Proof. By Proposition 2.3, we may assume that & = 1 dropping the assumption that G
is quasi-split. Then the claim follows from [CS17, Proposition 3.5.3]. [
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We define a Weil descent datum of J, by
:]vb — ja(b) = O'*(jb); fr=tyofo tb_l,

where t;, is defined in (2.1). Let pg denote the half-sum of the positive roots of G with
respect to T" and B. We put N, = (2pg, ).

Lemma 2.7. Let A be a solid zp-algebm. Let f: jb>0 — * be the structure morphism.
Then we have an isomorphism f;A ~ A compatible with the actions of Wp.

Proof. This is proved in the same way as [GI16, Lemma 4.17] using Lemma 1.3 and the
definition of the Weil descent datum. [

Let 0p: Gp(F') — A be the character obtained by the action of G, (F) on Dy, where
frJ70 — %

3 Cohomology of moduli of local shtukas

Let pte = (i1, -5 ptm) € (Xu(T)T)™. Let E be the field of definition of p,. The space
Sht‘é"b’b, is the moduli space of (S%, &, — &), where S* is an ultilt over E and & — &
is a modification bounded by s, along the Cartier divisor defined by S*.

Let C; denote the tilt of C,. The untilt C, of C; determines a morphism Spa C; —
Spd Q,. For the arithmetic Frobenius element o € Gal(E"™/E), we take m such that
og|pe = 0™ and define a Weil descent datum of Sht’é:b’b, by

Sht ey = SHtG mp) ompy = T5(SHEG );

tT_nl ton bt
(Sﬁ7(gal) L éab/) —> (Sﬁ,(éﬁam(b) —’b> éob i> gb/ ;b> @@gm(b/))

where we put t,, = tom-13) 0 - - 0 ty: & — Emp) using (2.1).
We have fiber products

V1 Jb b
/\/l§ ./\/lb *

|

My —2 o My <[5/ Gy (F)]

l b hb
:b

7 b
Bung’ —— Bung <——— Bun’,

and morphisms g,: My — [*/G,(F)] and @: M, — * as [FS21, V.3]. Here i, and i are

sections of g, and g, respectively explained in [FS21, Proposition V.3.6]. Then 4°, j° and
7, factor through

*: Bunl, — Bung’, j°: Bung® — Buny’, m): M, — Bung’.
Lemma 3.1. The functors hyy and Rhy . are quasi-inverses of the equivalence

hy : DliS(Bunlé, A) = Dys([*/Gy(F)], A)

of categories.
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Proof. Since hj is an equivalence of categories by [F'S21, Proposition VIL.7.1], its left
adjoint hyy and right adjoin Ay, give quasi-inverses. O]

We define i, : Dyg(%, A) = Dys(My, A) and i Dyg(My, A) — Dy(*, A) by
~ ~ . ~ ™ ~ . ~ ~y
ipy = cone(fpnjy — id) o @y, 4, = Rapys« 0 ib(id = Rjp s Ty )-
Then 4} is a left adjoint of . We define iyy: Dys([#/Gy(F)],A) = Dys(Ms, A) and
it Dis(My, A) — Diys([%/Gy(F)], A) by
Z'bJ = COIle(jb’uj; — ld) e} q;, Z;) = RinS* ) ﬁb(ld — ij,lis *j;)

Then ¢ is a left adjoint of i*'. Further we define i{’: Dy (Bunl, A) — DliS(Bunéb,A)
and "% DliS(Bunéb, A) — DHS(Bunb@A) by

. b .l
iy =my, 0dpohy, ™ = Rhy, 0i,om,.

Then i is a left adjoint of i"®'. We define i: Dys(Bunl, A) — Dys(Bung, A) and
DhS(Bung,A) — Dy(Bun?, A) by

b -b.! .
Z? — jh_ o Z:b, Zb,. — Z/b,. Ojgb,*'

Then i}’ is a left adjoint of "'

Lemma 3.2. For A € DhS(BunG ,\), there is a distinguished triangle Ay — A — Ay —
where A, € thhS(Bun ,A) and As € z.DhS(BunG,A). Further, the full subcategories

juDhb(BunGb,A) and ¥ Dys(Bun%, A) of Dys(Bung’, A) are equivalent to Dys(Bung’, A)
and Dys(Bun%, A) by the restrictions respectively.
Further similar claims hold for My, and M.

Proof. The claim for Bunéb is proved in the proof of [FS21, Proposition VII.7.3]. The
claims for M, and M, are proved in the same way. O

Lemma 3.3. (1) We have isomorphisms
cone(Jpyj; — id) = apsiy,  Ripissty = fib(id — Rijpisads)-
(2) We have isomorphisms

cone(jp iy — id) Ziyyiy,  Ripyis«ipy = ib(id — Rjyissji)-

(8) We have isomorphisms

cone(jéb]’b* N id) ~ Zle/b* Ri -1b

Uis

= >~ fib(id — Rj{,5"7).

Proof. Let A € Dys(My,A). By Lemma 3.2, there is A; € Dy (Mj,A) and Ay €
Dyis([*/Gy(F)], A) such that j,, Ay — A — 4, A2 — is a distinguished triangle. By taking
Ji and i, we have A; = jyA and Ay = iy A. Hence we obtain the first isomorphism in
(2). The second isomorphism in (2) follows from the first one by taking the right adjoint.

The other claims are proved in the same way using Lemma 3.2. [
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Lemma 3.4. For A € Dys(M,, A) and B € Dy([x/Gy(F)], A), we have an isomorphism
ZbJ(ZZ(A) ®L B) >~ AQL Z'bJ(B).

Proof. We have

A ®@" iy (B) = cone(jij; (A @" ¢;B) — A®" g3 B) = iy iy (A " g B) = iy, (i3 (A) @ B),
where we use Lemma 3.3 (2) at the second isomorphism. O
Lemma 3.5. We have fib(D,, — Rjpis«Ji Dq,) = Ripis+/\.

Proof. By the change of coefficient and the inverse limit, we may assume that A is
torsion. Then we have fib(D,, — Rjp1is«ji Dg,) = Rip1is«ip@hA = Ripjis oA O

Lemma 3.6. We have Do iy =i, 0D and z}) oD =Dogqj.
Proof. Let A € Dys(M,, A). We have

(i, o D)(A) = iy, R Homys(A, Dy,) = Ry s« (R Homus(A, fib(Dy, — Rjy s« Dg,)))-
By Lemma 3.5, this is isomorphic to

Ry s « (R A 0muis(A, i is «N)) = Ry tis « (R tis « R A 0mis (i, A, A))
= R A omys(iy A, N)) = (D oip)(A).

Hence we have ij o D = D o if. Another claim follows from this by adjoint. O
The following lemma is already known (cf. [FS21, I1X.3]).
Lemma 3.7. We have Do i =i oD and i* oD = D o 1>*.
Proof. Let A € Dys(Bung, A). We have
h; ((i% o D) (A)) = 4y R #omiis(A, Diung ) = iy R Homis (15 A, T Dung, )
= §,D((m;A) ® Dr,) 2 D(iymA) @ iy D!

where we use Lemma 3.4 at the second isomorphism and Lemma 3.6 at the fourth
isomorphism. On the other hand we have

hy((i2 0 D)(A)) = AR s omus (i A, Dy, ) = R Homys(hyi™ A, by Dy,

>~ D(iymy A) @ Dy,

b
Bung,

where we use Lemma 3.4 at the second isomorphism. Hence i® oD = D o i** follows
from [Sch17, Proposition 23.12]. Another claim follows from this by adjoint. O

Lemma 3.8. We have i), = i} (ib(id — Rjpyis«Ji)), iy = i (fib(id — Rjyys.ji)) and
b 2 i (gb(id — Rjil 7))
Proof. For A € Dys(M,, A) and B € Dys([*/Gy(F)], A), we have

HOHI(Z.M(B), A) = HOIIl(’i@g(B), ﬁb(A — ij,lis *];A)) = HOIIl(B, ZZ (ﬁb(A — ij,lis*j;A)»

by Lemma 3.2. Hence we obtain the second claim. Other claims are proved similarly. [J
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Lemma 3.9. We have iy, = id, iyiy, 2 id and ' = id.
Proof. We can check these using Lemma 3.8. O
Lemma 3.10. We have i ipy = ~ Ry, lisss @bt =2 Ripyisw and i? = Rif?, .
Proof. By Lemma 3.3, Lemma 3.8 and Lemma 3.9, we have
iy Rip s« = iy Riyis «iyipy = iy ib(id = Rijp s ey )ipy = dyipy = id.

Hence 41 = ipis« follows from Lemma 3.2 using Lemma 1.6. Other claims are proved
similarly. n

For a compact open subgroup K of G,(F'), we consider the fiber products

He fK He
SBH, Hekl

Spa (C;

ltb/

Heks 2% Bung xDiv'y
lpl
h ;b
[%/ K] —~— Bun}, —— Bung
where hx and t, are the compositions

hK,Gb(F>

[/ K] [+/Gy(F)] =% Bunk,

Spa C; — Bun? xDiv} — Bung xDivQ
of the natural morphisms. Let py: Hekl® — Hek" 2 Bung. We put

fKJA — pT,b’i?hK,!A‘

Remark 3.11. If b is basic, fx is etale, in particular £-cohomologically smooth. In this
case, the above definition of fx A coincides with the general definition before.

We put
RU(Shtle, ) = fors ((fra ) @V 1C,).

We can view

RI', (Shté’be,) >~ 5T, (ithg,\)

as an object of D(G,(F)xWg) by [FS21, Corollary 1X.2.3]. For a compact open subgroup
K’ of Gy (F'), we define RI'.(Sht{;, , ) in the symmetric way. Since IC,, and IC_,,
corresponds under the natural isomorphism Sht{;s oy ShtG w > We have

RTo(Shtfey o) = 6T (i higer ).

Remark 3.12. If b is basic, RU(Sht(, x,) is identified with (fy o fx)y(IC,,). We
define RI‘C(Shté"b’K’b,) as above since we do not have a good definition of

fK,! . Dlis (Sht'u.

Gb,K YT A) — Dys(Heklr, A)

for a general b.
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We put
RU(Shtg,y) = lim  RU(ShtE, sy )-
KCGy(F)

Lemma 3.13. We have ¢, o 1) = id.

Proof. Let B € Dys([*/Gyp(F)],A). Then we have iy, (B) = cone(j,5j; A — A) @" ¢; B.
Hence we have

(v © 761)(B) = gy (cone(jonjs A — A) @ DY) @ B.

(y
It remains to show g,g(cone(jpgjyA — A) ® D) = A. Tt suffices to show this after
taking a pullback via SpaC) — [« /Gb( )

both sides are trivial. Let jy: U — Mb,c; be a quasicompact open neighborhood of
ip(Spa C?). We have

] since the induced actions of G(F) on the

Gbz(cone(pgjs A = A) @ (@A) ™) = (@ © juv)ai (Rivuis+ (A) ® D).

Then the question is reduced to the torsion case by by Lemma 1.1, since g, o jy is quasi-
compact, separated by [FS21, Proposition V.3.5]. In the torsion case, the claim follows
from [FS21, Proposition VII.5.2] and cone(jp ;A — A) = iy, (A). O

Lemma 3.14. For A € Dys(M,, A) and B € Dys([x/Gy(F)],A), we have an isomor-
phzsm Qb,h(A ®L ib,!B) = ZZ(A ® qu) ®H‘ B

Proof. We have

A" iy B cone(fppjs A — A) oY ¢ B
= cone(fpyjp(A® D,,) > AR Dy,) ® D;}l Q" ¢ B
= (insiy(A®@ D,,)) @ D' " ¢;B,

where we use Lemma 3.3 (2) at the last isomorphism. Hence we have

@i (A @ 141 B) = gy ((ini3(A® Dy,)) ® D' @ B
= g1 (inif (A ® Dg,)) @ B = i3(A® D,,) @ B,

where we use Lemma 3.13 at the last isomorphism. O]

Lemma 3.15. Let A € Dy (Bung, A) and B € Dy(Bun%, A). Then we have
RTy(Bung, A @" it B) & RLy([+/Gy(F)], h; (i** A®" B) ®" i; D,,).

Proof. We have

RT,(Bung, A ®" i B) & RT,(M,, m; A @" iy,h;; B)
= Ry ([x/Go(F)], iy (my A @ Dy,) ®" hyB)
= RTy([/Gy(F)], hy (" A @" B) @ i;Dy,),

where we use Lemma 3.14 at the second isomorphism. O
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Proposition 3.16. We have a natural isomorphism
RFC(Shtlé.,lLKﬁ')K/ = RFC(Shtlé:b7b/7K/)K

Proof. We consider the following diagram:

SpaC2 /Gy (F)] <=2 [Spa C: /K] [Spa €/ K') ™% [Spa Ch /Gy (F)]

h hyer
J/hb / . hb/l

ib

Bung’q - BunG’@; S Hckg% 2 BunG’CZ S — Buné@
We have
RTy ¢, (Hekfs  piithic) A @ pyit hieryA @7 1C,,) (3.1)
= RFH,(C?) (BUHG7C:&£, T o (Z?h[{le) ®]L i?,hKl7!A)
~ RI, ¢ ([Spa C, /Gy (F)], by (i" T, (VR ) A) @ hyer ) A) ® i3y Dy, ), (3.2)

where we use Lemma 3.15 at the last isomorphism. We have

h;/hK/JA X iZ/qu, = hZ/hb’,h((hK’,b’,uA) X D};j) (29 iZ/qu,

N . B . (3.3)
= hK’,b’,th’,b’(Dhbl, X Zb’qu/)?

where we use Lemma 3.1 at the last isomorphism. By [HI24, Proposition 3.15, (4.1)],
we have D;lj ® iy Dg, = A. Hence (3.2) is isomorphic to

RT, ¢y ([SpaC, /Gy (F)], hyi” T, (i hicaA) @ hyer s A) 22 RTG(Shtlss, o )i

by (3.3). Since (3.1) is symmetric with respect to (b, K) and (¢, K'), the claim follows.
[

Corollary 3.17. We have RI'.(Sht, ) = RI(Shtgy ).
Proof. This follows from Proposition 3.16. [

Proposition 3.18. (1) If K is pro-p, then RTC(Sht’é:b7K7b,) is a compact object in
D(Gy (F),A).

(2) Fori € Z, HX(Sht{, x ) is finitely generated smooth Gy (F)-representation.

(3) If p is an admissible representation of Gy over A, then R Homg,, (RT'c(Sht&, x4), )
18 a perfect complex of A-modules.

(4) If A= Q, and p is a finite length representation of Gy (F) over Q,, then

lig R’ Homg,, (r) (RT(Sht, ) )
KCGb(F)

is finite length representation of Gy(F') for i € Z.
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Proof. We have
lim R Homg, (p) (RL.(Shtls, 1 p).p) = lim R Homg, (5T (i), p)

KCGy(F) KCGy(F)
= lim R Homg,r) (hka,m) A, by T, vRib_ Rhy .[p])
KCGy(F)

= hyi®' T,y Rify, , Rhy . [p].
Then the claims are proved in the same way as [FS21, 1X.3| using Lemma 3.7. O

We put
HZ(Shtgr,y) = > (=1)'RTe(Sht(s, ).

1€EZ
4 Convolution morphism and twist morphism

4.1 Convolution morphism

Let A, spar denote the diagonal subspace of (Spd F))™. For 1 < ¢ < j < m, let
pr; ;: (Spd F)™ — (Spd F')* denote the projection to the (4, j)-component. We put

Un=Spd )"\ | prij [ U (ex1)"(Daspar)

1<i<j<m nez\ {0}

This is an open subspace of (Spd ') which contains A, spa r-
Let by, ... by € G(F) and pie = (ju1, - - . , ftm) where p; € X, (T) for 1 < i < m. We
put
Shté.,bo,bm,Um = Shtlé.,bo,bm X(Sde)mUm-

We define the convolution morphism

mb.#.’Um: (Shté{bmbl X oo X Shté%m717bm> X(Sde)m Um — Shtlé.bo bonUnn
over Spd Fy x - -+ x Spd E, as follows. Let S = Spa(R, Rt) € Perfg and

(S P is PP;y L(0,r]i L[r’,oo],i)lgigm
be objects giving an S-valued point of
(Shtg},bo,bl X e X Shtlé;’%m_hbm) X(Sde)m Um
Define P by gluing Piy,,(s) and Py, _ (s) by the following modifications:
e Modifications occur only at (J;~; U, o (S,
o Take 1 < iy < m. Put
L,={1<i<m]|S = Sﬁ}

Define the modification at Sfo by the composite of the modifications at Sfo given
by ¢p, for all i € I,,. For n > 0, the modification at 90_”(530) is given by the
pullback under ¢™ of the modification at Sfo.
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Then P is naturally equipped with an isomorphism
op: (p5P)| “SxSpa PP\, ST = P “SxSpa FP\Ur, St
Further, we have isomorphisms
Plyions) = Pilyoqs)
Ply,. = Pl

L(O ]

=5 G X Vo (S),

Lrl o0),m
[r OO)(S) —— G X y[r’,oo)(s)

Too)

These gives an S-valued point of Shtg", , . . Thus we obtain my, .., 0,,-
We define

GrG,SpdElx---XSpdEm,Su.y GrG,SpdElx---XSpdEm,gp.

as in [SW20, Definition 20.4.4]. Then we have a convolution morphism

Mpe : GTGSpd B x--xSpd B, <pe — GTG,Spd B1 x - xSpd Em,<jte
by [SW20, Proposition 20.4.5]. Note that

~ tw
GrG Spd By x-xSpd Em,<pre X (Spd F)m Um = GG 504 By - xSpd By <p1e X (Spd F)ym Unn.-
Then we have a morphism
Hm ~ . .

Shitry, e, ¥ - X ShtG = GTGspa i, exSpd B <o

by looking at a modification at each Sf . Then we have the commutative diagram

Mbe,1e,Un

(Shth By X X Shté’,’im,hbm) X (spd Fym Un, Shtlé.,bo,bm,Um

| |

GrG,SpdE1><-~~><SpdEm,§u. X (spd Fym Un, GrG,spd By x--xSpd B, <pe < (Spd F)™ Un

where the bottom morphism is induced by m,,, .

4.2 Twist morphism

Let Z° be the identity component of the center of G. Let a,a’ € Z°(F) and A € X,(Z°).
Let £ be a finite extension of F' in C, containing the fields of definition of ;1 and A\. We
define the morphism

HoA H A s H=A
tb,b’:a, ShtG b, ,Spd E XSpd £ ShtZ0 ,a,a’,Spd E ShtG ab,a’b’,Spd E

as follows. Let (S* & — &) and (S*,&, — &) be modifications defining points in
Shty, ., and Sht}oﬂ,a,. Then the diagonal arrow in the diagram

0 0
@@bXZ Ey — &y xZ Sy

& X7 & —— &y x7" &,

defines the image of

((S%, & — &), (S%, & — &)

under tffb),‘ » In Shté ’;a,b,s 1~ Note that we have equalities Gy(F) = Gap(F) and
Gy (F) = Ga/b/(F).
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Proposition 4.1. We have
(RPC(Shté,b,b’) ®L RFC(Sht%O,a,a’)) ®Z0 QK RP (Shtlé a)l; a’b’)
in the derived category of representations of Gyp(F) x Gy (F) x Wg.

Proof. This follows from Lemma 1.4 and that ¢ ’b),‘ﬂ’a, is a ZY(F)-torsor. O

5 Formula on cohomology

Let by, ..., by € G(F) and py, . .., pim € X.(T)*. Let E be a finite extension of F in C,
containing E; for 1 <7 < m. Let

+Xgpa Sht!™ — Sht*!

w1
m : Sht
bospra t O b 1,bm,Spd I bo,bm,Spd E

. X oI
bo,b1,Spd E Spd E

be the pullback of the convolution morphism m, ,, v, defined in §4 under the morphism
SpdE = A, qoqz > (Spd E)™ — Spd Ey X -+ x Spd E,.

The morphism m, ,, coincides with the morphism defined by the composition of modi-
fications. This induces

— w1 Mo 7 T |1t
: - X Xooe —
Mbaat (S i Xspa " XspagSht" o)/ (I X lbn) = SO o

where jbl for 1 <7 < m — 1 acts diagonally on the factor

Hi Hi+1
Shtbz LbiSpd B Spd £ Sht bi,bit1,Spd E

and trivially on the other factors.
Let

m#o

Gre spd <pe — Glaspa i, <ol

be the pullback of

Myy: GIG Spd By x-xSpd B, <pie > GIG Spd By x-xSpd Emn, <pte

under y y
SpdE = A, gpap < (Spd E)™ — Spd Ey X - -+ X Spd E,.

He ‘/”“
We define my,, p .0, : Shtbo,bm,SpdE — Shtbo,bm,spdE by the fiber product

Myq,by,b
He te:b0,bm lpso]
Shtb07brnyspd E Shtb07bnuspd E

|

—~ Myg

G Spd 2,<1e

Gré spd #,<lual-
Then Sht’;o' p,, 18 a moduli space of modifications

fml

R R L AL
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at S* such that f; is bounded by p; for 1 < i < m. We define a subspace Shtb ’;"b;”p;;‘ C

Shtg " spa s A5 A moduli space of modifications
0,9m

Go & o g I g

0

at S* such that f; is bounded by y; for 1 <i < m and & is isomorphic to &, geometric
fiberwisely for 1 <7 <m — 1.
We put

I = {([ba], s [bma]) € B(G)™ 1 [ Shtl , # 0 for 1 <i < m}.

We take fi,41 such that [b,] € B(G, fimy1, [1]). Then I+, is a finite set, since it is
contained in [[,;,,, , B(G, ZTEA 4, [1]) by Lemma 2.6. For A € X,(T)*/T'r, we put

VMA' = Hom:g(V), ® Vi)

1<i<m

For ([bi))1<i<m—1 € Iéf)‘b , we put Ny, = Zlgigmq Np,. We write Gr(gf’s)pdEéM for the
inverse image of GrG,Spd E<p under LGSpdE — GrG,SpdE‘

Proposition 5.1. The sum

> V) @“RI(Sht}, )

AEX.(T)+/T

18 decomposed into

( ) RT.(shty: )" (X) 5b) ®imt 6y, () A2Nb]

1<i<m 1<i<m—1

Jor ([bi])1<i<m—1 € ]li;,bm by distinguished triangles in the derived category of representa-

tions of Gy, (F) x Gy, (F) x Wg.

Proof. Let IC,, be the external twisted product of IC,,,,...,1C,, on a}spd #.<u.- By the
construction of convolution product [FS21, VI.8] in geometric Satake equivalence and
[F'S21, Proposition VII.4.3], we have

(M) lCu = > Vi @"IC,.
y+ /T

AeX,(T)+

Hence the sum
> Vo @“RI(Sht),, )
XX, (T)+/T
is isomorphic to RI'c(Shty>, 1C,,).
We put pu, = (p1,...,Hm—2). Let {[b],_i]}1<j<n be the image of the projection
Iy, — B(G) to the (m — 1)-th component. It suffices to show that RT.(Shts, ,1C,,)
is decomposed into

(RP (Shtgo'% 1) ®" RT, (Sht’”;”lbm) ®“ 8y

)@%;bj @ ARN; T (5.1)

1
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for 1 <j <n.
Let K C Gy, (F) be enough small compact open subgroup. Then

RF (ShtZO.Kb ,ICM.) Ntb Zb T Zb07!(hK,1A) gtszz T, T//Zbo (hKIA)

Hm—1
is decomposed into
tbm zme

Hm—1

y Zbo (hK IA)

zg b]

for 1 < j <n by Lemma 3.3 (3). This is 1somorphic to
Gl Timatyy (0 (2N J@% Dy (B Tinga(hicydh)) (5.2)

bJ m—1 bin 1

by Lemma 2.7. By Lemma 1.4,

By i Ting(hicih) = ( liny hK/mA) & RISty ) [@hie,
K'cG,;  (F) L

mfl

Hence (5.2) is isomorphic to

beJ m—1

m—1 ml 1

(RP (Sht¥s ) @" RLo(Shtl | @b 4, )@G () ANy ]

since t; 1y T, 4 , commutes with direct limits, tensors and changes of coefficients.
m—1"
Therefore we obtain the claim. O

Corollary 5.2. We have

m—1
> H*<H Gy (F), Q) Hi (b )@ @ 5)
=1

([bi])lgigmflelgo.,bm 1<i<m 1<i<m—1
= ) Vae“Hi(Sht, )
XX, (T)+/T
as virtual representations of Gy, (F') x Gy, (F) x Wg.
Proof. This follows from Proposition 5.1 by taking cohomology. O]

Lemma 5.3. Assume that m = 2. Let m be a smooth representation of Gy, (F). Then
we have

RHomg, (s ((Rr (Shtf, ) ®" RT(Sht}?, ) @ 8),) ®%, () A, 7r>
~ RHomg,, () (RTe(Sht}?,), R Homg, () (RTo(Shtf2, ), ) ©" ;)
in the derived category of representations of Gy, (F) x Wg for [bi] € Ié(’ilb;“z).
Proof. We have
RHomg, () (ch(smg;,b ) @ RT(Sht}2,) @ &, ®, () A w)
~ RHomg, (r)xc,, (r) (RT<(Sht}!, ) @ ch(smm) ®" by, AR T
~ RHomg, (F)xG,, (F) ) (RT.(Sht}?, ) ®" &,, Hom (RT(Sht}!, ), ™

)

~ RHomg, ) (RTe(Sht}2,,), R Home, () (RTc(Sht},, ), 7) ©% 5,

in the derived category of representations of Gy, (F') x Wg. O
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6 Duality morphism

Assume that 2 is invertible in A. We take a pinning P = (G, B, T, X,) of G. Then
define a duality involution tgp on G as in [Pral9, Definition 1]. We simply write ¢ for
tgp. Note that = —1 o pin X (T)/We(T) = X.(T)". We define an anti-involution 6
on G by 0(g) = t(g)~'. We define the duality morphism

Ovp = Shtg y, — Shtly 4 )

by sending f: @@b — é‘;), to «( f) L aﬁ ) — &,)- The above isomorphism is compatible
with actions of Jb X Jb/ and J ) X J (v under the isomorphism

Jo X Jy — Juwy % s (9,9") = (u(g), u(9)).

Then 6,4 is an involution on ShthL(b) On the other hand, 6 induces a morphism
0: Hckg — Hckg. Let E be the field of definition of u. We have a natural morphism

wo ©
Dy - ShtG,b,b’ — HCkG,SpdE‘

We have the commutative diagram

6,
Shtt; y —> Shtts ).

pb,b’l lpL(b/),L(b)

0
HCkG’,SpdE > HCkG,SpdE'

We have S'(r,, o ad(p(—1))) = 6*IC], by [FS21, Proposition VI.12.1]. Hence p(—1): r, o
ad(p(—1)) — r, induces M,,: 6*1C,, — IC|,. Hence we obtain the isomorphism

RFC(ShtéL(b,)’L(b)) — RFC(Sht’éybyb,)
induced by 0.
Lemma 6.1. The isomorphism

RTe(Sht%; ., 9) — BTc(Shtly, )

(0),(b)
1s compatible with actions of jb X jb/ and JNL(b/) X i(b) under the isomorphism

Jp X Jy — j;(b’) x jb(b); (9:9) = (u(g"), 1(9))-
Proof. This follows from the definition. O

Further, we have an involution
91,2 Shté@l X Shté7 J(b) — Shtléb 1 X ShtG 1 b)’ (ZL‘, .73,) — (917L(b) (.17,), 9571(1‘)).
We have a decomposition
2
V, @V, =Sym’V, ® A\ V.
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Let

Uy, (ch(smg{l) ® RFC(ShtiL(b))) Sk A= > VA RI(Sht),4)

AeX, (T)+/T

be the morphism given by Proposition 5.1. Let s;, be the involution on the source of
Uy, induced by 6, and the multiplication by (—1)%*#). On the other hand, let #,, be
the involution on the target of ¥, , induced by the permutation oy, v, on V, ® V,, and
) ShtbL — ShtbL

Proposition 6.2. The morphism W, , is compatible with the involutions sy, and ty,.

Proof. By the characterization of the commutativity constraint, the equality

IC),«1C, = Y VA®IC,
AEX(T)+/T

is compatible with the involutions cy, v, and oy, v,. Hence the target of ¥y, is equal to
H:(Shtgff(b), IC), +1C},) with the involution given by ¢y, v, and 8. Let 0z x : (Divy)? —
(Divk)? and oy Hckg’Q} — Hck{Gl’z} be the permutation of two Cartier divisors. Let

IC; * ICL be the fusion product on Hck{Gl’2}. Here we use the notation at the beginning
of [FS21, VI.9]. Then we have the morphism

,CVV,“VN : U;,G(ICL * ICL) — IC;L * IC;

extending cy, v, .

The morphism 6 induces #{1H{2}: Hck{GM};{l}’{Q} — ’Hckg’Q};{l}’{?} switching two
Cartier divisors. Here we use the notation in the proof of [FS21, Proposition VI.9.4].
Then we have a morphism

Syt OUHH(IC) RIC)) — 1C, KIC),

induced by M,, and switching two factors of IC/,. The morphism ¢ induces (-} : ’Hcké}’Q} —

’HCké1 2 switching two Cartier divisors. Then we have
) = my(Spp): 012 (1C), % 1C),) — IC, *1C), .

Since 012 o g, is the automorphism of HckS ™ over (Divk)? induced by 6, we also
have M, ,: (0112 0 03 ¢)*(IC), %1C),) — IC), * IC], defined in the same way as M,.
Then it suffices to show that

o2+ (1C), «1C)) T W), o5 o(I1C), *1C))) — i i IC), +1C,

and S/ , are equal. It suffices to check this on Hek S X 1.2y (Div ) {L21H{2} by
st G (Divy )2} X
['S21, Proposition VI.9.3]. This follows from the constructions of ¢y, v,, S}, , and M, ,

]
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7 Kottwitz conjecture

Definition 7.1. Let p: Wp — LG be an (-adic local L-parameter for G (cf. [Ima24,
Definition 1.14]). We put

S, ={9€G@) | gpg7" = ¢}

We say that ¢ is discrete if SQD/Z(@)FF is finite (cf. [Far16, Definition 4.1]).

Y]

Let b,b" € GL,,(F) such that [b] € B(G, u, [V']). We put

H? (Sht}, )] = Z (—1)" Ext{y, ) (RTe(Shtl, ), )

©,JEZL

for an irreducible smooth representation 7 of Gy(F).
The following is a version of Kottwitz conjecture for moduli spaces of mixed charac-
teristic local shtukas in GL,-case (¢f. [RV14, Conjecture 7.4]):

Conjecture 7.2. Assume that b,V are basic. Let p: Wr — ¥ GL,, be a discrete local L-
parameter. Let m, and my be the irreducible smooth representations of Gy(F') and Gy (F)
corresponding to o via the local Langlands correspondence. Then we have

H¢ (Shtyy ) [m] = my B (r, 0 )
m GI‘Oth(Gy(F) X WF)

For an object C in a derived category, we put H*(C) = @,., H'(C). The following
conjecture is motivated by [Dat07, Théoreme A].

Conjecture 7.3. Assume that b,V are basic. Let p: Wr — £ GL,, be a discrete local L-
parameter. Let m, and my be the irreducible smooth representations of Gy(F') and Gy (F')
corresponding to @ via the local Langlands correspondence. Then we have

H* (RHomg,(r) (RFC(Sht,‘f’b,), ™)) = my B (ry 0 ¢)
as representations of Gy (F') x Wg.

Lemma 7.4. Assume that b is basic. Let m, and m,) be the irreducible smooth repre-
sentations of Gy(F) and G, (F) corresponding via the local Jacquet-Langlands corre-
spondence. Then the pullback of m,y) under the isomorphism v: Gy(F) — Gy (F) is
1somorphic to ;.

Proof. By [Pral9, Corollary 1], we may assume that ¢(g) = fg!. If b = 1, the calim
follows from a theorem of Gelfand and Kazhdan (cf. [BZ76, 7.3. Theorem)]). If regular
elements g € GL,(F) and ¢’ € G,(F) have the same reduced characteristic polyno-
mial, then «(g) € GL,(F) and t(¢') € G, (F') are regular and have the same reduced
characteristic polynomial. Hence the claim follows from the case where b = 1 and the
characterization of the local Jacquet—Langlands correspondence. O

We put k(b) = vp(det(d)). For mq,...,m, € Z, let (mq,...,m,) denote the cochar-
acter of GL,, or its standard Levi subgroup defined by z +— diag(z™,...,z™").
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Theorem 7.5. Conjecture 7.3 is true in the following cases:
(1) k(b) = k() mod n and
k(D) — Kk(b)

= Y M ).
0 " (1,...,1)

(2) k(b) =0,1, kK(b) = k(b)) +1 mod n and
k(D) — k(b)) —1

= - (1,...,1) +(1,0,...,0).

(3) k(b) =0,—1, k(b) =k(V)—1 mod n and
k(D) — k(b)) +1

= - (1,...,1)+(0,...,0,—1).

(4) k(b) =1, k(b') =—-1 mod n and
“(b)_K<b/)_2(1,...,1)+{(2’0’“"0)’

n

ILL:

(5) k(b) = -1, k(t/) =1 mod n and

k(D) — (V') +2 0,...,0,-2),
n (1""’1)+{(0,...,0,—1,—1).

/"L:

Proof. By the inversing isomorphism (2.2), the claims (3) and (5) are reduced to the
claims (2) and (4). By Proposition 4.1, we may assume that x(b) = x(b') = 0 in (1),
k(D) =0,—1, k(b) = k(V') + 1 in (2) and k(b) = —1, k(') = 1 in (4). Further, we may
assume that x(b) = 0 in (2) by Lemma 6.1 and Lemma 7.4. Then the claim (1) is trivial.
The claim (2) follows from the proof of [Dat07, Thoéreme A] taking care the degree in
[Dat07, Thoéreme 4.1.2].

We show the claim (4). We may assume that b = ¢(b). We put

M1 :(1 0 ...,0), M2:(2,0,...,0), /11171:<1,1,0,...,0).

Note that we have I, (o "y Y = {[1]}. Let m; be the irreducible smooth representations of

GL,(F) correspondlng to ¢ via the local Langlands correspondence. By Proposition 5.1,
Lemma 5.3, the claim (2) and [Dat07, Corollaire 4.2.1], we have

(V':Zl 1) ) ® 'H* (R HOIIIGL(b)(F) <RFC(Shtfzb) b)ﬂﬂ(b)))
(Vi) @ M (RHomg, , () (RT(ShE,). 7 ))
~ H* (R Homg, , (r (RF (Shtmb) 1) ® RL(Sht!) ®I(L;Ln(p) @zﬂﬁ(b)))
~H" (R Homa, () (RT(Sht}), R Homg, , (r) (RT(Sht/f) ). min) ))
~ H* (R Homer, (ry (RTe(Sht!3), H' (R Homg, ) (RT(S0t4) ). min) ) ))
~ H* (RHomer,,(r) (RFC(Sht’f}b), ™ X))
~ T, X (()0® ()0) ~ mp X ((r,uz © @) D (rﬂl,l © @)) :
Using Proposition 6.2, we can separate the above equality to obtain the claim. Il
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Corollary 7.6. Conjecture 7.3 is true if n < 3 and p is minuscule.

Proof. All the cases are contained in Theorem 7.5. [

8 Inductive formula

For a smooth representation 7 of G(F') and the unipotent radical N of a parabolic
subgroup of G, let my denote the Jacquet module of © with respect to V.

Assume that G = GLs. Let T be the diagonal torus and B be the upper triangle Borel
subgroup of GLs. Let N be the unipotent radical of B, and N°P be the the unipotent
radical of the opposite Borel subgroup B°?. Let 05: T(F) — @Z be the modulus
wo 0 with m < [, let &,: Gy(F) — @Z be
the character determined by 05 and the natural isomorphism G,(F) = T'(F).

character with respect to B. For b =

Lemma 8.1. Let m € Z. We put

(@™ 0 , (@™t 0
=T =) =0 =)

Let m be an admissible representation of G(F'). Then we have

1
Ro HOInG(F) (ROFC(ShtI(]’II;?))’ 7T> — —R’ HOmT(F) (R.Fc(Sht%’b(?l))/)a 7TNop) (5) .

Proof. By [Cas82, A.11 Proposition, A.12 Theorem)], [GI16, Theorem 4.25] (cf. [Han21a])
and [Renl0, II1.2.7 Théoreme, VI.9.6 Proposition|, we have

R* HOII](;(F) (R.FC(Shtl()}l;P)), 7T> =R* HOII](;(F) (71'*, R.FC(Shtl()}b’P))*>

1

o ()

_ e HOHIT(F) (R’FC Shtleob/ ® 53,7TNop ® Oy (—_
o (
/

RT(ShtS0)), mver @ 65 ) 9 6y <__>

1
= —R*Homp(p) ( R°T. Shtleol),, 7TNop> (5) )

O

Proposition 8.2. Let x1,x2: F* — @Z be characters. Let ¢,,: Wp — @Z be the
character corresponding to x;. We put p = x1 X xo as representations of T(F'). Let
m >0 and m/2 >1>0. We put

! 0 wh ! 0 wh ! 0
b= <O wm—l) ) bl - ( 0 wm—l) ) b2 - ( 0 wm—l—l) .
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(1) Assume m # 2l. We put

If 1 =0, then we have

. m, m m
H2(Sht{ ) o] = (~1)" (nd§i) p) B, (5)
If Il > 1, then we have

H (Shty) o)
= —H(Shty" ") [p] @ oy, (—;) H2(Shty" > ™) [p] @ oy, @ oy,
{ H-(Shtbf” PN dG) ol @ gy, (5)  ifm=21+1
— H*(Sht j’jl PNl @ ey, (1) if m > 20+ 2.
(2) Assume m = 2l. If | =0, then we have
H (Sht),”)[Ind ) p] = (Ind5(3) p) M 1.

If Il > 1, then we have

. m, . m—1, 1
e il ) o = - B @ e ()

2
° m—2,0 G(F
— H2(Sht)" ") [IndG ) o] ® oy, @ @y

. m— w _ 1
A (ShTO) 0 © 651 @ (—)

Proof. First we show the claim (1). If [ = 0, we have

R* Home,r) ((RTe(St{1"™), p) = R* Homg, ) (RTc(Sh(l ™), p)

= (=1)™R* Homg, (r <IndG(F R°T(Sht{;,™) ®5b_l’p> <_%>
= (- 1)mIndG(F§ <R Homg, (r) <R r (Sht(TObWi ) ® 6, 14)) ®0p ) ( %)
= (- 1)mIndG(F§ (R Homg, (r) <R To(Shtiyn), /)®5l’) ® g ) ( %)
=(-™m (Ind%%p)XlgOXQ(Q);

m—1,1)

where we use Sht1 b = () and [GI16, Theorem 4.25] at the second equality. We assume
that [ > 1. By Proposition 5.1 and Lemma 5.3, the sum

R* Homg,r) ((RTC(Sht1), p) + R* Home, s (RTe(SHt{ "), p)
is equal to the sum
. (m—1,0) (1,0) -1
R* Hom,, () ((RTe(Shtf)"s ™), R Homg, () (RTo(Sht{3)), p) @ ,,")

+ R* Homg, (r (RF (Shtty" "), R Home, r) (Rr (St ),p) @5;,11).
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Since the fiber of the natural morphism Shtb b, ShtT by, 18 isomorphic to B¥=%
we have

1
R* Home, (r (Rr (She,™), p> — —R* Homg, () (RPC(Sht(T{;Sgl) @5,;1,p) (—§>

=—(p® &) Ky, <_;) '

Further, we have

R* Homg, () (R o(Sht{™ 7). R Home, (Rr (Sht{L” ),p) ®5b—1)

1
° m= 3
— —R HOIl’leb:l (F) (RFC(Shtél,l 1,0) )7 p) & SOXI (_ 5

If m =21+ 1, we have

1
R* Home, (s ( RT(Sht; ), p> S (mdggg p) X oy, (§>

by the claim in the case where [ = 0.
If m > 20+2, since the fiber of the natural morphism Shtb b, Sht!

21
to B*=%"" " we have

(0,1)
Tb.b,

1
R* Homg, () (ch(smg}é?), ,0) —R* Homg,(r <R° o(ShET;, ) @ 07 p) (_§>

—~(pein) 8o (3)
Therefore
R® Homg, (r) <RTC(ShtI($’O)), p)
— R* Homg, r) (RTc(St{)'T "), R Home, ) (RTc(S0t{})), p) @4, )
+ R Homg, (r) (RLL(Sht{}' ), R Homg,ry (RI(St()), p) @ 6)

— R* Homg,(r (Rr (Sht{"~ 11)),,0)
)

(] m—1, ]- ° m—2,
= - S @ g (—3) - HGHT A 0 00 @ g,

—He (Shy" ") i) p @ oy, (3) i m=20+1,
—H2 (Shty" ) p] ® ¢y, (3) if m > 20+ 2.

Next we show the claim (2). The claim is trivial if [ = 0. Assume that [ > 0. We

put 7 = Ind BE}IZ) p and

0 ot

By Proposition 5.1 and Lemma 5.3, the sum

R® Homgr) <RPC(Shtz()TO))’ 7T> + R®* Homg(r) (RFC(Shtl(ﬁfl,l)), 7T>
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is equal to the sum

R*Homg, (v (Rr (Sht{"7*), R Homgp) <RF (Sht{% ),7r> ® 5;11)
+ R* Homg, (RF (Shty" ), R Homer) (RF (Sht(’,). 7r> ® 51;,11) .

We have
R* Homer) ( RT(Shtf"), 7) = 0

by [Dat07, Théoreme A].
By Lemma 8.1 and the geometric lemma (cf. [Renl0, VI.5.1 Théoreme]), we have

R* Homg, () ( T(Sht{™ ), R Homep) (Rr (Sht{” ),w) ® 5;11)
1
= —R*Homg, (r) (RFC Skt %), R* Homyp(r) (R Te(Sht{y) ), wNop> (§> ® 5,)11)
m— o w 1 —
= —R* Homg, (r (RFC Shty" "), R* Homy(r) (R Le(Sht$ ), (p® 65) + p ) (§> ® 5,)11)

- |
LSt ), p) @ g, (—§>

m 1
— R* Homg, (r <RP (Shtbllo)p ® g >®g0x2 (—)

=-—-R* Homg, (r)

2
Hence
. (m,0) . (m—1,1) . (m—1,0) 1
HZ(Shty, )] = —HZ(Shty, )] = Ho(Shty, 1 )lpl @ o { —5
° m—1, w — 1
- S 0 050 (3
Therefore we obtain the claim. O

By Proposition 8.2, we can calculate HC'(Shtl(:T’O))[,O] and Hg(Shtéﬁ’O))[Indggg p] in
Proposition 8.2 inductively. We do not pursue the explicit formula here, but record the
following corollary.

Corollary 8.3. The GLy(F)-representations Hg(Shtl(:'f’O))[,o] and HC’(Shtl(:Y’O))[IndgEg Pl
i Proposition 8.2 are linear combinations of proper parabolic inductions.

Proof. This follows from Proposition 8.2 by induction. O]

0 1
= (o

and b, = b{* for m € Z. For an odd integer m, we put

;o o' 0
()
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Assume that m > 2. If m is odd or ¢ is cuspidal, we have
H (Shey ), | = H (Shtg ) [ms,, ] © ¢ = H2(Shey 27" m,, ] @ (r o ¢)-
If m is even and ¢ is not cuspidal, we have

H? (Shty™ ), = He(Shty" ") [my,, ] @ ¢ — He(Shty" > [m,, ] @ (ra © @)

m_ 1
— He(Shty" ) B x] © oy (—5)

where x is a character of F* such that m,, >~ St,.

Proof. Assume that m is odd. By Proposition 5.1 and Lemma 5.3, the sum

R* Homgp, () (RFC(Shtg’Z;?), m,m) + R* Homep ) (RFC(Sht,E:;l’l)), mm)
is equal to

R*Homg, <RP (Sht{™ "), R Homgy, (Rr (Sht{™) ), 7rbm)> .

Hence the claim follows from Corollary 7.6.
Assume that m is even. By Proposition 5.1 and Lemma 5.3, the sum

R* Homgy, (r) (ch(smg:;‘j)),wbm) + R* Homey,r (RP (Sht{" "), wbm>
is equal to the sum
[ (m—l,O) (1,0)
R*Homg, (r) (RFC(Shtb 9 R Homg, () (RFC(Shtb i ),wbm»
+ R*Homg, (s (RP (Sh{" ™), R Homr(r (Rr (snt(19), 1)7%) o 5§1> |
Hence, by Corollary 7.6, it suffices to show that

if o is cuspidal,

0
RH ) (Rre(snegts), )m, ) =
OMGLy (F (Shty, ) Ton, —((x®x) ®0p) @ ¢y (—3) if ¢ is not cuspidal.

By Lemma 8.1, we have
R* Home(r) (RSB, ).,
1
= —R. HOHIT(F) (R.FC(Sht%}EY)“b;@_l), (ﬂ'bm)Nop> (5) .
Hence the claim follows from (St,)yer =~ (x X x) ® 0. O

0 1
= (o

and b, = b{* for m € Z. For m > 1, we have

Proposition 8.5. We put

R*Homg, (r) (RFC(Shtémng’o)), 7Tbm)
— R* Homg,(r (Rr (sht{;?), RHomg, )(ch(sm(b:ff)),wbm>)

—R* Home L(F) (RF (Shtbm L0) ), 7Tbm_2> X (7“(1,1) 0 ).

2,b-1
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Proof. This follows from Proposition 5.1 and Lemma 5.3. O]
Theorem 8.6. Assume that n = 2. Then Conjecture 7.2 is true if k(b) is odd or ¢ is

cuspidal.
0 1
- (2 1)

Proof. We put
To show the claim, we may assume that p = (m,0) for some m > 0 and b is 1 or by by
twisting.

Assume that ¢ is cuspidal. If b = 1, we can show the claim by induction using
Proposition 8.4. If b = by, we can show the claim by induction using Proposition 8.5 and
the case for b = 1.

It remains to treat the case where ¢ is not cuspidal and b = b;. First, we can show
that

° m,O
H2 (Shty'3”)[my] = m & (r0) 0 )

is a linear combination of proper parabolic inductions as representations of GL2(F’) using
Corollary 8.3 and Proposition 8.4. Hence, the claim follows from Proposition 8.5 and
[Dat07, Théoreme A]. O

On the other hand, the following example shows that Conjecture 7.2 is not true if p
is not minuscule and ¢ is not cuspidal.

Example 8.7. Let = (2,0) and b be a basic element such that k(b) = 2. Assume that
¢ 1s not cuspidal and take a character x of F* such that m ~ St,. We put

0 1
e (20)
1

1
R* HOHlel(F) (RFC<Shtsl,1)77rb1) = Stx (—5) — (X o det) <§>

We note that

by [Dat07, Théoréme 4.1.2]. Then we have
R*® Homg, () (RFC(Shtfil), 7Tb>
= m 8 (r, 0 ) — (Indiee” (B ) ) B (ra 0 9)(1)
by Proposition 8.2 and Proposition 8.4.

Remark 8.8. Example 8.7 is compatible with the main theorem of [HKW22], since the

representation Indg%;gF)(X X x) has trace 0 on regular elliptic elements.

Remark 8.9. The error term in Example 8.7 supports that the expectation in [Farl6,
Remark 4.6] is true.

Example 8.10. Let x1,x2: F* — @ZX be characters. Let ¢,,: Wp — @Z be the char-
acter corresponding to x;. We put b = (73 ;)2) and = (3,0). We put p = x1 K xo

as representations of T(F'). Then we have

. G(F 1
H (Shtlé,b,l)[p] = _(IndBEF; p) Ky, ® 903(2 <—§) :
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Proof. We put

(1 0 , (@ 0 (10
= 2) () mm(02)

By Proposition 8.2, we have
. 3,0
H (Shty”)[)

(] 3 (] 3
= - DA B (-5 ) - B © 0 90

. 1
- s mal(E e o ()

DO | —

1
IndB(F (n) Wy, ® 903(2 <_§) + <Indggg p) Wy, @ 903(2 < )
+ H2 (Shtiy V) [p] @ 0y ® 0y, + He (St [0" @ 051 @ 92, (1)

. 1
+ H; (Shtgolo )[In dB(F pPl® ¢y, © gpiQ (5) ’

1
IndB(F ( ) Xy, ® @ig (_5)

using IndB(F (p¥ ®05") = IndCB'YE?; (p) in Groth(G(F)). O

Remark 8.11. We use notation in Ezvample 8.10. We define I, ,, v in the same way as
[RV14, (31)]. Then we have I, v = 0. Therefore Example 8.10 shows that the non-
minuscule generalization of [RV14, Conjecture 8.5] does not hold as it is. We note that
([b], 1) is not Hodge—Newton reducible (cf. [RV14, Definition 4.28]).
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