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Introduction

In general, Shimura varieties are smooth quasi-projective varieties
defined over a certain number field. Such a variety is determined
by a Shimura datum, ie. a pair (G,X) where

• G is a reductive group over Q,
• X is a “conjugacy class of cocharacters of GR”.

The datum (G,X) determines

• a number field E ⊂ C called the reflex field,
• for K ⊂ G(Af ) open compact subgroup which is “small

enough”, a Shimura variety ShK over Spec(E).

Rk: ShK can be defined as a finite union of locally symmetric
spaces for G.
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Introduction

If K ′ ⊂ K , there is a natural finite étale transition morphism
ΠK ′,K : ShK ′ → ShK . The Shimura tower is the inverse system
Sh := (ShK )K . The group G(Af ) acts on Sh by Hecke
correspondences.

=⇒ the cohomology of Sh is naturally a
G(Af )× Gal(E/E)-module. It is expected to give a geometric
incarnation of the Langlands correspondences.
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Introduction

For arithmetic applications, one wants to define integral models
of Shimura varieties over some prime p, ie. a quasi-projective
scheme SK over Spec(OE,(p)) such that

ShK ' SK ×Spec(OE,(p)) Spec(E),

where OE,(p) := OE ⊗Z Z(p).

If such a model SK exists, we say that the Shimura variety has
good reduction at p if SK is smooth, otherwise we say that it has
bad reduction at p.
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Introduction

Assume that an integral model SK exists over p. Fix a place v of
E above p and write E := Ev for the v-adic completion. We can
think of ShK and SK as schemes over Spec(E) and Spec(OE )

respectively. If ` 6= p is a prime, we have an isomorphism of
Gal(E/E)-modules

H•(ShK ⊗E E ,Q`) ' H•(SK ⊗ κ(E),RΨηQ`),

where κ(E) is the residue field of E , SK := SK × Spec(κ(E)) is the
special fiber and RΨηQ` is the nearby cycle complex on SK .

Rk: It works even when SK is not proper (Lan-Stroh).
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Introduction

In many cases, the special fiber SK has nice geometric properties
(stratifications, Igusa varieties, etc.). Thus one may expect that
H•(SK ⊗ κ(E),RΨηQ`) is easier to understand.

In this talk, we consider one specific example: the PEL
GU(n − 1, 1) Shimura variety over a ramified prime. We will
compute the cohomology sheaves RiΨηQ` by using the theory of
local models.
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The PEL GU(n − 1, 1) Shimura
variety over a ramified prime



The PEL GU(n − 1, 1) Shimura variety over a ramified prime

Shimura varieties of PEL type can be described as moduli spaces
of abelian varieties with additional structures. Some notations:

• E := Q[
√
−δ] where δ > 1 squarefree.

• p a prime dividing δ.
• · ∈ Gal(E/Q) the non-trivial Galois involution.
• π :=

√
−δ so that π = −π.

• E := E⊗Qp = Qp[
√
−δ] a quadratic ramified extension of

Qp .
• (V, (·, ·)) an n-dimensional E/Q-hermitian space of signature

(n − 1, 1) at infinity.
• V := V⊗Qp with induced E/Qp-hermitian pairing (·, ·).
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

• G := GU(V, (·, ·)) as a reductive group over Q.
• Γ ⊂ V a self-dual OE-lattice (the existence of Γ is a condition

on V).
• L := Γ⊗ Zp ⊂ V a self-dual OE -lattice.
• K ⊂ G(Af ) the stabilizer of Γ⊗ Ẑ.
• Kp ⊂ K ∩G(Ap

f ) an open compact subgroup.
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

For S an OE -scheme, SKp (S) is the set of isomorphism classes of
tuples (A, ι, λ, η) where

• A is an abelian scheme over S of relative dimension n “up to
an isogeny of order prime to p”,

• ι is an “OE-action on A”, ie. a ring morphism

ι : OE ⊗ Z(p) → EndS(A)⊗ Z(p),

• λ is an OE-linear principal polarization on A (seen up to a
scalar in Q× locally on S),

• “η : H1(A,Ap
f ) ' V⊗ Ap

f mod Kp” a Kp-level structure
compatible with the hermitian products,
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

Moreover, we add the following conditions on A, ι

• Kottwitz’ determinant condition

∀x ∈ OE, det(T−ι(x) |LieS(A)) = (T−x)n−1(T−x)1 ∈ OE [T ],

• Pappas’ wedge condition if n ≥ 3

∀x ∈ OE,

2∧
(ι(x)− x) = 0 and

n∧
(ι(x)− x) = 0 on LieS(A).

If Kp is small enough, SKp is a flat quasi-projective scheme over
Spec(OE ). It is an integral model over p of a Shimura variety ShK
for G = GU(V) where K = KpKp and Kp := Stab(L) ⊂ G(Qp).
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

For an OE -scheme S and A, ι ∈ (AV )S , write

Π := ι(π) ∈ EndS(A)⊗ Z(p).

If p vanishes on S and A ∈ SKp (S), by Pappas’ condition we have∧2 Π = 0 on LieS(A).

Let Z be the zero dimensional closed subscheme of SKp

consisting of those A, ι such that Π ∼= 0 on Lie(A).
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

Theorem (Pappas)
(1) The closed subscheme Z is the singular locus of the special
fiber SKp .
(2) If n = 2, the scheme SKp is regular and has semi-stable reduction.
(3) If n ≥ 3, the scheme SKp is regular outside of Z . The blow up
bKp : S′

Kp → SKp at Z is regular and has semi-stable reduction.
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

From (1), it follows that the nearby cycle complex RΨηQ` satisfy

• R0ΨηQ` = Q` (constant sheaf over SKp ),
• for i ≥ 1, RiΨηQ` is a skyscraper sheaf concentrated on Z .

=⇒ it remains to compute (RiΨηQ`)z for all points z ∈ Z . To
do this, we use the local model.
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

By general theory, there is a local model diagram

N

SKp M loc,

r q

where, for an OE -scheme S, N (S) is the set of (A, ι, λ, η, γ) where

• (A, ι, λ, η) ∈ SKp (S),
• γ : H1

dR(A∨/S) ∼−→ L ⊗Zp OS is an isomorphism of sheaves of
OE ⊗Zp OS-modules compatible with the hermitian pairings.

The map r simply forgets about γ.
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

The scheme M loc is the local model and can be defined purely in
terms of linear algebra, ie. M loc(S) is the set of subsheaves
F ⊂ L ⊗Zp OS of OE ⊗Zp OS-modules such that

• F is a locally free OS-direct summand of L⊗Zp OS of rank n,
• F is totally isotropic for the pairing (·, ·)⊗OS ,
• it satisfies Kottwitz and Pappas conditions, ∀x ∈ OE ,

det(T − x ⊗ 1 | F)) = (T − 1 ⊗ x)1(T − 1 ⊗ x)n−1 ∈ OE [T ],

n∧
(x ⊗ 1 − 1 ⊗ x) = 0 and

2∧
(x ⊗ 1 − 1 ⊗ x) = 0 on F .

Then q sends (A, ι, λ, η, γ) to the image of the submodule
H0(A∨,Ω1

A∨) ⊂ H1
dR(A∨/S) via γ.
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The PEL GU(n − 1, 1) Shimura variety over a ramified prime

To say that M loc is the local model of SKp means that there
exists an etale cover V → SKp and a section s : V → N such that
the composition qs : V → M loc is an etale cover.

V N

SKp M loc,

s

r q

=⇒ By restricting RΨηQ` to the etale cover, it is enough to
compute the nearby cycles on M loc instead.
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Nearby cycles and semi-stable reduction

In this section, let E be any p-adic field with ring of integers OE

and residue field κ.

η

s̃ S̃ η̃

s S η

j

ĩ j̃

where

s = Spec(κ), S = Spec(OE ), η = Spec(E),

s̃ = Spec(κ), S̃ = Spec(OEun), η̃ = Spec(Eun),

η = Spec(Eun).
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Nearby cycles and semi-stable reduction

η

s̃ S̃ η̃

s S η

j

ĩ j̃

Fix ` 6= p and let Λ be a coefficient ring eg. Z/`kZ,Z`,Q`, or
Q`. Let f : X → S be a morphism of finite type. By base change,
we have morphisms

Xs̃ XS̃ Xη
ĩ j
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Nearby cycles and semi-stable reduction

Xs̃ XS̃ Xη
ĩ j

For a scheme Y , let D+(Y ,Λ) denote the derived category of
bounded-below complexes of (etale) sheaves of Λ-modules on Y .

Definition: For K ∈ D+(Xη,Λ), the nearby cycles complex of K
is

RΨηK := ĩ∗Rj∗(K|Xη
).

Then RΨηK ∈ D+(Xs̃ ,Λ,Gal(η/η)), the bounded-below derived
category of sheaves of Λ-modules on Xs̃ equipped with a
continuous action of Gal(η/η).
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Nearby cycles and semi-stable reduction

If h : X → Y is smooth, we have the smooth base change
theorem, ie. the natural map

h∗
s̃ RΨY

η
∼−→ RΨX

η h∗
η

is an isomorphism. In particular if X → S is smooth then

RΨηΛ ' Λ.

Slogan: if X is smooth then the nearby cycles are trivial.
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Nearby cycles and semi-stable reduction

If h : X → Y is proper, we have the proper base change
theorem, ie. the natural map

Rhs̃,∗RΨX
η

∼−→ RΨY
η Rhη,∗

is an isomorphism. In particular if X → S is proper then

RΓ(Xs̃ ,RΨηK)
∼−→ RΓ(Xη,K),

for all K ∈ D+(Xη,Λ), compatible with the Galois action.

Slogan: cohomology of the generic fiber = cohomology of the
special fiber with coefficients in the nearby cycles.
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Nearby cycles and semi-stable reduction

Definition: We say that X → S is (strictly) semi-stable of relative
dimension n if

1. X → S is regular and flat,
2. Xη → η is smooth of relative dimension n,
3. Xs ↪→ X is a divisor with simple normal crossings.

Write Xs =
∑

Xk as a sum of smooth divisors Xk ’s for 1 ≤ k ≤ m.
Write ΛXk for the constant sheaf Λ with support on Xk .
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Nearby cycles and semi-stable reduction

Theorem (Grothendieck)
We have R0ΨηΛ = Λ and

R1ΨηΛ ' (
⊕

1≤k≤m
ΛXk ,̃s/Λ)(−1).

Moreover for all i ≥ 2 we have

RiΨηΛ ' ΛiR1ΨηΛ.

In particular RiΨηΛ = 0 if i ≥ m.

Example: if m = 2 then R0ΨηΛ ' Λ and R1ΨηΛ ' ΛQs̃ (−1)
where Q := X1 ∩ X2 is the scheme-theoretic intersection.
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Nearby cycles on the local model

From now on, recover our notations for the local model (E is
quadratic ramified, etc.)

Let Π := π ⊗ 1 ∈ OE ⊗Zp Fp .
Let M loc := M loc × Spec(Fp) denote the special fiber.
Let y := [Π(L ⊗ Fp)] ∈ M loc(Fp).

Theorem (Pappas)

The special fiber M loc is smooth outside of y , the unique singular
point.

=⇒ We have R0ΨηQ` ' Q` and for i ≥ 1, the sheaves RiΨηQ`

on M loc are skyscraper, concentrated at y (a geometric point over
y).
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Nearby cycles on the local model

Let us state our main result.

Theorem (M.)
For i ≥ 0 we have

(RiΨηQ`)y =


Q` if i = 0,
Q` if n is even and i = n − 1,
0 else.

If n is even, the action of Gal(E/E) on (Rn−1ΨηQ`)y is trivial on
the inertia subgroup, and the Frobenius acts by multiplication by
the scalar εp n

2 , where

ε =

1 if n = 2 or if n ≥ 4 and (V , (·, ·)) is split,
−1 if n ≥ 4 and (V , (·, ·)) is non-split. 26



Nearby cycles on the local model

Remarks: (1) The discriminant of the hermitian space (V , (·, ·))
is

disc(V ) := (−1)
n(n+1)

2 det(V ) ∈ Q×
p /NormE/Qp (E

×) ' Z/2Z.

We say that (V , (·, ·)) is split if disc(V ) = 1, and that it is
non-split otherwise.
(2) In particular, if n is odd then RΨηQ` ' Q`, as in the case of
good reduction. The singularities do not disrupt the cohomology.
(2) In 2003, Krämer computed the alternating trace of the
Frobenius

Trss(Frob, (RΨηQ`)y ) :=
∑
i≥0

(−1)iTrace(Frob, (RiΨηQ`)y ).

Our computations agree with her’s.
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Outline of the proof

If n = 2, the proof is easy since M loc has semi-stable reduction.
From now on, we assume n ≥ 3.

Let b : (M loc)′ → M loc be the blow-up at the singular point y .
Let RΨ′

ηQ` denote the nearby cycles on (M loc)′. By proper base
change and since b is an isomorphism on the generic fibers, we
have

RΨηQ` ' Rbs∗RΨ′
ηQ`,

where bs̃ is the induced map on geometric special fibers. In
particular,

(RiΨηQ`)y = Hi(b−1
s {y},RΨ′

ηQ`).
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Outline of the proof

The blow-up (M loc)′ has semi-stable reduction. Moreover,
Krämer gives an explicit description of the special fiber.

Theorem (Krämer)

The special fiber (M loc)′ is the union of two smooth irreducible
varieties Z1 and Z2. We have Z1 := b−1

s {y} ' Pn−1 and Z2 is
a P1-bundle over the scheme theoretic intersection Q := Z1 ∩ Z2.
Moreover, the closed immersion Q ↪→ Z1 ' Pn−1 identifies Q with
an explicit smooth quadric in Pn−1.
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Outline of the proof

The situation is summed up in the following diagram.

(M loc)′

Z1 ' Pn−1 Z2 ' P(E)

Q

i1 i2

ϕ

ι1 ι2

where E is a locally free sheaf of rank 2 on Q and ϕ is the
associated projective bundle morphism.

Recall that we want to compute Hi(Z1, i∗1 RΨ′
ηQ`).
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Outline of the proof

Since (M loc)′ has semi-stable reduction, we have

RiΨ′
ηQ` =


Q` if i = 0,
iQ∗Q`(−1) if i = 1,
0 else,

where iQ : Q ↪→ (M loc)′ is the closed immersion.

From general theory, the nearby cycles RΨ′
ηQ` are equipped with

the monodromy filtration. Saito T. computed the graded
components of this filtration in the case of semi-stable reduction.
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Outline of the proof

We have

GrrRΨ′
ηΛ '


iQ∗Q`[−1] if r = −1,
(i1∗Q` ⊕ i2∗Q`)[0] if r = 0,
iQ∗Q`(−1)[−1] if r = 1,
0 else,

where for k = 1, 2, ik∗Q` is the constant sheaf Q` concentrated on
Zk .
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Outline of the proof

By restriction, we also have an induced filtration on i1∗i∗1 RΨ′
ηQ`

and likewise, the graded pieces are

Grr i1∗i∗1 RΨ′
ηΛ '


iQ∗Q`[−1] if r = −1,
(i1∗Q` ⊕ iQ∗Q`)[0] if r = 0,
iQ∗Q`(−1)[−1] if r = 1,
0 else.

The natural adjunction morphism RΨ′
ηQ` → i1∗i∗1 RΨ′

ηQ` is
compatible with the filtrations.
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Outline of the proof

The filtrations induce spectral sequences computing the
cohomology with coefficients in the nearby cycles:

(E)a,b
1 = Ha+b((M loc)′,Gr−aRΨ′

ηQ`) =⇒ Ha+b((M loc)′,RΨ′
ηQ`),

(i∗1 E)a,b
1 = Ha+b(Z1,Gr−ai∗1 RΨ′

ηQ`) =⇒ Ha+b(Z1, i∗1 RΨ′
ηQ`).

The adjunction morphism now induces a morphism of spectral
sequences (E)a,b

• → (i∗1 E)a,b
• . In the first page, it leads to

commutative diagrams as follows.
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Outline of the proof

For 0 ≤ i ≤ 2(n − 1),

Hi−2(Q,Q`)(−1) Hi(Z1,Q`)⊕ Hi(Z2,Q`) Hi(Q,Q`)

Hi−2(Q,Q`)(−1) Hi(Z1,Q`)⊕ Hi(Q,Q`) Hi(Q,Q`)

−ι1∗+ι2∗

id

−ι∗1+ι∗2

id⊕ι∗2 id

f g

Top maps are restriction and Gysin maps for etale cohomology.
Vertical maps are restrictions. We want to understand f , g and
compute the cohomology of the bottom chain complex.
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Outline of the proof

By commutativity, there exists αi : Hi(Q) → Hi(Q) which is
identity on Im(ι∗2) such that

Hi−2(Q)(−1) Hi(Z1)⊕ Hi(Q) Hi(Q)

x (−ι1∗(x), ι∗2ι2∗(x))

(x , y) −ι∗1(x) + αi(y)

f g
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Outline of the proof

By the projective bundle formula for ϕ : Z2 → Q, we know that
ϕ∗ induces an isomorphism

H•(Q)[t]/(t2)
∼−→ H•(Z2).

Since ϕ ◦ ι2 = idQ , we have ι∗2ϕ
∗ = id on Hi(Q). In particular,

αi ≡ id and g is surjective.

Since Q is a smooth quadric in Z1 ' Pn−1, it is well known that

H•(Q) = ι∗1H•(Z1)⊕ Hn−2
prim(Q),

where the primitive cohomology is defined by
Hn−2

prim(Q) := Ker(ι1∗ : Hn−2(Q) → Hn(Z1)(1)). By general theory,
Hn−2

prim(Q) is zero if n is odd, and is 1-dimensional if n is even.
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Outline of the proof

Thus, the bottom row of the commutative diagram has the form

Hi−2(Q)(−1) f−→ Hi(Z1)⊕ Hi(Q) � Hi(Q),

and the sequence is always exact in the middle.

Moreover the map f is injective except when n is even and
i = n. In this case, the kernel is given by Hn−2

prim(Q) ' Q` (up to
Tate twist). It only remains to compute the Frobenius action.
To do this, we use Lefschetz’ trace formula.
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Outline of the proof

Assume now that n = 2m. Then Q is cut out by the equation
• X2

1 + . . .+ X2
m − X2

m+1 − . . .− X2
n if (V , (·, ·)) is split,

• X2
1 + . . .+ X2

m − X2
m+1 − . . .− X2

n−1 − δX2
n for some δ ∈ F×

p
which is not a square if (V , (·, ·)) is not split.

Consider the Jacobi sum

jm :=
1

p − 1
∑

u1+...+u2m=0
ui∈F×

p

(
u1
p

)
. . .

(
u2m
p

)
.

Proposition (Weil)

#Q(Fp) =
pn−1 − 1

p − 1 + ε

(
−1
p

)m
jm,

where ε = 1 if (V , (·, ·)) is split, −1 otherwise.
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Outline of the proof

Proposition

We have jm =
(
−1
p

)m
pm−1.

=⇒ By Lefschetz’s trace formula, we deduce that the
Frobenius acts like multiplication by εpm−1 on Hn−2

prim(Q).

This concludes the proof!
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Thank you for listening!
ご清聴ありがとうございました。
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