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Abstract : The supersingular locus of the GUp1, n�1q Shimura variety at a ramified prime
p is stratified by Coxeter varieties attached to finite symplectic groups. In this paper, we
compute the ℓ-adic cohomology of the Zariski closure of any such stratum. These are known
as closed Bruhat-Tits strata. We prove that the cohomology groups of odd degree vanish,
and those of even degree are explicitely determined as representations of the symplectic
group with a Frobenius action. Each closed Bruhat-Tits stratum is linearly stratified by
Coxeter varieties attached to smaller symplectic groups. Thanks to results of Lusztig who
computed the cohomology of Coxeter varieties for classical groups, we make use of the
spectral sequence associated to this stratification and describe explicitely all the terms at
infinity. We point out that the closed Bruhat-Tits strata have isolated singularities when
the dimension is greater than 1. Our analysis requires discussing the smoothness of the
blow-up at the singular points, as well as comparing the ordinary ℓ-adic cohomology with
intersection cohomology. A by-product of our computations is that these two cohomologies
actually coincide, so that surprisingly the presence of singularities does not interfere with
the cohomology.
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Introduction: Shimura varieties are objects of central interest in number the-
ory and arithmetic geometry. When an integral model is given, the geometry of
the special fiber is particularly interesting. In particular, the supersingular locus
of the special fiber has been extensively studied in recent years. In many situations
which are precisely listed in [7] and [8], the supersingular locus admits a so-called
Bruhat-Tits stratification, whose strata are isomorphic to classical Deligne-Lusztig
varieties for certain finite groups of Lie type. Cohomology plays an important role
both in the world of Shimura varieties and in Deligne-Lusztig theory. Thus, ex-
ploiting the geometry of the Bruhat-Tits stratification in order to connect both
cohomology theories sounds like a promising idea. In [14] and [13], we investigated
the case of the GUp1, n�1q PEL Shimura variety over an inert prime p ¡ 2, whose
supersingular locus was described in [17] and [18]. More precisely, we explicitely
determined the cohomology of the closed Bruhat-Tits strata as representations
of finite unitary groups. We used this result to prove the non-admissibility of the
cohomology of the associated Rapoport-Zink space, and to determine the cohomol-
ogy of the supersingular locus for low n in terms of automorphic representations.
In this paper, we focus on the case of a ramified prime p ¡ 2 as studied in [15].
Our goal is to replicate the same approach as in the inert case, and find out how
to deal with the new technical difficulties caused by the non-smoothness of the
integral model. The exposition is divided into two papers, and the present paper
is the first of the series. It is devoted to the computation of the cohomology of a
given closed Bruhat-Tits stratum using Deligne-Lusztig theory. Let us explain the
results in more details.
Let q be a power of an odd prime number p. Let V be a symplectic space over Fq

of dimension 2θ. For any field extension k{Fq, let τ � idbσ denote the semi-linear
automorphism of Vk :� V b k, where σ : x ÞÑ xq. Let LpV q denote the Lagrangian
Grassmanian variety of V . We consider the closed subvariety Sθ � LpV q whose
k-points are given by

Sθpkq � tU � Vk |U � UK and dimpU X τpUqq ¥ θ � 1u.

It turns out that the closed Bruhat-Tits strata mentioned in the previous para-
graph are actually isomorphic to Sθ for some θ ¥ 0. The variety Sθ is projective,
irreducible, normal and of dimension θ. It has isolated singularities when θ ¥ 2.
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When θ � 1, we have S1 � P1. Moreover it is equipped with a natural action
of the finite symplectic group SppV q. Up to fixing a basis of V , we may identify
SppV q with the usual group Spp2θ,Fqq of symplectic matrices. Unipotent represen-
tations of Spp2θ,Fqq are naturally classified by Lusztig’s notion of symbols, whose
definition is recalled in Section 2. Given a symbol S, the associated unipotent
representation is denoted ρS. The main theorem is the following.

Theorem. (1) All the cohomology groups of Sθ of odd degree vanish.

(2) For 0 ¤ i ¤ θ, we have an Spp2θ,Fqq-equivariant isomorphism

H2ipSθ,Qℓq �
minpi,θ�iqà

s�0

ρ�
�s θ � 1� s
0

�


`

minpi�1,θ�1�iqà
s�0

ρ�
�0 s� 1 θ � s

�


.

The Frobenius acts like multiplication by qi on the first summand, and mul-
tiplication by �qi on the second summand.

Let us explain the main steps of the proof. The variety Sθ admits a stratification

Sθ �
θ§

θ1�0

XIθ1
pwθ1q,

where the XIθ1
pwθ1q are certain Deligne-Lusztig varieties which are “parabolically

induced” from the Coxeter variety Xθ1 of the finite group Spp2θ1,Fqq, see Section
1 for the precise definitions. There is an induced spectral sequence

Eθ1,i
1 � Hθ1�i

c pXIθ1
pwθ1qq ùñ Hθ1�ipSθq.

See Figure 1 for a drawing of E1. The term Eθ1,i
1 is the parabolic induction of

the degree i cohomology group of the Coxeter variety Xθ1 . The cohomology of
such Coxeter varieties has been computed in [11], and the parabolic inductions
can be computed explicitely via the comparison theorem of [9]. In particular, we

can determine Eθ1,i
1 explicitely, see Lemma 27. The Frobenius acts semi-simply on

Eθ1,i
1 with at most 2 eigenvalues. These eigenvalues are equal to qi and �qi�1, the

latter only occuring if 0 ¤ i ¤ θ1 � 2. Since terms on different rows do not carry
any common eigenvalue, the spectral sequence degenerates in E2 and the resulting
filtration on the abutment splits. Thus, we are reduced to computing the terms
Eθ1,i

2 explicitely.

The most effective way to determine most of the terms Eθ1,i
2 is to find restrictions

on the eigenvalues of the Frobenius on the abutment of the spectral sequence. To
do so, we seek a good resolution of the singularities of Sθ when θ ¡ 1. Such a
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resolution is afforded by the blow-up at singular points, as we prove in Section 5.
In fact, we exhibit a certain affine open neighborhood of any given singular point,
and observe that it is a finite étale cover of the symmetric determinantal variety
of rank ¤ 1. Incidentally, desingularizations of such determinantal varieties have
been studied in [4] by means of successive blow-ups. In particular, in our case a
single blow-up is required to resolve the singularities. As a consequence, we prove
that the Frobenius action on HkpSθ,Qℓq is pure of weight 2tk

2
u. In particular, all

terms Eθ1,i
2 which do not carry any eigenvalue of compatible weight must vanish.

In order to determine the remaining terms Eθ1,i
2 , we introduce the intersection

cohomology of Sθ. Since Sθ has only isolated singularities (when θ ¡ 1), it is
well-known that intersection cohomology and ℓ-adic cohomology agree above the
middle degree. In particular, the cohomology groups HkpSθq for k ¡ θ with k odd
vanish, since all weights of the Frobenius are both odd (by intersection cohomol-
ogy) and even (by the spectral sequence) at the same time. The hypercohomology
spectral sequence associated to the intersection complex, as represented in Figure
2, allows us to remove the restriction k ¡ θ, thus proving the first part of the main
theorem. The second part follows easily given the shape of the spectral sequence
represented in Figure 1. As a by-product, we find out that the intersection complex
of Sθ has vanishing cohomology in higher degrees. In particular, the intersection
cohomology and the ℓ-adic cohomology of Sθ actually agree in all degrees.

Notations: In this paper, p will always denote an odd prime number and q
will be a power of p. If M is a matrix with coefficients in a field of characteristic
p, then M pqq denotes the matrix M with entries raised to the power q. The trivial
representation of a given group will be denoted 1. Given a reductive group G
with Levi complement L, the associated Harish-Chandra induction and restriction
functors are denoted RG

L and �RG
L respectively.

Acknowledgement: This paper is part of a PhD thesis under the supervision
of Pascal Boyer and Naoki Imai. I am grateful for their wise guidance throughout
the research.

1 The closed Deligne-Lusztig variety Sθ for Spp2θ,Fqq

Let G be a connected reductive group over F, together with a split Fq-structure
given by a geometric Frobenius morphism F . For H any F -stable subgroup of
G, we write H :� HF for its group of Fq-rational points. Let pT,Bq be a pair
consisting of a maximal F -stable torus T contained in an F -stable Borel subgroup
B. Let pW,Sq be the associated Coxeter system, where W � NGpTq{T. Since
the Fq-structure on G is split, the Frobenius F acts trivially on W. For I �

4



S, let PI ,UI ,LI be respectively the standard parabolic subgroup of type I, its
unipotent radical and its unique Levi complement containing T. Let WI be the
subgroup of W generated by I. For P any parabolic subgroup of G, the associated
generalized parabolic Deligne-Lusztig variety is

XP :� tgP P G{P | g�1F pgq P PF pPqu.

We say that the variety is classical (as opposed to generalized) when in addition
the parabolic subgroup P contains an F -stable Levi complement. Note that P
itself need not be F -stable. We may give an equivalent definition using the Coxeter
system pW,Sq. For I � S, let IWI be the set of elements w P W which are I-
reduced-I. For w P IWI , the associated generalized parabolic Deligne-Lusztig
variety is

XIpwq :� tgPI P G{PI | g
�1F pgq P PIwPIu.

The variety XIpwq is classical when w�1Iw � I, and it is defined over Fq. The
dimension is given by dimXIpwq � lpwq � dimG{PIXwIw�1 � dimG{PI where
lpwq denotes the length of w with respect to S.
Let θ ¥ 0 and let V be a 2θ-dimensional Fq-vector space equipped with a non-
degenerate symplectic form p�, �q : V � V Ñ Fq. Fix a basis pe1, . . . , e2θq in which
p�, �q is described by the matrix

Ω :�

�
0 Aθ

�Aθ 0



,

where Aθ denotes the matrix having 1 on the anti-diagonal and 0 everywhere else.
If k is a field extension of Fq, let Vk :� V bFq k denote the scalar extension to k

equipped with its induced k-symplectic form p�, �q. Let τ : Vk
�
ÝÑ Vk denote the map

id b σ, where σpxq :� xq. If U � Vk, let U
K denote its orthogonal. We consider

the finite symplectic group SppV, p�, �qq � Spp2θ,Fqq, where the RHS is defined
with respect to Ω. It can be identified with G � GF where G is the symplectic
group SppVF, p�, �qq � Spp2θ,Fq and F pMq :� M pqq. Let T � G be the maximal
torus of diagonal symplectic matrices and let B � G be the Borel subgroup of
upper-triangular symplectic matrices. The Weyl system of pT,Bq is identified
with pWθ,Sq where Wθ is the finite Coxeter group of type Bθ and S � ts1, . . . , sθu
is the set of simple reflexions. They satisfy the following relations

psθsθ�1q
4 � 1, psisi�1q

3 � 1, @ 2 ¤ i ¤ θ � 1,

psisjq
2 � 1, @ |i� j| ¥ 2.

Concretely, the simple reflexion si acts on V by exchanging ei and ei�1 as well as
e2θ�i and e2θ�i�1 for 1 ¤ i ¤ θ � 1, whereas sθ exchanges eθ and eθ�1. We define

I :� ts1, . . . , sθ�1u � Sztsθu.
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We consider the generalized Deligne-Lusztig variety XIpsθq. Since sθsθ�1sθ R I, it
is not a classical Deligne-Lusztig variety. Let Sθ :� XIpsθq be its closure in G{PI .
This variety has been introduced in [15], as it is isomorphic to the closed Bruhat-
Tits strata of type θ in the supersingular locus of the GUp1, n�1q Shimura variety
over a ramified prime. We recall some geometric facts on Sθ which are proved in
[15] Section 5.

Proposition 1. The variety Sθ is normal and projective. The variety S1 is isomor-
phic to the projective line P1, and for θ ¥ 2 the variety Sθ has isolated singularities.
If k is a field extension of Fq, we have

Sθpkq � tU � Vk |U
K � U and U X τpUq

¤1
� Uu,

where
¤1
� denotes an inclusion of subspaces with index at most 1. There is a

decomposition
Sθ � XIpidq \XIpsθq,

where XIpidq is closed and of dimension 0, and XIpsθq is open, dense of dimension
θ. They correspond respectively to k-points U having U � τpUq or U X τpUq � U .
If θ ¥ 2 then Sθ is singular at the points of XIpidq.

For 0 ¤ θ1 ¤ θ, define
Iθ1 :� ts1, . . . , sθ�θ1�1u

and wθ1 :� sθ�1�θ1 . . . sθ. In particular I0 � I, Iθ�1 � Iθ � H, w0 � id and w1 � sθ.

Proposition 2. There is a stratification into locally closed subvarieties

Sθ �
θ§

θ1�0

XIθ1
pwθ1q.

The stratum XIθ1
pwθ1q corresponds to points U such that dimpU X τpUq X . . . X

τ θ
1�1pUqq � θ� θ1. The closure in Sθ of a stratum XIθ1

pwθ1q is the union of all the
strata XItpwtq for t ¤ θ1. The stratum XIθ1

pwθ1q is of dimension θ1, and XIθpwθq
is open, dense and irreducible.

It follows in particular that Sθ is irreducible as well. It turns out that the
strata XIθ1

pwθ1q are related to Coxeter varieties for symplectic groups of smaller
sizes. For 0 ¤ θ1 ¤ θ, define

Kθ1 :� ts1, . . . sθ�θ1�1, sθ�θ1�1, . . . , sθu � Sztsθ�θ1u.

Note that K0 � I0 � I and Kθ � S. We have Iθ1 � Kθ1 with equality if and only
if θ1 � 0.
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Proposition 3. There is an Spp2θ,Fpq-equivariant isomorphism

XIθ1
pwθ1q � Spp2θ,Fqq{UKθ1

�LK
θ1
X

LK
θ1

Iθ1
pwθ1q,

where X
LK

θ1

Iθ1
pwθ1q is a Deligne-Lusztig variety for LKθ1

. The zero-dimensional va-

riety Spp2θ,Fqq{UKθ1
has a left action of Spp2θ,Fqq and a right action of LKθ1

.

Proof. It is a special case of the geometric identity used to prove transitivity of
the Deligne-Lusztig induction functor. We refer to [2] Proposition 7.19 or [3]
Proposition 9.1.8.

The Levi complement LKθ1
is isomorphic to GLpθ� θ1q � Spp2θ1q, and its Weyl

group is isomorphic to Sθ�θ1 �Wθ1 . Via this decomposition, the permutation wθ1

corresponds to id� wθ1 . The Deligne-Lusztig variety X
LK

θ1

Iθ1
pwθ1q decomposes as a

product

X
LK

θ1

Iθ1
pwθ1q � X

GLpθ�θ1q
Iθ1

pidq �X
Spp2θ1q
H pwθ1q.

The variety X
GLpθ�θ1q
Iθ1

pidq is just a single point, but X
Spp2θ1q
H pwθ1q is the Coxeter

variety for the symplectic group of size 2θ1. Indeed, wθ1 is a Coxeter element, ie.
the product of all the simple reflexions of the Weyl group of Spp2θ1q.

2 Unipotent representations of the finite sym-

plectic group

Recall that a (complex) irreducible representation of a finite group of Lie type
G � GF is said to be unipotent, if it occurs in the Deligne-Lusztig induction
of the trivial representation of some maximal rational torus. Equivalently, it is
unipotent if it occurs in the cohomology (with coefficient in Qℓ and ℓ �� p) of some
Deligne-Lusztig variety of the form XB, with B a Borel subgroup ofG containing a
maximal rational torus. In this section, we recall the classification of the unipotent
representations of the finite symplectic groups. The underlying combinatorics is
described by Lusztig’s notion of symbols. Our main reference is [5] Section 4.4.

Definition 4. Let θ ¥ 1 and let d be an odd positive integer. The set of symbols
of rank θ and defect d is

Y1
d,θ :�

"
S � pX, Y q

���� X � px1, . . . , xr�dq
Y � py1, . . . , yrq

, xi, yj P Z¥0,
xi�1 � xi ¥ 1,
yj�1 � yj ¥ 1,

rkpSq � θ

*N
pshiftq,

where the shift operation is defined by shiftpX, Y q :� pt0u\pX�1q, t0u\pY �1qq,
and where the rank of S is given by

rkpSq :�
¸
sPS

s�

Z
p#S � 1q2

4

^
.
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Note that the formula defining the rank is invariant under the shift operation,

therefore it is well defined. By [12], we have rkpSq ¥
Y
d2

4

]
so in particular Y1

d,θ is

empty for d big enough. We write Y1
θ for the union of the Y1

d,θ with d odd, this is
a finite set.

Example 5. In general, a symbol S � pX, Y q will be written

S �

�
x1 . . . xr . . . xr�d

y1 . . . yr



.

We refer to X and Y as the first and second rows of S. The 6 elements of Y1
2 are

given by�
2


,

�
0 1
2



,

�
0 2
1



,

�
1 2
0



,

�
0 1 2
1 2



,

�
0 1 2



.

The last symbol has defect 3 whereas all the other symbols have defect 1.

The symbols can be used to classify the unipotent representations of the finite
symplectic group, cf [12] Theorem 8.2.

Theorem 6. There is a natural bijection between Y1
θ and the set of equivalence

classes of unipotent representations of Spp2θ,Fqq.

If S P Y1
θ we write ρS for the associated unipotent representation of Spp2θ,Fqq.

The classification is done so that the symbols�
θ


,

�
0 . . . θ � 1 θ
1 . . . θ



,

correspond respectively to the trivial and to the Steinberg representations. Let
S � pX, Y q be a symbol and let k ¥ 1. A k-hook h in S is an integer z ¥ k such
that z P X, z � k R X or z P Y, z � k R Y . A k-cohook c in S is an integer z ¥ k
such that z P X, z � k R Y or z P Y, z � k R X. The integer k is referred to as the
length of the hook h or the cohook c, and it is denoted ℓphq or ℓpcq. The hook
formula gives an expression of dimpρSq in terms of hooks and cohooks.

Proposition 7. We have

dimpρSq � qapSq
±θ

i�1 pq
2i � 1q

2b1pSq
±

h pq
ℓphq � 1q

±
c pq

ℓpcq � 1q
,

where the products in the denominator run over all the hooks h and all the cohooks
c in S, and the numbers apSq and b1pSq are given by

apSq �
¸

ts,tu�S

minps, tq �
¸
i¥1

�
#S � 2i

2



, b1pSq �

Z
#S � 1

2

^
�# pX X Y q .
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For δ ¥ 0, we define the symbol

Sδ :�

�
0 . . . 2δ



P Y1

2δ�1,δpδ�1q.

Definition 8. The core of a symbol S P Y1
d,θ is defined by corepSq :� Sδ where

d � 2δ � 1. We say that S is cuspidal if S � corepSq.

Remark 9. In general, we have rkpcorepSqq ¤ rkpSq with equality if and only if S
is cuspidal.

The next theorem states that cuspidal unipotent representations correspond to
cuspidal symbols.

Theorem 10. The group Spp2θ,Fqq admits a cuspidal unipotent representation
if and only if θ � δpδ � 1q for some δ ¥ 0. When this is the case, the cuspidal
unipotent representation is unique and given by ρSδ

.

The determination of the cuspidal unipotent representations leads to a descrip-
tion of the unipotent Harish-Chandra series.

Definition 11. Let δ ¥ 0 such that θ � δpδ � 1q � a for some a ¥ 0. We write

Lδ � GLp1,Fqq
a � Spp2δpδ � 1q,Fqq

for the block-diagonal Levi complement in Spp2θ,Fqq, with one middle block of
size 2δpδ � 1q and other blocks of size 1. We write ρδ :� p1qa b ρSδ

, which is a
cuspidal representation of Lδ.

Proposition 12. Let S P Y1
d,θ. The cuspidal support of ρS is pLδ, ρδq where

d � 2δ � 1.

In particular, the defect of the symbol S of rank θ classifies the unipotent
Harish-Chandra series of Spp2θ,Fpq. If δ ¥ 0 is such that δpδ � 1q ¤ θ, we write
Eδ for the Harish-Chandra series determined by pLδ, ρδq. The previous proposition
says that Eδ is in bijection with Y1

2δ�1,θ. Representations in a given series Eδ can
also be labelled in an alternative way.

Definition 13. A partition of an integer n ¥ 0 is a sequence of positive integers
λ � pλ1 ¥ . . . ¥ λrq with r ¥ 0 such that n � λ1� . . .�λr. The integer |λ| :� n is
called the length of λ. A bipartition of n is a pair pλ, µq of partitions such that
|λ| � |µ| � n.

Let S P Y1
2δ�1,θ where δpδ � 1q ¤ θ. Up to taking suitable shifts, we may

consider representatives of S and of Sδ whose rows have the same length. We
obtain a bipartition pα, βq of θ� δpδ� 1q by subtracting component-wise the rows
of Sδ from the rows of S, and reordering them decreasingly while ignoring the
potential 0 components.
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Example 14. Recall the 6 symbols of Y1
2 described in Exemple 5. The associated

bipartitions are respectively

pp2q,Hq, pH, p2qq, pp1q, p1qq, pp12q,Hq, pH, p12qq pH,Hq.

The five symbols of defect 1 correspond to bipartitions of 2, and the last symbol
of defect 3 corresponds to the empty bipartition of 0.

Proposition 15. The process described above defines a natural bijection between
Y1

2δ�1,θ and the set of bipartitions of θ � δpδ � 1q.

It is well-known that the set IrrpWnq of equivalence classes of irreducible rep-
resentations of the Coxeter group Wn are in bijection with the set of bipartitions
of n, cf. [6] Section 5.5. Through this bijection, the bipartitions ppnq,Hq and
pH, p1nqq correspond respectively to the trivial and to the signature characters of
Wn.

Corollary 16. Let θ, δ ¥ 0 such that δpδ � 1q ¤ θ. There is a natural bijection
between Eδ and IrrpWθ�δpδ�1qq.

One may check that the trivial (resp. the sign) character of Wθ corresponds
to the trivial (resp. the Steinberg) representation of Spp2θ,Fqq in E0. Given a
symbol S P Y1

2δ�1,θ and the corresponding bipartition pα, βq of θ � δpδ � 1q, we
will sometimes also write ρδ,α,β instead of ρS. It turns out that the labelling of the
unipotent representations of Spp2θ,Fqq in terms of bipartitions is particularly well
suited in order to compute Harish-Chandra inductions and restrictions. To this
end, it is also convenient to identify partitions with their Young diagrams.

Definition 17. A Young diagram T is a finite collection of boxes which are
organized in rows of non-increasing lengths, justified on the left side. The size |T |
of a Young diagram is the number of boxes it contains. If T and T 1 are two Young
diagrams such that |T | � |T 1| � 1, we say that T is obtained from T 1 by adding
one box, or that T 1 is obtained from T by removing one box, if we can overlay T 1

on the top of T so that the difference consists of just one box.

Example 18. Let us consider the following Young diagram of size 4

.

The Young diagrams which can be obtained by adding a box are given by

, , .
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Clearly the set of partitions of n is in bijection with the set of Young diagrams
of size n. Likewise, bipartitions of n correspond to pairs of Young diagrams of
combined sizes n. In the following, we will have to compute inductions of the
following form

R
Spp2θ,Fqq

GLpa,Fqq�Spp2θ1,Fqq
1b ρS1 ,

where θ � a � θ1 and S 1 P Y1
d,θ1 is a symbol. In particular we assume that θ1 ¥

δpδ � 1q where d � 2δ � 1.

Theorem 19. Let S 1 P Y1
d,θ1 and pα

1, β1q the associated bipartition of θ1� δpδ� 1q.
We have

R
Spp2θ,Fqq

GLpa,Fqq�Spp2θ1,Fqq
1b ρS1 �

¸
α,β

ρδ,α,β,

where pα, βq runs over all the bipartitions of θ � δpδ � 1q such that for some
0 ¤ d ¤ a, the Young diagram of α (resp. of β) can be obtained from the Young
diagram of α1 (resp. of β1) by adding a succession of d boxes (resp. a � d boxes),
no two of them lying in the same column.

This computation is a consequence of the Howlett-Lehrer comparison theorem
[9], stating that induction in a finite group of Lie type can be computed inside
a corresponding Weyl group. We then apply Pieri’s rule for Coxeter groups of
type Bn, see [6] 6.1.9. We will see concrete exemples of such computations in
the following sections. There is a similar rule in order to compute certain Harish-

Chandra restrictions. We write �R
Spp2θ,Fqq

Spp2θ1,Fqq
for the restriction to the symplectic part

of the Harish-Chandra restriction functor from Spp2θ,Fqq to the Levi complement
GLpa,Fqq � Spp2θ1,Fqq.

Theorem 20. Let S P Y1
d,θ and pα, βq the associated bipartition of θ � δpδ � 1q.

We have
�R

Spp2θ,Fqq

Spp2θ1,Fqq
ρS �

¸
α1,β1

ρδ,α1,β1 ,

where pα1, β1q runs over all the bipartitions of θ1 � δpδ � 1q such that for some
0 ¤ d ¤ a, the Young diagram of α1 (resp. of β1) can be obtained from the Young
diagram of α (resp. of β) by removing a succession of d boxes (resp. a� d boxes),
no two of them lying in the same column.

3 The cohomology of the Coxeter variety for the

symplectic group

In this section we compute the cohomology of Coxeter varieties of finite symplectic
groups, in terms of the classification of the unipotent characters that we recalled
in Theorem 6.
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Notation. We write Xθ :� XHpcoxq for the Coxeter variety attached to the
symplectic group Spp2θ,Fqq, and H


cpX
θq instead of H


cpX
θ b F,Qℓq where ℓ �� p.

We first recall known facts on the cohomology of Xθ from Lusztig’s work in
[11].

Theorem 21. The following statements hold.
(1) The variety Xθ has dimension θ and is affine. The cohomology group Hi

cpX
θq

is zero unless θ ¤ i ¤ 2θ.

(2) The Frobenius F acts in a semisimple manner on the cohomology of Xθ.

(3) The groups H2θ�1
c pXθq and H2θ

c pX
θq are irreducible as Spp2θ,Fqq-representations,

and the latter is the trivial representation. The Frobenius F acts with eigen-
values respectively qθ�1 and qθ.

(4) The group Hθ�i
c pXθq for 0 ¤ i ¤ θ � 2 is the direct sum of two eigenspaces

of F , for the eigenvalues qi and �qi�1. Each eigenspace is an irreducible
unipotent representation of Spp2θ,Fqq.

(5) The sum
À

i¥0H
i
cpX

θq is multiplicity-free as a representation of Spp2θ,Fqq.

In other words, there exists a uniquely determined family of pairwise distinct
symbols Sθ

0 , . . . , S
θ
θ and T θ

0 , . . . , T
θ
θ�2 in Y1

θ such that

@0 ¤ i ¤ θ � 2, Hθ�i
c pXθq � ρSθ

i
` ρT θ

i
,

for i � θ � 1, θ, Hθ�i
c pXθq � ρSθ

i
.

The representation ρSθ
i
(resp. ρT θ

i
) corresponds to the eigenspace of the Frobenius

F on
À

i¥0H
θ�i
c pXθq attached to qi (resp. to �qi�1). Moreover, we know that ρSθ

θ

is the trivial representation, therefore

Sθ
θ �

�
θ


.

Lusztig also gives a formula computing the dimension of the eigenspaces. Special-
izing to the case of the symplectic group, it reduces to the following statement.

Proposition 22 ([11]). For 0 ¤ i ¤ θ we have

degpρSθ
i
q � qpθ�iq2

θ�i¹
s�1

qs�i � 1

qs � 1

θ�i�1¹
s�0

qs�i � 1

qs � 1
.

For 0 ¤ j ¤ θ � 2 we have

degpρT θ
j
q � qpθ�j�1q2 pq

θ�1 � 1qpqθ � 1q

2pq � 1q

θ�j�2¹
s�1

qs�j � 1

qs � 1

θ�j�1¹
s�2

qs�j � 1

qs � 1
.

12



Our goal in this section is to determine the symbols Sθ
i and T θ

j explicitly. This
is done in the following proposition.

Proposition 23. For 0 ¤ i ¤ θ and 0 ¤ j ¤ θ � 2, we have

Sθ
i �

�
0 . . . θ � i� 1 θ
1 . . . θ � i



, T θ

j �

�
0 . . . θ � j � 3 θ � j � 2 θ � j � 1 θ
1 . . . θ � j � 2



.

Remark 24. In terms of bipartitions, Sθ
i corresponds to ppiq, p1θ�iqq and T θ

j corre-
sponds to ppjq, p1θ�2�jqq.

We note that the statement is coherent with the two dimension formulae that
we provided earlier. That is, the degree of ρSθ

i
(resp. of ρT θ

j
) computed with the

hook formula of Proposition 7, agrees with the dimension of the eigenspace of qi

(resp. of �qj�1) in the cohomology of Xθ as given in the previous paragraph.

Proof. We use induction on θ ¥ 0. Since we already know that Sθ
θ is the symbol

corresponding to the trivial representation, the proposition is proved for θ � 0.
Thus we may assume θ ¥ 1. We consider the block diagonal Levi complement L �
GLp1,Fqq�Spp2pθ�1q,Fqq, and we write �Rθ

θ�1 for the restriction to Spp2pθ�1q,Fqq
of the Harish-Chandra restriction from Spp2θ,Fqq to L. According to [11] Corollary
2.10, for all 0 ¤ i ¤ θ we have an Spp2pθ � 1q,Fqq � xF y-equivariant isomorphism

�Rθ
θ�1

�
Hθ�i

c pXθq
�
� Hθ�1�i

c pXθ�1q ` Hθ�1�pi�1q
c pXθ�1qp�1q. (�)

The right-hand side can be computed by induction hypothesis whereas the left-
hand side can be computed using Theorem 20. We fix 0 ¤ i ¤ θ � 1 and 0 ¤ j ¤
θ� 2. We denote by pδ, α, βq and pν, γ, δq the alternate labelling by bipartitions of
the representations ρSθ

i
and ρT θ

j
respectively. Recall that the restriction �Rθ

θ�1 ρδ,α,β
is the sum of all the representations ρδ,α1,β1 where pα

1, β1q is obtained from pα, βq
by removing a single box in one of their Young diagrams. The similar description
also holds for �Rθ

θ�1 ρν,γ,δ.
First we determine Sθ

i by identifying the qi-eigenspace of the Frobenius in (�). We
distinguish different cases depending on the values of θ and i.

– Case θ � 1. In this case i � 0. The right-hand side of (�) is ρS0
0
� ρ0,H,H

with eigenvalue 1. Thus, δ � 0 and the bipartition pα, βq consists of a single
box. Therefore pα, βq � pp1q,Hq or pH, p1qq. By Theorem 3, we know that
ρ0,α,β has degree q. This forces pα, βq � pH, p1qq.

– Case θ � 2 and i � 0. The eigenspace attached to 1 on the right-hand
side of (�) is ρS1

0
� ρ0,H,p1q. Thus, δ � 0 and there is a single removable box

in the bipartition pα, βq. When we remove it, we obtain pH, p1qq. Therefore,
pα, βq � pH, p2qq or pH, p12qq. By Theorem 3, we know that ρ0,α,β has degree
q4, thus pα, βq � pH, p12qq.
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– Case θ ¡ 2 and i � 0. The eigenspace attached to 1 on the right-hand side
of (�) is ρSθ�1

0
� ρ0,H,p1θ�1q. Thus, δ � 0 and there is a single removable box

in the bipartition pα, βq. When we remove it, we obtain pH, p1θ�1qq. The
only such bipartition is pα, βq � pH, p1θqq.

– Case θ ¡ 2 and 1 ¤ i ¤ k� 1. The eigenspace attached to pi on the right-
hand side of (�) is ρSθ�1

i
` ρSθ�1

i�1
� ρ0,piq,p1θ�1�iq ` ρ0,pi�1q,p1θ�iq. Thus, δ � 0

and there are exactly two removable boxes in the bipartition pα, βq. When
we remove one of them, we obtain either ppiq, p1θ�1�iqq or ppi � 1q, p1θ�iqq.
The only such bipartition is pα, βq � ppiq, p1θ�iqq.

It remains to determine T θ
j for 0 ¤ j ¤ θ � 2.

– Case θ � 2. The eigenspace attached to �p on the right-hand side of (�) is
0. Thus, the symbol T 2

0 P Y1
2 has no hook at all, implying that it is cuspidal.

Since Spp4,Fqq admits only one unipotent cuspidal representation, we deduce
that ν � 1 and pγ, δq � pH,Hq.

– Case k � 3. First when j � 0, the eigenspace attached to �p on the right-
hand side of (�) is ρT 2

0
� ρ1,H,H. Thus, ν � 1 and there is a single box in

the bipartition pγ, δq. Therefore pγ, δq � pp1q,Hq or pH, p1qq. By Theorem

3, we know that ρ1,γ,δ has degree q4 pq
2�1qpq3�1q
2pq�1q

, thus pγ, δq � pH, p1qq.

Then when j � 1, the eigenspace attached to �p2 on the right-hand side
of (�) is ρT 2

0
� ρ1,H,H. Thus, ν � 1 and as in the case j � 0 we have

pγ, δq � pp1q,Hq or pH, p1qq. We can deduce that it is equal to the former
by comparing the dimensions or by using the fact that the symbols T θ

j are
pairwise distinct.

– Case θ � 4 and j � 0. The eigenspace attached to �p on the right-hand
side of (�) is ρT 3

0
� ρ1,H,p1q. Thus, ν � 1 and there is a single removable box

in the bipartition pγ, δq. When we remove it, we obtain pH, p1qq. Therefore,
pγ, δq � pH, p2qq or pH, p12qq. By Theorem 3, we know that ρ1,γ,δ has degree

q9 pq
3�1qpq4�1q
2pq�1q

, thus pγ, δq � pH, p12qq.
– Case θ ¡ 4 and j � 0. The eigenspace attached to �p on the right-hand
side of (�) is ρT θ�1

0
� ρ1,H,p1θ�3q. Thus, ν � 1 and there is a single removable

box in the bipartition pγ, δq. When we remove it, we obtain pH, p1θ�3qq. The
only such bipartition is pγ, δq � pH, p1θ�2qq.

– Case θ � 4 and j � θ � 2. The eigenspace attached to �p3 on the right-
hand side of (�) is ρT 3

1
� ρ1,p1q,H. Thus, ν � 1 and there is a single removable

box in the bipartition pγ, δq. When we remove it, we obtain pp1q,Hq. There-
fore, pγ, δq � pp2q,Hq or pp12q,Hq. By Theorem 3, we know that ρ1,γ,δ has

degree q pq
3�1qpq4�1q
2pq�1q

, thus pγ, δq � pp2q,Hq.

– Case θ ¡ 4 and j � θ � 2. The eigenspace attached to �pθ�1 on the right-
hand side of (�) is ρT θ�1

θ�3
� ρ1,pθ�3q,H. Thus, ν � 1 and there is a single
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removable box in the bipartition pγ, δq. When we remove it, we obtain ppθ�
3q,Hq. The only such bipartition is pγ, δq � ppθ � 2q,Hq.

– Case 1 ¤ j ¤ θ � 3. The eigenspace attached to �pj�1 on the right-hand
side of (�) is ρT θ�1

j
` ρT θ�1

j�1
� ρ1,pjq,p1θ�3�jq ` ρ1,pj�1q,p1θ�2�jq. Thus, ν � 1 and

there are exactly two removable boxes in the bipartition pγ, δq. When we
remove one of them, we obtain either ppjq, p1θ�3�jqq or ppj � 1q, p1θ�2�jqq.
The only such bipartition is pγ, δq � ppjq, p1θ�2�jqq.

4 The cohomology of Sθ

The last three sections of the paper are devoted to proving the main theorem
below, which describes the cohomology of the variety Sθ. Since S0 is a point and
S1 � P1, the cases θ � 0 or 1 are trivial. From now and up to the end of the
paper, we assume that θ ¥ 2.

Theorem 25. The following statements hold.
(1) All the cohomology groups of Sθ of odd degree vanish.

(2) For 0 ¤ i ¤ θ, we have an Spp2θ,Fqq-equivariant isomorphism

H2ipSθq �
minpi,θ�iqà

s�0

ρ�
�s θ � 1� s
0

�


`

minpi�1,θ�1�iqà
s�0

ρ�
�0 s� 1 θ � s

�


.

The Frobenius acts like multiplication by qi on the first summand, and mul-
tiplication by �qi on the second summand.

Remarks 26. Let us make a few comments.
– We may rewrite the formula in terms of the alternate labelling of the unipo-
tent representations of Spp2θ,Fpq. We obtain

H2ipSθq �
minpi,θ�iqà

s�0

ρ0,pθ�s,sq,H `
minpi�1,θ�1�iqà

s�0

ρ1,pθ�2�s,sq,H.

– A unipotent cuspidal representation occurs in the cohomology of Sθ only in
the cases θ � 0 and θ � 2. When θ � 0 it corresponds to H0pS0q which
is trivial. When θ � 2 it occurs in H2pS2q with the eigenvalue �p. All
the representations occuring in the cohomology of Sθ have cuspidal support
given by one of these two cuspidal unipotent representations.
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– Even though Sθ has isolated singularities for θ ¥ 2, its cohomology looks like
the cohomology of a smooth projective variety, in so that it satisfies Poincaré
duality, hard Lefschetz and purity of the Frobenius action.

In order to compute the cohomology of Sθ, we use the stratification by classical
Deligne-Lusztig varieties which we recalled in Proposition 2, and we analyze the
associated spectral sequence. It is given in its first page by

Eθ1,i
1 � Hθ1�i

c pXIθ1
pwθ1qq ùñ Hθ1�ipSθq. (E)

Let us first determine each term explicitely. By Proposition 3 and using the
notations introduced there, we have an isomorphism

XIθ1
pwθ1q � Spp2θ,Fqq{UKθ1

�LK
θ1
X

LK
θ1

Iθ1
pwθ1q.

Taking cohomology, this identity translates into some Harish-Chandra induction

H

cpXIθ1

pwθ1qq � R
Spp2θ,Fqq
LK

θ1
H


cpX
LK

θ1

Iθ1
pwθ1qq.

The Deligne-Lusztig variety X
LK

θ1

Iθ1
pwθ1q for the Levi complement LKθ1

� GLpθ �

θ1,Fqq � Spp2θ1,Fqq is isomorphic to the Coxeter variety Xθ1 with the GL-part

acting trivially. Thus, the terms Eθ1,i
1 are the Harish-Chandra inductions of the

cohomology groups of the Coxeter varieties Xθ1 , which we have determined in
Proposition 23. Let us compute these inductions explicitely.

Lemma 27. Let 0 ¤ i ¤ θ1 ¤ θ. We have Eθ1,i
1 � Aθ1,i `Bθ1,i with

Aθ1,i �
à
α,β

ρ0,α,β, Bθ1,i �
à
γ,δ

ρ1,γ,δ,

where pα, βq runs over all the bipartitions of θ such that, for some 0 ¤ d ¤ θ� θ1,
we have #

α � pi� d� s, sq for some 0 ¤ s ¤ minpd, iq,

β � pθ � θ1 � d, 1θ
1�iq or pθ � θ1 � d� 1, 1θ

1�1�iq,

and if i ¤ θ1 � 2, pγ, δq runs over all the bipartitions of θ � 2 such that, for some
0 ¤ d ¤ θ � θ1, we have#

γ � pi� d� s, sq for some 0 ¤ s ¤ minpd, iq,

δ � pθ � θ1 � d, 1θ
1�2�iq or pθ � θ1 � d� 1, 1θ

1�3�iq.

The summand Aθ1,i (resp. Bθ1,i) is the eigenspace of the Frobenius for the eigen-
value qi (resp. the eigenvalue �qi�1).
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Remark 28. In particular, for each d there are at most two possibilities for β and δ.
To remove ambiguity, let us point out that there are just two situations, possibly
overlapping, where the given possibilities for β (resp. δ) actually coincide, that is

– if i � θ1 (resp. i � θ1�2), in which case β � pθ�θ1�dq (resp. δ � pθ�θ1�dq),
– if d � θ � θ1, in which case β � p1θ

1�iq and δ � p1θ
1�2�iq.

Proof. Using Pieri’s rule for Coxeter groups of typeBn as we recalled in Proposition
19, we must decompose the Harish-Chandra inductions

R
Spp2θ,Fqq

GLpθ�θ1,Fqq�Spp2θ1,Fqq
1b ρSθ1

i
, R

Spp2θ,Fqq

GLpθ�θ1,Fqq�Spp2θ1,Fqq
1b ρT θ1

j
,

where Sθ1

i and T θ1

j are the symbols determined in Proposition 23. The Young
diagrams of the bipartitions associated to these symbols have the form

. . . ,

...

The problem is to determine all the pairs of Young diagrams one may obtain after
adding a succession of θ � θ1 boxes to the pair of diagrams above, with no two
boxes in the same column. This computation has already been done in [14] Section
5, and leads to the claimed formula.

Corollary 29. The spectral sequence (E) degenerates in the second page and the
resulting filtration on the abutment splits. The weights of the eigenvalues of the
Frobenius action on HkpSθq are even and at most equal to 2tk

2
u.

Recall that an eigenvalue α P Qℓ of the Frobenius on the cohomology of a
variety defined over Fq is said to be of weight w P Z if, for any isomorphism
ι : Qℓ � C, we have |ιpαq| � q

w
2 .

Proof. By the previous lemma, two terms of the sequence lying on different rows
have no common eigenvalues for the Frobenius morphism. The Frobenius equiv-
ariance of the differentials force them to vanish in pages after E1. Therefore
the spectral sequence degenerates in the second page. For any 0 ¤ k ¤ 2θ, we
deduce the existence of a filtration Fil
 on HkpSθq such that the graded pieces
Grp :� Filp{Filp�1 are isomorphic to Ep,k�p

2 . In particular the non-zero graded
pieces are concentrated in degree k ¤ 2p ¤ 2minpk, θq. Each term Ep,k�p

2 is a
subquotient of Ep,k�p

1 . The Frobenius acts semisimply on the latter space with
at most 2 distinct eigenvalues, which are qk�p, and �qk�p�1 if k � 2 ¤ 2p. Since
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there is no common eigenvalue of the Frobenius in two different graded pieces,
the filtration splits and the Frobenius acts semi-simply on HkpSθq. Moreover, the
eigenvalues form a subset of tqi,�qj | 0 ¤ i, j ¤ tk

2
uu.

Analyzing the Spp2θ,Fqq-action, we may decompose each term Eθ1,i
1 in the

following way,

Aθ1,i � Aθ1,i
0 ` Aθ1,i

1 , Bθ1,i � Bθ1,i
0 `Bθ1,i

1 ,

where for ϵ � 0, 1 the term Aθ1,i
ϵ is the sum of all the irreducible components ρ0,α,β

with the partition β, written as β � pβ1 ¥ . . . ¥ βr ¡ 0q, satisfies r � θ1 � ϵ � i,
and if i ¤ θ1 � 2 the term Bθ1,i

ϵ is the sum of all the irreducible components ρ1,γ,δ
with the partition δ, written as δ � pδ1 ¥ . . . ¥ δs ¡ 0q, satisfies s � θ1� 2� ϵ� i.
We observe that Aθ,i

1 � Bθ,i
1 � 0, and for 0 ¤ i ¤ θ1   θ (resp. 0 ¤ j � 2 ¤ θ1   θ)

we have isomorphisms Aθ1,i
1 � Aθ1�1,i

0 and Bθ1,j
1 � Bθ1�1,j

0 . Consider a differential

dθ
1,i : Eθ1,i

1 Ñ Eθ1�1,i
1 .

Since the differentials are Frobenius equivariant, they decompose as a sum dθ
1,i �

dθ
1,i

A ` dθ
1,i

B where

dθ
1,i

A : Aθ1,i Ñ Aθ1�1,i, dθ
1,i

B : Bθ1,i Ñ Bθ1�1,i.

The Spp2θ,Fqq-equivariance then forces

Impdθ
1�1,i

A q � Aθ1,i
0 � Kerpdθ

1,i
A q, Impdθ

1�1,i
B q � Bθ1,i

0 � Kerpdθ
1,i

B q.

In order to help visualize the situation, the page E1 is drawn in Figure 1. Since
the sequence degenerates in E2 and the resulting filtration splits, it is clear that
for all 0 ¤ i ¤ θ, the cohomology group H2ipSθq contains A

i,i
0 `Bi�1,i�1

0 (the term
Bi�1,i�1

0 is non-zero if and only if 0   i   θ). We point out that in Theorem 25,
(2) can be rephrased as H2ipSθq � Ai,i

0 `Bi�1,i�1
0 for all 0 ¤ i ¤ θ .

Lemma 30. In the statement of Theorem 25, (1) is equivalent to (2).

Proof. Let us fix 0 ¤ i ¤ θ1 ¤ θ. The equality Impdθ
1�1,i

A q � Aθ1,i
0 (resp. Impdθ

1�1,i
B q �

Bθ1,i
0 ) is equivalent to Kerpdθ

1�1,i
A q � Aθ1�1,1

0 (resp. Kerpdθ
1�1,i

B q � Bθ1�1,i
0 ). Thus, the

vanishing of a term Eθ1,i
2 � Kerpdθ

1,i
A q{Impdθ

1�1,i
A q ` Kerpdθ

1,i
B q{Impdθ

1�1,i
B q is equiva-

lent to the equalities

Kerpdθ
1�1,i

A q � Aθ1�1,i
0 , Impdθ

1,i
A q � Aθ1�1,i

0 ,

Kerpdθ
1�1,i

B q � Bθ1�1,i
0 , Impdθ

1,i
B q � Bθ1�1,i

0 .

The lemma follows easily.
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5 Desingularization of Sθ and purity of the Frobe-

nius action on cohomology

In order to make out how the spectral sequence simplifies in the second page, it
is necessary to get more information on the expected weights of the Frobenius on
the abutment. To this end, we introduce the blow-up π : S 1θ Ñ Sθ at its singular
points. We denote by E :� π�1pZq the exceptional divisor, where in the notations
of Proposition 1, Z � XIpidq is the singular locus of Sθ. Recall that dimZ � 0.
In this section, we prove the following Proposition.

Proposition 31. The varieties S 1θ and E are smooth.

Since S 1θzE is isomorphic to the smooth locus of Sθ, it is enough to prove that
the blow-up is smooth at points of the exceptional divisor. To this end, we exhibit a
certain affine neighborhood of any singular point of Sθ. Recall the symplectic space
V introduced in the first section. Let Lpθq denote the Lagrangian Grassmannian
of V , ie. the smooth projective variety defined over Fq whose k-rational points, for
any field extension k{Fq, correspond to subspaces of U � Vk such that UK � U .
Recall from Proposition 1 that Sθ is the closed subvariety of Lpθq consisting of

those U such that U X τpUq
¤1
� U .

Let Symθ � A
θpθ�1q

2 denote the variety of θ� θ symmetric matrices over Fq. Let Vθ

denote the closed subvariety consisting of all M P Symθ such that M pqq �M has
rank at most one.

Lemma 32. Any singular point U P Sθ has an open affine neighborhood isomorphic
to Vθ.

Proof. If U P Lpθq is a closed point defined over a finite extension k{Fq, one may
choose an isotropic supplement U 1 so that we have a decomposition Vk � U ` U 1.
The symplectic pairing induces an identification between U 1 and the k-linear dual
of U . We may consider the affine variety HompU,U 1q defined over Specpkq, and
the subvariety HompU,U 1qsym consisting of morphisms φ P HompU,U 1q such that
φ� � φ, where φ� : U 1� � U�� � U Ñ U� is the dual of φ. According to
[10] Lemma 2.8, we have φ P HompU,U 1qsym if and only Γφ P Lpθq where Γφ

denotes the graph of φ. The assignment φ ÞÑ Γφ defines an open immersion
HompU,U 1qsym ãÑ Lpθq, identifying the former with an open affine neighborhood
of U . We have an identification HompU,U 1qsym � Symθ b k upon fixing a basis of
U and equipping U 1 with the dual basis.
Now assume that U P Sθ is a singular point, equivalently an Fq-rational point of
Sθ. Let us fix a basis pfiq1¤i¤θ of U and equip U 1 with the dual basis pf 1iq1¤i¤θ.
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Let M P Symθ. The graphs ΓM and ΓMpqq are generated by the vectors

gj :� fj �
θ̧

i�1

Mijf
1
i , g

pqq
j � fj �

θ̧

i�1

M q
ijf

1
i ,

respectively. A direct computation shows that the intersection ΓM X ΓMpqq is
isomorphic to KerpM pqq �Mq. Since U is defined over Fq, the vectors fj and f 1j
are fixed by τ , thus we have τpΓMq � ΓMpqq . It follows that M P Sθ X Symθ if and
only if dimKerpM pqq �Mq ¥ θ � 1, ie. if and only if M P Vθ.

Let V 1
θ � Symθ denote the subvariety of symmetric matrices M of rank at most

1. The variety V 1
θ is known as a symmetric determinantal variety. It admits a

single singular point corresponding to M � 0.

Proposition 33. The blow-up of V 1
θ at the point M � 0 is smooth with smooth

exceptional divisor.

Proof. This is Theorem B of [4] where, in their notations, we have R0 � Fq, m � θ
and r � 2.

Proof of Proposition 31. The variety Vθ contains the Fq-points of Symθ and is sin-
gular precisely at them. By flat base change, the blow-up of Vθ at these singular
points is an open neighborhood in S 1θ of the exceptional divisors above them. Thus
it is enough to check smoothness of the blow-up of Vθ. Moreover, the Lang map
M ÞÑ M pqq �M defines a finite étale cover Vθ Ñ V 1

θ . By flat base change again,
we are reduced to Proposition 33.

Proposition 31 has the following consequence regarding the cohomology of Sθ.

Corollary 34. For 0 ¤ k ¤ 2θ, the Frobenius action on HkpSθq is pure of weight
2tk

2
u.

Proof. By [16, Lemma 0EW3], there is a long exact sequence

. . .Ñ HkpSθq Ñ HkpS 1θq ` HkpZq Ñ HkpEq Ñ Hk�1pSθq Ñ . . .

Since S 1θ and E are projective and smooth, the Frobenius action on their k-th coho-
mology group is pure of weight k. For any 0 ¤ j ¤ θ, the maps H2j�1pEq Ñ H2jpSθq
and H2j�1pSθq Ñ H2j�1pS 1θq vanish since the cohomology of Sθ only contains even
weights by Corollary 29. Thus, we have in fact exact sequences

0Ñ H2jpSθq Ñ H2jpS 1θq ` H2jpZq Ñ H2jpEq Ñ H2j�1pSθq Ñ 0.

It follows that H2jpSθq and H2j�1pSθq are pure of weight 2j.
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6 Intersection cohomology of Sθ

Let U :� SθzZ denote the smooth locus of Sθ. Let j : U ãÑ Sθ be the open
immersion. The intersection complex of Sθ is the intermediate image j!�Qℓ.
We write IH
pSθq :� H
pSθ, j!�Qℓq for the intersection cohomology of Sθ. It is a
standard fact that j!�Qℓ is pure of weight 0, and therefore IHkpSθq is pure of weight
k for all k. Since Z is 0-dimensional, it follows from [1] Proposition 2.1.11 that
the intersection complex is given by

j!�Qℓ � τθ�1Rj�Qℓ.

The hypercohomology spectral sequence for intersection cohomology reads

F a,b
2 � HapSθ,H

bpj!�Qℓqq ùñ IHa�bpSθq. (F )

For k ¥ 1, the sheaf Rkj�Qℓ is skyscraper at the points of Z. Furthermore we have
j�Qℓ � Qℓ since Sθ is irreducible and normal. It follows that

F a,b
2 �

$'&
'%
HapSθq if b � 0,À

zPZpR
bj�Qℓqz if a � 0 and 1 ¤ b ¤ θ � 1,

0 else.

In particular, the spectral sequence degenerate in Fθ�1, and we have HkpSθq �
IHkpSθq for all k ¡ θ. The second page F2 is drawn in Figure 2.

Proposition 35. For k ¡ θ, we have

HkpSθq �

#
Ai,i

0 `Bi�1,i�1
0 if k � 2i is even,

0 if k is odd.

The statement also holds when k � θ is even.

Proof. If k ¡ θ is odd, the cohomology group HkpSθq � IHkpSθq is pure of weight
k. Since the cohomology of Sθ consists of only even weights by Proposition 29, we
have HkpSθq � 0. Assume now that k � 2i ¥ θ is even. Given the repartition of the
Frobenius weights in the first page of the spectral sequence (E), we have H2ipSθq �
Kerpdi,iA q ` Kerpdi�1,i�1

B q, the first (resp. second) summand corresponding to the
eigenvalue qi (resp. �qi) of the Frobenius. Furthermore, since H2i�1pSθq � 0, the
restriction of di,iA to Ai,i

1 (resp. of di�1,i�1
B to Bi�1,i�1

1 ) defines an isomorphism onto
Ai�1,i

0 (resp. onto Bi�2,i�1
0 ). Thus the kernel of di,iA (resp. of di�1,i�1

B ) is reduced to
Ai,i

0 (resp. to Bi�1,i�1
0 ).
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It remains to compute the cohomology of Sθ up to the middle degree. To do so,
for 1 ¤ k ¤ θ � 1 we consider the differential δk : F 0,k

k�1 Ñ F k�1,0
k�1 in the pk � 1q-th

page of the spectral sequence (F ). We note that F 0,k
k�1 � F 0,k

2 and F k�1,0
k�1 � F k�1,0

2

since, up to the pk � 1q-th page, both terms have not been touched by any non
zero differential.

Proposition 36. The differential δk vanishes for odd k and is surjective for even
k.

Proof. Assume that k is odd. We have F 0,k
2 �

À
zPZ Hkpj!�Qℓqz. Since j!�Qℓ is

pure of weight 0, the cohomology sheaf Hkpj!�Qℓq is mixed of weights ¤ k. On the
other hand, by Corollary 34, we know that F 0,k�1

2 � Hk�1pSθq is pure of weight
k � 1. Therefore δk must vanish.
Assume now that k is even. We know that Hk�1pSθq is pure of even weight,
whereas IHk�1pSθq is pure of odd weight. Thus δk must be surjective.

Proof of Theorem 25. Let k � 2i   θ be even. Since the differential δ2i�1 vanishes,
the term of coordinate p2i, 0q in the spectral sequence (F ) is unchanged through the
deeper pages. In particular, IH2ipSθq contains a subspace isomorphic to H2ipSθq.
Thus, we have

H2ipSθq ãÑ IH2ipSθq � IH2pθ�iqpSθqpθ � 2iq,

where the isomorphism follows from the hard Lefschetz theorem for intersection
cohomology. Since 2pθ � iq ¡ θ, the RHS is isomorphic to Aθ�i,θ�i

0 ` Bθ�i�1,θ�i�1
0

by Proposition 35. But Aθ�i,θ�i
0 � Ai,i

0 and Bθ�i�1,θ�i�1
0 � Bi�1,i�1

0 as Spp2θ,Fqq-
modules. As H2ipSθq already contains Ai,i

0 ` Bi�1,i�1
0 , we actually have isomor-

phisms IH2ipSθq � H2ipSθq � Ai,i
0 `Bi�1,i�1

0 .
At this stage, we have proved statement (2) of Theorem 25. According to Lemma
30, the proof is over.

As a by-product, we have proved the following statement.

Proposition 37. We have j!�Qℓ � Qℓ and IHkpSθq � HkpSθq for all k.

Proof. The natural map Qℓ Ñ j!�Qℓ � τθ�1Rj�Qℓ is a quasi-isomorphism, as we
have incidentally proved that Hkpj!�Qℓq � 0 for all k ¥ 1.
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A Figures
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0
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0 ` Aθ�2,θ�2

1 Aθ�1,θ�2
0 ` Aθ�1,θ�2

1 Aθ,θ�2
0 `Bθ,θ�2

0

...

...

A2,2
0 ` A2,2

1 . . .
Aθ�2,2

0 ` Aθ�2,2
1

Bθ�2,2
0 `Bθ�2,2

1

Aθ�1,2
0 ` Aθ�1,2

1

Bθ�1,2
0 `Bθ�1,2

1

Aθ,2
0 `Bθ,2

0

A1,1
0 ` A1,1

1 A2,1
0 ` A2,1

1 . . .
Aθ�2,1

0 ` Aθ�2,1
1

Bθ�2,1
0 `Bθ�2,1

1

Aθ�1,1
0 ` Aθ�1,1

1

Bθ�1,1
0 `Bθ�1,1

1

Aθ,1
0 `Bθ,1

0

A0,0
0 ` A0,0

1 A1,0
0 ` A1,0

1

A2,0
0 ` A2,0

1

B2,0
0 `B2,0

1

. . .
Aθ�2,0

0 ` Aθ�2,0
1

Bθ�2,0
0 `Bθ�2,0

1

Aθ�1,0
0 ` Aθ�1,0

1

Bθ�1,0
0 `Bθ�1,0

1

Aθ,0
0 `Bθ,0

0

Figure 1: The first page of the spectral sequence (E).



À
zPZpR

θ�1j�Qℓqz

...

À
zPZpR

1j�Qℓqz

H0pSθq H1pSθq H2pSθq . . . HθpSθq Hθ�1pSθq . . . H2θpSθq

Figure 2: The second page of the spectral sequence (F ) (the differentials in dashed lines correspond to deeper pages).
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