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By means of the Malliavin Calculus, we derive asymptotic expansion of the
probability distributions of statistics for systems perturbed by small noises. These
results are applied to the problem of the second order asymptotic efficiency of the
maximum likelihood estimator. � 1996 Academic Press, Inc.

1. Introduction

We consider stochastic systems with unknown parameters disturbed by
white Gaussian noises or normal random variables. For many such systems
the unknown parameters can be estimated consistently by certain statistical
estimators when the disturbances become small and the stochastic system
tends to the corresponding deterministic one. For instance, the maximum
likelihood method and the Bayes method are available for diffusion
processes with unknown parameters in their drifts when the diffusion
coefficient is small. In this case, the maximum likelihood estimator and the
Bayes estimator are consistent and efficient in the first order, e.g., Chapter
3 of Kutoyants [4]. As for higher order properties of estimators, they are
known to be second-order efficient in a certain sense. This fact follows from
their asymptotic expansions in consideration of a problem of hypothesis
testing [12, 14]. Thus asymptotic expansions for estimators play an impor-
tant role in higher order statistical inference. The purpose of this article is
to derive asymptotic expansions for likelihood ratio statistics and maxi-
mum likelihood estimators of unknown parameters involved in a system
slightly disturbed by white Gaussian noises or normal random variables.
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We formulate this problem as follows. Let W=[w; w is an Rr-valued
continuous path on [0, �), w(0)=0]. W is a Fre� chet space endowed with
sup-norms on compact sets in [0, �). Let P be a Wiener measure on
(W, B(W )), where B(W ) is the Borel _-field of W. The probability space
(W, P) is referred to as the Wiener space. Let (S, Bs) be a measurable
space. The closure 3 of a bounded convex domain 3 o in Rk denotes the
space of unknown parameters. We assume that the slightly perturbed
system can be represented by an S-valued random element F =

% , % # 3,
= # (0, 1), defined on (W, P). Let P=

% be the probability measure on S
induced by F =

% from P. Then we obtain a family of statistical experiments
[P=

% ; % # 3], = # (0, 1], on (S, Bs). We assume that P=
%1

and P=
%2

are
mutually dominated for %1 , %2 # 3. For %0 # 3 o let

*=(w, %; %1)=log
dP=

%

dP=
%0

(F =
%1

(w))

for w # W, %, %1 # 3, = # (0, 1](*=(w, %; %1) depends on %0). When %0 # 3 o is
the true value, the maximum likelihood estimator %� =(w; %0), if it exists,
satisfies

*=(w, %� =(w; %0); %0)=sup
% # 3

*=(w, %; %0).

Under a set of conditions stated in the next section, which ensures the
regularity and entire separation of the statistical experiments [P=

% ; % # 3],
= # (0, 1), we derive the asymptotic expansions for the maximum likelihood
estimator and the log likelihood ratio statistic used in the higher order
statistical inference. We apply these results to the problem of the second-
order efficiency of the maximum likelihood estimator. As in [12], the tech-
nique used here is the Malliavin calculus exploited by Watanabe [9�11]
and its modification with truncation. This modification enables us to deal
with statistical estimators, such as the maximum likelihood estimator,
whose existence and regularity cannot be ensured on the whole sample
space in general.

The organization of this paper is as follows. The notations and assumptions
are stated in Section 2. Sections 3 and 4 give the main results. Examples are
presented in Section 5. In Sections 6 and 7, we prove the results stated in
Sections 3 and 4. We could reduce the conditions to milder ones for
second-order expansions used in Section 5, but we will not pursue this
point here.
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2. Notations and Assumptions

Let H be the Cameron�Martin subspace of W: the totality of Rr-valued
absolutely continuous functions on [0, �) with square integrable
derivative, endowed with the inner product

(h1 , h2) H=|
�

0
(h4 1, t , h4 2, t) dt

for h1 , h2 # H. Let D denote the H-derivative.
For Hilbert space E, & }&p denotes the L p(E)-norm of an E-valued

Wiener functional, i.e., for each Wiener functional f : W � E, & f & p
p =

�W | f | p
E P(dw). Let L be the Ornstein�Uhlenbeck operator (see Watanabe

[10]) and define & f &p, s for E-valued Wiener functionals f, s # R, p # (1, �)
by & f &p, s=&(I&L)s�2 f &p . The Banach space Ds

p(E) is the completion
of the totality P(E) of E-valued polynomials on the Wiener space (W, P)
with respect to & }&p, s . It is known that for n # N� (:=[0] _ N), and
p>1, the norm & }&p, n is equivalent to the norm �n

l=0 &Dl } &p .
Let D�(E) be the set of Wiener test functionals of Watanabe [10]:
D�(E)=�s>0 �1<p<� Ds

p(E). Then D&�(E)=�s>0 �1<p<� D&s
p (E)

and D� &�(E)=�s>0 �1<p<� D&s
p (E) are the spaces of generalized Wiener

functionals. We suppress R when E=R. Let us consider a family of
E-valued Wiener functionals (or generalized Wiener functionals) [F=(w)],
= # (0, 1). We will consider the asymptotic expansion taking the form of

F= tf0+=f1+ } } }

as = a 0 in D�(E), D&�(E), or D� &�(E). See Watanabe [11] for definition.
The generalized mean of F=(w) yields the ordinary asymptotic expansion.

Let $0=���= and $i=���%i, i=1, ..., k, %=(%i). For &=(&0 , &1 , ..., &k)
with &i # N� , i=0, 1, ..., k, the differential operator $& is defined by
$&=($0)&0 ($1)&1 } } } ($k)&k. Let |&|=&0+&1+ } } } +&k . Let $=($1 , ..., $k)
and for differentiable function f defined on 3, $mf denotes m-linear form
defined by

$mf [u1 , ..., um]= :
k

i 1, ..., i m=1

$i 1
} } } $im fui1

1 } } } uim
m ,

where uj=(ui
j) # Rk, i=1, ..., k, j=1, ..., m. Let M=[0]_N� k. Let �: R � R

be a smooth function such that 0��(x)�1 for x # R, �(x)=1 for |x|� 1
2

and �(x)=0 for |x|�1. Two a.s. equal random variables are identified.
We will construct a Sobolev space of Banach space valued functionals in

a similar manner as Kusuoka [2, 3]. Let E be a real Banach space. We say

3MAXIMUM LIKELIHOOD ESTIMATORS
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that a strongly measurable map F: (W, B(W )P) � (E, B(E)) is ray
absolutely continuous (RAC) if for any h # H, there exists a strongly
measurable map F� h : (W, B(W)P) � (E, B(E)) such that F� h(w)=F(w) P-a.e.
w, and the map s � F� h(w+sh) is strongly absolutely continuous, i.e., there
exists a strongly measurable map GF, w

h : R � E such that for any w # W and
a, b # R (a<b), �b

a &GF, w
h (s)&E ds<� and

F� h(w+bh)=F� h(w+ah)+|
b

a
GF, w

h (s) ds.

Let T o be a bounded open set in Rk0, and let T=T� o. Let V be a real
separable Hilbert space with a Hilbertian norm & }&V . Denote by C(T � V)
the Banach space of continuous maps from T to V equipped with the
supremum norm &F&C(T � V)=supt # T &F(t)&V . We say that a strongly
measurable map F: W � C(T � V) is strongly stochastically Gâteaux
differentiable (SSGD) in H directions if there exists a strongly measurable
map DF: W � C(T � H�V) such that for any h # H.

"1
s

(F(w+sh)&F(w))&DF(w)[h]"C(T � V)

� 0

in P as s � 0. Lp(W � E) denotes the L p space of strongly measurable
maps from W to E satisfying that

&F& p
Lp(W � E) :=|

W
&F(w)& p

E P(dw)<�.

For p>1, let H0
p(C(T � V))=L p(W� C(T � V)), and let H1

p(C(T � V))=
[F # H 0

p(C(T � V)): F is RAC and SSGD in H directions, and
DF # Lp(W �C(T � H�V))]. For F # H1

p(C(T � V)), put &F&H1
p (C(T � V))=

&F&L p(W � C(T � V ))+&DF&L p(W � C(T � H�V )) . As in Kusuoka [2, 3], we can
prove that the space H 1

p(C(T � V )) is a Banach space with respect to the
norm & }&H 1

p(C(T � V )) . Let T o
1 and T o

2 be open convex bounded sets in Rk1

and Rk2, respectively. Denote Ti=T� o
i for i=1, 2. Let T o=T o

1_T o
2 and let

T� o be a bounded open set satisfying T o/T� o with k0=k1+k2 . Denote the
closure of T� o by T� . It is not difficult to prove that if g # H 1

p(C(T� � V)),
then I(g)(w, ') :=�T1

g(w, !, ') d! belongs to H 1
p(C(T2 � V)). Consider a

map g: W_T� � V. We denote by Di g the derivative of g with respect to
ti # Ti , i=1, 2, if for P-a.e. w # W, the map T� % t � g(w, t) is differentiable
with respect to ti on T� o, and each partial derivative can be extended
continuously to T� . Let D denote the differential operator in the definition
of the space H 1

p(C(T � V)). Put D0=D, and let H0=H and Hi=Rki,

4 NAKAHIRO YOSHIDA
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i=1, 2. We say that a functional g: W � C(T� � V) is smooth if for any
p>1, n # N� and i1 , i2 , ..., in # [0, 1, 2],

Di1
Di2

} } } Din g # H 1
p(C(T� � Hi1

�Hi2 � } } } �Hin �V)).

Consider a functional g: W � C(T� � Rk1), and assume that D1 g(w, t) takes
values in the set of symmetric matrices for all t # T� , P-a.e. w. Given a
functional R: W � R, R is naturally identified with a map taking values in
C(T� � R) by R(w, t)=R(w) for any t # T� . Let R be smooth. We fix a
version of R and g. Assume that for some convex set U in T1 , the following
conditions hold for R and g: (1) If R(w)<1, the equation g(w, !, ')=0 has
a root !� (w, ') in U for any ' # T2 ; (2) D1g(w, t*) is positive-definite
uniformly in (w, t*) # [w: R(w)<1]_U_T2 ; (3) For each h # H, there
exist RAC versions R� h(w) and g~ h such that if R� h(w)<1, the equation
g~ h(w, !, ')=0 has a root !�� (w, ') in U for any ' # T2 ; (4) For each
h # H, D1 g~ h(w, t*) is positive-definite uniformly in (w, t*) # [w: R� h(w)<1]
_U_T2 . Furthermore, assume that g is smooth. Then we can prove that,
under these conditions, �(3R) !� : W � C(T2 � Rk1) is well defined and
smooth [15]. Here, if T/T� o, the derivatives with respect to the parameter
are ordinary derivatives.

Put

G(w, =, %; %0)==2*=(w, %; %0).

In this paper we consider the following conditions. Conditions (C1) and
(C4) (or C5)) are regularity conditions. Condition (C2) ensures the
existence of the consistent estimators. By Condition (C3) we confine our-
selves to discussing the locally asymptotically normal experiments.

(C1) For each %0 # 3 o, the functional G( } , } , } ; %0): W � C([0, 1]_
3 � R) is smooth, where G(w, 0, %; %0)=lim= a 0 G(w, =, %; %0).

(C2) For each (%, %0) # 3_3 o, G(w, 0, %; %0) is deterministic (G(0, %;
%0), say), and for each %0 # 3 o, there exists a0>0 such that &G(0, %; %0)�
a0 |%&%0 | 2 for any % # 3.

(C3) For %0 # 3 o, there exist h(i ) # H, i=1, 2, ..., k, such that

$0$iG(w, 0, %0 ; %0)=|
�

0
h4 (i )

s } dws

and

cov($0$iG( } , 0, %0 ; %0), $0 $jG( } , 0, %0 ; %0))#(h(i ), h( j )) H

=&$i$jG(0, %0; %0)

for i, j=1, ..., k.

5MAXIMUM LIKELIHOOD ESTIMATORS
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(C4) For %0 # 3 o and any compact set K/Rk, there exists p0>1
such that

sup

% 0+=u/3

= # (0, 1)
u # K

E[exp [ p0=&2G(w, =, %0+=u; %0)]]<�.

Remarks 2.1. (1) For a map F: W_3 � V, define @%F: W � V by
(@%F )(w)=F(w, %). If F # H 1

p(C(3 � V)), @% F # D1
p(V). In fact, @%F: W � V is

RAC and SSGD with D@%F # L p(W � V), and, hence, we see that
@%F # D1

p(V) by using the equivalence between Sobolev spaces proved by
Sugita [7]. For this map, @%DF=D@% F, where the H-derivative on the
RHS is the ordinary one.

(2) G(0, %0 ; %0)=lim= a 0 =2*=(w, %0 ; %0)=0. Therefore from (C2) we
see that $i G(0, %0 ; %0)=0, 1�i�k, and the bilinear form for the Hessian
matrix ($i$j G(0, %0 ; %0))1�i, j�k is negative definite. The matrix
I(%0)=(Iij)=&$2G(0, %0 ; %0) is called the Fisher information matrix.

(3) To obtain the results in Sections 3 and 4, it suffices to assume the
following weaker condition (C5) in place of (C4):

(C5) For %0 # 3 o and any compact set K/Rk, there exist
measurable functions .u

= , u # K, = # (0, 1), on S satisfying the following
conditions:

(i) 0�.u
= (x)�1, x # S.

(ii) .u
=(F =

%0
(w))=1&O(=n) in D� as = a 0 uniformly in u # K for

n=1, 2,....

(iii) .u
=(F =

%0+=u(w))=1&O(=n) in D� as = a 0 uniformly in u # K for
n=1, 2,....

(iv) For some p0>1,

sup

% 0+=u # 3

= # (0, 1)
u # K

E[1[.=
u (F=

%0
(w))>0] exp[ p0 =&2G(w, =, %0+=u; %0)]]<�.

It is clear that if Condition (C4) holds true, Condition (C5) is satisfied
for .u

= #1.

3. Asymptotic Expansions for Likelihood Ratio Statistics

In this section we present asymptotic expansions for likelihood ratio
statistics. For simplicity denote

6 NAKAHIRO YOSHIDA
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Gl; i1 , i2 , ..., im=($0) l $i1
$i2

} } } $im G(w, 0, %0 , %0)

#($0) l $i1
$i2

} } } $im G(w, =, %;%0)| ==0, %=% 0

for l # N� , m # N, and i1 , i2 , ..., im # [1, 2, ..., k]. We will use Einstein's rule
for repeated indices. For u=(ui) # Rk, let

f L, u
0 =G1; iui& 1

2 Iij uiu j,

f L, u
1 = 1

2G2; iui+ 1
2G1; i, juiu j+ 1

6 G0; i, j, luiu jul.

Moreover, let

qL, u(x)=E[ f L, u
1 | f L, u

0 =x].

The distribution function of the normal distribution N(+, _2) is denoted by
8(x; +, _2) and its density by ,(x; +, _2). The differential operator ���x is
denoted by �. Suppose %0 # 3 o. Let B1 denote the Borel _-field of R1.

Theorem 3.1. Let u # Rk&[0]. Assume that (C1)�(C3) are satisfied.
Then the distribution of =&2G(w, =, %0+=u; %0) has the asymptotic expansion

P(=&2G(w, =, %0+=u; %0) # A)t|
A

pL, u
0 (x) dx+= |

A
pL, u

1 (x) dx+ } } }

as = a 0 for A # B1, where pL, u
0 , pL, u

1 ,... are integrable smooth functions
depending on u. This expansion is uniform in A # B1. In particular,

pL, u
0 (x)=,(x; &1

2 J, J),

pL, u
1 (x)=&�[qL, u(x) ,(x; &1

2 J, J)],

where J=I(%0)[u, u]. The probability distribution function of =&2G(w, =,
%0+=u; %0) has the asymptotic expansion

P(=&2G(w, =, %0+=u; %0)�x)

t8(x; &1
2 J, J)&=qL, u(x) ,(x; &1

2 J, J)+ } } }

as = a 0 for x # R.

The following theorem gives the asymptotic expansion of the distribution
of the log likelihood ratio statistic under the contiguous alternative P=

%0+=u .
As defined in Sections 1 and 2,

*=(w, %; %0+=u)=log
dP=

%

dP=
% 0

(F =
%0+=u(w))

7MAXIMUM LIKELIHOOD ESTIMATORS
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and

G(w, =, %; %0+=u)==2*=(w, %; %0+=u).

Then =&2G(w, =, %0+=u; %0+=u) is the log likelihood ratio statistic when
the true parameter is %0+=u.

Theorem 3.2. Assume that (C1)�(C3) and (C5) are satisfied. Let
u # Rk&[0]. Then the distribution of =&2G(w, =, %0+=u; %0+=u) has the
asymptotic expansion

P(=&2G(w, =, %0+=u; %0+=u) # A)t|
A

pLc, u
0 (x) dx+= |

A
pLc, u

1 (x) dx+ } } }

as = a 0 for A # B1, where pLc, u
0 , pLc, u

1 ,... are integrable smooth functions
depending on u. This expansion is uniform in A # B1. In particular,

pLc, u
0 (x)=,(x; 1

2 J, J),

pLc, u
1 (x)=&�[qL, u(x) ,(x; 1

2 J, J)]+qL, u(x) ,(x; 1
2 J, J).

The probability distribution function of =&2G(w, =, %0+=u; %0+=u) has the
asymptotic expansion

P(=&2G(w, =, %0+=u; %0+=u)�x)

t8(x; 1
2 J, J)+=(&qL, u(x) ,(x; 1

2 J, J)+|
x

&�
qL, u(z) ,(z; 1

2 J, J) dz)+ } } }

as = a 0 for x # R.

4. Asymptotic Expansions for Maximum Likelihood Estimators

In this section we present asymptotic expansions for the maximum
likelihood estimator. In the higher order statistical asymptotic theory we
need bias corrections of maximum likelihood estimators. For smooth
function b(%) with bounded derivatives on 3,

%� =*(w; %0)=%� =(w; %0)&=2b(%� =(w; %0))

is called a bias corrected maximum likelihood estimator. Let

f i
0=I ijG1; j ,

f i
1= 1

2I ijG2; j+I ijG1; j, l f l
0+ 1

2I ijG0; j, l, m f l
0 f m

0 &b(%0) i

8 NAKAHIRO YOSHIDA
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for i=1, 2, ..., k. Here I=(Iij)=I(%0)=&$2G(0, %0; %0) and I &1=(I ij)=
I(%0)&1. Moreover, let

qi
b(x)=E[ f i

1 | f0=x]

for x # Rk and i=1, 2, ..., k. We denote by � i the partial differential ���xi,
or ���yi. The density of the k-dimensional normal distribution with mean
+ and covariance matrix 7 is denoted by ,(x; +, 7). Then we obtain the
following theorem.

Theorem 4.1. Suppose Conditions (C1)�(C3) hold. Then there exists a
consistent maximum likelihood estimator %� =(w; %0) for any true value
%0 # 3 o. The distribution of the bias corrected maximum likelihood estimator
%� =*(w; %0) has the asymptotic expansion

P(=&1(%� =*(w; %0)&%0) # A)t|
A

p0(x) dx+= |
A

p1(x) dx+ } } }

as = a 0 for A # Bk, where pi (x), i=0, 1,..., are smooth functions. In par-
ticular,

p0(x)=,(x; 0, I(%0)&1),

p1(x)=&�i[qi
b(x) ,(x; 0, I(%0)&1)].

This expansion is uniform in A # Bk.

The asymptotic expansions under contiguous alternatives are important
from the statistical viewpoint. For instance, they are useful to calculate the
power of a test with the maximum likelihood estimator. The maximum
likelihood estimator under the contiguous alternative P=

%0+=u , u # Rk&[0],
is (roughly speaking) defined by maximizing *=(w, %; %0+=u) in % # 3. Let
%� =(w; %0+=u) denote the maximum likelihood estimator under the
contiguous alternative P=

% 0+=u . As before the bias corrected maximum
likelihood estimator under the contiguous alternative P=

%0+=u is defined and
denoted by %� =*(w; %0+=u). Then we obtain the asymptotic expansion for
the bias corrected maximum likelihood estimator under contiguous
alternatives.

Theorem 4.2. Assume that (C1)�(C3) and (C5) are satisfied. Then the
probability distribution of the bias corrected maximum likelihood estimator
%� =*(w; %0+=u) under the contiguous alternative P=

%0+=u has the asymptotic
expansion

P(=&1(%� =*(w; %0+=u)&(%0+=u)) # A)t|
A

pc, u
0 ( y) dy+= |

A
pc, u

1 ( y) dy+ } } }

9MAXIMUM LIKELIHOOD ESTIMATORS
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as = a 0, A # Bk, u # Rk, where pc, u
0 , pc, u

1 , ... are smooth functions depending on
u. This expansion is uniform in A # Bk and u # K, where K is any compact set
in Rk. In particular,

pc, u
0 ( y)=,( y; 0, I&1),

pc, u
1 ( y)=&�i (qi

b( y+u) ,( y; 0, I &1))+qL, u
0 ( y+u) ,( y; 0, I &1),

where
qL, u

0 (x)=E[ f L, u
1 | f0=x].

Remark 4.2. By definition

qL, u(z)=E[qL, u
0 ( f0) | f L, u

0 =z].

If k=1 and u{0, qL, u
0 (z)=qL, u(Iuz& 1

2Iu2).

5. Examples

5.1. Diffusion Processes Perturbed by Small Noise

Let X=, % be a diffusion process defined by the stochastic differential
equation

dX =, %
t =V0(X =, %

t , %) dt+=V(X =, %
t ) dwt , t # [0, T],

X =, %
0 =x0 ,

= # (0, 1), where % is a k-dimensional unknown parameter in 3, T>0 and
x0 are constants, V=(V1 , ..., Vr) is an Rd �Rr-valued smooth function
defined on Rd, V0 is an Rd-valued smooth function defined on Rd_3 with
bounded x-derivatives, and w is an r-dimensional standard Wiener process.
We consider the parameter estimation problem for % from observations
[X =, %

t ; 0�t�T].
The Radon�Nikodym derivative of P=

% with respect to P=
%0

is given by the
formula (e.g., Liptser and Shiryayev [6]):

4=(%; X) 4=(%0; X)&1,

where

4=(%; X)=exp {|
T

0
=&2V$0(VV$)+ (Xt , %) dXt

&1
2 |

T

0
=&2 V$0(VV$)+ V0(Xt , %) dt= .

10 NAKAHIRO YOSHIDA
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Here A+ denotes the Moore�Penrose generalized inverse matrix of matrix
A. We assume that V0(x, %)&V0(x, %0) # M[V(x)]: the linear manifold
generated by column vectors of V(x), for each x, % and %0 .

We assume the following conditions:

(1) V0 , V and (VV$)+ are smooth in (x, %).

(2) For n # N� k with |n|�1,

sup
x, %

[ |�nV0 |+|�nV|+|�n(VV$)+|]<�.

(3) For |&|�1 and |n|�0, a constant C&, n exists and

sup
%

|�n$&V0 |�C&, n(1+|x| )C&, n,

for all x.

(4) For %0 # 3 o, there exists a0>0 such that

|
T

0
[V0(X 0, %0

t , %)&V0(X 0, %0
t , %0)]$ (VV$)+ (X 0, %0

t )

_[V0(X 0, %0
t , %)&V0(X 0, %0

t , %0)] dt�a0 |%&%0 | 2

for % # 3. (X 0, %0
t is the solution of the differential equation for ==0 and

%=%0 .)

It is possible to verify the Conditions (C1)�(C3) and (C5). Then we
obtain, for example, the asymptotic expansion of the distribution of the
bias corrected maximum likelihood estimator under the contiguous
alternative P=

%0+=u .

Theorem 5.1. The probability distribution of the bias corrected maximum
likelihood estimator %� =*(w; %0+=u) under the contiguous alternative P=

%0+=u

has the asymptotic expansion

P _%� =*(w; %0+=u)&(%0+=u)
=

# A&t|
A

pc, u
0 ( y) dy+= |

A
pc, u

1 ( y) dy+ } } } ,

as = a 0, A # Bk, u # Rk, where pc, u
0 , pc, u

1 ,... are smooth functions. The
expansion is uniform in A # Bk and u # K, where K is any compact set in Rk.
In particular,

11MAXIMUM LIKELIHOOD ESTIMATORS
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pc, u
0 ( y)=,( y; 0, I &1),

pc, u
1 ( y)=Ai, j, l[&yiy jyl&ulyiy j+I ijyl+I ijul] ,( y; 0, I &1)

+Bi, j, l[&1
2 yiy jyl&uiy jyl+I ily j+I ilu j] ,( y; 0, I &1)

&b(%0) j Ijlyl,( y; 0, I &1),

where Ai, j, l and Bi, j, l are constants determined by V0 , V, x0 , and T.

For details see [12].

5.2. Models with a Discrete Time Parameter

A Gaussian AR(k) process (X =
t) with small noise is defined by

,0(B) X =
t==et , t=k, k+1, ..., k+n&1,

X =
0=x0 , ..., X =

k&1=xk&1, = # [0, 1],

where ,0(z)=1&,1
0z& } } } &,k

0 zk, ,i
0 # R, B is the backward shift

operator, x0 , ..., xk&1 are constants and et tN(0, 1) independently.
We may construct this AR(k) model on the Wiener space if we
take et=w(t&k+1)&w(t&k) for t=k, k+1, ..., k+n&1. Let ,(z)=
1&,1z& } } } &,kzk. Then we have

G(w, =, ,; ,0)=&= :
k+n&1

t=k

(,(B)&,0(B)) X =
t } et

&1
2 :

k+n&1

t=k

[(,(B)&,0(B)) X =
t]

2.

Let X 0
t denote the solution for ==0 and ,0 . Assume that

�k+n&1
t=k (,(B) X 0

t )2>0 for ,{,0 . It is not difficult to verify Conditions
(C1)�(C4).

Example (AR(1) process). Let X =
t , t=1, 2, ..., n, be defined by the

difference equation

X =
t&%0X =

t&1==et ,

X =
0=x0 ,

where = # [0, 1], x0 is a constant, x0 {0, and [et , t=1, 2, ..., n] is a
Gaussian white noise with E[et]=0 and Var(et)=1. The experiments
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generated from this model can be realized on a Wiener space if we take
et=w(t)&w(t&1). Then

G(w, =, %; %0)== :
n

t=1

(%&%0) X =
t&1et&

1
2 :

n

t=1

(%&%0)2 X =2
t&1.

We have

I(%0)=x2
0 :

n

t=1

%2t&2
0 ,

X 0
t =x0 %t

0 ,

and

X =
t=x0 %t

0+=Dt ,

where

D0=0, Dt=\ �
�=+0

X =
t= :

t

l=1

%t&l
0 el , t=1, 2, ..., n.

Also we have

G1; 1= :
n

t=1

X 0
t&1et= :

n

t=1

x0%t&1
0 et ,

G2; 1=2 :
n

t=1

Dt&1 et=2 :
n

t=2

:
t&1

t=1

%t&l&1
0 elet ,

G1; 1, 1=&2 :
n

t=1

X 0
t&1Dt&1=&2 :

n

t=2

:
t&1

t=1

x0%2t&l&2
0 el ,

G0; 1, 1, 1=0.

From these equations, we obtain

f 1
0=I &1x0 :

n

t=1

%t&1
0 et ,

f 1
1=I &1 :

n

t=2

:
t&1

l=1

%t&l&1
0 el et&2I &1x0 :

n

t=2

:
t&1

l=1

%2t&l&2
0 el f 1

0&b(%0)1,

f L, u
0 =x0 :

n

t=1

%t&1
0 etu& 1

2 Iu2,

f L, u
1 = :

n

t=2

:
t&1

l=1

%t&l&1
0 el etu&x0 :

n

t=2

:
t&1

l=1

%2t&l&2
0 elu2.
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Let (at), t=1, 2, ..., n, be a finite sequence of real numbers. Then

E _et } :
n

t=1

at et=x&=&a&&2 atx,

where &a&2=�n
t=1 a2

t , and

E _es , et } :
n

t=1

at et=x&=$t, s+&a&&4 asat(x2&&a&2).

Let

at=x0I &1%t&1
0 .

We then have

q1
b(x)=E[ f 1

1 | f 1
0=x]

=&x2
0 I &1 :

n

t=1

(t&1) %2t&3
0 (x2+I &1)&b(%0)1

and

qL, u
0 (x)=E[ f L, u

1 | f0=x]

=x2
0 :

n

t=1

(t&1) %2t&3
0 (x2u&I &1u&xu2).

Put

c=x2
0 :

n

t=1

(t&1) %2t&3
0 .

Then we have the asymptotic expansions:

P[=&1(%� =*(w; %0)&%0)�x]

t8(x; 0, I&1)+=[I &1cx2+I &2c+b] ,(x; 0, I &1)+ } } } ,

P[=&1(%� =*(w; %0+=u)&%0&=u)�y]

t8( y; 0, I&1)+=[I &1cy2+I &2cuy+I &2c+b] ,( y; 0, I &1)+ } } } ,

P[=&2G(w, =, %0+=u; %0)�x]

t8(x� ; 0, J)&=c[I &2u&1x� 2&I &1u&I &1ux� ] ,(x� ; 0, J)+ } } } ,

P[=&2G(w, =, %0+=u; %0+=u)�x]

t8(x
�
; 0, J)&=c[I &2u&1x� 2&I &1u] ,(x

�
; 0, J)+ } } } ,

where x� =x+ 1
2 J, x

�
=x& 1

2 J and J=Iu2.
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In a similar way we can treat nonlinear time series models such as

Xt=ft(X0 , ..., Xt&1 , %)+gt(=et),

where ft are given functions and gt are transforms of R. AR models are of
this type. Another example is estimation for a signal from contaminated
observations Xt given by

Xt=St(%)+=et , t=1, 2, ..., n.

If for some a>0, �t (St(%)&St(%0))2�a |%&%0 | 2 (%, %0 # 3), then we
may obtain the asymptotic expansion for the maximum likelihood
estimator.

5.3. Second-Order Asymptotic Efficiency of Maximum Likelihood Estimators

We return to the general model defined in Section 1. For simplicity, let
k=1.

An estimator T= is said to be second�order asymptotically median
unbiased (second-order AMU) if for any %0 # 3 o and any c>0,

lim
= a 0

sup
% # 3: |%&%0 |<=c

=&1 |P=
%[T=&%�0]& 1

2 |=0

and

lim
= a 0

sup
% # 3: |%&%0 |<=c

=&1 |P=
%[T=&%�0]& 1

2 |=0.

See Akahira and Takeuchi [1].
Given a second-order AMU estimator T= , if

lim
= a 0

=&1 |P=
%0

[=&1(T=&%0)�u]&G0(u, %0)&=G1(u, %0)|=0,

then G0(u, %0)+=G1(u, %0) is called a second-order asymptotic distribution
of T= .

Now consider testing hypothesis H+: %=%0+=u against K: %=%0 ,
where u is any positive number. Let c==

1
2 J+=p+q= , where

p=qL, u( 1
2 J )&- 2?J |

(1�2) J

&�
qL, u(z) ,(z; 1

2 J, J) dz

and

q===3�2+,(0; 0, J)&1 |P=
%0+=u[=&1(T=&%0&=u)�0]& 1

2 |.
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Hence, q==o(=). From Theorem 3.2, we see

P[=&2G(w, =, %0+=u; %0+=u)�c=]

= 1
2+=,(0; 0, J) p+= {&qL, u( 1

2 J) ,(0; 0, J)

+|
(1�2) J

&�
qL, u(z) ,(z; 1

2 J, J) dz=
+q=,(0; 0, J)+O(=2).

Then we have

P[=&2G(w, =, %0+=u; %0+=u)�c=]>P=
%0+=u[=&1(T=&%0&=u)�0],

and by Neyman�Pearson's lemma

P[=&2G(w, =, %0+=u; %0)�c=]�P=
%0

[=&1(T=&%0)�u]

for small =. Therefore, by Theorem 3.1 for u>0,

lim inf
= a 0

=&1 {8( 1
2 J; &1

2 J, J)&=e&(1�2) J |
(1�2) J

&�
qL, u(z) ,(z; 1

2 J, J) dz

&P=
%0

[=&1(T=&%0)�u]=�0.

Similarly, for u<0 we consider testing hypothesis H&: %=%0+=u against
K: %=%0 . Define c= as above with the same p and

q===3�2+,(0; 0, J)&1 |P=
%0+=u[=&1(T=&%0&=u)�0]& 1

2 |.

Then, again by Theorem 3.2, we see

P[=&2G(w, =, %0+=u; %0+=u)�c=]>P=
%0+=u[=&1(T=&%0&=u)>0]

for small =, and by Neyman�Pearson's lemma

P[=&2G(w, =, %0+=u; %0)�c=]�P=
%0

[=&1(T=&%0)>u],

or equivalently

1&P[=&2G(w, =, %0+=u; %0)�c=]�P=
%0

[=&1(T=&%0)�u]
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for small =. Consequently, we have for u<0

lim sup
= a 0

=&1 {8(&1
2 J ; 1

2 J, J)+=e&(1�2) J |
(1�2) J

&�
qL, u(z) ,(z; 1

2 J, J) dz

&P=
%0

[=&1(T=&%0)�u]=�0.

In this sense

8( 1
2 J; &1

2 J, J)&=e&(1�2) J |
(1�2) J

&�
qL, u(z) ,(z; 1

2 J, J) dz

for u>0, and

8(&1
2 J; 1

2 J, J)+=e&(1�2) J |
(1�2) J

&�
qL, u(z) ,(z; 1

2 J, J) dz

for u<0 are called the bounds of second-order distributions. An AMU
estimator attaining these bounds for any u>0 and u<0 is said to be
second-order efficient.

Proposition 5.1. Let dim(3)=1 and assume Conditions (C1)�(C3) and
(C5) (or (C4)). Then the second-order AMU bias corrected maximum
likelihood estimator is second-order efficient.

Proof. From Theorem 4.2 we have

P(=&1(%� =*(w; %0+=u)&(%0+=u))�0)

t
1
2+= _&q1

b(u) ,(0; 0, I &1)+|
0

&�
qL, u

0 ( y+u) ,( y; 0, I &1) dy&+ } } } .

Therefore, for the second-order AMU bias-corrected maximum likelihood
estimator %� =*(w; %0),

&q1
b(u) ,(0; 0, I &1)+|

0

&�
qL, u

0 ( y+u) ,( y; 0, I &1) dy=0

and

q1
b(u) ,(0; 0, I &1)+|

�

0
qL, u

0 ( y+u) ,( y; 0, I &1) dy=0.

From Theorem 4.1, it is not difficult to show this bias-corrected maximum
likelihood estimator attains the bounds of the second-order distributions.
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Example. For the diffusion process of Section 5.1 with k=1, the bias
corrected maximum likelihood estimator corresponding to

b(%0)=&A1, 1, 1I(%0)&2

is second-order AMU and therefore second-order efficient.

Example. Consider the AR(1) model in Section 5.2. If

b(%0)=&I&2c,

the bias-corrected maximum likelihood estimator is second-order AMU
and therefore second-order asymptotically efficient, which is the con-
sequence of Proposition 5.1 or is proved by comparing the bounds of the
second-order distributions with the expansions above for the bias-corrected
maximum likelihood estimator.

6. Proof of Theorems 3.1 and 3.2

To show Theorem 3.1, we prepare two lemmas.

Lemma 6.1. Assume that (C1) and (C2) are satisfied. For any compact
set K/Rk, =&2G(w, =, %0+=u; %0) has the asymptotic expansion

=&2G(w, =, %0+=u; %0)tf L, u
0 +=f L, u

1 +=2f L, u
2 + } } }

in D� as = a 0 uniformly in u # K with f L, u
0 , f L, u

1 ,... # D�.

Proof. We can prove this lemma from (C1) and the Taylor expansion
using G(w, =, %0 ; %0)=0 and $G(0, %0 ; %0)=0.

The sequence (P=
%0+=u) is contiguous to the sequence (P=

%0
) (Le Cam

[5]). From (C3) the Malliavin covariance of $0$G(w, 0, %0 ; %0)[u] is
I(%0)[u, u]. From Lemma 6.1 we see the Malliavin covariance _G (=) of
=&2G(w, =, %0+=u; %0) has the asymptotic expansion

_G(=)tJ+=g1+=2g2+ } } }

in D� as = a 0 with g1, g2, ... # D� , where J=I(%0)[u, u]. The Wiener
functional �L, u

= (w)=�(c |_G(=)&J | 2), c=(J�2)&2, can be used as truncation
for nondegeneracy of the Malliavin covariance. Thus applying Theorem
4.1 of [13] (or refer to Proposition 6.2 of Takanobu and Watanabe [8],
Yoshida [12, 14]), we have the following lemma.
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Lemma 6.2. Assume that (C1)�(C3) are satisfied. For u # Rk&[0], the
generalized Wiener functional

�L, u
= (w) IA(=&2G(w, =, %0+=u; %0)),

A # B1, is well defined and has the asymptotic expansion

�L, u
= (w) IA(=&2G(w, =, %0+=u; %0))t8L, u

A, 0+=8L, u
A, 1+ } } }

in D� &� as = a 0 uniformly in A # B1 with 8L, u
A, 0 , 8L, u

A, 1 , ... # D� &� determined
by the formal Taylor expansion

IA( f L, u
0 +=[ f L, u

1 +=f L, u
2 + } } } ])

=:
n

1
n!

�nIA( f L, u
0 )[=f L, u

1 +=2f L, u
2 + } } } ]n

=8L, u
A, 0+=8L, u

A, 1+ } } } ,

where �=���x. In particular,

8L, u
A, 0=IA( f L, u

0 ),

8L, u
A, 1=f L, u

1 �IA( f L, u
0 ).

Proof of Theorem 3.1. From Lemma 6.2 and the fact that �L, u
= (w)=

1&O(=n) in D� as = a 0 for any n # N, we have the asymptotic expansion

P(=&2G(w, =, %0+=u; %0) # A)tE[8L, u
A, 0]+=E[8L, u

A, 1]+ } } }

as = a 0. Using the integration-by-parts formula in the Malliavin calculus we
see that

E[8L, u
A, i ]=E[8� L, u

A, i IA( f L, u
0 )]

for some 8� L, u
A, i # D�, i=0, 1,... Consequently, each term in the asymptotic

expansion is represented by an integration of some smooth function pL, u
i (x)

over A. We only have to calculate pL, u
0 and pL, u

1 . pL, u
0 is easy. As above

integration-by-parts yields

E[8L, u
A, 1]=E[ f L, u

1 �IA( f L, u
0 )]

=E[9 (w; f L, u
1 ) IA( f L, u

0 )]=|
A

pL, u
1 (x) dx,
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where 9(w; f L, u
1 ) is a certain smooth Wiener functional and pL, u

1 (x)=
E[9(w; f L, u

1 ) | f L, u
0 =x] pL, u

0 (x) is a smooth function. If A=(x, �),

E[ f L, u
1 �IA( f L, u

0 )]=E[ f L, u
1 $x( f L, u

0 )]=E[ f L, u
1 | f L, u

0 =x] pL, u
0 (x).

Therefore,

pL, u
1 (x)=&�[E[ f L, u

1 | f L, u
0 =x] pL, u

0 (x)].

Next, we discuss asymptotic expansions under contiguous alternatives.
Condition (C5) is assumed.

Lemma 6.3. Assume that (C1)�(C3) and (C5) are satisfied. Let %0 # 3 o

and let K be any compact set in Rk. Then there exist Wiener functionals
.� K

= (w) # D�, = # (0, 1), such that the following conditions are satisfied for
.� K

= (w) and ,K, u
= (w) :=.� K

= (w) .u
= (F =

%0
(w)), u # K:

(i) 0�,K, u
= (w)�.� K

= (w)�1.

(ii) For any n # N, .� K
= (w)=1&O(=n) in D� as = a 0, and also

,K, u
= (w)=1&O(=n) in D� as = a 0 uniformly in u # K.

(iii) If Wiener functionals `u
= (w) depending on u # K satisfy

E[ |`u
= (w)&1| p]=O(=n) as = a 0 uniformly in u # K for any p>1 and any

n # N, then

E[ |`u
=(w)&1| .u

=(F =
%0

(w)) exp[=&2G(w, =, %0+=u; %0)]]=O(=n)

as = a 0 uniformly in u # K for any n # N. In particular, for any n # N,
uniformly in u # K,

E[ |,K, u
= (w)&.u

=(F =
%0

(w))| exp[=&2G(w, =, %0+=u; %0)]]=O(=n)

as = a 0.

(iv) For any p>1,

sup

% 0+=u # 3

= # (0, 1)
u # K

E[1[.� =
K (w)>0] exp[ p=&2G(w, =, %0+=u; %0)]]<�.

Proof. Let

\=(u)==&2G(w, =, %0+=u; %0)&$0 $G(w, 0, %0 ; %0)[u]+ 1
2 I(%0)[u, u].

Choose r>0 so that K/B(r), where B(r)=[u # Rk; |u|<r]. Let /=(w)=
&\=( } )&2

W 1, 2(B(r))(W 1, 2(B(r)) is a Sobolev space. For definition see
Section 7.) and let .� K

= (w)=�1(/=(w)), where �1: R � R is a smooth function
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which satisfies the same conditions as � and also satisfies that �1(x)>0 if
|x|<1. Thus (i) holds. By the Taylor formula

\=(u)== |
1

0

(1&s)2

2 \ �
�t+

3

[G(w, t, %0+tu; %0)] | t=s= ds.

Therefore it is easy to show (ii) using (C1). If .� K
= (w)>0, /=(w)<1 and by

Sobolev's inequality supu # B(r) |\=(u)|<a for some a>0. Hence, if
.� K

= (w)>0,

exp[=&2G(w, =, %0+=u; %0)]

�exp[$0$G(w, 0, %0 ; %0)[u]& 1
2 I(%0)[u, u]+a].

By (C3), $0$G(w, 0, %0; %0) is Gaussian and we obtain (iv). For q0=
p0 �( p0&1) and any n # N, E[ |`u

= &1|q0]=O(=n). Therefore, we obtain the
first equation of (iii) using (iv) of (C5) and the Ho� lder inequality. Taking
`u

=(w)=.� K
= (w), we obtain the second one. K

We fix .� K
= (w) as in the proof of Lemma 6.3.

Lemma 6.4. Assume that (C1)�(C3) and (C5) are satisfied. Let %0 # 3 o

and let K be any compact set in Rk. Then, for u # K,

(1) ,K, u
= (w) exp[=&2G(w, =, %0+=u; %0)] has the asymptotic expansion

,K, u
= (w) exp[=&2G(w, =, %0+=u; %0)]te f 0

L, u
(1+=9 u

1+=29 u
2+ } } } )

in D� as = a 0 with 9 u
1 , 9 u

2 ,... # D� determined by the formal Taylor expansion

exp[=f L, u
1 +=2f L, u

2 + } } } ]=1+=9 u
1+=29 u

2+ } } } .

This expansion is uniform in u # K
(2) Suppose that 8*(w, =) # D&� (resp. D� &�), = # (0, 1), * # 4 (an

index set) has the asymptotic expansion

8*(w, =)t8*, 0+=8*, 1+ } } }

in D&� (resp. D� &�) as = a 0 uniformly in * # 4 with 8*, 0 , 8*, 1 ,... # D&�

(resp. D� &�). Then

,K, u
= (w) exp[=&2G(w, =, %0+=u; %0)] 8*(w, =)

has the asymptotic expansion

,K, u
= (w) exp[=&2G(w, =, %0+=u; %0)] 8*(w, =)te f 0

L, u
(8� u

*, 0+=8� u
*, 1+ } } } )
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in D&� (resp. D� &�) as = a 0 uniformly in u # K and * # 4 with
8� u

*, 0 , 8� u
*, 1 ,... # D&� (resp. D� &�) determined by the formal Taylor expansion

(1+=9 u
1+=29 u

2+ } } } )(8*, 0+=8*, 1+ } } } )=8� u
*, 0+=8� u

*, 1+ } } } .

In particular,

8� u
*, 0=8*, 0

8� u
*, 1=8*, 1+8*, 09 u

1 .

(3) Let u # Rk&[0] with u # K. Then

,K, u
= (w) exp[=&2G(w, =, %0+=u; %0)] �L, u

= (w) IA(=&2G(w, =, %0+=u; %0))

te f 0
L, u

[8� L, u
A, 0+=8� L, u

A, 1+ } } } ]

in D� &� as = a 0 uniformly in A # B1 with 8� L, u
A, 0 , 8� L, u

A, 1 ,... # D� &� determined by
the formal Taylor expansion

(1+=9 u
1+=29 u

2+ } } } )(8L, u
A, 0+=8L, u

A, 1+ } } } )=8� L, u
A, 0+=8� L, u

A, 1+ } } }

In particular,

8� L, u
A, 0=8L, u

A, 0 , 8� L, u
A, 1=8L, u

A, 1+f L, u
1 8L, u

A, 0 .

Proof. Using Lemmas 6.1 and 6.3 (iv), we obtain (1) as in the proof of
Lemma 4.5 (2) of [12] (Note that for any m # N� , Dm,K, u

= (w)=
Dm,K, u

= (w) } I[.� =
K (w)>0]). (2) follows from (1) and Theorem 2.2 (ii) of

Watanabe [11]. Lemma 6.2 and (2) lead us to (3).

Proof of Theorem 3.2. By (iii), (iv) of (C5), Lemmas 6.3, 6.4, and the
fact that �L, u

= (w)=1&O(=n) in D� for any n # N, we have

P(=&2G(w, =, %0+=u; %0+=u) # A)

=E _IA \log
dP=

%0+=u

dP=
%0

(F =
% 0+=u(w))+&

tE _.u
=(F =

%0+=u(w)) IA \log
dP=

%0+=u

dP=
%0

(F =
%0+=u(w))+&
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=E _.u
=(F =

%0
(w)) IA \log

dP=
%0+=u

dP=
%0

(F =
%0

(w))+
_exp[=&2G(w, =, %0+=u; %0)]&
tE _.u

=(F =
%0

(w)) �L, u
= (w) IA \log

dP=
%0+=u

dP=
%0

(F =
%0

(w))+
_exp[=&2G(w, =, %0+=u; %0)]&
tE _,K, u

= (w) exp[=&2G(w, =, %0+=u; %0)] �L, u
= (w) IA

b \log
dP=

%0+=u

dP=
%0

(F =
%0

(w))+&
te[e f 0

L, u
8� L, u

A, 0]+=E[e f 0
L, u

8� L, u
A, 1]+ } } } .

The rest is finding pLc, u
0 and pLc, u

1 . We see

E[e f 0
L, u

8� L, u
A, 0]=E[e f 0

L, u
IA( f L, u

0 )]=|
A

expL, u
0 (x) dx=|

A
,(x; 1

2 J, J) dx

and for A=[ y; y<x]:

E[e f 0
L, u

8� L, u
A, 1]

=E[e f 0
L, u

(8L, u
A, 1+f L, u

1 8L, u
A, 0)]

=E[e f 0
L, u

( f L, u
1 �IA( f L, u

0 )+f L, u
1 IA( f L, u

0 ))]

=&E[e f 0
L, u

f L, u
1 $x( f L, u

0 )]+E[e f 0
L, u

f L, u
1 IA( f L, u

0 )]

=&E[e f 0
L, u

f L, u
1 | f L, u

0 =x] pL, u
0 (x)

+|
x

&�
exE[ f L, u

1 | f L, u
0 =x] pL, u

0 (x) dx

=&E[ f L, u
1 | f L, u

0 =x] ,(x; 1
2 J, J)

+|
x

&�
E[ f L, u

1 | f L, u
0 =x] ,(x; 1

2 J, J) dx.

Therefore,

pLc, u
1 (x)=&�[E[ f L, u

1 | f L, u
0 =x] ,(x; 1

2 J, J)]

+E[ f L, u
1 | f L, u

0 =x] ,(x; 1
2 J, J).
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7. Proof of Theorems 4.1. and 4.2.

In general we cannot ensure the existence and smoothness of the maxi-
mum likelihood estimators on the whole Wiener space, but it is possible to
extend them to smooth Wiener functionals by multiplying a certain trunca-
tion functional. We begin with constructing such a functional for the maxi-
mum likelihood estimator.

Let 2 be a bounded convex domain in Rk0. Let m, n, j # N satisfy
m>k0�2n+j. Then we know that the Sobolev space (Wm, 2n(2),
& }&Wm, 2n(2)) is embedded by a compact operator into C j

b(2), the totality of
continuous functions on 2 with bounded continuous derivatives up to the
jth order, equipped with the norm

& f &C j
b (2)= :

& # N� k0 , |&|�j

sup
% # 2

|$& f (%)|.

Here the multiindex is defined similarly as in Section 2. In particular, for
some C(m, n, 2)>0

& f &C j
b (2)�C(m, n, 2)& f &Wm, 2n(2)

for f # Wm, 2n(2).
Take # so that O<#< 1

2. Define 3 $=(0, 1)_3 o and F $ by

F $(w, =, (', %))=F(w, '=, %), (', %) # 3 $

for functional F(w, =, %) on W_[0, 1)_3 o. Let m0 , n0 # N satisfy
m0>(k+1)�2n0+2. The derivative operator with respect to ' is denoted
by $' . For %0 # 3 o, c>0, and = # (0, 1), let

Rc
=(w)=c &G$(w, =, } ; %0)&G$(0, } ; %0)&2n0

W m0 , 2n0 (3 $)

+c &|=1&2#($0 $G)$ (w, =, ( } , %0); %0)| 2 &2
W1, 2((0, 1))

and let Rc
0(w)=0.

Lemma 7.1. Assume that (C1) and (C2) are satisfied.

(1) For l # N� , & # M and p>1,

sup
(', %) # 3 $

&$l
'$& G$(w, =, (', %); %0)&$l

'$&G$(0, (', %); %0)&p, 0

�C1(l, &, p) =l 6 1,

= # [0, 1), for some constant C1(l, &, p).
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(2) Let m, n # N. For p>2n, there exists a positive constant
C2(m, n, p, 3 $) such that

&&G$(w, =, } ; %0)&G$(0, } ; %0)&W m, 2n (3 $)&p, 0�C2(m, n, p, 3 $) } =

for = # [0, 1).

(3) For l # N� , & # N� k+1, and p>1,

sup

= # [0, 1)
(', %) # 3$

&$l
' $&$G$(w, =, (', %); %0)&p, 0�C3(l, &, p)

for some constant C3(l, &, p)>0.

(4) For p>2 there exists constant C4( p, k)>0 such that

&&|($0$G)$ (w, =, ( } , %0); %0)| 2 &W 1, 2((0, 1))&p, 0�C4( p, k)<�

for = # [0, 1).

(5) For a>0, c>0, and n # N, P(Rc
=(w)>a)=O(=n) as = a 0.

(6) If Rc
=(w)<1, then

&G(w, =$, } ; %0)&G(0, } ; %0)&C 2
b(3)�C(m0 , n0 , 3 $) c&p1

for 0�=$�=, p1=1�2n0 ;

sup
' # (0, 1)

|=1&2#($0$G)(w, '=, %0 ; %0)|�C(1, 1, (0, 1))1�2 c&1�4 ;

and

|=$&2#$G(w, =$, %0 ; %0)|�C(1, 1, (0, 1))1�2 c&1�4

for 0�=$�=.

Proof. (1) For & # M and p>1,

sup
(', %) # 3 $

&$&G$(w, =, (', %); %0)&$&G$(w, 0, (', %); %0)&p, 0

= sup
(', %) # 3 $

&$& G(w, '=, %; %0)&$&G(w, 0, %; %0)&p, 0

= sup
(', %) # 3 $ "'= |

1

0
($0$&G)(w, s'=, %; %0) ds"p, 0

� sup
(', %) # 3 $

= |
1

0
&($0 $&G)(w, s'=, %; %0)&p, 0 ds

�C1(0, &, p) =,
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= # [0, 1), by (C1). Since

$l
' $&G$(w, 0, (', %); %0)=0

for l�1,

sup
(', %) # 3 $

&$l
'$&G$(w, =, (', %); %0)&$l

'$& G$(w, 0, (', %); %0)&p, 0

= sup
(', %) # 3 $

&$l
'$& G$(w, =, (', %); %0)&p, 0

= sup
(', %) # 3 $

&=l ($l
0 $&G)(w, '=, %; %0)&p, 0

�C1(l, &, p) =l,

= # [0, 1), by (C1). This shows (1).

One has (2) form (1), (3) form (C1), and (4) from (3), respectively.

(5) For p>2n0 ,

P(Rc
=(w)>a)=P(c &G$(w, =, } ; %0)&G$(0, } ; %0)&2n0

Wm0 , 2n0(3 $)

+c&|=1&2#($0$G)$(w, =, ( } , %0); %0)| 2&2
W 1, 2 ((0, 1))>a)

�P(&G$(w, =, } ; %0)&G$(0, } ; %0)& p
Wm0 , 2n0 (3 $)>(2&1ac&1) p�2n 0)

+P(&|($0$G)$ (w, =, ( } , %0); %0)| 2&2p
W 1, 2 ((0, 1))

>(2&1ac&1) p =&4p(1&2#))

�(2&1ac&1)&p�2n0 C2(m0 , n0 , p, 3 $) p = p

+(2&1ac&1)&p C4(2p, k)2p =4p(1&2#),

= # (0, 1). Let p>max[2n0 , n�4(1&2#), n], which completes the proof.

(6) If Rc
=(w)<1, by definition we see that

&G$(w, =, } ; %0)&G$(0, } ; %0)&W m0 , 2n0 (3 $)�c&1�2n 0

and

&|=1&2#($0$G)$ (w, =, ( } , %0); %0)| 2 &W1, 2((0, 1))�c&1�2.

By Sobolev's inequality

&G$(w, =, } ; %0)&G$(0, } ; %0)&C 2
b (3 $)�C(m0 , n0 , 3 $) c&1�2n 0
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and

&|=1&2#($0$G)$(w, =, ( } , %0); %0)| 2&Cb ((0, 1))�C(1, 1, (0, 1))c&1�2,

from which we have the first two assertions. Finally, since $G(0, %0 ; %0)=0,

sup
0<=$�=

|=$&2#$G(w, =$, %0 ; %0)|= sup
0<'�1

|('=)&2# $G(w, '=, %0; %0)|

� sup
0<'�1

('=)1&2# |
1

0
|($0$G)(w, s'=, %0 ; %0)| ds

� sup
0<'�1

|
1

0
|=1&2#($0$G)(w, s'=, %0 ; %0)| ds

�C(1, 1, (0, 1))1�2 c&1�4

from the above result. K

The functional Rc
=(w) # D� for c>0 and = # [0, 1). Let *1 denote

the minimum eigenvalue of the positive definite bilinear form I(%0)=
&$2G(0, %0 ; %0). Choose c1>0 and d1>0 for %0 # 3 o so that

c1< 1
4 *1 (7.1)

and

|$2G(0, %; %0)&$2G(0, %0 ; %0)|�c1 (7.2)

for |%&%0 |�d1 . Next, take c>0 large enough so that

C(m0 , n0 , 3 $)c&p1<min[ 1
4 *1 , a0d 2

1 ] (7.3)

and

d1C(1, 1, (0, 1))1�2 c&1�4< 1
8 *1 , (7.4)

where p1=1�2n0 . Let �=(w)=0 if =#�d1 and �=(w)=�(R3c
= (w)) if =#<d1 .

The following lemma ensures the existence and the smoothness of the
maximum likelihood estimator under truncation.

Lemma 7.2. Assume that (C1) and (C2) are satisfied. Suppose that
positive constants c1 , d1 , and c satisfy (7.1)�(7.4). Then

(1) For each = # [0, 1), the functional w [ �=(w) # D� and 0�
�=(w)�1.

(2) If =#<d1 and Rc
=(w)<1, there exists a maximum likelihood

estimate %� =(w; %0).
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(3) $2G(w, =, %; %0) are uniformly negative definite. More precisely, for
|%&%0 |�d1 ,

sup
|!| =1

$2G(w, =, %; %0)[!, !]�&1
2*1

if =#�d1 and Rc
=(w)<1.

(4) If =#<d1 and Rc
=(w)<1, the maximum likelihood estimate

%� =(w; %0) is a unique solution in [%: |%&%0 |<d1] of the equation
$G(w, =, %; %0)=0.

(5) %� =(w; %0) can be extended to a functional on W and �=(w)
%� =(w; %0) # D�(Rk).

(6) For any n # N, �=(w)=1&O(=n) in D� as = a 0.

Proof. (1) is easy to show. We verify (2), (3), and (4). For ! # Rk and
% # 3, |%&%0 |�d1 ,

$2G(w, =, %; %0)[!, !]

�$2G(0, %0 ; %0)[!, !]+|$2G(w, =, %; %0)&$2G(0, %; %0)| |!| 2

+|$2G(0, %; %0)&$2G(0, %0 ; %0)| |!| 2

�(&*1+C(m0 , n0 , 3 $) c&p 1+c1) |!| 2

�(&1+ 1
4+ 1

4) *1 |!| 2

=&1
2*1 |!| 2

from Lemma 7.1(6), (7.1), (7.2), (7.3) if Rc
=(w)<1. Then

sup
=#�|%&% 0 |�d1

=&2#G(w, =, %; %0)

� sup
=#�|%&%0 |�d1

=&2#$G(w, =, %0 ; %0)[%&%0]

+ sup

|%� &%0 |�d 1

=#�|%&%0 |�d1

1
2=&2#$2G(w, =, %� ; %0)[%&%0 , %&%0]

�d1C(1, 1, (0, 1))1�2 c&1�4

+ sup
= #�|%&%0 |�d1

1
2=&2#(&1

2*1 |%&%0 | 2)

�&1
8 *1<0
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from Lemma 7.1(6) and (7.4) if Rc
=(w)<1. On the other hand, from (C2)

and (7.3),

sup
d1� |%&% 0 |

G(w, =, %; %0)

= sup
d 1�|%&%0 |

[G(0, %; %0)+(G(w, =, %; %0)&G(0, %; %0))]

� sup
d 1�|%&%0 |

(&a0 |%&%0 | 2)+C(m0 .n0 , 3 $) c&p 1

�&a0d 2
1+C(m0 } n0 , 3 $) c&p 1

<0

if Rc
=(w)<1. Thus we obtain

sup
=#�|%&% 0 |

G(w, =, %, %0)<0

if =#�d1 and Rc
=(w)<1. This shows that a maximum likelihood estimate

exists in |%&%0 |<=#. Moreover, for |%&%0 |�d1 ,

sup
|!| =1

$2G(w, =, %;%0)[!, !]�& 1
2*1

if =#�d1 and Rc
=(w)<1, as shown above, so that $2G(w, =, %;%0) are

uniformly negative definite and, hence, the maximum likelihood estimate is
a unique root in [%; |%&%0 |<d1] of the equation $G(w, =, %; %0)=0.

For each h # H, constructing versions G� h ,
t
$Gh , etc. and R� 3c

=h naturally,
we can show (5) [15].

Finally, by Lemma 7.1 (5) and applying chain rules with respect to
H-derivatives to �(R3c

= (w)) we obtain (6). K

Remark 7.1. We can also prove that if =#<d1 and Rc
=(w)<1, then

for 0�=$�= the maximum likelihood estimate %� =$(w; %0) exists in
[%; |%&%0 |�=$#] and is a unique solution in [%; |%&%0 |<d1] of the
equation $G(w, =$, %; %0)=0. Moreover, for |%&%0 |�d1 ,

sup
|!| =1

$2G(w, =$, %; %0)[!, !]�&1
2*1 .

For each = # (0, 1), �=(w) %� . (w; %0) is a C([0, =] � Rk)-valued smooth
functional.
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Lemma 7.3. Assume that (C1) and (C2) are satisfied. Then
�=(w) =&1(%� =*(w; %0)&%0) # D�(Rk) has the asymptotic expansion

�=(w) =&1(%� =*(w; %0)&%0)tf0+=f1+ } } }

in D�(Rk) as = a 0 with f0 , f1 ,... # D�(Rk).

Proof. Suppose that =#
0<d1 . Let Rc

=0
(w)<1. Then, for =, =$<=0 , there

exist =~ ( |=~ &=|<|=$&=| ) and %� s( |%� s&%� =(w; %0)|<|%� =$(w; %0)&%� =(w; %0)| ) for
which

0=$G(w, =$, %� =$(w; %0); %0)&$G(w, =, %� =(w; %0); %0)

=|
1

0
$2G(w, =$, %� s ; %0) ds[%� =$(w; %0)&%� =(w; %0)]

+$0 $G(w, =~ , %� =(w; %0); %0)(=$&=).

From this equation, Remark 7.1 and (C1) we see that if 0�=<=0 , %� =(w; %0)
is continuous in = and differentiable in =:

$0%� =(w; %0)=&[$2G(w, =, %� =(w; %0); %0)]&1 $0$G(w, =, %� =(w; %0); %0).

Since both sides are differentiable,

$2
0%� =(w; %0)

=2[$2G(w, =, %� =(w; %0); %0)]&1 $0 $2G(w, =, %� =(w; %0); %0)

_[$2G(w, =, %� =(w; %0); %0)]&1 $0$G(w, =, %� =(w; %0); %0)

&[$2G(w, =, %� =(w; %0); %0)]&1 $2
0$G(w, =, %� =(w; %0); %0)

+[$2G(w, =, %� =(w; %0); %0)]&1 $3G(w, =, %� =(w; %0); %0)[ } , $0%� =(w; %0),

[$2G(w, =, %� =(w; %0); %0)]&1 $0$G(w, =, %� =(w; %0); %0)]

if 0�=<=0 . The higher order derivatives with respect to = also exist and
can be calculated in a similar way. We note that if Rc

=0
(w)<1, %� =(w; %0) is

the unique solution of the estimating equation and smooth on [0, =0],
which is a consequence of the choice of Rc

=0
(w). See Remark 7.1. Then we

have the expansion

%� =0
(w; %0)=%0+

=0

1!
($0)0 %� . (w; %0)+

=2
0

2!
($0)2

0 %� . (w; %0)+ } } }

+
= j&1

0

( j&1)!
($0) j&1

0 %� . (w; %0)+= j
0 |

1

0

1
( j&1)!

(1&s) j&1

_($0) j
s=0

%� . (w; %0) ds.
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It is not difficult to show from this equation that

�=(w) =&1(%� =(w; %0)&%0)

t�=(w)
1
1!

($0)0 %� . (w; %0)+�=(w)
=
2!

($0)2
0 %� . (w; %0)+ } } }

t
1
1!

($0)0 %� . (w; %0)+
=
2!

($0)2
0 %� . (w; %0)+ } } }

in D�(Rk) as = a 0 since �=(w)=1&O(=n) in D� as = a 0 for n # N. K

Let _=*(w)=(_=*
ij(w))k

i, j=1 , 0<=<1, denote the Malliavin covariance of
�=(w)=&1[%� =*(w; %0)&%0], that is,

_=*
ij(w)=(D[�=(w) =&1[%� =*(w; %0)&%0] i],

D[�=(w) =&1[%� =*(w; %0)&%0] j])H

for i, j=1, 2 } } } , k. Similarly, define _=(w) for �=(w) =&1[%� =(w; %0)&%0].

Lemma 7.4. Assume that (C1)�(C3) are satisfied. Then for %0 # 3 o,
= # (0, 1), and c>0 satisfying (7.3) and (7.4), there exists a Wiener functional
!=(w) with the following properties:

(1) 0�!=(w) # D�.

(2) If !=(w)�1, R3c
= (w)< 1

2.

(3) There exists positive constant a1 such that if !=(w)�1,

inf
|v|=1
v # Rk

_=*(w)[v, v]�a1 .

(4) for any n # N,

lim
= a 0

=&nP( |!=(w)|> 1
2)=0

Proof. For =<min[d 1�#
1 , (2 _$b_�)&1�2], c2>6c, and c3>0, let

!c 2 , c 3
= (w)=Rc 2

= (w)+c3 &|_(w, =, } )&I(%0)| 2&2n 1
W m 1, 2n1([ |u|<1]) ,

where _(w, =, u)=([_(w, =, u)] ij)k
i, j=1 with

[_(w, =, u)]ij=(=&1D$iG(w, =, %0+=#u; %0), =&1D$jG(w, =, %0+=#u; %0)) H
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for u # Rk, |u|�1. Let !c2, c3
= =2 for other =. Let m1 , n1 # N, m1>k�2n1+2.

Define !=(w)=!c2, c3
= (w). Assertions (1) and (2) are trivial. If !c2, c3

= �1 then

sup
|u|�1

|_(w, =, u)&I(%0)|�C(m1 , n1 , [ |u|<1])1�2 c&1�4n1
3 ,

sup
|u|�1

|$2G(w, =, %0+=#u; %0)&$2G(0, %0; %0)|�C(m0 , n0 , 3 $) c&p1
2 +c1 ,

and

sup
|u|�1

|=2$b(%0+=#u)|� 1
2

for |u|�1, =<min[d 1�#
1 , (2 _$b_�)&1�2]. We know that the Malliavin

covariance

_=(w)=[$2G(w, =, %� =(w; %0); %0)]&1 _(w, =, =&#(%� =(w; %0)&%0))

_[$2G(w, =, %� =(w; %0); %0)]$&1

and

_=*(w)=(Ik&=2$b(%� =(w; %0))) _=(w)(Ik&=2$b(%� =(w; %0)))$

if !=(w)�1 since then �=(w)=1 and D�=(w)=0. Thus if we choose c2 , c3

large enough, (3) holds.
Finally we show (4). The Malliavin covariance of $0$G(w, 0, %0 ; %0) is

I(%0). We have

=&1D$G(w, =, %0+=#u; %0)=D$0$G(w, 0, %0; %0)+=#r=(u),

where r=(u) is given by the Bochner integral

r=(u)==1&# |
1

0
(1&')(D$2

0 $G)(w, '=, %0+=#u; %0) d'

+|
1

0
(D$0$2G)(w, 0, %0+s=#u; %0) ds[ } , u].

From this fact we obtain (4) by estimating the Sobolev norm of the
difference of Malliavin covariances.

For multiindex n=(n1 , ..., nk), let n!=n1! } } } nk !, an=an1
1 } } } ank

k for
a # Rk and �n=�n1

1 } } } �nk
k , where �i=���xi, i=1, ..., k.

Lemma 7.5. Assume that (C1)�(C3) are satisfied. Then the generalized
Wiener functional

�(!=(w)) IA(�=(w) =&1(%� =*(w; %0)&%0)),
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A # Bk, is well defined and has the asymptotic expansion

�(!=(w)) IA(�=(w) =&1 (%� =*(w; %0)&%0))t8A, 0+=8A, 1+ } } }

in D� &� as = a 0 uniformly in A # Bk with 8A, 0 , 8A, 1 ,... # D� &� determined by
the formal Taylor expansion

IA( f0+=[ f1+=f2+ } } } ])=:
n

1
n!

�nIA( f0)[=f1+=2f2+ } } } ]n

=8A, 0+=8A, 1+ } } } .

In particular,

8A, 0=IA( f0),

8A, 1=f i
1�i IA( f0).

Proof. We obtain the results from Lemmas 7.3 and 7.4 above and
Theorem 4.1 of [13].

Lemma 7.6. For A # Bk,

E[ f i
1 �i IA( f0)]=|

A
p1(x) dx,

where

p1(x)=&�i[qi
b(x) ,(x; 0, I(%0)&1)].

Proof. Using the integration by parts formula in the Malliavin calculus,
for some smooth functional F(w, f1) we have

E[ f i
1�i IA( f0)]=E[F(w, f1) IA( f0)]=|

A
p1(x) dx,

where

p1(x)=E[F(w, f1) | f0=x] ,(x; 0, I(%0)&1).

To get p1(x), let Ax=[x1, �)_ } } } _[xk, �). Then

p1(x)=(&1)k �1 } } } �k E[ f i
1�i IA x( f0)]

=&�iE[ f i
1 $x( f0)]

=&�i[E[ f i
1 | f0=x] ,(x; 0, I(%0)&1)]. K
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Proof of Theorem 4.1. We obtain Theorem 4.1 from Lemmas 7.5 and 7.6.

Next, by Lemmas 6.4(2) and 7.5, we have the following.

Lemma 7.7. Assume that (C1)�(C3) and (C5) are satisfied. Let %0 # 3 o

and let K be any compact set in Rk. Then

F u, K
= (w) :=,K, u

= (w) exp[=&2G(w, =, %0+=u; %0)]

_�(!=(w)) IA(�=(w) =&1(%� =*(w; %0)&%0))

is well defined and has the asymptotic expansion

F u, K
= te f 0

L, u
(8� u

A, 0+=8� u
A, 1+ } } } ),

in D� &� as = a 0 uniformly in A # Bk and u # K with 8� u
A, 0 , 8� u

A, 1 ,... determined
by the formal Taylor expansion

(1+=9 u
1+=29 u

2+ } } } )(8A, 0+=8A, 1+ } } } )=8� u
A, 0+=8� u

A, 1+ } } } .

In particular,

8� u
A, 0=IA( f0), 8� u

A, 1=f i
1�i IA( f0)+f L, u

1 IA( f0).

Proof of Theorem 4.2. The validity of the asymptotic expansion can be
proved in a similar fashion as in the proof of Theorem 3.2. From integration
by parts we see that each term on the right-hand side of the asymptotic
expansion of E[F u, K

= (w)] of Lemma 7.7 is represented by an integration of
some smooth function on the set A. We determine pc, u

0 and pc, u
1 . Let

A+u=[x; x&u # A]. We have

f L, u
0 =I[ f0 , u]& 1

2I[u, u].

Using Lemma 7.7 for A+u in place of A, we have

E[e f 0
L, u

8� u
A+u, 0]=E[e f 0

L, u
IA+u( f0)]

=|
A+u

exp[I[x, u]& 1
2I[u, u]] ,(x; 0, I &1) dx

=|
A+u

,(x&u; 0, I &1) dx

=|
A

,( y; 0, I&1) dy.

34 NAKAHIRO YOSHIDA



File: 683J 158535 . By:BV . Date:07:07:07 . Time:12:09 LOP8M. V8.0. Page 01:01
Codes: 2901 Signs: 1660 . Length: 45 pic 0 pts, 190 mm

Next,

E[e f 0
L, u

8� u
A+u, 1]

=E[e f 0
L, u

f i
1� i IA+u( f0)]+E[e f 0

L, u
f L, u

1 IA+u( f0)]

=|
A+u

&�iE[e f 0
L, u

f i
1$x( f0)] dx+E[e f 0

L, u
f L, u

1 IA+u( f0)]

=|
A+u

[&�i (exp[I[x, u]& 1
2I[u, u]] E[ f i

1 | f0=x] ,(x; 0, I&1))

+exp[I[x, u]& 1
2I[u, u]] E[ f L, u

1 | f0=x] ,(x; 0, I &1)] dx

=|
A+u

[&�i (qi
b(x) ,(x&u; 0, I &1))+qL, u

0 (x) ,(x&u; 0, I &1)] dx

=|
A

[&�i (qi
b( y+u) ,( y; 0, I &1))+qL, u

0 ( y+u) ,( y; 0, I &1)] dy.

This completes the proof.
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