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Introduction: the notion of Coxeter type

Basic loci of Coxeter type (following [Görtz, He, Nie])

Consider a datum (G , µ,K ) where

� G : connected reductive group over a p-adic field F ,

� µ: conjugacy class of cocharacter Gm,Fac → GFac ,

� K : parahoric subgroup of G (F ).

Let [b0] ∈ B(G , µ) unique basic element and X (µ, b0)K the

associated basic partial affine Deligne-Lusztig (DL) variety.
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Introduction: the notion of Coxeter type

Definition

The pair (G , µ) is fully Hodge-Newton (HN) decomposable if

X (µ, b0)K is “naturally” stratified by classical DL varieties for some

(equivalently for all) K .

The triple (G , µ,K ) is of Coxeter type if (G , µ) is fully HN decom-

posable and the DL varieties involved are of Coxeter type.

The stratification by classical DL varieties is the Bruhat-Tits

(BT) stratification.

Remark: “of Coxeter type” depends on K .
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Introduction: the notion of Coxeter type

Remark: [Görtz, He, Nie] classified all the fully HN decomposable

pairs (G , µ), and all the triples (G , µ,K ) of Coxeter type.

Motivation

Assume F = Qp. If (G , µ,K ) comes from an integral

Rapoport-Zink (RZ) datum, then X (µ, b0)K = perfection of the

RZ spaceM(G , µ, b0)K .

If moreover (G , µ) is the p-local component of a Shimura datum,

thenM(G , µ, b0)K provides a uniformization of the basic locus in

the mod p reduction of a Shimura variety.
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Introduction: the notion of Coxeter type

Cases where BT stratification is studied (non exhaustive):

� GU(1, n − 1), p inert, K hyperspecial [Vollaard, Wedhorn],

any max. K by [Cho],

� GU(1, n − 1), ramified p, special K by [Rapoport, Terstiege,

Wilson], level K of exotic good reduction by [Wu],

� GU(2, 2), K hyperspecial, p inert by [Howard, Pappas], split p

by [Fox], see also [Wang],

� GU(2, 2), ramified p, special K [Oki],

� GU(2, n− 2) for n ≥ 5, p inert, hyperspecial K by [Fox, Imai],

� GSpin(n, 2), hyperspecial K by [Howard, Pappas], a

non-hyperspecial K by [Oki],

All cases are of Coxeter type, except [Cho] (fully HN

decomposable) and [Fox, Imai] (not fully HN decomposable).
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Introduction: the notion of Coxeter type

In all the cases of Coxeter type, the basic loci is stratified by

Coxeter varieties, and [Lusztig] computed the ℓ-adic cohomology of

all such varieties.

Question

How can we use the cohomology of DL varieties of Coxeter type and

the combinatorics of the BT stratification to study the cohomology

of RZ spaces/of basic loci of Shimura varieties?

Motivated by results of [Mantovan] and [Shen], one expects that

the G (Qp)-supercuspidal part of lim−→KH•
c(ShK) is encoded in the

cohomology of the basic loci (with higher levels at p).
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Computing cohomology: a general strategy

M =M(G , µ, b0)K = formal scheme over Spf(OĔ ) with action of

J(Qp), where

� E = local reflex field (a p-adic field),

� Ĕ = Êun,

� J = Jb0 = a certain inner form of G .

Mred = reduced special fiber over Spec(κ(E )ac),

Man = generic fiber as an analytic space over Ĕ .
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Computing cohomology: a general strategy

From now on, assume (G , µ,K ) is of Coxeter type.

BT stratification

Mred =
⊔

Λ∈BT′

M◦
Λ,

where

� M◦
Λ = a Coxeter variety,

� BT′ = a polysimplicial complex closely related to the BT

building of J(Qp).

M◦
Λ is a smooth affine variety over Spec(κ(E )) andMΛ :=M◦

Λ is

a projective closure.
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Computing cohomology: a general strategy

red :Man →Mred, the reduction map, anticontinuous.

UΛ := red−1(MΛ) the analytical tube over MΛ, open inMan.

{UΛ}Λ∈BT′ is an open cover ofMan, inducing a

J(Qp)×W -equivariant Čech spectral sequence (ℓ ̸= p)

E a,b
1 =

⊕
γ∈I−a+1

Hb
c (U(γ)⊗̂Cp,Qℓ) =⇒ Ha+b

c (Man⊗̂Cp,Qℓ),

where W = WE is the Weil group of E and for a ≤ 0

I−a+1 :=

γ ⊂ BT′
∣∣∣#γ = −a+ 1 and U(γ) :=

⋂
Λ∈γ

UΛ ̸= ∅

 .

Note that ∃Λ(γ) ∈ BT′ such that U(γ) = UΛ(γ).
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Computing cohomology: a general strategy

(G,X ) = a Shimura datum which recovers the local RZ datum at

p,

E ⊂ C the reflex field,

v = a place of E above p such that Ev = E ,

Kp ⊂ G (Ap
f ) = small enough open compact subgroup,

ShK = the associated Shimura variety of level K = KKp, smooth

quasi-projective over Spec(E).

We assume that there exists an integral model SKp over Spec(OE ).

SKp = the special fiber over Spec(κ(E )),

SKp(b0) = the basic locus, closed subvariety of the special fiber.
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Computing cohomology: a general strategy

p-adic uniformization theorem [Rapoport, Zink]

There is a natural isomorphism

I (Q)\
(
Man ×G(Ap

f )/K
p
) ∼−→ ŜKp(b0)

an.

I = a certain inner form of G,

ŜKp(b0)
an = analytical tube over SKp(b0) inside the generic fiber

of the formal completion of SKp .
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Computing cohomology: a general strategy

Theorem [Fargues]

There is a G(Ap
f )×W -equivariant spectral sequence

F a,b
2 =

⊕
Π∈Aξ(I )

ExtaJ(H
2(n−1)−b
c (Man)(n − 1),Πp)⊗ Π∞,p

=⇒ Ha+b
c (S(b0),RΨηLξ).

S(b0) := lim←−Kp SKp(b0),

ξ = finite dimensional irreducible algebraic representation over Qℓ,

Lξ = the associated local system on the Shimura variety,

RΨηLξ = the nearby cycles,

A(I ) = multiset of automorphic representations of I (A) counted
with multiplicities,

Aξ(I ) := {Π ∈ A(I ) |Π is ξ-cohomological}.
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Computing cohomology: a general strategy

Our strategy

Step 1: Compute the cohomology ofMΛ, the projective closure of

Coxeter varieties.

Step 2: Relate the cohomology of UΛ with that ofMΛ via

computation of the nearby cycles.

Step 3: Compute the cohomology ofMan via the Čech spectral

sequence E .

Step 4: Compute the cohomology of the basic locus via the spectral

sequence F associated to the p-adic uniformization theorem.
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Application to GU(1, n − 1) over p inert or ramified

We focus on the cases of GU(1, n − 1) with

� p inert K hyperspecial as in [Vollaard, Wedhorn],

� p ramified K stabilizer of a self dual lattice as in [Rapoport,

Terstiege, Wilson].

We summarize the main results obtained when trying to apply the

strategy described in the previous slides.
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Application to GU(1, n − 1) over p inert or ramified

Step 2: Nearby cycles

Inert p Ramified p

Integral model smooth flat, isolated

SKp singularities

Nearby cycles trivial skyscraper at

RΨηQℓ singular points

Computation for ramified p:

Bl(SKp) = blow-up at singular points, semi-stable reduction.
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Application to GU(1, n − 1) over p inert or ramified

By [Pappas] and [Krämer], the local model of Bl(SKp) has 2

irreducible components Z1,Z2, and Q := Z1 ∩ Z2, where

Z1 ≃ Pn−1, Q ↪→ Z1 given by X 2
1 + . . .+ X 2

n = 0,

Z2 is a P1-bundle over Q.

Proposition [M.]

We have

RiΨηQℓ =


Qℓ if i = 0,⊕
y singular

iy ,∗Qℓ

[(
−1
p

)n/2
pn/2

]
if i = n − 1 and n even,

0 else,

where the scalar between brackets denotes the Frobenius eigenvalue.
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Application to GU(1, n − 1) over p inert or ramified

Step 1: Cohomology of MΛ

The BT stratification is compatible with J(Qp)-action:

∀g ∈ J(Qp), g :MΛ
∼−→Mg ·Λ.

JΛ = connected stabilizer of Λ ∈ BT′. It is a parahoric subgroup of

J(Qp),

J+Λ = pro-p radical of JΛ,

JΛ := JΛ/J
+
Λ = connected reductive group over a finite field (= a

finite group of Lie type).

=⇒ induced action JΛ ↷MΛ.
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Application to GU(1, n − 1) over p inert or ramified

Any vertex Λ ∈ BT′ has a type 0 ≤ t(Λ) ≤ n.

Inert p Ramified p

Type of Λ ∈ BT′ t(Λ) = 2θ + 1 t(Λ) = 2θ

irreducible, projective, irreducible, projective,

VarietyMΛ smooth, dim = θ isolated singularities,

dim = θ

Group JΛ GU2θ+1(Fp) GSp2θ(Fp)

acting onMΛ
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Application to GU(1, n − 1) over p inert or ramified

By [Lusztig], unipotent representations of GU2θ+1(Fp) and

GSp2θ(Fp) are classified by triples (d , α, β) where

GU2θ+1(Fp) GSp2θ(Fp)

Integer d ≥ 0 c := 2θ + 1− c := θ − d(d + 1) ≥ 0
d(d+1)

2 ≥ 0

Integer partitions α, β |α|+ |β| = c |α|+ |β| = c

Write ρd ,αβ for associated representation. We have

ρd ,α,β cuspidal ⇐⇒ (α, β) = (∅, ∅).

Moreover ρd ,α,β and ρd ′,α′,β′ have same cuspidal support iff

d = d ′.
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Application to GU(1, n − 1) over p inert or ramified

Theorem (M.)

Let Λ ∈ BT′. Eigenvalues of Frobenius written in brackets.

1. Inert p: For 0 ≤ i ≤ θ

H2i (MΛ) ≃
⊕min(i ,θ−i)

s=0 ρ1,(θ−s,s),∅[p
2i ],

H2i+1(MΛ) ≃
⊕min(i ,θ−1−i)

s=0 ρ2,(θ−1−s,s),∅[−p2i+1].

2. Ramified p: For 0 ≤ i ≤ θ

H2i (MΛ) ≃
⊕min(i ,θ−i)

s=0 ρ0,(θ−s,s),∅[p
i ]⊕⊕min(i−1,θ−1−i)

s=0 ρ1,(θ−2−s,s),∅[−pi ],
H2i+1(MΛ) = 0.

21



Application to GU(1, n − 1) over p inert or ramified

Step 3: On the cohomology of Man

Terms E a,b
1 of Čech spectral sequence can be written as finite sums

of representations of the form

c− Ind
J(Qp)
JΛ

H•(MΛ,RΨηQℓ).

We can analyze admissibility of such representations, and inertial

support of their irreducible subquotients via theory of types.
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Application to GU(1, n − 1) over p inert or ramified

Notations: For V ∈ Rep(J(Qp)) and χ character of Z(J(Qp)),

Vχ = largest quotient of V on which Z(J(Qp)) acts through χ.

θmax = maximal value of θ for Λ ∈ BT′.

Proposition [M.]

For n ≥ 3 and χ any unramified character of Z(J(Qp)), the coho-

mology group H
2(n−1−θmax)
c (Man,Qℓ)χ is not J(Qp)-admissible.
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Application to GU(1, n − 1) over p inert or ramified

Remark: By [Fargues, Scholze], ∀ρ admissible rep’n of J(Qp), the

G (Qp)-module

ExtaJ(H
•
c(M∞), ρ)

is admissible, whereM∞ = (MK )K⊂G(Qp) is the RZ tower.

Follows from H•
c(MK ) being a fg J(Qp)-module.

Meanwhile, it is known that H•
c(M

an)χ can have infinite length as

J(Qp)-module for certain RZ spaces. “To be non admissible” is

stronger.
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Application to GU(1, n − 1) over p inert or ramified

Step 4: The cohomology of the basic locus for low n

Recalls: I = inner form of G with

IQp = J, IAp
f
= GAp

f
, IR = GU(0, n),

ξ: finite dimensional irreducible algebraic rep’n of G,

w(ξ) ≥ 0 the weight of ξ,

Aξ(I ) = multiset of automorphic rep’n of I (A) cohomological for ξ.

X un(J) = unramified characters of J(Qp).

For Π ∈ Aξ(I ), can attach a scalar δΠ ∈ Qℓ such that |ι(δΠ)| = 1

for all ι : Qℓ ≃ C.
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Application to GU(1, n − 1) over p inert or ramified

We assume dim S(b0) = 1, ie.

� for p inert, n = 3 or 4,

� for p ramified, n = 2 “split”, n = 3 or n = 4 “non-split”.

H0(S(b0),Lξ) and H2(S(b0),Lξ) have same description in all

cases. Define πℓ ∈ Qℓ by

πℓ =

p if p inert,
√
p if p ramified.

J1 ⊂ J(Qp) stabilizer of self-dual lattice (hyperspecial when p

inert).
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Application to GU(1, n − 1) over p inert or ramified

Theorem (M.)

There are G (Ap
f )×W -equivariant isomorphisms

H0(S(b0),Lξ) ≃
⊕

Π∈Aξ(I )
Πp∈Xun(J)

Π∞,p ⊗Qℓ[δΠπ
w(ξ)
ℓ ],

H2(S(b0),Lξ) ≃
⊕

Π∈Aξ(I )

Π
J1
p ̸=0

Π∞,p ⊗Qℓ[δΠπ
w(ξ)+2
ℓ ],

where the Frobenius eigenvalues are written between brackets.

Next we describe the H1.
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Application to GU(1, n − 1) over p inert or ramified

For inert p: σ = depth 0 supercuspidal rep’n of J(Qp) coming

from the unipotent cuspidal rep’n ρ2,∅,∅ of GU3(Fp).

Theorem (M.)

H1(S(b0),Lξ) ≃
⊕

Π∈Aξ(I )
∃χ∈un(J)
Πp=χStJ

Π∞,p ⊗Qℓ[δΠπ
w(ξ)
ℓ ]⊕

⊕
Π∈Aξ(I )

∃χ∈Xun(J)
Πp=χσ

Π∞,p ⊗Qℓ[−δΠπ
w(ξ)+1
ℓ ],
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Application to GU(1, n − 1) over p inert or ramified

For ramified p:

Theorem (M.)

H1(S(b0),Lξ) ≃
⊕

Π∈Aξ(I )
∃χ∈Xun(J)
Πp=χStJ

Π∞,p ⊗Qℓ[δΠπ
w(ξ)
ℓ ].
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Application to GU(1, n − 1) over p inert or ramified

J0 ⊂ J(Qp) other parahoric not conjugate to J1.

Theorem (M.)

Contribution of nearby cycles for n even:

H1(S(b0),RΨηLξ) ≃ H1(S(b0),Lξ)⊕⊕
Π∈Aξ(I )

Π
J0
p ̸=0

Π∞,p ⊗Qℓ

[(
−1
p

)
δΠπ

w(ξ)+1
ℓ

]
if n = 2,

H3(S(b0),RΨηLξ) ≃
⊕

Π∈Aξ(I )

Π
J0
p ̸=0

Π∞,p ⊗Qℓ[δΠπ
w(ξ)+2
ℓ ] if n = 4.
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Applications and further directions

In principle, can get similar results for any Coxeter type Shimura

varieties. Only few cases non-maximal parahoric level. This could

give non trivial action of inertia I ⊂W .

Eg. GU(1, 2m − 1) inert p with K = K0 ∩ Km where K0,Km are

hyperspecial, stabilizers of lattices Λ0 and Λm such that

Λ∨
0 = Λ0, Λ∨

m = pΛm.

In this case, semi-stable reduction and BT strata are products

MΛ ×MΛ′ of BT strata for hyperspecial level, so Steps 1 and 2

are OK.

31



Applications and further directions

For inert p and n = 3, [De Shalit, Goren] described the geometry

of S0(p)Kp , the special fiber at Iwahori level of the Shimura variety.

They describe the fibers of

π : S0(p)Kp → SKp

over the Ekedahl-Oort strata. Using this, [Fu] proved a Mazur

principle for GU(1, 2) at inert p.

With our work, we can derive the cohomology of the basic locus of

S0(p), and this could simplify some arguments in [Fu].
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Thank you for your attention!
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