The nearby cycles of the PEL GU(n-1,1)Shimura variety over a ramified prime Aichi Number Theory Seminar 愛知数論セミナー

Joseph Muller February 8 2025

The University of Tokyo

Introduction

The PEL GU(n-1,1) Shimura variety over a ramified prime

Nearby cycles and semi-stable reduction

Nearby cycles on the local model

Outline of the proof

Introduction

In general, **Shimura varieties** are smooth quasi-projective varieties defined over a certain number field. Such a variety is determined by a **Shimura datum**, ie. a pair (\mathbb{G} , X) where

- $\mathbb G$ is a reductive group over $\mathbb Q,$
- X is a "conjugacy class of cocharacters of G_R".

The datum (\mathbb{G}, X) determines

- a number field $\mathbb{E} \subset \mathbb{C}$ called the reflex field,
- for K ⊂ G(A_f) open compact subgroup which is "small enough", a Shimura variety Sh_K over Spec(E).

Rk: $\operatorname{Sh}_{\mathcal{K}}$ is a finite union of locally symmetric spaces for \mathbb{G} .

If $K' \subset K$, there is a natural finite étale transition morphism $\Pi_{K',K} : \operatorname{Sh}_{K'} \to \operatorname{Sh}_{K}$. The **Shimura tower** is the inverse system $\operatorname{Sh} := (\operatorname{Sh}_{K})_{K}$. The group $\mathbb{G}(\mathbb{A}_{f})$ acts on Sh by **Hecke correspondences**.

 \implies the cohomology of Sh is naturally a $\mathbb{G}(\mathbb{A}_f) \times \operatorname{Gal}(\overline{\mathbb{E}}/\mathbb{E})$ -module. It is expected to give a geometric incarnation of the Langlands correspondences. For arithmetic applications, one wants to define **integral models** of Shimura varieties over some prime p, ie. a quasi-projective scheme S_K over $Spec(\mathcal{O}_{\mathbb{E},(p)})$ such that

 $\operatorname{Sh}_{\mathcal{K}} \simeq \operatorname{S}_{\mathcal{K}} \times_{\operatorname{Spec}(\mathcal{O}_{\mathbb{E},(p)})} \operatorname{Spec}(\mathbb{E}),$

where $\mathcal{O}_{\mathbb{E},(\rho)} := \mathcal{O}_{\mathbb{E}} \otimes_{\mathbb{Z}} \mathbb{Z}_{(\rho)}$.

If such a model S_K exists, we say that the Shimura variety has good reduction at p if S_K is smooth, otherwise we say that it has bad reduction at p. Assume that an integral model S_K exists over p. Fix a place v of \mathbb{E} above p and write $E := \mathbb{E}_v$ for the v-adic completion. We can think of Sh_K and S_K as schemes over Spec(E) and $Spec(\mathcal{O}_E)$ respectively. If $\ell \neq p$ is a prime, we have an isomorphism of $Gal(\overline{E}/E)$ -modules

$$\mathrm{H}^{\bullet}(\mathrm{Sh}_{\mathcal{K}} \otimes_{\mathcal{E}} \overline{\mathcal{E}}, \overline{\mathbb{Q}_{\ell}}) \simeq \mathrm{H}^{\bullet}(\overline{\mathrm{S}}_{\mathcal{K}} \otimes \overline{\kappa(\mathcal{E})}, \mathrm{R}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}}),$$

where $\kappa(E)$ is the residue field of E, $\overline{S}_{\kappa} := S_{\kappa} \times \text{Spec}(\kappa(E))$ is the special fiber and $\mathbb{R}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}}$ is the nearby cycle complex on S_{κ} .

Rk: It works even when S_K is not proper (Lan-Stroh).

In many cases, the special fiber \overline{S}_K has nice geometric properties (stratifications, Igusa varieties, etc.). Thus one may expect that $H^{\bullet}(\overline{S}_K \otimes \overline{\kappa(E)}, R\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})$ is easier to understand.

In this talk, we consider one specific example: the PEL $\mathrm{GU}(\mathbf{n-1},\mathbf{1})$ Shimura variety over a ramified prime. We will compute the cohomology sheaves $\mathrm{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}}$ by using the theory of local models.

The PEL GU(n - 1, 1) Shimura variety over a ramified prime

The PEL GU(n-1,1) Shimura variety over a ramified prime

Shimura varieties of PEL type can be described as **moduli spaces of abelian varieties** with additional structures. Some notations:

- $\mathbb{E} := \mathbb{Q}[\sqrt{-\delta}]$ where $\delta > 1$ squarefree.
- p a prime dividing δ .
- $\overline{\ \cdot \ }\in {\rm Gal}(\mathbb{E}/\mathbb{Q})$ the non-trivial Galois involution.

•
$$\pi := \sqrt{-\delta}$$
 so that $\overline{\pi} = -\pi$.

- $E := \mathbb{E} \otimes \mathbb{Q}_p = \mathbb{Q}_p[\sqrt{-\delta}]$ a quadratic ramified extension of \mathbb{Q}_p .
- $(\mathbb{V}, (\cdot, \cdot))$ an *n*-dimensional \mathbb{E}/\mathbb{Q} -hermitian space of signature (n-1,1) at infinity.
- V := V ⊗ Q_p with induced E/Q_p-hermitian pairing (·, ·).

- $\mathbb{G} := \mathrm{GU}(\mathbb{V}, (\cdot, \cdot))$ as a reductive group over \mathbb{Q} .
- Γ ⊂ V a self-dual O_E-lattice (the existence of Γ is a condition on V).
- $L := \Gamma \otimes \mathbb{Z}_p \subset V$ a self-dual \mathcal{O}_E -lattice.
- $K \subset \mathbb{G}(\mathbb{A}_f)$ the stabilizer of $\Gamma \otimes \widehat{\mathbb{Z}}$.
- $K^p \subset K \cap \mathbb{G}(\mathbb{A}_f^p)$ an open compact subgroup.

The PEL GU(n-1,1) Shimura variety over a ramified prime

For an \mathcal{O}_E -scheme S, let $(AV)_S$ be the category of $\mathcal{O}_{\mathbb{E}}$ -abelian varieties over S up to prime-to-p isogenies. It is given by:

- Objects: pairs (A, ι) where A is an abelian variety over S and
 ι : O_E ⊗ Z_(p) → End_S(A) ⊗ Z_(p) a ring morphism.
- Morphisms: for $(A_1, \iota_1), (A_2, \iota_2) \in (AV)_S$,

$$\operatorname{Hom}_{(AV)_{S}}((A_{1},\iota_{1}),(A_{2},\iota_{2})):=\operatorname{Hom}_{\mathcal{O}_{\mathbb{E}}}(A_{1},A_{2})\otimes\mathbb{Z}_{(p)}.$$

Thus, an isomorphism in $(AV)_S$ is an $\mathcal{O}_{\mathbb{E}}$ -linear isogeny of abelian varieties over S of degree prime to p. A **principal polarization** on $(A, \iota) \in (AV)_S$ is an isomorphism $\lambda : (A, \iota) \to (A, \iota)^{\vee}$ such that, locally on S, a multiple of λ is induced by an ample line bundle on A.

For S an \mathcal{O}_E -scheme, $S_{K^p}(S)$ is the set of isomorphism classes of tuples $((A, \iota), \overline{\lambda}, \overline{\eta})$ where

- $(A,\iota) \in (AV)_S$ with dim(A) = n,
- λ̄ is a principal polarization on (A, ι) (up to a scalar in Q[×] locally on S),
- "*ŋ* : H₁(A, A^p_f) ≃ V ⊗ A^p_f mod K^p" a K^p-level structure compatible with the hermitian products,

The PEL GU(n-1,1) Shimura variety over a ramified prime

Moreover, we add the following conditions on (A, ι)

Kottwitz' determinant condition

 $\forall x \in \mathcal{O}_{\mathbb{E}}, \det(T - \iota(x) \mid \operatorname{Lie}_{\mathcal{S}}(A)) = (T - x)^{n-1} (T - \overline{x})^{1} \in \mathcal{O}_{E}[T],$

Pappas' wedge condition if n ≥ 3

$$\forall x \in \mathcal{O}_{\mathbb{E}}, \bigwedge^2(\iota(x) - x) = 0 \text{ and } \bigwedge^n(\iota(x) - \overline{x}) = 0 \text{ on } \operatorname{Lie}_{\mathcal{S}}(A).$$

If K^p is small enough, S_{K^p} is a **flat** quasi-projective scheme over Spec(\mathcal{O}_E). It is an integral model over p of a Shimura variety Sh_K for $\mathbb{G} = GU(\mathbb{V})$ where $K = K_p K^p$ and $K_p := Stab(L) \subset \mathbb{G}(\mathbb{Q}_p)$.

For an \mathcal{O}_E -scheme S and $(A, \iota) \in (AV)_S$, write $\Pi := \iota(\pi) \in \operatorname{End}_S(A) \otimes \mathbb{Z}_{(p)}$. If p vanishes on S and $A \in \overline{S}_{K^p}(S)$, by Pappas' condition we have $\bigwedge^2 \Pi = 0$ on $\operatorname{Lie}_S(A)$. Let Z be the zero dimensional closed subscheme of \overline{S}_{K^p} consisting of those (A, ι) such that $\Pi \cong 0$ on Lie(A).

Theorem (Pappas)

(1) The closed subscheme Z is the singular locus of the special fiber \overline{S}_{K^p} .

(2) If n = 2, the scheme S_{K^p} is regular and has semi-stable reduction. (3) If $n \ge 3$, the scheme S_{K^p} is regular outside of Z. The blow up

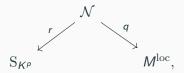
 $b_{\mathcal{K}^p}: \mathrm{S}'_{\mathcal{K}^p} \to \mathrm{S}_{\mathcal{K}^p}$ at Z is regular and has semi-stable reduction.

From (1), it follows that $\mathrm{R}^{0}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}} = \overline{\mathbb{Q}_{\ell}}$ and that $\mathrm{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}}$ is a skyscraper sheaf concentrated on Z.

 \implies it remains to compute $(\mathbb{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})_{\overline{z}}$ for all points $z \in Z$. To do this, we use the **local model**.

The PEL GU(n-1,1) Shimura variety over a ramified prime

By general theory, there is a local model diagram



where, for an \mathcal{O}_E -scheme S, $\mathcal{N}(S)$ is the set of $((A, \iota), \overline{\lambda}, \overline{\eta}, \gamma)$ where

- $((A,\iota),\overline{\lambda},\overline{\eta}) \in S_{K^p}(S),$
- γ : H¹_{dR}(A[∨]/S) → L ⊗_{Z_p} O_S is an isomorphism of sheaves of O_E ⊗_{Z_p} O_S-modules compatible with the hermitian pairings.

The map r simply forgets about γ .

The PEL GU(n-1,1) Shimura variety over a ramified prime

The scheme M^{loc} is the **local model** and can be defined purely in terms of linear algebra, ie. $M^{\text{loc}}(S)$ is the set of subsheaves $\mathcal{F} \subset L \otimes_{\mathbb{Z}_p} \mathcal{O}_S$ of $\mathcal{O}_E \otimes_{\mathbb{Z}_p} \mathcal{O}_S$ -modules such that

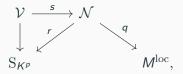
- \mathcal{F} is a locally free \mathcal{O}_S -direct summand of $L \otimes_{\mathbb{Z}_p} \mathcal{O}_S$ of rank n,
- \mathcal{F} is totally isotropic for the pairing $(\cdot, \cdot) \otimes \mathcal{O}_S$,
- it satisfies Kottwitz and Pappas conditions, $\forall x \in \mathcal{O}_E$,

$$\det(T - x \otimes 1 \,|\, \mathcal{F})) = (T - 1 \otimes x)^1 (T - 1 \otimes \overline{x})^{n-1} \in \mathcal{O}_E[T],$$

 $\bigwedge^n (x \otimes 1 - 1 \otimes x) = 0 \text{ and } \bigwedge^2 (x \otimes 1 - 1 \otimes \overline{x}) = 0 \text{ on } \mathcal{F}.$

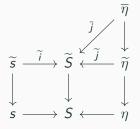
Then q sends $((A, \iota), \overline{\lambda}, \overline{\eta}, \gamma)$ to the image of the submodule $\mathcal{H}^0(A^{\vee}, \Omega^1_{A^{\vee}}) \subset \mathcal{H}^1_{dR}(A^{\vee}/S)$ via γ .

To say that M^{loc} is the local model of S_{K^p} means that there exists an etale cover $\mathcal{V} \to S_{K^p}$ and a section $s : \mathcal{V} \to \mathcal{N}$ such that the composition $qs : \mathcal{V} \to M^{\text{loc}}$ is an etale cover.



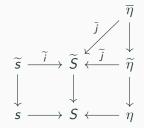
 \implies By restricting $\mathrm{R}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}}$ to the etale cover, it is enough to compute the nearby cycles on M^{loc} instead.

In this section, let *E* be any *p*-adic field with ring of integers \mathcal{O}_E and residue field κ .



where

$$\begin{split} s &= \operatorname{Spec}(\kappa), \qquad S = \operatorname{Spec}(\mathcal{O}_E), \qquad \eta = \operatorname{Spec}(E), \\ \widetilde{s} &= \operatorname{Spec}(\overline{\kappa}), \qquad \widetilde{S} = \operatorname{Spec}(\mathcal{O}_{E^{\mathrm{un}}}), \qquad \widetilde{\eta} = \operatorname{Spec}(E^{\mathrm{un}}), \\ \overline{\eta} &= \operatorname{Spec}(\overline{E^{\mathrm{un}}}). \end{split}$$



Fix $\ell \neq p$ and let Λ be a coefficient ring eg. $\mathbb{Z}/\ell^k \mathbb{Z}, \mathbb{Z}_\ell, \mathbb{Q}_\ell$, or $\overline{\mathbb{Q}_\ell}$. Let $f : X \to S$ be a morphism of finite type. By base change, we have morphisms

$$X_{\widetilde{s}} \xrightarrow{\widetilde{i}} X_{\widetilde{S}} \xleftarrow{j} X_{\overline{\eta}}$$

$$X_{\widetilde{s}} \xrightarrow{\widetilde{i}} X_{\widetilde{S}} \xleftarrow{\overline{j}} X_{\overline{\eta}}$$

For a scheme Y, let $D^+(Y, \Lambda)$ denote the derived category of bounded-below complexes of (etale) sheaves of Λ -modules on Y.

Definition: For $K \in D^+(X_\eta, \Lambda)$, the **nearby cycles complex of** K is

$$\mathrm{R}\Psi_{\eta}K := \tilde{i^*}\mathrm{R}\bar{j}_*(K_{|X_{\overline{\eta}}}).$$

Then $\mathrm{R}\Psi_{\eta}K \in D^+(X_{\tilde{s}}, \Lambda, \mathrm{Gal}(\overline{\eta}/\eta))$, the bounded-below derived category of sheaves of Λ -modules on $X_{\tilde{s}}$ equipped with a continuous action of $\mathrm{Gal}(\overline{\eta}/\eta)$.

If $h: X \to Y$ is smooth, we have the **smooth base change** theorem, i.e. the natural map

$$h^*_{\widetilde{s}} \mathrm{R} \Psi^Y_\eta \xrightarrow{\sim} \mathrm{R} \Psi^X_\eta h^*_{\overline{\eta}}$$

is an isomorphism. In particular if $X \to S$ is smooth then

$$\mathrm{R}\Psi_{\eta}\Lambda\simeq\Lambda.$$

Slogan: if *X* is smooth then the nearby cycles are trivial.

If $h: X \to Y$ is proper, we have the **proper base change theorem**, i.e. the natural map

$$\mathrm{R}h_{\widetilde{s},*}\mathrm{R}\Psi_{\eta}^{X}\xrightarrow{\sim}\mathrm{R}\Psi_{\eta}^{Y}\mathrm{R}h_{\overline{\eta},*}$$

is an isomorphism. In particular if $X \rightarrow S$ is proper then

$$\mathrm{R}\Gamma(X_{\widetilde{s}},\mathrm{R}\Psi_{\eta}K)\xrightarrow{\sim}\mathrm{R}\Gamma(X_{\overline{\eta}},K),$$

for all $K \in D^+(X_n, \Lambda)$, compatible with the Galois action.

Slogan: cohomology of the generic fiber = cohomology of the special fiber with coefficients in the nearby cycles.

Definition: We say that $X \rightarrow S$ is (strictly) semi-stable of relative dimension *n* if

- 1. $X \rightarrow S$ is regular and flat,
- 2. $X_{\eta} \rightarrow \eta$ is smooth of relative dimension *n*,
- 3. $X_s \hookrightarrow X$ is a divisor with simple normal crossings.

Write $X_s = \sum X_k$ as a sum of smooth divisors X_k 's for $1 \le k \le m$. Write Λ_{X_k} for the constant sheaf Λ with support on X_k .

Theorem (Grothendieck)

We have $\mathrm{R}^{0}\Psi_{\eta}\Lambda=\Lambda$ and

$$\mathrm{R}^{1}\Psi_{\eta}\Lambda\simeq(igoplus_{1\leq k\leq m}\Lambda_{X_{k,\widetilde{s}}}/\Lambda)(-1).$$

Moreover for all $i \ge 2$ we have

 $\mathbf{R}^{i}\Psi_{\eta}\Lambda\simeq\Lambda^{i}\mathbf{R}^{1}\Psi_{\eta}\Lambda.$

In particular $\mathbf{R}^i \Psi_{\eta} \Lambda = 0$ if $i \geq m$.

Example: if m = 2 then $\mathbb{R}^0 \Psi_\eta \Lambda \simeq \Lambda$ and $\mathbb{R}^1 \Psi_\eta \Lambda \simeq \Lambda_{Q_{\overline{s}}}(-1)$ where $Q := X_1 \cap X_2$ is the scheme-theoretic intersection.

From now on, recover our notations for the local model (E is quadratic ramified, etc.)

Let $\Pi := \pi \otimes 1 \in \mathcal{O}_E \otimes_{\mathbb{Z}_p} \mathbb{F}_p$. Let $\overline{M^{\text{loc}}} := M^{\text{loc}} \times \text{Spec}(\mathbb{F}_p)$ denote the special fiber. Let $y := [\Pi(L \otimes \mathbb{F}_p)] \in \overline{M^{\text{loc}}}(\mathbb{F}_p)$.

Theorem (Pappas)

The special fiber M^{loc} is smooth outside of y, the unique singular point.

 $\implies \text{We have } \mathbb{R}^{0}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}} \simeq \overline{\mathbb{Q}_{\ell}} \text{ and for } i \geq 1 \text{, the sheaves } \mathbb{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}} \text{ on } \overline{M^{\text{loc}}} \text{ are skyscraper, concentrated at } \overline{y} \text{ (a geometric point over } y).$

Let us state our main result.

Theorem (M.)

For $i \ge 0$ we have

$$(\mathrm{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})_{\overline{y}} = egin{cases} \overline{\mathbb{Q}_{\ell}} & ext{if } i=0, \ \overline{\mathbb{Q}_{\ell}} & ext{if } n ext{ is even and } i=n-1, \ 0 & ext{else.} \end{cases}$$

If *n* is even, the action of $\operatorname{Gal}(\overline{E}/E)$ on $(\mathbb{R}^{n-1}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})_{\overline{Y}}$ is trivial on the inertia subgroup, and the Frobenius acts by multiplication by the scalar $\epsilon p^{\frac{n}{2}}$, where $\epsilon = 1$ if n = 2 or if $n \ge 4$ and the hermitian space $(V, (\cdot, \cdot))$ is split, and $\epsilon = -1$ if $n \ge 4$ and the hermitian space is non-split.

Remarks: (1) The **discriminant** of the hermitian space $(V, (\cdot, \cdot))$ is

$$\operatorname{disc}(V) := (-1)^{\frac{n(n+1)}{2}} \operatorname{det}(V) \in \mathbb{Q}_p^{\times}/\operatorname{Norm}_{E/\mathbb{Q}_p}(E^{\times}) \simeq \mathbb{Z}/2\mathbb{Z}.$$

We say that $(V, (\cdot, \cdot))$ is **split** if $\operatorname{disc}(V) = 1$, and that it is **non-split** otherwise.

(2) In particular, if *n* is odd then $\mathrm{R}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}} \simeq \overline{\mathbb{Q}_{\ell}}$, as in the case of good reduction. The singularities do not disrupt the cohomology. (2) In 2003, Krämer computed the alternating trace of the Frobenius

$$\operatorname{Tr}^{\mathrm{ss}}(\operatorname{Frob},(\mathrm{R}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})_{\overline{y}}):=\sum_{i\geq 0}(-1)^{i}\operatorname{Trace}(\operatorname{Frob},(\mathrm{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})_{\overline{y}}).$$

Our computations agree with her's.

Outline of the proof

If n = 2, the proof is easy since M^{loc} has semi-stable reduction. From now on, we assume $n \ge 3$. Let $b: (M^{\text{loc}})' \to M^{\text{loc}}$ be the blow-up at the singular point y. Let $\mathrm{R}\Psi'_{\eta}\overline{\mathbb{Q}_{\ell}}$ denote the nearby cycles on $(M^{\text{loc}})'$. By proper base change and since b is an isomorphism on the generic fibers, we have

$$\mathrm{R}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}}\simeq \mathrm{R}b_{\overline{s}*}\mathrm{R}\Psi_{\eta}^{\prime}\overline{\mathbb{Q}_{\ell}},$$

where $b_{\tilde{s}}$ is the induced map on geometric special fibers. In particular,

$$(\mathrm{R}^{i}\Psi_{\eta}\overline{\mathbb{Q}_{\ell}})_{\overline{y}}=\mathrm{H}^{i}(b_{\overline{s}}^{-1}\{\overline{y}\},\mathrm{R}\Psi_{\eta}^{\prime}\overline{\mathbb{Q}_{\ell}}).$$

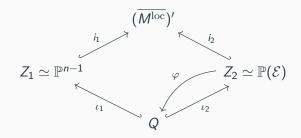
The blow-up $(M^{loc})'$ has semi-stable reduction. Moreover, Krämer gives an explicit description of the special fiber.

Theorem (Krämer)

The special fiber $(\overline{M^{\text{loc}}})'$ is the union of two smooth irreducible varieties Z_1 and Z_2 . We have $Z_1 := b_s^{-1}\{y\} \simeq \mathbb{P}^{n-1}$ and Z_2 is a \mathbb{P}^1 -bundle over the scheme theoretic intersection $Q := Z_1 \cap Z_2$. Moreover, the closed immersion $Q \hookrightarrow Z_1 \simeq \mathbb{P}^{n-1}$ identifies Q with an explicit smooth quadric in \mathbb{P}^{n-1} .

Outline of the proof

The situation is summed up in the following diagram.



where \mathcal{E} is a locally free sheaf of rank 2 on Q and φ is the associated projective bundle morphism.

Recall that we want to compute $\mathrm{H}^{i}(Z_{1}, i_{1}^{*}\mathrm{R}\Psi_{\eta}^{\prime}\overline{\mathbb{Q}_{\ell}}).$

Outline of the proof

Since $(M^{\text{loc}})'$ has semi-stable reduction, we have

$$\mathbf{R}^{i}\Psi_{\eta}^{\prime}\overline{\mathbb{Q}_{\ell}} = \begin{cases} \overline{\mathbb{Q}_{\ell}} & \text{if } i = 0, \\ i_{Q*}\overline{\mathbb{Q}_{\ell}}(-1) & \text{if } i = 1, \\ 0 & \text{else}, \end{cases}$$

where $i_Q: Q \hookrightarrow (\overline{M^{\text{loc}}})'$ is the closed immersion.

The nearby cycles $\mathrm{R}\Psi'_{\eta}\overline{\mathbb{Q}_{\ell}}$ are equipped with the monodromy filtration. The adjunction morphism $\mathrm{R}\Psi'_{\eta}\overline{\mathbb{Q}_{\ell}} \to i_{1*}i_1^*\mathrm{R}\Psi'_{\eta}\overline{\mathbb{Q}_{\ell}}$ of filtered complexes induces a morphism of monodromy-weight spectral sequences $(E^{p,q}_{\bullet}) \to (i_{1*}i_1^*E^{p,q}_{\bullet})$, leading to commutative diagrams as follows in the first page.

For
$$0 \le i \le 2(n-1)$$
,

By commutativity, there exists $\alpha_i : \mathrm{H}^i(Q) \to \mathrm{H}^i(Q)$ which is identity on $\mathrm{Im}(\iota_2^*)$ such that

$$\begin{array}{cccc} \mathrm{H}^{i-2}(Q)(-1) & \stackrel{f}{\longrightarrow} \mathrm{H}^{i}(Z_{1}) \oplus \mathrm{H}^{i}(Q) & \stackrel{g}{\longrightarrow} \mathrm{H}^{i}(Q) \\ \\ & x \longmapsto & (-\iota_{1*}(x), \iota_{2}^{*}\iota_{2*}(x)) \\ \\ & (x, y) \longmapsto & -\iota_{1}^{*}(x) + \alpha_{i}(y) \end{array}$$

Outline of the proof

By the projective bundle formula for $\varphi: Z_2 \to Q$, we know that φ^* induces an isomorphism

$$\mathrm{H}^{\bullet}(Q)[t]/(t^2) \xrightarrow{\sim} \mathrm{H}^{\bullet}(Z_2).$$

Since $\varphi \circ \iota_2 = \mathrm{id}_Q$, we have $\iota_2^* \varphi^* = \mathrm{id}$ on $\mathrm{H}^i(Q)$. In particular, $\alpha_i \equiv \mathrm{id}$.

Since Q is a smooth quadric in $Z_1 \simeq \mathbb{P}^{n-1}$, it is well known that

$$\mathrm{H}^{\bullet}(Q) = \iota_1^* \mathrm{H}^{\bullet}(Z_1) \oplus \mathrm{H}^{n-2}_{\mathrm{prim}}(Q),$$

where the primitive cohomology is defined by $H^{n-2}_{\text{prim}}(Q) := \text{Ker}(\iota_{1*} : H^{n-2}(Q) \to H^n(Z_1)(1)).$ By general theory, $H^{n-2}_{\text{prim}}(Q)$ is zero if *n* is odd, and is 1-dimensional if *n* is even. Thus, the first page of the monodromy-weight spectral sequence computing $\mathrm{H}^{i}(Z_{1}, i_{1}^{*}\mathrm{R}\Psi'_{\eta}\overline{\mathbb{Q}_{\ell}})$ consists of chains of the form

$$\mathrm{H}^{i-2}(Q)(-1) \xrightarrow{f} \mathrm{H}^{i}(Z_{1}) \oplus \mathrm{H}^{i}(Q) \twoheadrightarrow \mathrm{H}^{i}(Q),$$

and the sequence is always exact at the middle. Moreover the map f is injective except when n is even and i = n. In this case, the kernel is given by $H^{n-2}_{\text{prim}}(Q) \simeq \overline{\mathbb{Q}_{\ell}}$ (up to Tate twist). It only remains to compute the Frobenius action. To do this, we use Lefschetz' trace formula.

Outline of the proof

Assume now that n = 2m. Then Q is cut out by the equation

•
$$X_1^2 + \ldots + X_m^2 - X_{m+1}^2 - \ldots - X_n^2$$
 if $(V, (\cdot, \cdot))$ is split,

• $X_1^2 + \ldots + X_m^2 - X_{m+1}^2 - \ldots - X_{n-1}^2 - \delta X_n^2$ for some $\delta \in \mathbb{F}_p^{\times}$ which is not a square if $(V, (\cdot, \cdot))$ is not split.

Consider the Jacobi sum

$$j_m := \frac{1}{p-1} \sum_{\substack{u_1 + \ldots + u_{2m} = 0 \\ u_i \in \mathbb{F}_p^\times}} \left(\frac{u_1}{p} \right) \ldots \left(\frac{u_{2m}}{p} \right).$$

Proposition (Weil)

$$\neq Q(\mathbb{F}_p) = \frac{p^{n-1}-1}{p-1} + \epsilon \left(\frac{-1}{p}\right)^m j_m,$$

where $\epsilon = 1$ if $(V, (\cdot, \cdot))$ is split, -1 otherwise.

Proposition

We have
$$j_m = \left(\frac{-1}{p}\right)^m p^{m-1}$$
.

 \implies By Lefschetz's trace formula, we deduce that the Frobenius acts like multiplication by ϵp^{m-1} on $\mathrm{H}^{n-2}_{\mathrm{prim}}(Q)$.

This concludes the proof!

Thank you for listening! ご清聴ありがとうございました。

犬山城とブルーインパルス 2022年 愛知県政150周年記念