Geometric approach to the explicit local
Langlands correspondence
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ABSTRACT. We propose a geometric strategy of giving explicit
description of the Langlands parameter of an irreducible super-
cuspidal representation of GL(n) over a non-archimedean local
field. The key is to compare the cohomology of an affinoid in
the Lubin-Tate space at infinite level and that of the reduction
of its formal model. As examples, we treat the cases of depth
0 supercuspidal representations and simple supercuspidal rep-
resentations.

1 Introduction

Let F' be a non-archimedean local field. By the local Langlands correspondence
for GL,,(F) ([HT01], [LRS93]), irreducible supercuspidal representations of GL,,(F)
are parameterized by n-dimensional irreducible smooth representations of the Weil
group Wg of F. On the other hand, irreducible supercuspidal representations of
GL, (F) are completely classified by the theory of types [BK93]. However, in general
it is very difficult to determine the parameter corresponding to each supercuspidal
representation explicitly. This problem, called “the explicit local Langlands corre-
spondence”, is extensively studied by Bushnell and Henniart; see [BHO5a], [BHO5b],
[BH10], [Hen06] and references therein. Recently, Imai and Tsushima [IT15b] also
gave a result in this direction, which is not covered by the works cited above. The
methods in all of these works are purely algebraic, and sometimes involve very de-
tailed and complicated computations.

The aim of this paper is to propose a new geometric method for the explicit local
Langlands correspondence. It is well-known that the local Langlands correspondence
for GL,,(F') has a nice geometric realization; it appears in the middle degree ¢-adic
cohomology of the Lubin-Tate tower. This fact is called the non-abelian Lubin-Tate
theory after Carayol [Car90|, and has been proved by Harris-Taylor [HT01] and
Boyer [Boy99]. Therefore, it is quite natural to expect that we can understand the
local Langlands correspondence by studying the geometry of the Lubin-Tate tower.
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Apart from many results in the case n = 2, the first result in this direction was
given by Yoshida [Yos10]. He constructed a semistable model of the first layer of
the Lubin-Tate tower, and discovered the Deligne-Lusztig variety for GL,, in the
reduction of it. By using this result, he concluded that a part of the non-abelian
Lubin-Tate theory boils down to the Deligne-Lusztig theory [DL76]. More recently,
the Lubin-Tate space at infinite level, namely the projective limit of the Lubin-Tate
tower, turns out to be much simpler than individual layers. This idea goes back
to Faltings [Fal02] and Fargues [Far08], and now is formulated by the theory of
perfectoid spaces [Sch12]; see [SW13] and [Wei] for detail. Based on this theory,
Weinstein and Boyarchenko [BW16] constructed a family of affinoids in the Lubin-
Tate space at infinite level. They also constructed formal models of the affinoids,
and observed that a part of the local Langlands correspondence is encoded in the
(-adic cohomology of their reduction. Following this work, some other authors also
obtain similar results; see [IT15a], [IT16] and [Tok16]. The common strategy in these
works is to combine an explicit computation of the reduction of the formal models
and a previously known explicit description of the local Langlands correspondence.
The idea of this article is to reverse this process; we combine a computation of the
reduction and the non-abelian Lubin-Tate theory to obtain a result in the explicit
local Langlands correspondence. To carry it out, we need to relate the cohomology
of the reduction with that of the Lubin-Tate tower itself, which is not included in
the previous works. The main ingredient of this article is to give a useful condition
which ensures the existence of such a relation.
Here is a key technical result for us:

Theorem 1.1 (Definition 3.17, Proposition 3.21, Theorem 3.22) Let k be a
complete algebraically closed non-archimedean field, k° its valuation ring, and k the
residue field of k°. Assume that the characteristic of k is positive. Fix a non-zero
element w in the maximal ideal of k°. Let A be a w-adically complete flat k°-algebra
endowed with an action of a profinite group K,. We write A for the integral closure
of A in A[l/w]. We assume the following two conditions (see Section 3 for detail):

— The space Spa(A[l1/w], A) is the projective limit of a tower { Xk }x of smooth
affinoids over k indexed by open normal subgroups K of K.

— The reduction Spec(A ®go k) of Spf A is the perfection of an affine scheme Y
of finite type over k.

(i) For a prime number ¢ invertible in k, we have a map
sp*: HA(Y, Q) — hg”Hé(X&@z)’
K

which we call the specialization map. It is functorial with respect to automor-
phisms of A of finite level (i.e., automorphisms coming from those of the tower
{Xk}r)-

(ii) Assume moreover that Y is pure-dimensional and smooth over k. Let {Zk}k
be a tower of rigid spaces which contains {Xy}x as a tower of open rigid
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subspaces. For a subspace V' C H!(Y,Q,) such that the composite
V= H2<Y7 @Z) - HZ(Yv@E)

is injective, the composite
Vs Hi(Y,Q,) 5 lim Hi(Xx, Q) - lim B (Zx, Q)
K K

is also injective.

In the application, {Z} becomes the Lubin-Tate tower, Spa(A[l/w], A) an affinoid
in the Lubin-Tate space at infinite level, and Spf A a formal model of it. We remark
that, unlike the case of finite type, the specialization map sp* is not necessarily
surjective, even if Y is smooth (see Example 3.23).

To demonstrate how Theorem 1.1 is used to give an explicit description of the
local Langlands correspondence, we choose two classes of irreducible supercuspidal
representations as examples; one is depth 0 supercuspidal representations and the
other is simple supercuspidal representations. Recall that the latter are supercusp-
idal representations with minimal positive depth; see [GR10], [RY14], [KL15]. By
geometric method, we will obtain the following result:

Theorem 1.2 Let 7w be either a depth 0 supercuspidal representation or a simple
supercuspidal representation. Then, we can describe the Langlands parameter of ©
explicitly.

For a more precise statement, see Theorems 5.3 and 6.4. We can also determine
the image of m under the local Jacquet-Langlands correspondence between GL,,(F)
and D*, where D is the central division algebra over F' with invariant 1/n. Note
that the resulting description in Theorem 1.2 is not new, as in Remarks 5.4, 6.5.
However our proof is totally different from the previous ones. We do not need to
investigate involved representations closely. In fact, we do not have to compute
neither characters nor epsilon factors. The author expects that the same method
can be applied to supercuspidal representations with larger depth. This will be
considered in our future works.

The idea to see the map H(Y, Q,) — H*(Y,Q,) in Theorem 1.1 (ii) emerged from
discussion with Takahiro Tsushima. After we wrote this paper, we are informed
that Tsushima is also working on a similar problem in the case where n = 2 and
F is an odd equal characteristic local field. He also pays attention to the map
H(Y,Q,) — H'(Y,Q,), but his basic strategy is to find a family of affinoids with
good reduction in the Lubin-Tate spaces at suitable finite levels, which is different
from ours.

The outline of this paper is as follows. In Section 2, we give an analogous result as
Theorem 1.1 in the finite level setting by using the theory of formal nearby cycles.
In Section 3, we deduce Theorem 1.1 from the finite level case. To enable this
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step, we should allow bad reduction in Section 2, even if the reduction appearing in
Theorem 1.1 is the perfection of a smooth affine scheme over x. In Section 4, we
recall the definition of the Lubin-Tate tower and the statement of the non-abelian
Lubin-Tate theory. We also verify that Theorem 1.1 is applicable to an affinoid
in the Lubin-Tate space at infinite level. In Section 5, we explicitly describe the
Langlands parameter of a depth 0 supercuspidal representation. We use a formal
model of an affinoid whose reduction becomes the perfection of the Deligne-Lusztig
variety for GL,,. This formal model can be seen as the infinite level version of a piece
of the model constructed by Yoshida [Yos10]. In Section 6, we give a description
of the Langlands parameter of a simple supercuspidal representation. Here we use
results in [IT15a] and [IT16]. Appendix A contains some results for algebras over
the valuation ring k° which do not satisfy any finiteness condition. The results on
the cohomology of the Artin-Schreier sheaves in Appendix B are used in Section 6.

Acknowledgment The author is grateful to Takahiro Tsushima for inspiring dis-
cussions. He also learned many techniques to treat the f-adic cohomology of the
Artin-Schreier varieties from him. The author also thanks Kazuki Tokimoto for mo-
tivating discussions. This work was supported by JSPS KAKENHI Grant Number
15H03605.

2 Specialization map: the case of finite level

Let k be a complete algebraically closed non-archimedean field. We write k° for the
valuation ring of k£ and m the maximal ideal of k°. The residue field k°/m of k° is
denoted by k. We fix a prime number ¢ invertible in x and an integer m > 1, and
put A =Z/{"Z.

Let X be a quasi-compact admissible formal scheme over Spfk° in the sense
of [BL93]; namely, X is of topologically finite type and flat over Spfk°. We put
Xy = X ®po K, which is a scheme of finite type over k. The closed immersion
Xreqa — X induces an isomorphism between étale sites. In the following we identify
the étale sites (Xed)st and Xs ¢ by this isomorphism.

As in [Hub96, §1.9] and [Hub98a, §2], we can attach to X an adic space d(&X') of
finite type over Spa(k, k°). Moreover, we have a morphism of sites Ay: d(X)s —
(Xred)st = Xser. We denote the right derived functor of Ay by RUx (or simply by
RV), and call it the formal nearby cycle functor. By adjointness, we have a natural
map sp*: A — RUyA.

Let us assume that X' is pseudo-compactifiable in the sense of [Miel4b, Defini-
tion 4.24]. Then, by [Mieldb, Corollary 4.29], there exists a functorial isomorphism
RT (X5, RUxA) = RT'.(d(X),A). Hence the map sp*: A — RWUyA induces a mor-
phism

RI.(X,,A) = RT(X,, RUy\) = RT.(d(X), A),

which is also denoted by sp*.
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In the following, assume that d(X’) is smooth over Spa(k, k°). Since X is admis-
sible, the dimensions of X and d(X') are equal, for which we write d. Then, we have
the trace map Trqx): RIc(d(X),A) = A(—d)[—2d]. By composing the isomorphism
above, we obtain a map RI'.(Xs, RUxA) — A(—d)[—2d]. If we denote the structure
morphism X, — Speck by f,, RT'.(X,, RUxA) is identical to RfyRVyA. Hence, by
adjointness we have the map cosp*: RUyA — RfA(—d)[—2d].

The main result in this section is as follows:

Theorem 2.1 The composite of A PRI A 2 Rf'A(—d)[—2d] is equal to the
Gysin map Gys; : A — Rf*A(—d)[—2d] with respect to f,, that is, the adjoint of
the trace map Try : RfgA — A(—d)[—2d].

Lemma 2.2 To prove Theorem 2.1, we may assume that X is affine.

Proof. Since X, is d-dimensional, we have H'(X,, A(d)) = 0 for ¢ > 2d. Therefore,
by adjointness, it suffices to show that the composite of

[~23

H2(X, A(d)) 25 HY(X,, RUpA(d)) S H2(d(X), A(d)) —29% A
is equal to Try, : H?¥(X,, A(d)) — A.

Let U be an open formal subscheme of & such that dim(&X; \ Us) < d. We prove
that Theorem 2.1 for U implies that for X'. Consider the following diagram:

Trd(u)
—

H2(U,, A(d)) 2 H2(U,, RUA(d) —— H2(d(U), A(d)) —43 A

| | |

H2(X,, A(d)) —2 H2(X,, RUyA(d)) —=— HX(d(X), A(d)) 2 A

Since the restriction of sp*: A — RUyA equals sp*: A — RUy A, the left rectangle
is commutative. By [Miel4b, Lemma 4.28 (iii)], the middle rectangle commutes.
As d(U) — d(X) is an open immersion, the right rectangle is also commutative.
Therefore, if Theorem 2.1 holds for U, then the composite of

H2 (U, A(d)) — H2(X, Ad)) 2 H2(X,, RUvA(d)) = H2(d(X), A(d)) —295 A
coincides with Try, : H24(U,, A(d)) — A, which is equal to the composite of

TI'XS

H2 Uy, A(d)) — HX(X, A(d)) 55 AL

On the other hand, by the exact sequence
HZ (U, A(d)) = HZ(Xs, A(d)) — HZ(X \ Uy, A(d))

and the assumption dim(X;, \ Us) < d, the map H?*(U,, A(d)) — H?4(X,, A(d)) is
surjective. Hence we conclude that the composite of

o

H2 (X, A(d)) 25 H2(X,, RUpA(d)) = H2H(d(X), A(d)) —5 A
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is equal to Try,: H24(X,, A(d)) — A.

By this observation, we may replace X by its open formal subscheme U satisfying
dim(X,\Us) < d. First we remove from X the intersections of irreducible components
of X;. Then, by considering each d-dimensional connected component, we may
assume that X is irreducible. Finally, by taking an arbitrary non-empty affine open
formal subscheme of X', we may reduce to the case where X is affine. |

Later we assume that X is affine. Fix a non-zero element € m.

Lemma 2.3 Let X be an affine formal scheme of topologically finite type and flat
over Spf k°. Assume that d(X') is d-dimensional and smooth over Spa(k, k°). Then
there exists an affine scheme X over Spec k° satisfying the following conditions:

— X is of finite presentation and flat over k°,
— the generic fiber of X is d-dimensional and smooth over k, and

— the w-adic formal completion of X is isomorphic to X over Spf k°.

Proof. Write X = Spf A. Since d(X) is smooth over Spa(k, k°), A is formally smooth
outside V(w) in the sense of [Elk73, p. 581]; see [Tem08, Proposition 3.3.2] (in
[Tem08, §3.3], k is assumed to be a discrete valuation field of characteristic 0, but it
does not play a role in the proof of [Tem08, Proposition 3.3.2]). Further, by [BL93,
Propositions 1.1 (c), 1.3], A can be written in the form k°(T%,...,T,)/I, where
I is a finitely presented ideal of k°(T3,...,T,). Therefore, by [Elk73, Théoreme
7 and Remarque 2 (c)], there exists a finitely generated k°-algebra B such that
B ®po k is smooth over k and the w-adic completion of B is isomorphic to A. Put
Baitors = {b € B | @w™b = 0 for some m > 0}. Since A is w-torsion free, [FK13,
Chapter 0, Proposition 7.4.5] tells us that the w-adic completion of B/Bg. iors 18
again isomorphic to A. Hence, replacing B by B/Bg tors, We may suppose that B is
flat over k°. Then, by [RG71, Corollaire 3.4.7], B is a finitely presented k°-algebra.

We put X’ = Spec B, and denote the structure morphism X’ — Speck® by
g'. We write X{ (resp. X)) for the special (resp. generic) fiber of g'. By Cheval-
ley’s semi-continuity theorem [EGA, IV, Théoreme 13.1.3], the subset Y = {z €
X' | dim, ¢ *(¢'(z)) > d + 1} is closed. On the other hand, since X! = X, is
d-dimensional, Y is contained in X7’7. Therefore Y is equal to the disjoint union of
all connected components of X/ whose dimensions are greater than d. In particular,
Y is open in X'. Put X = X"\ Y, which is an open and closed subscheme of X’
containing X!. We will see that X satisfies the conditions in the lemma. Clearly,
X is an affine scheme of finite presentation and flat over k°, and has a smooth
generic fiber X, whose dimension is at most d. Since X is an open subscheme of
X' containing X, the w-adic completion of X coincides with that of X’. Therefore
the w-adic completion of X is isomorphic to X'. Hence we have an open immer-
sion d(X) — X329, where X2¢ denotes the adic space associated to X,. As d(X) is
d-dimensional, we conclude that X, is d-dimensional. This completes the proof. W
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Fix an affine scheme X as in Lemma 2.3 and denote the structure morphism
X — Speck® by g. We put S = Spec k® and write s (resp. n) for the closed (resp.
generic) point of S. Consider the following diagram whose rectangles are cartesian:

X,—X,— X1 X,

O

S S S < 7.

As usual, we put Ry xA = i*Rj,A. By adjointness, we have a natural map sp*: A —
RixA. On the other hand, since X, is d-dimensional, we have the trace map

Tr
RgaRYxA — RipsRgyA — RipgA(—d)[—2d) = A(—d)[—2d).
The map RYxA — Rg'A(—d)[—2d] obtained by adjointness is denoted by cosp*.

Lemma 2.4 There exists a natural isomorphism RiyxA — RWyA, which makes
the following diagram commute:

cosp*

/H\LRwXA — Rg\A(—d)[—2d]
A0 RUA S5 RFA(—d)[—2d].

Proof. The construction of an isomorphism RyYxA — RWUxyA is due to [Hub96,
Theorem 3.5.13]. We shall recall it briefly. Consider the following diagram of sites
(see [Hub96, 3.5.12]):

d(X)ét L) erét

Bk
X6t — Xt

As in [Hub96, Theorem 3.5.13], one can construct a natural morphism of functors
¢: Atoi™t — e loj7l For every sheaf L on X, a map

Ribxj*L = i*Rj.j* L 2% * Rj.Re.e*5* L % i* Ri.R\.e*5* L
24 RA.e* "L = RUye*j* L
is induced. If we put L = A, we get the map Ry xA — RWUyA, which is in fact an
isomorphism.
Let us prove the commutativity of the left rectangle. For a sheaf L on X, we
have the following commutative diagram (see the subsequent Lemma 2.5 (iii)):

La—dJ>R (joe). (joe)*Li)R(iO)\)*(j oe)*L

., co

R(ioA).(ioN)* L—— R(io\).(joe) L.
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By the adjointness of ¢* and Ri,, we obtain the commutative diagram

# LY i Rj.Rene*j* L —2— * Ri, R\e*j* L 35 RA.e* 5 L

L —"T s RANGL s R\.e*j*L.

Now put L = A. By definition, the composite of the top row is equal to that of

A RipxA — RUyA. On the other hand, by Lemma 2.5 (ii), the map A**A RA
e*s*A is the identity on the constant sheaf A. Hence the composite of the bottom
row equals sp*: A — RWyA. This concludes the commutativity of the left rectangle.

Next we consider the right rectangle. By exactly the same method as in the
proof of [Miel4b, Proposition 4.42], we can check that the rectangle in the following
diagram is commutative (recall that X! denotes the adic space over Spa(k, k°)
associated to X,):

1R

H2(X,, RUxA(d)) < H2(X,, RyxA(d))

L |

H2(d(X), A(d)) —— HZ(X2, A(d)) +—— H2(X,, A(d))

lTrXad
Trd(X)

The lower left triangle clearly commutes. The lower right triangle is commutative
by [Miel4a, Proposition 2.2]. Hence we obtain the following commutative diagram:

RT (X, Ryx A(d)[2d]) —— RI.(X,,, A(d)[2d]) ————

| H

o Tr
RT.(X,, RUxA(d)[2d]) —— RT(d(X), A(d)[2d]) ——=1—
By adjointness, we conclude that the diagram
Ry A =25 Rgr A(—d)[—2d]
RUxA =% RF*A(—d)[—2d]
commutes, as desired. |

In the proof of the lemma above, we have used the following general fact, whose
proof is immediate:

Lemma 2.5 Let C, C' be sites, f,g: C — C' morphisms of sites, and ¢: f=1 — g=1
a morphism of functors.
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(i) The morphism ¢ induces morphisms of functors f* — ¢* and g. — f., where
(f*, f«) (resp. (g%, g«)) is the morphism of toposes induced by f (resp. g).

(ii) For a constant sheaf L on C', the morphism ¢: f*L — ¢*L is the identity.
(iii) The composite of id 24, Rf.f* RN Rf.g* equals that of id o4, Rg.g* 2 Rf.g*.

By Lemma 2.4, Theorem 2.1 is reduced to the following lemma:

Lemma 2.6 Let g: X — S = Speck® be as in Lemma 2.3. Then, the composite
of A 25 RyxA =25 Rg\A(—d)[—2d] is equal to the Gysin map Gys, : A —
Rg.A(—d)[—2d] with respect to gs.

Proof. By adjointness, it suffices to show that the composite of

Trx, =Ty,

RgaA(d)[2d] 25 Rgg RibxA(d)[2d) — Ribs RgypA(d)[2d] Rysh  (#)

is equal to that of RgyaA(d)[2d] LN N RiygA. As g: X — S is of finite presen-
tation and flat, we have the trace map Try: RgiA(d)[2d] — A (see [SGA4, Exposé
XVIII, Théoreme 2.9]). Since the trace map is compatible with base change, it
induces the following commutative diagram:

RguA(d)[2d) = RgiRj.j* M(d)[2d) — Rj. RgpA(d)[2d]

l’]:‘rg le* T\rgn

A VL RjG*A Rj.A.

By taking ¢*, we obtain the commutativity of the lower rectangle of the following
diagram:

RggA(d)[2d] —— Rgy Ribx A(d)[2d]

[ o~

-

i* RgA(d)[2d] = *RgiRj, j* A(d)[2d]

i Riys Ry A(d)[2d)
Rips Trg,
A s RibgA.

The upper rectangle is clearly commutative. Hence the composite of (x) is equal to
that of -
RgaA(d)[2d) = i* RgA(d)[2d] —2% A = RygA.

Since the trace map is compatible with base change, the composite of the first two
maps equals Try . This concludes the proof. |
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Corollary 2.7 Let Y be a purely d-dimensional separated smooth scheme of finite
type over k. Assume that a finite surjective morphism m: Xy — Y over k is given.
Take a decomposition ¥ = ]_[jY; into connected components, and let 0; > 1 be
the generic degree of m|y,: 7' (Y;) = Y;. We denote by degn the locally constant

function on Y that equals §; on Y;. It induces an endomorphism A —— XIBT A of a
sheaf over Y, and thus that of H:(Y, A). Concretely, it is described as follows:

(%6, A .
x deg 7: HI(Y, A) @HZ ) 200 N Hi(y;, A) = HI(Y,A).

Then, we have the following commutative diagram:

Hi(Y,A) — = Hi(X,, A) —2 s Hi(X,, RUxA) —— Hi(d(X), A)
| e | [
H{(Y,A) «=— Hi(X,, Rf\A(—d)[—2d]) <2 cosp” Hi(X,, RUxA) —— Hi(d(X), )

| l | [

HI(Y, A) = H(X,, Rf\A(—d)[—2d]) <2 Hi(X,, RUyA) —— H'(d(X), A).
Here 7, are the maps induced from
T RFA(=d)[~2d] = Rm R RW'A(—d)[-2d] < RmRr'A % A,
where h: 'Y — Spec k denotes the structure map of Y.

Proof. By Theorem 2.1, the upper middle rectangle commutes. To see the commu-
tativity of the upper left rectangle, it suffices to prove that the composite of

A A = RmA 0 RmRA(~d)[-2d
Gysy,

= RmRx' Rh'A(—d)[~2d] <= RmRr'A % A (%)

is equal to the multiplication by deg . Since this problem is local on Y, we may
assume that Y is connected. Further, by shrinking Y, we may assume that 7: X, —
Y is flat ([EGA, IV, Théoreme 6.9.1]). Then, as the trace map is compatible with
composition, we can easily observe that the composite of (*) is equal to that of

ad' T s
A2 momA = mrtA =5 AL

Hence the claim follows from [SGA4, Exposé XVIII, Théoréme 2.9 (Var 4)].

The commutativity of the lower right rectangle follows from the construction of
the isomorphism HY(X,, RUxA) — H'(d(X),A) (see [Mieldb, Definition 4.27]) and
the proof of [Miel4b, Lemma 4.8]. The other rectangles are obviously commutative.ll

10
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Note that HI(d(X),Z,;) = Jm Hi(d(X),Z/t™Z) by [Hub98b, Theorem 3.1];
recall that we are assuming that d(&') is smooth, thus locally algebraic by [Hub96,
(1.7.7)]. Hence, by taking projective limit, we obtain the specialization maps

sp*: Hi(Xs, Zy) — H(d(X),Ze), sp*: Hy(X,, Q) — Hi(d(X), Q)
between f-adic cohomology.

Theorem 2.8 Let Y and m: X; — Y be as in Corollary 2.7. Let V be a subspace
of H\(Y,Q,) such that the composite V — H(Y,Q,) — H'(Y,Q,) is an injection.
Then, for any open immersion d(X) < Z into an adic space Z which is locally of
finite type, separated and taut over Spa(k, k°), the composite

Vo Hi(Y, Q) ™ Hi(X, Q) T Hid(X), Q) = Hi(Z,Q))
is also an injection.

Proof. By Corollary 2.7, we have the following commutative diagram for each integer
m > 1:

Hi(Y,Z)0"Z) —2"" s Hi(d(X),Z/"L) — Hi(Z,7/0"Z)
| H |
Hi(Y, 0" L) « =2 Hi(d(X),Z/0"Z) — HI(Z,Z/("Z)

| | |

Hi(Y, 20" T) « =2 Hi(d(X),Z/0"Z) «— H(Z,Z/("T).
Therefore, the composite ¢: H!(Y,Q,) X degm, H{(Y,Q,) — H(Y,Q,) can be de-
composed into

HAY.Q) 25 Hid(@20). Q) (fim HAZ,2/0'2)) 02, T = H'(Y.Q):
Clearly (x) is the composite of
Hi(d(X). Q) = HAZ,Qy) — (Im H(Z,2/0"2)) @2, Q.

Hence ¢ has a decomposition

H(Y,Qy) R H(d(X), Q) — Hi(Z, Q) — H'(Y,Qy).
Since ¢|y: V < HY(Y, @z) % H'(Y,Q,) is the composite of
H'(Y, Q)

and x deg 7 is an isomorphism, ¢|y is an injection by the assumption on V. There-
fore, the composite

X deg 7

Vs HY(Y, Q) — H'(Y,Q) —=

sp* o™

Vs H(Y,Q) 25 Hi(d(X),Q,) — H(Z,Q,)

is also an injection, as desired. |

11
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3 Specialization map: the case of infinite level

Let k, k°, m and k be as in the previous section. Assume that the characteristic of
k is p > 0. Fix a non-zero element w € m.

In this section, we consider a flat k°-algebra A which is w-adically complete.
We denote by A the integral closure of A in A[l/w]. Then, (A[l/w], A) is an
affinoid (k, k°)-algebra (for the topology on A[1/w]|, see [Hub93, Examples 1.1 (iv)]).
Suppose that A is equipped with an action over k° of a profinite group Ky. Then,
A is a Kp-stable subring of A[l/w].

We will assume two conditions on A and the action of Ky. The first is that

the affinoid (k, k°)-algebra (A[l/w], A) is obtained as a limit of a tower of smooth
affinoid (k, k°)-algebras. The precise statement is as follows:

Assumption 3.1 For each open normal subgroup K of Ky, we are given a complete
f-adic k-algebra By of topologically finite type endowed with an action of Ky/K.
For open normal subgroups K, K’ with K’ C K, we are given a continuous K-
equivariant k-homomorphism By — By so that { Bk} x4k, becomes an inductive
system. Further we impose the following conditions:

(a) For an open normal subgroup K of Ky, the adic space Xx = Spa(Bg, By) is
smooth over Spa(k, k°).

(b) For open normal subgroups K, K’ of Ky with K’ C K, the transition map
Xg — Xk is a finite étale Galois covering with Galois group K/K’. Note
that this implies that Xg» — Xg is surjective and Bx — (Bg/)* /% is an
isomorphism.

(¢) There exists a Kq-equivariant homomorphism { (B, B%) Y kak, — (A[1/w], A)
of inductive systems of affinoid (k, k°)-algebras (here (A[l/w], A) means the
constant inductive system), such that

— the induced continuous map Spa(A[l/w], A) — hm, Spa(Bk, By,) is a
0
homeomorphism, and
— the induced homomorphism lim - Bx — A[l/w] has dense image.

The second assumption is that the reduction of A is the perfection of a finitely
generated k-algebra. More precisely,

Assumption 3.2 There exist a finitely generated k-algebra R and an isomorphism

lim R = A/mA
TP
of k-algebras. We fix such an R and an isomorphism, and put Y = Spec R.

Under these assumptions, we will compare two cohomology groups H(Y,Q,)
and lim H{(Xk,Q,). We begin with basic properties of the inductive system

{BK}K<1K0 .
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Lemma 3.3 For each open normal subgroup K of K, the map Spa(A[l/w], A) —
Spa(Bgk, By,) = X is surjective.

Proof. By Assumption 3.1, it suffices to show the surjectivity of the map

r&l XK’ = I&H XK’ — XK
K'<Ky K'<Ko,K'CK

This follows from the surjectivity and the finiteness of X — X ; recall that the
filtered projective limit of non-empty finite sets is non-empty. [

Lemma 3.4 The homomorphism Bx — A[l/w] is injective.

Proof. First note that By is reduced, as Spa(Bg, By ) is assumed to be smooth over
Spa(k, k°). Therefore we have 0 = v/0 = (0, B, W, Where n runs through maximal
ideals of Bk (recall that Bk is a Jacobson ring; see [FK13, Chapter 0, Proposition
9.3.10]).

We denote the homomorphism Bx — A[l/w] by ¢. Take an arbitrary maximal
ideal n of Bk, and let v, € Spa(Bk, Bj) be the classical point corresponding to
n. By Lemma 3.3, we can find 7, € Spa(A[l/w@], A) satisfying v, = 0y o ¢. For
a € Ker¢, we have vy(a) = Un(¢(a)) = 0,(0) = 0. Hence Ker¢ C suppuv, = n.
Therefore we conclude that Ker ¢ C [, B, M= 0, namely, ¢ is an injection. |

By this lemma, we regard Bg as a k-subalgebra of A[l/w].

Definition 3.5 We put B' = J,, Bx C A[l/w], A= AN B and A’ = AN B'.
Note that B’ is a dense Kg-stable k-subalgebra of A[l/w], while A’ and A’ are

Ko-stable k°-subalgebras of B’. For an open normal subgroup K of Ky, we put
Axg = AN Bg and Ax = AN Bg. These are open Kj-stable k°-subalgebras of By.

Lemma 3.6 The inclusion A’ — A induces isomorphisms A’ /w™ A’ = A/w™A for
every integer m > 0 and A’/mA’ = A/mA.

Proof. Let m > 0 be an integer. Since A’ is dense in A, we have A = A" + w™A.
Thus the map A'/w™ A" — A/w™A is surjective. Let us show the injectivity. Take
an element r € A’'Nw™A and write x = w™y with y € A. Since B’ is a k-subalgebra
of A[l/w]|, we have y = w ™z € w ™A' C B'. Hence y liesin ANB' = A’ and =
lies in w™A’. This means that A’/w™A" — A/w™A is injective.

In particular, the map A’/wA’ — A/wA is an isomorphism. By taking the base
change (—) ®e /mke k°/m, we conclude that the homomorphism A’/mA" — A/mA is
also an isomorphism. |

Lemma 3.7 For an open normal subgroup K of Ky, we have (B')%¥ = By, (A")K =
AK and (A/)K = AK
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Proof. For an open normal subgroup K’ of K contained in K, we have (Bg: )% = By
by assumption. By taking the union with respect to such K’, we conclude that
(B')X = Bg. From this equality, we can deduce (ANVE = AN(B"X = ANBg = Ak
and (A/) AO(B) AﬂBK—AK |

Lemma 3.8 (i) The ring Al is integral over its subring A’.
(ii) For an open normal subgroup K of Ky, A is integral over its subring Ap.

(iii) For an open normal subgroup K of Ky, Ay coincides with By..

Proof. We prove (i). Take z € A’ C A. Since A is integral over A, there exist n > 1
and a,...,a, € A such that 2" + a;2" ' + -4+ a, =0. As A C A C A[l/w], we
can find an integer m > 0 such that w™a’ € A for every 0 < i < n — 1. Since B’
is dense in A[l/w]|, we have (a; + w™A) N B’ # &; in other words, for each ¢ there
exists b; € B’ such that b; — a; € @w™A. Note that b € AN B = A’.

For such b;’s, we have

"+ b by = (b — )" (b — ag).

The left hand side lies in B’, while the right hand side lies in A. If we put ¢ =
(by —ay)z" '+ -+ (b, — a,), it is an element of AN B’ = A’ and z is a root of the
monic polynomial 7" + b;T" ! + --- + b, — c € A'[T]. Hence z is integral over A’.

Next we prove (ii). By (i), it suffices to show that A’ is integral over Ax. Take
an arbitrary element a € A" and an open normal subgroup K’ of K contained in
K such that a € Bgs. Then a € A’ N Bgr = Ags. The element a is a root of the
monic polynomial J] ¢k (T — g(a)), whose coefficients belong to (A)E = Ag.
Therefore a is integral over Ag. N

Finally we prove (iii). Since we have a homomorphism (B, By) = (A[l/w], A)
of affinoid (k, k°)-algebras, we have Bj. C AN Bk = Ag. Let us prove the reverse
inclusion Ax C B%. Take a € Ax. By [Hub93, Lemma 3.3 (i)], we have

By = {x € Bg | v(x) <1 for every v € Spa(Bk, By)}.

Therefore, it suffices to observe that v(a) < 1 for every v € Spa(Bg, By). By
Lemma 3.3, there exists v € Spa(A[l/w], A) such that v|g, =v. Asa € Ax C A,
we have v(a) = v(a) < 1, as desired. [

Corollary 3.9 For an open normal subgroup K of Ky, BY, contains Ax over which
By, is integral.

Proof. Clear from Lemma 3.8 (ii), (iii). [
Recall that a k°-algebra C' is said to be topologically finitely generated if it is

isomorphic to a quotient of k°(T7, ..., T,,) for some n > 0 (see [FK13, Definition 8.4.1
and Proposition 8.4.4]). Such C'is w-adically complete. We say that ¢;,..., ¢y € C
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are topological generators of C' if the k°~homomorphism k°(T}, ..., T, ) — C given
by T; — ¢; is surjective.

We would like to write the k°-algebra A’ as an inductive limit of topologically
finitely generated k°-algebras. First we focus on each Bg. In the following proposi-
tion, we slightly change the notation for simplicity.

Proposition 3.10 Let B be a complete f-adic k-algebra of topologically finite type.
Let A be an open subring of B° such that B° is integral over A. We write D, for
the set consisting of topologically finitely generated k°-subalgebras of A which are
rings of definition of A (or equivalently, B). Then, the following hold:

(i) The set D4 is a filtered ordered set with respect to inclusions.
(ii) We have A =J,,ep, Ao
(iii) For Ay € D, A and B° are integral over A,.

Proof. First we prove that D, is non-empty. Since B is of topologically finite type,
we can take a surjective continuous k-homomorphism ¢: k(Ty,...,T,) — B. By the
open mapping theorem, ¢ is an open map. Moreover, by [Hub93, Proposition 1.10],
¢ is an adic map. Hence the image By of k°(T},...,T,) under ¢ is a topologically
finitely generated k°-subalgebra of B which is a ring of definition of B. Therefore
wBy is an ideal of definition of B, (see [Hub93, Proposition 1.5 (ii)]), and By is
w-adically complete. Further, by [Hub94, proof of Lemma 4.4], B° is the integral
closure of By inside B.

Put b; = ¢(T;) € By C B°. Since B° is integral over A, for each 1 < i < n
there exists a monic polynomial f; € A[T] such that f;(b;) = 0. Since A is open,
there exists an integer m > 1 such that @™ By C A. Let Ay be the k°-subalgebra
of A generated by the coefficients of fi,..., f, and the elements of w™By. Since
Ay contains w™ By, it is an open subring of B. As the coefficients of fi,..., f, are
power-bounded in B, Ag is bounded in B. Hence Ay is a ring of definition of B. In
particular, Ay is w-adically complete. We will show that Ay € Dy.

Let us prove that By C Aplby,...,b,] C B°. For every x € By, there exists f €
k°[Ty,...,T,] such that x — f(by,...,b,) € @w™By. Thusxz € f(by,...,b,)+@™By C
Ag[by, ..., by). Theinclusion Ag[by,...,b,] C B°isclear. We put By = Ag[by, ..., by].
As by, ..., b, are power-bounded in B, Bj is also a ring of definition of B. Since
b; is integral over Ay by construction, Bj is a finite Ap-algebra. Note also that
w™By C Ap implies that @™ B| C A,.

Now we prove Ay € Dy4. The k°-algebra Ay/w™ By is generated by the coefficients
of f1,..., fn. Therefore, its quotient Ay/ww™Bj is also finitely generated over k°.
Let us observe that Ag/w™ !B} is finitely generated over k°. For simplicity, we
set R = Ag/w™ ™ B} and I = w™B{/w™ ' By. Since By is finitely generated as an
Ag-module, I is a finitely generated ideal of R. As m > 1, we have I? = 0. Take

ai,...,a, € R so that their images generate R/I as a k°-algebra, and generators
x1,...,Ts € I as an R-module. Then it is immediate to see that R is generated
by ai,...,a., 21,...,Ts as a k°-algebra. Since w™' B C wAy, we conclude that
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Ap/w Ay is a finitely generated k°-algebra. By [FK13, Chapter 0, Proposition 8.4.2],
this means that Ag is topologically finitely generated over k°, as desired.

Next we prove (iii). For Ay € D4, we can take a surjection ¢: k(Ty,...,T,) — B
above so that ¢(k°(Th,...,T,)) = Ap. As mentioned above, B° is integral over Aj.
Hence A is also integral over Ajg.

We prove (i). Take Ay, A € D4 and topological generators aj, ..., al, of Aj over
k°. Then, by the same argument as in the third paragraph of this proof, we can show
that Ay C Aold),...,al]. Clearly Agla),...,al] is open and bounded in B, hence a
ring of definition of B. In particular, Ag[a},...,al] is w-adically complete. On the
other hand, by (iii), a; € A is integral over Ay. Therefore Agla), ..., a,] is a finite
Agp-algebra, hence topologically finitely generated k°-algebra. Thus Apla), ..., al] is
an element of D,y containing Ay and Aj,.

Finally we prove (ii). Fix Ay € D4. For a € A, consider the subring Ag[a] of
A. Since a € A C B°, Apla] is a ring of definition of B. In particular, Agla] is
ww-adically complete. By (iii), a is integral over Ag. Therefore Agla] is finite over
Ay, and thus topologically finitely generated over k°. Hence Agla] is an element of

D4 containing a. This completes the proof. |

We return to the original setting. For an open normal subgroup K of K, we
simply write Dk for Dy, .

Lemma 3.11 For open normal subgroups K, K' of Ky with K’ C K and Ay € Dk,
there exists an element of Dy containing A.

Proof. Take an arbitrary element Aj, of Dy and topological generators ay, ..., a, of
Ap over k°. Clearly Aplay,...,a,] is a subring of Ags. Since a4, ...,a, are power-
bounded in Bx and Bx — By is adic, they are power-bounded in Bg:. Therefore
Ajlay, . .., a,] is aring of definition of Bgs. By Proposition 3.10 (iii), a; € Ax C A

is integral over Aj,. Therefore Ajlay,...,a,] is a finite Aj-algebra. In particular, it is
topologically finitely generated over k°. Thus Aylay, ..., a,] belongs to Dgs. On the
other hand, since Aylay,...,a,] N Bk is open in By, there exists m > 1 such that

w™Ay C Aplay, ..., a,]. Therefore, by the same way as in the third paragraph of
the proof of Proposition 3.10, we can check that Ay C Af[ai,...,a,]. This concludes
the proof. |

Put D = [],_ k, Prc. We define a partial order on D as follows: for Ay € Dk
and A} € Dk, Ag < A} if K/ C K and Ay C Aj.

Corollary 3.12 This makes D a filtered ordered set.

Proof. Clear from Proposition 3.10 (i) and Lemma 3.11. [

Corollary 3.13 We have

A= | A= lim Ay, A/mA= lim Ag/mA,.

Ao€D AoeD AoED
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Proof. The first claim is clear from Proposition 3.10 (ii) and Corollary 3.12. As
tensor product commutes with inductive limit, we have A’/mA’" = hg Aol Ap/mAy.
Therefore the second follows from Lemma 3.6.

Lemma 3.14 Let Ay, Aj be elements of D such that Ay < Aj. Then, the inclusion
Ay — Aj is finite and continuous.

Proof. Let K and K’ be open normal subgroups of K, such that Ay € Dg and
Al € Dgr. Since (Ag:)5/%" = Ak, Ag is integral over Ag. By Proposition 3.10
(ili), A is integral over Ag. As Ay C A, C A, we conclude that Aj is integral over
Ap. In particular, Aj/wAyj is integral over Ag/wAy. On the other hand, as Aj is a
topologically finitely generated k°-algebra, A{/wA is finitely generated over k°. In
particular, Aj/wAj is finitely generated over Ay/wA,. Thus Aj/wAj is finite over
Ap/wAy. By [FK13, Chapter 0, Proposition 7.2.4], we conclude that Aj is finite
over Ag.

Since the topology of Ay and Aj, are w-adic ([Hub93, Proposition 1.5 (ii)]), the
k°-homomorphism Ay — Aj is clearly continuous. [

Recall that we have fixed a k-isomorphism lig%mp R = A/mA in Assumption
3.2. In particular, we are given a k-homomorphism R — A/mA.

Definition 3.15 Let C be the set consisting of pairs (Ag, ), where
— A is an element of D, and
— m: R — Ag/mAy is a finite k-homomorphism such that the composite of 7 and
the homomorphism Ag/mAy — A/mA induced from the inclusion Ay — A" —
A is equal to the fixed homomorphism R — A/mA.
It is equipped with the partial order induced from that of D. Namely, (A, m) <
(Ay, 7') if and only if Ay < A} and the composite R = Ag/mAy — Al /mA) equals
7'. By Corollaries 3.12, 3.13 and Lemma 3.14, this order is filtered (recall that R is
finitely generated over k).

Lemma 3.16 (i) The set C is non-empty.
(ii) For (Ap,m) € C, the morphism Spec Ag/mA, — Spec R induced by 7 is a
homeomorphism on the underlying topological spaces.

Proof. We prove (i). Since A/mA = lim , Ap/mAy and R is finitely presented
over K, we can find A; € D and a k-homomorphism R — A;/mA; such that the
composite R — A;/mA; — A/mA is the fixed one. On the other hand, Since
A/mA = lim R, there exist a factorization Aj/mA; — R — A/mA of the
homomorphism A;/mA; — A/mA and an integer m > 1 such that the following
diagram commutes:

R e R A/mA
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Apply the same argument to the homomorphism (x), we can find Ay € D with
A; < Ap and a homomorphism R — Ay/mAj such that the right triangle of the
following diagram commutes:

AN

ArfmAy —— o Ao/mA

Replacing Ay by larger one, we can also make the lower triangle commute.
By Lemma 3.14, the homomorphism (2) is finite. Therefore the homomorphism

(1) is also finite. If we write 7 for the composite R Cinli rY A(] /mA, it is a
finite k-homomorphism, and (A, 7) belongs to C.

Next we prove (ii). Since Spec Ag/mAy — Spec R is finite and therefore closed,
it suffices to show that it is a bijection. By the same argument as above, we can
construct the commutative diagram

ZEHLL‘p y A/mA

\/\/

AO/mA(] _— A2/mA2

where m’ > 1 is an integer and A; € D with Ay < A;. We will observe that
Spec Ay/mAy — Spec Ag/mAy is surjective. Take open normal subgroups K, K’
of Ky such that Ay € Di and Ay € Dgr. Put X = Spf Ay and X’ = Spf A,. By
Lemma 3.14, a morphism X’ — X is induced. By Proposition 3.10 (iii), we have
d(X) = Spa(Bk, B},) = Xk and d(X’) = Spa(Bg, B.,) = X Further, we have
the following commutative diagram of topological spaces (see [Hub96, Proposition
1.9.1]):

Xl 5 A(X) — X

| L]

Ko 22— d(X) —— Xx.

By assumption the map Xy — Xy is surjective. On the other hand, as X is flat
over k°, the map Ay is surjective (see [FK13, Chapter 2, Proposition 3.1.5, Theorem
A.4.7]). Hence the map X]; — X..q is also surjective. As topological spaces, Xied
(resp. X/ ,) is identified with Spec Ag/mAy (resp. Spec A2 /mA,). Therefore the map
Spec Ay /mAy — Spec Ag/mA is surjective, as desired.

By this surjectivity, the map Spec R — Spec Ag/mAj is also surjective. On the
other hand, as the composite Spec R — Spec Ag/mAy — Spec R is the identity
on the underlying topological space, Spec R — Spec Ag/mA is injective. Hence
Spec R — Spec Ag/mAy is bijective, and so is Spec Ag/mAy — Spec R, as desired .l
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Now we can construct the specialization map sp*: H:(Y,Q,) — glK (XK, Q).

Definition 3.17 Take (Ap, ) € C and put X = Spf Ayg. Then, by Proposition 3.10
(iii), we have d(X) = Spa(Bgk, By) = Xk, where K is the open normal subgroup
of Ky such that Ay € Dg. We define sp*: H{(Y,Q,) — lim H{(Xg,Q,) by the
composite of

Hi(Y, Q) & Hi(X,, Q) 25 HIA(X),TQy) = Hi(Xx, Q) — lng (X7, Q)

where we also write 7 for the morphism Xy — Y induced by 7: R — Ay/mA,.

Lemma 3.18 The map sp* in Definition 3.17 is independent of the choice of (Ag, ) €
C.

Proof. Since C is filtered, it suffices to compare sp* for (Ag, 7) and that for (Ajf, 7')
under the condition (Ag, 7) < (Af, 7). Put X’ = Spf Aj. By Lemma 3.14, we have
a finite morphism X’ — X, which we denote by f. We have only to prove that the
following diagram is commutative for A = Z/{™Z:

Hi(X,, A) =2 Hi(d(X), A)

lf: ld(f)*

HY(X!A) —— Hi(d(X"), A).

Note that we have the following commutative diagram of sites ([Hub96, (3.5.4)]):

d(')(,>et Xs/ ét
ld(f) lfs
A(X e % X, .

This gives rise to the following commutative diagram in DV (Xs ¢, A):

A—"Y L RALA

ladj

ad] R/\X* Rd A

Rfs* Rfs*R)\X’
By taking H! of this diagram, we get the desired commutativity. |

Next we discuss the functoriality of sp*. Here we only consider automorphisms
of A which come from those on the tower { Xk }.
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Definition 3.19 Let o be an automorphism of A which preserves k° (i.e., o(k°) =
k°). We say that o is of finite level if it satisfies o(A") = A'.

Lemma 3.20 Let o be an automorphism of finite level of A. Then the following
hold.

(i) For each open normal subgroup K of Ky, there exists an open normal subgroup
K' of Ky such that o(Bg) C Bg.

(ii) The automorphism o naturally induces an automorphism of lim H{(Xg, Q).

(iii) For any Ay € D, there exists A; € D such that o(Ay) C Ay. For such A, the
homomorphism o: Aqg — A; is finite and continuous.

Proof. First note that o(w) belongs to m, hence there exists an integer r > 1 such
that o(@)" € wk®. In particular o: k° — k° is continuous. The same holds for o~

We prove (i). For an open normal subgroup K of K, take Ay € Dk and
its topological generators ag,...,a, € Ay over k°. Since o preserves A’, we have
o(ay),...,o(a,) € A. Therefore, we can find an open normal subgroup K’ of
Ky such that o(aq),...,0(a,) are fixed by K’. We will prove that o(Ay) is fixed
by K'. Take g € K’ and x € Ay. Then, for every integer m > 1, there exists
f € k°[Th,...,T,] such that = — f(ay,...,a,) € @Ay C w™A. Then we have
o(x) = (of)(o(ar),...,0(a,)) € o(w)™A C w™A. Since the action of g € K’ is
an automorphism over k° and o(a,),...,0(a,) are fixed by K’, we obtain g(o(z)) —
(cf)(o(ar),...,0(a,)) € w™A, and thus o(x) — g(o(x)) € w™A for every m > 1.
As A is w-adically complete, this means that o(z) is fixed by ¢ € K’. Hence we
have o(Ag) C (A)K = Ag,. Now we conclude that

0(Bxk) = o(A[l/@]) = 0(Ap)[1/w] C Ax[1/w] = B,

hence (i).

If we twist the k-algebra structure of Bg: by o: k — k, Bk is again a complete
f-adic k-algebra of topologically finite type, and the map o: Bx — Bgs becomes
a homomorphism over k. By [BGR84, Theorem 6.1.3/1], ¢ is automatically con-
tinuous. The composite of By = By — B’ is equal to that of By — B’ % B,
which is integral (see the proof of Lemma 3.8 (ii)). Hence o: Bx — By is also
integral. By [BGR84, Theorem 6.3.5/1], this means that o: By — By is finite.
Therefore a finite morphism Xgx = Spa(Bg, By%/) — Spa(Bg, By,) = Xk and a
map H!(Xg,Q,) — H!(Xg:,Q,) are induced. Passing to the inductive limit, we
obtain ling H{(Xg, Q) — lim H!(Xg,Q,), which we denote by o,. Applying the
same argument to o', we obtain (¢ !),: lim H{(Xg, Q) — lim H{(Xg, Q). It
is immediate to show that o, and (07!), are inverse to each other. Therefore o, is
an isomorphism. This completes the proof of (ii).

Let us prove (iii). By the argument above, for Ay € Dk, we can find an open
normal subgroup K’ of K; such that o(Ay) C Ak, and the map o: Ay — Ag is
continuous. Take a system of topological generators ay, ..., a, of Ag over k° and an
element A € Dgs. Put Ay = Al[o(a1),...,0(a,)]. Since o(ay),...,0(a,) € Ak,
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we can observe that A; € Dy in the same way as in the proof of Lemma 3.11. On
the other hand, by the continuity of o, there exists an integer m > 1 such that
o(w™Ay) C Aj. Therefore, by the same way as in the third paragraph of the proof
of Proposition 3.10, we can check that o(Ay) C A;. This concludes the existence of
Al.

Next, we take an arbitrary A; € D such that o0(Ag) C A;. The composite of
Ay S Ay — Ais equal to that of Ay — A’ 5 A’, which is integral by Proposition
3.10 (iii) and the proof of Lemma 3.8 (ii). Hence o: Ay — A, is also integral.
This implies that o: Ag/wAg — A;i/o(w)A; is integral. On the other hand, as
Ay /o(w)A; is finitely generated over k° and o preserves k°, the map o: Ag/wAy —
Ay/o(w)A; is of finite type. Hence o: Ag/wAy — A;/o(w)A; is finite, and so is
o: Ag — Ay by [FK13, Chapter 0, Proposition 7.2.4]. By [Hub93, Proposition 1.5
(ii)], the topology of Ay and A; are w-adic. Since o(w'™Ag) C w™A;, 0: Ay — Ay
is continuous. This completes the proof of (iii). [
Proposition 3.21 Let o be an automorphism of finite level of A and & an automor-
phism of R. Assume that the fixed isomorphism A/mA = hﬂx»—xﬂ’ R is compatible
with o and &@. Then, the specialization map sp*: H.(Y,Q,) — lim H{(Xk,Q,) is
compatible with the actions of ¢ and o.

Proof. We may assume that R # 0. Then A/mA # 0. Since k C A/mA is preserved
by o, we conclude that x C R is preserved by & and 7|, = 0| mod m.

Take (Agp,m) € C. By Lemma 3.20 (iii), we can find A; € D containing o(Ay).
We write 7’ for the composite R LR Ayg/mAy 5 Ay/mA;, which is a k-
homomorphism. By the commutative diagram

R—" Ay /mA; — A/mA

and Lemma 3.20 (iii), we can observe that (A;,7') € C. Put X = Spf A, and
X’ = Spf A;. By Lemma 3.20 (iii), the homomorphism o: Ay — A; induces a
finite morphism o: X’ — X of formal schemes. As in the proof of Lemma 3.18, the
commutative diagram of sites

A )i 225 X Y

$,6t

LT

A
d(X)es L 5,6t " Y

gives rise to the following commutative diagram for A = Z /(" Z:

HI(Y, A) —" Hi(X,, A) =2 Hi(d(X), A) —— H!(Xg, )

SN R lff

Hi(Y, A) —= Hi(X!, A) 25 Hi(d(X'), A) =—— Hi(X0, A).
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Here K (resp. K’) is the open normal subgroup of Ky such that Ay € Dk (resp. A; €
D). By the construction of the specialization map, this implies the commutativity
of the diagram

which concludes the proof. |

Here is the infinite level version of Theorem 2.8.

Theorem 3.22 Let {7k} kqk, be a projective system of adic spaces locally of finite
type, separated and taut over Spa(k, k°) with proper transition maps. Suppose that
we are given a system of open immersions { Xk — Zk }kax, over Spa(k, k°) which
makes the cartesian diagram

XK/ g ZK/

|

XK—>ZK

for every open normal subgroups K, K' of Ky with K' C K.

Assume that Y is pure-dimensional and smooth over k. Let V be a subspace
of H\(Y,Q,) such that the composite V — H{(Y,Q,) — H'(Y,Q,) is an injection.
Then, the composite

Ve HAY,Qp) 2 lim Hi(X e, Q) — ling Hi(Zi, Q)
K K
is also an injection.

Proof. Fix (Ag,m) € C with Ay € Dg. Let K’ be an open normal subgroup of K
contained in K. Then, by Lemmas 3.11 and 3.14, we can find (Af, 7’) € C such that
(Ag, m) < (A}, ') and Aj € Dgr. Put &’ = Spf Aj,. It is of topologically finite type
and flat over Spfk°, and pseudo-compactifiable (see [Miel4b, Example 4.25 (i)]).
By Proposition 3.10 (iii), we have d(X’) = Xy, which is smooth over Spa(k, k°).
By Lemma 3.16 (ii), the morphism 7’: X! — Spec R = Y is finite and surjective,
and the dimension of X7 is equal to dim Y. Therefore, Theorem 2.8 tells us that the
composite

Vs H(Y, Q) = HU(d(X), Q) = Hi( Xk, Q) = HYZier, Q)
is injective. Obviously, the inductive limit of this map with respect to K’ coincides
with
Ve HI(Y,Q) = thé(XKu@e) — %Hi(zku@e)
K’ K’

considered in the theorem. Thus we obtain the desired injectivity. |
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We will end this section by giving a simple but helpful example.

Example 3.23 Here we assume that p # 2. Take @’ € m such that @ = w, and
fix a sequence (c'*/?™),,>0 of p™th roots of ’. Put w!'/?" = (=''/?")2. Let I be the
ideal of k°(T? ™) (see Example A.5) generated by T%?" — w!'/P™ for every m > 0,
and I the closure of I in k°(T? ™). Let us consider A = k°(T? ~)/I.

(i) The k°-algebra A is w-adically complete and flat.

(ii) Define continuous k-homomorphisms
¢: k[S]/(S? —1) = A[l/w], ¥: All/w] =k xk

by ¢(S) = @ 'T and (TY?") = ('™ —'V/*™). Then, ¢ and 1) are iso-
morphisms. In particular, A[1/w0] is a complete f-adic k-algebra of topologically
finite type.

(iii) We have ¥(A) = {(z,y) € k° x k° | x —y € m}. In particular, A is a ring of
definition of A[1/w| which is not topologically finitely generated over k°.

(iv) We have A/mA = k.

(v) Let A be the integral closure of A in A[1/w]. We have 1(A) = k° x k°. Namely,
A coincides with A[1/w]°.

(vi) Put A, = k(T,,)/(T? — @'/?") = k°[T,)]/(T% — @'/?™). We have a k°-
homomorphism A,, — A; T, — TYP™_ which turns out to be injective. We
write 1, for the composite A4,, — A Yk ox ke Then, we have ¥,,(A,,) =
{(z,y) € k° x k° | x — y € @/P"k°}. In particular, A = lim A,

By (i), (ii), (iv), (v), this A with the obvious action of Ky = 1 satisfy Assumptions

3.1, 3.2. By (iv), Y = Speck is a point, while Spa(A[l/w], A[1/w]°) consists of two

points by (ii). In particular, the specialization map sp* on H? in Definition 3.17 is

not surjective.

Proof. The assertion (i) follows from Corollary A.4, as the image of T? — w in
k[TP ] is non-zero.

We prove (ii). It is easy to see that ¢ and 1) are well-defined and ¢ o ¢ is
an isomorphism. Therefore ¢ is an injection. Put C' = k°[S]/(S? — 1). Since
o(w'C) C A, ¢ is continuous. We shall prove that ¢ is surjective. First we prove that
A C ¢(C)+wA. Tt suffices to show that TV/P" € ¢(C). Note that (T/?" /o't/P™)2 =
T2/P" J@ /P™ = 1 in A[l/w]. Since we are assuming p # 2, we have

T

o9 = = = (L) = L

wo'l/p™ - o'/’

Hence TV/P" = ¢("/?"S) € ¢(C), as desired. Now we prove the surjectivity of ¢.
Since k[S]/(S? — 1) is w-divisible, it suffices to see that every ag € A lies in ¢(C).
By A C ¢(C) + wA, we can find zy € C and a; € A such that ag = ¢(z0) + wa.
Continuing this process, we get (Z,)m>0 and (@, )m>1 such that z,, € C, a,, € A
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and a, = ¢(Tp) + Wapmi1. Put o =3"°_ w™x, € C. Since ¢ is continuous and A
is w-adically separated, we have

¢($) = nh_EIOlo (b(Z_O wmxm) = nh_)fglo(ao - wnJrlanJrl) = qay.

Hence ag lies in ¢(C). Therefore ¢ is a bijection. As A C ¢(C), ¢~! is continuous.
Thus ¢ is an isomorphism. Since 1) o ¢ is an isomorphism, so is .

Let us prove (iii). We can easily check that ¥/(A) C {(x,y) € k°xk° | z—y € m}.
We prove the reverse inclusion. Let z,y € k° be elements such that z —y € m. Since
(z,y) = (Yo §) (3 + *32S), we have

1 [Tty x—y)_x+y x—y.z_x+y x—y_Tl/pm
4 (x’y)_“b( > T > T2 = 2 2

Since z—y € m, for a sufficiently large m, (z—y) /=’ /?" belongs to k°. Hence we have
Y Hx,y) € A, that is, (z,y) € ¥(A). Suppose that 1)(A) is topologically finitely
generated over k°, and take topological generators (z1,v1),...,(Tn,Yn) € W(A).
Then, there exists an integer m > 0 such that x; —y; € @w/P"k° for every 1 < i < n.
Since ¥(A)/w/P" (k° x k°) is generated by the images of (z1,%1), ..., (Tn, Yn), it is
included in {(x,z) | € k°/'/P"k°}. It is absurd, as ¥(A) /@'/?" (k° x k°) contains
an element (w'/?™"" 0). Thus ¢ (A) is not topologically finitely generated over k°.

For (iv), it suffices to prove that the natural map x = k°/m — A/mA is sur-
jective, or equivalently, A = k° + mA. By (ii), we may replace A by 1(A). Take
(z,y) € ¢¥(A). By (iii), we have z,y € k° and v —y € m. Therefore we have
(z,y) = (y,y)+ (x—y,0) € k°+mp(A). Now we conclude that ¢(A) = k°+me(A).

We prove (v). Since k° x k° is integrally closed in k x k, it suffices to show that
k° x k° is integral over 1)(A). Take any element z = (a,b) € k° x k°. Then (a,a)
and (b,b) belong to 1(A), and z is a root of the polynomial (7' — (a, a))(T — (b,b))
in ¢)(A)[T]. This means that x is integral over ¢)(A).

Finally consider (vi). It is immediate to see that the homomorphism A,,[1/w]| —
k x k induced from 1, is an isomorphism. Therefore A,,[1/w] — A[l/w] is also
an isomorphism. Since A,, is w-torsion free, we conclude that A,, — A is an
injection. Let us prove that 1,,(Ay,) = {(z,y) € k° x k° | v —y € /P "k°}. As
Y (Tr) = (@P", —V/P™), 4, (A,,) is contained in the right hand side. Since the
k°-algebra {(z,y) € k° x k° | z — y € @'M/P"k°} is generated by (o'V/P", —/P"),
the desired equality holds. |

4 The Lubin-Tate tower

Let F' be a non-archimedean local field. We denote by Op the ring of integers of F
and pp the maximal ideal of Or. Write ¢ for the characteristic of the residue field
Or/pr, and p for the characteristic of F, = Op/pp. The normalized valuation of F’
is denoted by vp. Fix a uniformizer w € Op.
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We fix an algebraic closure F of F. Let F' (resp. F??) be the maximal un-
ramified (resp. abelian) extension of F' inside F. Denote by F, F*» and C for the
completion of F™, F2> and F, respectively. The residue field of F is denoted by
E], which is an algebraic closure of F,. We write Wp for the Weil group of F,

and Artp: FX = WaP for the isomorphism of the local class field theory, which is
normalized so that Artp(w) is a lift of the geometric Frobenius automorphism on
F,.

We denote by Nilp the category of schemes over Op on which w is locally
nilpotent, and by Set the category of sets. For S € Nilp, we set S = S R0, F,.

Let n > 1 be an integer. We fix a one-dimensional formal Op-module X of height
n over F,, which is unique up to isomorphism. Put D = Endp, (X) ®0e, F. It is
known to be a central division algebra over F' with invariant 1/n.

For an integer m > 0, let M,,,: Nilp — Set be the functor that sends S to the
set of isomorphism classes of triples (X, p,n), where

— X is a formal Op-module on S,
— p: X®f, S — X xg S is an Op-quasi-isogeny, and
— 1 is a Drinfeld m-level structure on X.

For an integer 9, let MY be the subfunctor of M., corresponding to the triple
(X, p,n) with height,, p = 6. Then, MY can be identified with the deformation

functor of X with Drinfeld m-level structures. In [Dri74, §4], it is proved that MY s
represented by Spf A,,, where A,, is an n-dimensional Noetherian re%ular complete
local O p-algebra. Since MY s (non-canonically) isomorphic to MY , we conclude

that M,, =[], MY s represented by a locally Noetherian formal scheme over
Op. Moreover, {M,,},,>0 form a projective system of formal schemes with finite
flat transition morphisms. We call it the Lubin-Tate tower.

The Lubin-Tate tower is equipped with several actions. First, the group D* =
QIsog,, (X) of self-quasi-isogenies of X acts on each M,,, on the right. The formal
scheme M,, also has a natural Weil descent datum in the sense of [RZ96, Definition
3.45]. These are compatible with the transition maps of {M,, },,>o. Further, the
group GL,,(F') acts on the tower { M, },,>0 on the right as a pro-object. This action
may change the level m. However, the subgroup GL, (OF) preserves each M,,, and
the mth principal congruence subgroup K,, = Ker(GL,(Or) — GL,(OFr/p}%)) acts
trivially on M,,.

We denote by M, the rigid generic fiber of M,,,, which is known to be an n — 1-
dimensional smooth rigid space over F. From {M }m>0 we obtain a projective
system {M,, }m>o of rigid spaces over F , whose transition maps are finite, étale and
Galois. For m’ > m > 0, the action of K,, on M, gives identification between
K,/ K, and the Galois group of M,,, — M,,. For each compact open subgroup K
of GL,(OF), we can define the Lubin-Tate space Mk of level K as follows: take an
integer m > 0 such that K,, C K and put Mx = M,,/(K/K,,), which is in fact
independent of the choice of m. Now we obtain a projective system { Mk } kcGr,(0r)
whose transition maps are finite and étale. It is also equipped with actions of D*
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and GL,(F), and a Weil descent datum.

For our purpose, it is convenient to consider the quotient of My by the discrete
subgroup w? C F* C DX, which is denoted by M K w2 Note that the decomposition

My = 1ses M) induces My = sz Ml(f), and @ € D* maps MI(?) to M1(f+n).
Therefore, the quotient My .z is isomorphic to ], <sen M [(?) .

Take a prime number ¢ # p. Fix an isomorphism Q, = C and identify them. We
consider the compactly supported ¢-adic cohomology of the tower { My .z} kcar, o)

Definition 4.1 We put Hyr = liy  H ™' (Mg 2 @5 C, Q).

The group GL,(F) x D* naturally acts on Hyp. This action is known to be
smooth (see [Str08, Lemma 2.5.1]). By [RZ96, Lemma 5.36], the subgroup w? C
F* C GL,(F) acts trivially on Hyp. On the other hand, by using the Weil descent
datum on M z, one can define an action of Wy on Hyp. As aresult, Hyr becomes
a representation of (GL,,(F)/w?) x (D* Jww?) x Wg. The GL,(F)-supercuspidal part
of this representation can be described by using the local Langlands correspondence
and the local Jacquet-Langlands correspondence:

Theorem 4.2 (Non-abelian Lubin-Tate theory, [HTO01], [Boy99]) Let m be
an irreducible supercuspidal representation of GL,(F) whose central character is
trivial on w?. We write recg(r) (resp. JL(r)) for the irreducible smooth representa-
tion of Wg (resp. D* ) corresponding to m under the local Langlands correspondence
(resp. the local Jacquet-Langlands correspondence). Then we have

Hyr v =m" B JIL(T) Krecp(m)(152)

as representations of GL,,(F') x D* x Wg, where Hyr v denotes the m"-isotypic part
of HLT-

To simplify our argument, we also use the following result, which is in some sense
stronger than the theorem above:

Theorem 4.3 The action of Wr on Hyr is smooth.

Proof. Since D* /w? is compact, we have the isotypic decomposition

Hyy = €D Hir,,

p

where p runs through irreducible smooth representations of D* whose central char-
acters are trivial on w?, and Hyr , denotes the p-isotypic part of Hyr. We fix p and
denote by 7 the discrete series representation of GL,,(F') satisfying JL(7) = p. Such
7 can be written as St,(7'), where s is an integer dividing n and 7’ is an irreducible
supercuspidal representation of GL,/s(F'). By [Boy09b] and [Boy09a], we have

Hyp, =m" K pKrecp(n')(%)

for some m € Z. Since recp(7') is a smooth representation of Wy, we conclude that
the action of Wy on Hyyp , is smooth. |
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Let us recall the determinant map. We write {N,,}, for the Lubin-Tate tower
with respect to A"X, where A" is the exterior product defined in [Hed14]. Then, as

in [Wei, §2.5], we can construct the determinant map MO 5 NV On the other
hand, by the classical Lubin-Tate theory, we have N = Spf O, where F,, denotes

the completion of the mth Lubin-Tate extension of F"*. Choose an F-embeddin
hﬂim F,, < F® and consider the base change MS?OC = S’?)&)Oﬁ O¢ of M,‘S
under Op  — Opa, — Oc. We put

G' ={(g,d,0) € GL,(F) x D* x W | det(g) "' Nrd(d) Art;' (o) = 1},

where Nrd: D* — F* denotes the reduced norm. By using the action of GL,,(F) x
D* and the Weil descent datum on {M,,},,, we can define an action of G' on
the tower {MS?OC }m. The action of (g,d,0) € G makes the following diagram
commute:

(MO Y 22 MO Y

m,O¢c
Spf O —Z— Spf Oc.

Passing to the rigid generic fiber, we obtain the rigid space MTSS)C = MY ®p C
over C. For an integer m > 0, put K/ = SL,(Or) N K,,,. It is eaéy to observe that
the transition map MY(,S,)’C — Mr(r[L))C for m’ > m > 0 is finite étale Galois with Galois
group K, /K . Therefore, by the same method as in the case of { Mg }kcar,(©r)
we can extend {Mfr?)c}m to the projective system {M}g)C}KCsLn(OF), where K runs
through open subgréups of SL,(Or). The group G' acts on this tower.

We put H{; = hg K HY Y (M 1(?,)07 Q,). The following proposition gives a connec-
tion between Hyr and Hj .

Proposition 4.4 Put G = GL,(F) x (D*/w?) x Wg. The group G can be re-
garded as a cocompact closed normal subgroup of G. Moreover, the action of G on
Hi is smooth, and we have a G-equivariant isomorphism

Indg1 H{,T = HLT-

Proof. First we will prove that G* is a cocompact closed normal subgroup of G. The
natural homomorphism G! — G is clearly injective. Further, its image is equal to the
kernel of the homomorphism v: G — F*/@"%; (g,d, o) — det(g)~! Nrd(d) Art;' (o).
Hence the image of G is closed normal and cocompact in G.

Next we construct a G'-equivariant surjection Hyr — H{p. Take an integer
m > 0. We have M) ®pC = HUeGal(ﬁ,m/I;ﬂ) MY ®p, ,C. Therefore, the morphism

M(Oy)c — MO ®p C— VA ®p C — M, oz ®@p C induces a surjective map

m

H' Y (M, o2 @5 C,Qp) = HF Y MY @ C,Q).

C
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By taking inductive limit, we obtain a surjective linear map ¢: Hyr — H{p. It is
easy to see that this is G'-equivariant. By Theorem 4.3, the action of G* on Hir is
smooth. Therefore Hj is also a smooth representation of G*.

By the Frobenius reciprocity, we obtain a desired G-equivariant homomorphism
¢: Hir — Indgl H{ . We shall prove that this map is an isomorphism. It suffices
to show that ¢: HEr — (IndS&, H{;)%™ is an isomorphism for each m > 1. We have

Hip = HY (My o2 ®5 C,Qp) = @ HI (MY 4 C,Qy).

0<é<n

[

On the other hand, note that v: G — F*/w@"” induces a bijection G'\G/K,, —
F*/@w"2(1+p7). In particular, it is a finite set with cardinality r = n(OF : 1+pR).

Since Nrd: D* /w? — F>*/w"? is surjective, we can take a system of representatives
{(1,d;, 1) }1<i<r of GW\G/K,, such that d; = 1. We have an injection

(Indg: Higp)"m — @ (Hyp)fm = @ HY( M(OCa@Z) [ (L di 1))i<isor
1<i<r 1<i<r

Take an element x € Hg—l(MS’)C,@) c H (MY @ C,Q,) ¢ HE» and consider
é(z) € (Ind%: H] ;) . Let d be an element of D* and write d for the image of d
in D* /w”. If Ned(d) ¢ w205, (1,d,1) maps M), into My, @ C with 6 # 0. If
Nrd(d) € @20} \ @w"%(1 4 p2), (1,d,1) maps M@C to My ®p , C with o # 1.
Therefore, unless d € @w"2(1 + p7), we have ¢((1,d,1)z) = 0. Hence we conclude
that

r =1,

(O))(1.di, 1) = 6((1.di, 1)) = {0 P41

If we put z; = (1,d;,1)"'z € H{", we have

~ _ T 1=],
(6(x;))(L, di, 1) = ¢((L, did; ', 1)) = { -
0 #j.

This means that the composite H/" 4 (IndS&, Hp)5m D, HIH (M OC,@E)
is surjective. Therefore we conclude that (Ind%, Hjp)%m = D, HIH( T(r?)c, Qy),
and 5 is surjective.

Now we have only to compare the dimensions of Hiy and (Ind&: Hip)5m. As
MY =~ MY (an 1somorphlsm is given by an element d € DX with vp(Nrd(d)) = —9)
and MY Qp ,C= M foraeGal( E,,/F), we obtain

dim B = ndim H Y (MO ®; C,Q,) = n[F, : F]dim H* (MY}, Q).

On the other hand, we have dim(Ind%, H, )% = rdim H( mC,Qg) Since
r=n(OF : 14+p1) = n[E, : F], we conclude that dim HX» = dim(Ind%: H{,)* R
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Next we introduce the infinite level setting. Let A, be the mgp-adic completion
of i lg A,,, where my denotes the maximal ideal of Ay. Put A,, 0. = 4 Ro, Oc

and Ay 0. = A ®@ , Oc. We can observe that Ay o, is the my-adic completion
of li lgn Am.o.- The group G' acts on Ay, o.. The action of (g,d, o) € G* preserves
Oc C Ao, and induces 0 on O¢. It is known that the ring A o, with the
G'-action has Very simple description; see [Wei, §2] and [IT15a, §1].

We put /\/loo 00 = Spf A 00, (MOO 00) = SPa(Ax 001 Aco0c), and write Méo)C
for the generic fiber (i.e., the open subspace given by the condition |@(z)| # 0) of
t(/\/l(o) ). By [Hub93] and [Hub94], t(Mgi),oc) and M (O)C are topological spaces

00,0¢
equipped with structure presheaves. In fact M ‘¢ 1s known to be a perfectoid space
([Wei, Lemma 2. 1() 1]) and its structure presheaf is a sheaf, but we do not need this

result. Since Mmo = Spf A, 0. and MO )c is the generic fiber of t(./\/lm 00) =

(0 )c — M )c compatible with the tran-

(0)

Spa(Am.ocs Am @c) we have a morphism M
sition maps of {M c}m Hence we obtain a morphism M_ '« — {MI({C}KCsL (Or)s
which is clearly Gl equivariant.

The followmg proposition enables us to apply the results in Section 3 to an

affinoid of ]\4Oo -

00,C"

A a w-adically complete flat Oc-algebra such that X = Spf A is a formal model of
U; in other words, (A[l/w], A) is isomorphic to (O(U), O (U)) over (C, O¢) (recall
that A denotes the integral closure of A in A[l/w)). Assume that there exists an
open subgroup Ky of SL,(Or) which stabilizes U and whose induced action on U
extends to X'; namely, the induced action of Ky on O(U) = A[l/w] stabilizes A.

Proposition 4.5 Let U be a rational subset of t(./\/l )Oc) contained in M"),, and

(i) There exist an integer m > 0 such that K] C Ky and an open affinoid U,
in MS)C whose inverse image under Még,)c — Mf,g)c is equal to U. We put
K() = K;n and UK() = Um

(ii) For an open normal subgroup K of K, let Ux = Spa(Bgk, By) denote the
affinoid obtained as the inverse image of Uk, under MI({O)C — MI(?O),C. Then,

(A, { Bk} kaxk,) satisfies Assumption 3.1.

(iii) Assume that g € G* satisfies Ug = U and extends to an automorphism of X.
Then, the induced automorphism of A is of finite level in the sense of Definition

3.19.
Proof. We write U = R(%), where t1,...,t.,s are elements of A, o, such
that t1,...,t, generate an open ideal of Ay .. As Ay o, is the completion of

lg Am ¢, [Hub93, Lemma 3.10] tells us that we may assume that ¢q,...,¢,,s €
Ao for some m > 0. We take such m so that K/, C Ky. Since |w( )| # 0
for + € U, by [Hub93, Lemma 3.11] there exists an integer j > 0 such that
la(z)| < |w(x)]| for every a € m)Ay o, and = € U. Take generators by, ...,b € m}

and consider the rational subset U, = R(WLuslr by ft(/\/lm)@ ). Then, it is
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(0’)0 and its inverse image under MS?C — Még)c is

contained in the generic fiber M,
equal to U. This proves (i).

Next we prove (ii). Since Ky = K], C Ky, A is equipped with an action of K.
The conditions (a) and (b) in Assumption 3.1 follow from the corresponding proper-
ties for {M 1(?, o}k ak,- Consider the condition (c). For m’ > m, we simply write U,

and B, for Ug  and By , respectively. As the map t(/\/l(()?’oc) — t(M$27OC) car-
ries U to Uy, we have a continuous homomorphism of affinoid rings (B, BS,) —
(OU),0F(U)) = (A[l/w], A) (see [Hub94, Proposition 1.3 (i)]). Therefore we
obtain a homomorphism {(B,., BS,)}mism — (A[1/w], A), which is clearly K-
equivariant. This extends to a Kp-equivariant homomorphism {(Bg, By) }kar, —

(A[l/w], A). By [Hub94, Lemma 1.5 (ii)], the induced map

Spa(A[l/w], A) — lim Spa(Bx, Bi) = lim Spa(Bu, B;,)

K<Ky m'>m

is identified with U — l'gquKo Uk = l'glm,>m Ups. On the other hand, by [SW13,
Proposition 2.4.2], the continuous map between underlying topological spaces

HMo,) = limt (M) )

is a homeomorphism. Therefore U — hm Uy s also a homeomorphism. The
density of the image of lim =By = lim B,, — A[l/w] follows from the density of
the image of hgm Apoe = Aso0p; see the proof of [Hub96, Remark 2.4.3 ii)]. This
completes the proof of (ii).

We prove (iii). Clearly g preserves Oc C A. By the definition of the action of G*
on {M}g)C}KCsLn(OF), for an open normal subgroup K of K and g € G, there exists
an open normal subgroup K, of K such that g gives a morphism M [(?9)70 — M I(g )C As
the maps U — Uk and U — Uk, are surjective (see Lemma 3.3), U, is mapped to
Uk by g. Therefore a continuous homomorphism Bx — Bk, is induced. Passing to
the inductive limit, we conclude that the action of g on A[l/w] preserves the image
of lim . Br— All/w]. Since we are assuming that g preserves A C A[l/w], this
means that the action of g is of finite level. |

Corollary 4.6 Let U and X = Spf A be as in Proposition 4.5. Let J be a subgroup
of G' whose action on M ;?}C stabilizes U and extends to an action on X. Assume

that there exists an affine scheme Y of finite type over Fq endowed with a J-action
such that X; = Spec(A®o,. F,) is isomorphic to the perfection of Y as schemes over
F, with J-actions.

(i) We have a J-equivariant homomorphism

sp*: H 7' (Y, Q) — lim H' ™ (M4, @) = Hip.
K
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(ii) Assume moreover that Y is pure-dimensional and smooth over F,. Let 'V
be a subspace of H' 1 (Y,Q,) such that the composite V < H" (Y, Q,) —
H"'(Y,Q,) is injective. Then, the composite V < H' Y, Q,) == Hjyp is
also injective.

(iii) In the situation of (ii), suppose that V is stable under J. Let J' be a subgroup

of G! which contains J as a finite index subgroup. Assume that U and Ug are
disjoint for every g € J'\ J. Then, the composite

Ind} V < Ind) H* (Y, Q,) — Hly

is injective, where the second arrow denotes the J'-homomorphism induced
from sp* by the Frobenius reciprocity.

Proof. Let Koy, {Uk}k,«x and {Bk}k,«x be as in Proposition 4.5. Write Y =
Spec R. By Proposition 4.5 (ii), (A, {Bk}k«k,, R) satisfies Assumptions 3.1 and
3.2. Therefore, by Definition 3.17, we have a specialization map

b H7UY, @) — ling YUk, @),
K

By Propositions 3.21 and 4.5 (iii), this map is J-equivariant. Composing with the
natural map lim  H?"\(Ux, Q) — lim  H2~Y (M2}, @), we obtain a desired J-
equivariant map. The second assertion is a direct consequence of Theorem 3.22.
Let us prove (iii). Take a system of representatives ¢y, ..., g, of J\J' such that
g = 1. Put U, = Ug;. Then, X = Spf A gives a formal model of U; by the
~ -1
isomorphism (A[l/w], A) = (O(U), 0 (U)) g—;—> (O(U;), 0t (U;)). We write &; for
this formal model. Then, the pair (U;, &;) satisfies the condition in Proposition 4.5;
indeed, we can take Ky, as g; 'Kygi. Let m > 0 be an integer which satisfies the
condition in Proposition 4.5 (i) for every 1 < i < r. Then, by Proposition 4.5 (ii),
we obtain towers {U; k}kar,. Put &' = [[,.,., & and U = [[,;, Ul . The
reduction X is identified with the perfection of Y = [],_,., Vi, where Y; is a copy
of Y. By assumption, the natural morphism Uy — M [(?)C is an open immersion.
Therefore, by Definition 3.17 we have homomorphisms

P v, = BN Q) T i 7 (U, Q)
K

1<i<r

— i HZ_I(MI({O)CW@Z) = H£T7
g )

whose composite is denoted by sp™. The restriction of sp™ to H*~'(Y;,Q,) coincides
with sp* in (i). Furthermore, by Theorem 3.22, the composite

DV P HY.Q) T Yy

1<i<r 1<i<r
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is injective.

On the other hand, we can define an action of J' on X’ as follows. Take h € J'.
For 1 <+ <, let j; be the unique integer such that g;h € Jg;,. The map ¢ > j; is
a permutation of {1,...,r}. Define h: X; — X}, as

and h: X’ — X’ as the disjoint union of them. Similarly, we can define an action of
J' on Y'. Since |J, ., U; is stable under J', the action of J' on {MI(?)C}K induces
that on {Uj }k, and it is compatible with the action of J' on X’ (see the proof of
Proposition 4.5 (iii)). Therefore, the action of J' on X" is of finite level and the
homomorphism sp™: H* (Y’ ,Q,) — Hl is J'-equivariant.

It is immediate to see that the J'-equivariant map

Indf H7N(Y,Qp) — HX (Y, Q)

induced from H" (Y}, Q,) — Hg“lLY’ ,Q,) is an isomorphism. Under this iso-
morphism, Ind} V' C Ind} H* '(Y,Q,) is mapped to the subspace Dicic,V C
Dicicr H(Y;,Q,) = H(Y',Q,). The composite

Ind) H' 'Y, Q) = H (Y, Q) 25 H,

is clearly the J'-homomorphism induced from sp* by the Frobenius reciprocity.
Therefore, we conclude that the composite

Ind? V < Ind} H*Y(Y,Q,) — Hl;
is injective. |

We end this section by giving representation-theoretic lemmas used in the next
two sections.

Lemma 4.7 Let GG be a totally disconnected locally compact group and J an open
subgroup of G.

(i) For a smooth representation 7 of J, there exists a J-equivariant injection m <
Ind§ 7.

(ii) Let N be a closed subgroup of G satisfying NJ = JN, and p a smooth rep-

resentation of N. Then, we have a J-equivariant isomorphism (IndY” p)|; =
Ind},;(p|nns) (note that N.J is an open subgroup of G).

Proof. We write V for the representation space of w. For v € V, define the map

¢p: G — V as follows:
_Jgv geJ
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It is immediate to see that ¢, € Indf V and v — ¢, gives a J-equivariant injection
7 < Ind§ 7. This concludes the proof of (i).

Next consider (ii). We denote by algInd the algebraic induction functor. Then,
we can easily check that

(algIndy” p)|; = algIndyr, (plnn)-

Indeed, the map alglndy’ p — algInd}{m s p is given by ¢ — ¢|;, and the map
algInd?; p — algndX” p by ¢ — ¢/, where /(ng) = n1)(g) for n € N and g € J.
These maps are inverse to each other. By taking the J-smooth part (—)7=™, we
have

J-sm
((alglnd%‘] p)|J) = Ind}]VnJ(P|NmJ)‘
Since J is an open subgroup of NJ, for any representation W of N.J, we have
Wsm = JNJsm - Therefore, we have (algIndy” p)’™™ = IndY”’ p. This concludes
the proof of (ii). [

Lemma 4.8 Let G and H be totally disconnected locally compact groups and A
a closed subgroup of G x H. Assume that the composite A — G x H — G is
surjective. Let (mw, V') (resp. (p, W)) be a smooth representation of A (resp. H).

(i) The group G acts on the space Homany(p,m) as follows: for g € G and ¢ €
HomAﬂH (P, 7T)7
(90)(w) = (9, hg)d(hg'w) (w € W).

Here h, denotes an element of H such that (g, h,) € A, whose existence follows
from the assumption on A. Note that the right hand side is independent of the
choice of hy.

(ii) If p is finitely generated as a representation of H, we have a natural isomor-
phism Homang (p, 7)™ 2 Hompy (p, Ind{*? 7) as representations of G, where
(=)™ denotes the G-smooth part.

(iii) Assume that p is finitely generated as a representation of H. For a closed
subgroup A’ of G x H containing A, we have

Homang (p, 7)™ =2 Homang (p, Indﬁ/ r)Csm

as representations of G.

Proof. As in the proof of Lemma 4.7 (ii), we denote by algInd the algebraic induction
functor. First we prove the following:

Homanz(p, 7) = Homp(p, alglnd$ > 7). (%)

By the surjectivity of A — G x H — G, we have AH = HA = G x H. Therefore,
as in the proof of Lemma 4.7 (ii), we can prove that

(algInd§*H )|y =2 alglnd¥ -, (7| anm).
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Therefore, by the Frobenius reciprocity we have
Homangy (p, ) = Homy (p, algInd¥ - ;; 7) = Homp (p, algInd§* 7).

This concludes the proof of (x). Under the isomorphism (%), ¢ € Homang(p, 7) is
mapped to &: W — algInngH V' as follows:

®(w)(g, h) = (9, hg)d(hy hw)  (w € W).

The inverse map ® — ¢ is given by ¢(w) = ¢(w)(1,1) (w € W).

Note that G acts on Homy (p, alglnngH 7). Therefore, by using the isomorphism
(x), we can define an action of G on Homany(p, 7). Let us describe it explicitly. For
g€ G, we W and ¢ € Homang(p, 7) corresponding to ® € Homy (p, algInd$# ),
we have

(90)(w) = ((92)(w))(1,1) = ((g, 1)(w)) (1, 1) = ((g: hg) (1, by )P (w)) (1, 1)
= ((g,hg)®(hy w))(1,1) = ®(hy w)(g, hy) = (g, hy) (2(hy w)(1, 1))

= (g, hg)¢(h;1w)'

This action coincides with that in (i). This concludes the proof of (i).
Next we prove (ii). By (%) and the smoothness of p, we have an isomorphism

Y

Homang(p, 7) = Hompy (p, (algInd$<H W)H'sm)

which is G-equivariant by the proof of (i). By taking the G-smooth parts, we have
Hom e (p, m)*™ & Homy (p, (algInd " ) 7o) =,

Since Ind$* 7 = (alglnd$*# )@ x Hsm — ((algInd{*H ) Hsm)G-sm it suffices to
show the following:

for a G x H-representation U, we have Homp (p, U)%*™ = Homy (p, U%™).

Clearly we have Hompg(p, U)*™ C Hompg(p, US™™). Take ¢ € Hompy/(p, US™).
Since p is finitely generated, we can find a finite system of generators xy,...,x, €
W. There exists an open subgroup K of G which stabilizes ¢(x1),...,d(z,) €
UGsm_ Then, for every x € W, ¢(z) is fixed by K. In other words, ¢ lies in
Homp (p, U)%. This proves that Homy (p, US™) C Homy (p, U)“*™. Now the proof
of (ii) is complete.

For (iii), just note that

Homang (p, 7)™ = Homy (p, Ind$* ¥ 7) = Hompy (p, Ind$)¥ Ind}" 7)

>~ Homa/ng (p, Ind} 7)o, [

34



Geometric approach to the explicit local Langlands correspondence

5 Example I: depth 0 supercuspidal representa-
tions

In this section, we determine recg(m) and JL(7) for a depth 0 supercuspidal repre-
sentation m of GL,(F). First, we will introduce some notation. Let 0: F;. — C*
be a character. We assume that 6 is regular, namely, it does not factor through the
norm map Nr_, /5 Fgn — Fgm to any subfield Fym C Fyn. It is well-known that
we can attach to 6 an irreducible cuspidal representation Ry of GL,(F,). Here we
recall a construction of Ry by the Deligne-Lusztig theory [DL76]. Let DL, be the
affine algebraic variety over Fq defined by the equation

1

(det (28"

)1§i,j§n)q_1 - (_1)n_1-

The group GL,(F,) naturally acts on DL, on the right. On the other hand, the
group . acts on DL,, (on the right) by x; — (z; (¢ € Fj.). The representation Ry
is given as the #-isotypic part H* *(DL,,Q,)g of the (n — 1)th compactly supported
cohomology H"(DL,, Q,) of DL,,. The central character of Ry equals Olgx ([DLT6,
Corollary 1.22]).

We denote by F), the degree n unramified extension of F'. Let x: F, — C* be
a tame character, namely, a character which is trivial on 1 + wQOp,. Its restriction

to O factors as Oy — Fp. X C*. We say that y is regular if ’y is regular.

Definition 5.1 For a regular tame character x: F* — C*, let 7, be the represen-
tation of F* GL, (OF) such that

— TylaL,(op) is the inflation of Ry by GL,(Or) - GL,(IF,), and
— F* acts on 7y, by x|px.

We put m, = c—Inng;"éfi ©p) T which is known to be an irreducible supercuspidal

representation of GL,,(F).

From a regular tame character y, we can also construct a representation of D*.
Recall that the quotient of Op by its Jacobson radical is equal to Fy». Therefore we
have a surjection O — Fy..

Definition 5.2 For a regular tame character x: F,* — C*, let p, be the character
of F*QOF such that

— Pyloy is the composite Op — Fgn % Cx, and

- ﬁX|F>< = X‘FX
DX

We put py = c-Ind gy < Py,
D

tion of D*.

which is known to be an irreducible smooth representa-

The goal of this section is the following:
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Theorem 5.3 For a regular tame character x: F,* — C*, we have
recp(m,) = Indmw/i Yo", JL(my) = pys

where §: FX — C*; a v (—1)"%@ js the unramified quadratic character. As usual,

we regard characters of F, as those of Wg, by the isomorphism Artp, : F)* = Web.

Remark 5.4 (i) The identity recg(m,) = Ind%ﬁ x0"~ ! was proved in [Hen92|.
The proof in [Hen92] requires case-by-case argument when (n,q) is either of
(2,2), (2,3), (4,2), (6,2). Our proof works for any case uniformly.

(ii) The identity recp(m,) = p, was obtained in [SZ05, Theorem 3|; see also [BH11,
Theorem 1].

Remark 5.5 Let £: F'* — C* be an unramified character. For a tame character
x: F — C*, put x¢ = x(§oNrp,/r). Then, x is also tame and X¢ = X. Therefore,
x is regular if and only if x¢ is regular. Moreover, we have 7, = T, ® (§ o det) and

T, ® (£ odet) = c-Indggnéfi (om (Tx ® (§ 0 det)) = my,.

Similarly we have p, ® (§ o Nrd) = p,, and (Indvvgin X)®E& = Ind%ﬁn Xe. As recp
and JL are compatible with character twist, Theorem 5.3 for x is equivalent to that
for xe.

If we take & such that £(@)™ = x(w) !, we have y¢(w) = 1. Therefore, to prove
Theorem 5.3 we may assume that x(ww) = 1. In this case the central characters of
T, and p, are trivial on w? C F*.

Later, for a regular character 6: F,, — C*, we also write § for the regular

tame character F* = w? x Of — Of — FJ, Y ©*. It suffices to show that
recp(my) = Ind%i 06" and JL(mp) = pe.

For b € F, with b9~1 = (—1)""!, let Y} be the affine algebraic variety over F, de-

fined by the equation det(m?j_l)lgmgn = b. Clearly we have DL, = [Ty-1_(_1)u-1 Y.

(0)

In the following, we construct an affinoid in M__’~ and its formal model whose reduc-

o
tion is isomorphic to Y; for some b € F, with b9~1 = (—1)"!. Since it is well-known
to specialists, we omit the detail. ‘

0o qun

Let X be the formal Op-module over Op whose logarithm is $2°° Z:- (it is

called the standard formal Op-module in [BW16, 2.3]). In the followingo, take X as
X@OF Fq. Let y = (£ " )ms0 € TX(OC), iy, € Op, and t = (77 7),,50 be as
in [BW16, 3.7]. Since §~§®@F O¢ has CM by Op,, we have embeddings F,, — M,,(F)
and F,, — D, by which we regard F,, as subfields of M, (F) and D (see [BW16,
3.1]).

By [Wei, 2.9.2], we have

oo

A0 ZOc[[XT . XTI/ (0(X0, -, X))

a -7 m>0)",
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where (—)~ denotes the closure. For the definition of 67 ", see [IT15a, §1.1].
Let U be the subset of Még,)c defined by |X;| < |w|ﬁ for every 1 < i <mn. It is
clearly a rational subset of t(Mg{OC). Recall that |¢] = |w|q"71*1 ([BW16, 3.7]), and

put 22 = X? " /¢ Then,
6/(w17 A 7wn)q_m = (é.q_m)_(1+q+.”+qn_1)5(£w17 AR 7£wn)q_m

lies in Oc(z? ... 20 ™), where x; (resp.1 ¢) denotes the system (27 ) (resp.
(£97™)). On the other hand, since |7| = |o|a-1 = |¢[\+at+a"

g

T — (ffl‘m)*(1+q+-~~+q”_1)7-q‘m

lies in OF. Put

—m

X = Spl Qo ™, a8 ) (@, )"

a4 — 7T m>0)".

As in [IT15a, Theorem 2.5, we can check that X’ gives a formal model of U.

Proposition 5.6 The formal scheme X is flat over Oc and its reduction X; is
isomorphic to the perfection of Y, for some b € F, with b~ = (—1)""1.

Proof. First we compute the reduction X;. By [BW16, Lemma 2.10.4], the im-
age of 8" in Fy[zd ... 2% ~] is equal to (det(:vgjfl)15i,j§n)‘1_m._0n the other
hand, [BW16, Lemma 3.7.1] tells us that the image of 7¢"" in F, is equal to
(det(@?jfl))q_m. Put b = det(@?dﬁl). Since a; € Op,, we have @l = @;. Therefore,
we have _

b? = det(a@?) = (—=1)""'b.
By definition, X is identified with

¢t
i

SpecF,[z? ..., 22 ~)/(det(z? )" =7 " | m > 0),

which is the perfection of Y.
In particular, we have dim Xy = dimY, = n — 1. Hence Corollary A.6 tells us
that X' is flat over Og. This completes the proof. |

Next we consider the group action on U and X.

Definition 5.7 We put J = F* GL,(OF) x (Of/@w?) x Wg, C G and J! =GN J.
For o € W, , we put n, = vp, (Arty' (0)) € Z and u, = w " Art;' (o) € OF . We
define a homomorphism ©: J — GL,(F,) x Fj. x Z by

(@™g,d,0) = (g,d " ugt, ng),

where m € Z, g € GL,(Op), d € OF, and 0 € WF,.
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As explained before, the group GL,(FF,) x F. acts on DL,. We can also define
an action of Z on DL, over Fn (not F,) by m: z; = i, a = a? ™" (a € F,), which
commutes with the action of GL,(F,) x Fy.. Therefore, J acts on DL,, through the
homomorphism ©.

Recall that we have a decomposition DL, = Hbq,lz(_l)n,l Y,. It is easy to see

that an element (g, a) € GL,,(Fy) xFg. maps Y}, to Yy, where O’ = det(g) Nrg,, /r, (a)b.
In particular, the group

(GL(Fy) x Fgn)' = {(g,a) € GL,(IFy) x Fg. | det(g) Nrg,./z,(a) = 1}
acts on Yj. On the other hand, if 47 = (—1)""!b, we have
b — (_1)(n71)(1+q+---+q"‘1)b = b,

hence b € Fyn. Therefore the action of Z on DL,, preserves Y}.
Since the image of J! under © is contained in (GL,(F,) x F,n)' x Z, the action
of J! on DL, preserves Y}.

Lemma 5.8 The group J' is generated by the following elements:
— (9,1,1) for g € GL,,(OF) with det g = 1,
- (1,d,1) for d € OF, with Nrdd =1,
— (a,a,1) fora € F,
- (1, ArtF (o)1, 0) for o € I, and
— (1,@ ', 0) for 0 € W, with Arty'(0) = @.

Here I, denotes the inertia group of F,,.

Proof. This is immediate from the surjectivity of Nrg, jp: Op — Op. |

Proposition 5.9 (i) The action of J' C G' on M ég,)c stabilizes U and extends to
X.

(ii) The induced action of J' on X, is compatible with the action of J' on Y, under
the isomorphism in Proposition 5.6.

Proof. This follows easily from Lemma 5.8 and the description of the group action

in [IT15a §1.2]. For the element (1,Arty'(0)~!,0) with o € Ip,, note that [£| =

|co|a™=1 implies that £ € WQ"*IOé, hence o(§)/€ = 0(@4”*1)/wq"*1 = ArtF (o)
modulo the maximal ideal of Oc. For the element (1, !, o) with Arty!(0) = @,
we use the fact o(£) = £, which is a consequence of the classical Lubin-Tate theory.ll

Lemma 5.10 Let 0: F;, — C* be a regular character. Then, H* (DL, Q) is a
Jl-stable subspace of H''(DL,,Q,). Moreover, we have an isomorphism

Hom ;10 /2 2y (Pog-1, H' (DL, Qp)g) = 7o B (00" 1) 71 (152)

of representations of F* GL,(Or)xWp, . Note that the action of F* GL,(Or)xWg,
on the left hand side is defined as in Lemma 4.8 (i), since the composite J' — J —»
F*GL,(OF) x W, is surjective.
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Proof. Since J' obviously normalizes (OF/w”,0), H}'(DLy,Q,)s is a J'-stable
subspace of H" *(DL,,, Q). As J'N(OF/w?) acts on H* (DL, Q) by pp-1 = 071,
as a vector space we have

HomJ1m(Oj>:<)/wZ) (ﬁg—l, Hg_l(DLn7 @5)9) — H’Cn_l(DLn, @5)9‘

Under this identification, the action of F* GL,(Or) x W, on the left hand side is
described as follows:

— (g,1) for g € GL,,(Op) with det g = 1 acts as g € GL,(F,) on H*"}(DL,, Q,)s,
— (w, 1) acts trivially,

— (a,1) for a € OF acts as @ € GL,(F,) on H**(DL,, Qy)s,

— (1,0) for o € Ip, acts by the scalar §(Arty (o)),

— (1,0) for 0 € Wg, with Artp, (0) = @ acts as Frob] on H? (DL, Q).

n(n—1)
2

By [DMB85], Frob} acts on H2™(DL,,Q,)s by (—1)"'¢ = (0"""(552)) (@) (see
also the proof of [Wanl14, Théoreme 3.1.12]). Therefore we conclude that

Hom 0 ) (Po-1, He ™' (DL, Qy)o) = g B (05" 71) 71 (52). |

Proposition 5.11 There exists a J'-equivariant injection H''(DL,,, Q,)s — H{.
Proof. Let b € Fq be as in Proposition 5.6. We put
(]F;n)l ={a € ]qun | Nr[gqn/lpq(a) =1},

and write H"1(Y;,Q,)¢ for the 0| %, p-isotypic part of H" (Y}, Q,). By Proposi-
tions 5.6 and 5.9, the pair (U, X') satisfies the condition in Proposition 4.5 (we may
take Ky = J' N SL,(OFr)). By Proposition 5.9 and Corollary 4.6 (i), we have a
J'-equivariant map

sp*: HIV(Y,, @y) = Hip.

Now note that Y is purely n — 1-dimensional and smooth over F,. Since Y is
(F)'-equivariantly isomorphic to the Deligne-Lusztig variety for SL,(F,), [DL76,
Theorem 9.8] tells us that the composite

Hélil(%?@ﬁ)@ — Hgil(%a@f) — Hnil(}GJ?@Z)
is an injection. Therefore, Corollary 4.6 (ii) tells us that the composite
HE7H (Y, Qoo — Hy 7' (Y3, Q) = Hiy

is an injection. o o
Thus we have only to prove that the pull-back map H*~!(DL,,Q,) — H" (Y}, Q,),
which is J'-equivariant, induces an isomorphism H" (DL, Q,)s — H" (Y;, Q,)s.
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— F, — .
It is easy to see that H" 1(DL,,Q,) & Ind(];x i H" 1(Y,,Q,) as representations of
qTL

;. By the Frobenius reciprocity, we have
n— ra) n— o) ~ F;” n— o)
H;™(DLy, Qp)g = Homgx (6, H{ (DL, Q) = Homgx (6, Ind g ), H HY,, Q)
= Hom(]F;n)l (9’(1@;“)1 ) Hgil(yl-n @Z)) = Hélil(Y;h @6)9'

It is easy to see that the composite of the above identifications is equal to the
pull-back map H" *(DL,,Q,)s — H" (Y}, Q). This concludes the proof. |

Proof of Theorem 5.3. By Proposition 5.11, we have an injection
HomJlm(og/wZ) (ﬁe—la H?_l(DLm@e)e) — HomJlm(Og/wZ)(ﬁe—h Hiy),
which is F* GL,(OF) x Wg,-equivariant. Lemma 5.10 says that
Homjlm(og/wZ) (ﬁe—la Hf_l(DLn,@g)g) =7y X (95n_1)_1<1_7n)a

which is a smooth representation of F* GL,(Op) x Wg,. Therefore, we obtain an
F* GL,(Op) x Wg, -equivariant injection

T R (06" 1) T (5E) — Hom ;10 /2y (g1 Hip)™,

where (—)™ denotes the F'* GL,(Op) x Wg, -smooth part. On the other hand,
Lemma 4.8 (ii) tells us that

Homﬂm(o;/wZ)(ﬁe—la Hip)™ = Homoé/wz(m‘l’ Indjl Hipr).

Since J C G is open, G' C G is closed normal and J! = G' N J, by Lemma
4.7 (i) we have a J-equivariant isomorphism Ind%, Hj; = Ind%,” H};. Further, as
G'J is an open subgroup of G, we have a G'J-equivariant injection Indgi‘] H{; —
IndS, ,(Ind%,” Hl;) = Ind%, Hl; by Lemma 4.7 (i). Together with Proposition 4.4,
we obtain an F* GL,,(Or) x W -equivariant injection

7o X (Qén_1>_1(1_7n) — Homog/wz(ﬁg—l, HLT),

which induces a non-zero J-equivariant map 7y X, 8 (06" 1)~ (52) — Hyr. By
the Frobenius reciprocity, this corresponds to a non-zero G-equivariant map

o X pp-1 W Indy” (86"1) 7' (45%) — Hur.

Since 7y is supercuspidal and its central character is trivial on w?, Theorem 4.2 tells
us that there exists a non-zero map py-1 X Ind%ﬁn (06" 1)1 — JL(mg)Y Mrecp(mp)".
As pg-1 and JL(my)" are irreducible, we have pg-1 = JL(mg)" and JL(mg) = p_1 =
po- As recp(my)V is irreducible and dim Ind%ﬂn (06" 17! = n = dimrecg(my)Y, we

conclude that reci(mg)” = Ind}y%, (65" ) ™, hence recp(mo) = Indij (65").
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6 Example II: simple supercuspidal representa-
tions

In this section, we determine recp(7) and JL(7) for a simple supercuspidal represen-

tation 7 of GL, (F'). In the following we fix a uniformizer w of I’ and a non-trivial

Tr
additive character ¢y: F,, — C*. We write ¢ for the composite F, _Falfp, F, Yo, ox.

We briefly recall the notion of simple supercuspidal representations of GL,,(F')
and D*. See [Miel6, §4.1] for more detail. Let Iw be the standard Iwahori subgroup
of GL,,(F') and Iw the pro-p radical of Iw. The character 1) determines a character
of Tw:

Y Iwy = C*(ay) = (@ +ams + -+ i + @ Lan).

Here the image of a € Op under the map O — F, is denoted by a@. Put

010 --- 0
0o 01 --- 0
p=1: i t | € GLa(F).
0 00 1
@ 0 0 0

It normalizes (Iw,, ).

Definition 6.1 For a character x: F;' — C*andc € C*,let A, .: OrptIw, — C*
be the character defined as follows:

AX7C(CL) = X(E) (a € OIX?)7 Ax,C(SO) = Ax,c‘lvwr = 1.

We put 7, . = c—IndGI;"(ZF) Ay ¢, which is known to be an irreducible supercuspidal
’ Opp?Iwy ’

representation of GL,,(F).

Next we consider the group D*. Recall that F;, denotes the degree n unramified
extension of F. We write 7 € Gal(F,,/F) for the arithmetic Frobenius lift. Since
the invariant of D is 1/n, there exists an isomorphism D = F,[I1], where II" = w
and Ila = 7(a)Il for a € F),. In the following, we fix this isomorphism and identify
them.

Definition 6.2 For a character x: Fi — C* and ¢ € C*, let AY : OpII*(1 +
IIOp) — C* be the character defined as follows:

Av(a) =x(@) (a € Op), AL () =c¢, AY(1+11d) =9 (Trs,/m,(d)).
g;HZ(l HTTOp) AfZ ., which is known to be an irreducible smooth
representation of D*. Note that the isomorphism class of p, . is independent of the
choice of an isomorphism D = F, [I1], as every automorphism of D is inner.

We put p, . = c-Ind
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Remark 6.3 (i) Asin [Miel6, §4.1], simple supercuspidal representations {m¢ .}
of GL,(F') are in fact parameterized by ¢ € Fy and (x,c) as above. The
representation m, . in Definition 6.1 corresponds to T, On the other hand,

Te e €quals m, . for the uniformizer (w where ( € Op is the Teichmiiller lift
of (. Therefore, if we vary the fixed uniformizer w, the representations of the
form m, . cover all simple supercuspidal representations. Similar remark holds
for py .

(ii) Let &: F* — C* be an unramified character. Then, we can easily see that
Tye @ ((odet) & Ty g(w)e and pyc @ (§ o Nrd) = py¢(w)e- Since recp and
JL are compatible with character twist, to determine recp(m, ) and JL(m,. ),
we may assume that ¢ = 1. In the following we put Ay, = A4, m, = T,
AD = Af( pyn1 and py = py (pyner

We write n = n'p® with p { n/. Take an nth root wy, of w and put L = F(wy),
wg =w; and E = F(wg). For € E, we write

x = w%E(x Co(1 4+ u,wg),

where ¢, € p,-1(F) ={a € E | a®! =1} C Op and u, € Op. The goal of this
section is as follows:

Theorem 6.4 Let x be a character of F.
(i) We have JL(my) = py.
(i) Assume that ptn. We define two characters &, u: E* — C* by
E(@) = X(C)e@,)",  plx) = A=Ds(C,) !

where

n—1

- qg 2 Zyl,...,yn,leﬁq ¢(Zl§i§j§n—1 yiyj) p#2,
(3) p=2,

and §: F¢ — C* is the quadratic character. Then we have
recp(my,) = Ind%é e,
(iii) Assume that p | n. We define two characters vy, ¢: E* — C by
(@) = X@), Blw) = (—1)nDe),

Put f = [F, : F,] and m = ged(e, f). Let IT, be the affine algebraic variety
over F, defined by the equation

m 1
P =g o Z YilYj-

1<i<j<n—2
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As defined in [IT16, (3.17), (3.18)], the group Wg acts on IT,. On the other
hand, the group F,m acts on ITy, by a: z — z+a, y — y, yi — y; (a €

F,m). These two actions commute. Let 1/ denote the additive character ¥ o

Trs, /v, Of Fym. We write H} ' (IT\,, Q) for the subspace of H?~*(IT,,, Q)
on which F,m acts by v'. It is a smooth representation of Wg. Put 7 =

HP M (IT, Qg ("5H)-
Then we have
recp(m,) = Ind%; (TR v, ® ).

Remark 6.5 (i) Theorem 6.4 (i) was proved in [IT14] by explicit computation of
characters.

(ii) Theorem 6.4 (ii), (iii) were obtained in [BHO5b], [IT15b], respectively (for (ii),
see also [BHO5b, Theorem 2.1 (1)] and [IT15a, §5]).

The proof of Theorem 6.4 is divided into the cases pt n and p | n. In this paper
we only treat the case p | n; the other is similar but easier.

Definition 6.6 We put
J = 03¢" Iw . x(OFI1*(1 + 1Op) /@") x W C G, J'=G'nJ.

Let J! be the subgroup of J! generated by the following elements:
— (g,d,1) for g € Iw, and d € 1 + 1IOp with det g = Nrd d,
— (a,a,1) for a € OF,
— (p,11,1), and
— (95, 117" 0) for 0 € Wg, where g, € O Iw, is the element in [IT16, (3.14)],
and n, = vp(Art;'(0)).

Lemma 6.7 (i) The group J} is an open normal subgroup of J'.

(ii) Put ny = ged(n/,q — 1) and p = pu, (Op). We regard pu as a subgroup of
D* /w". Then, we have J' = {J.., ¢Ji (later we will also prove that the union
in the right hand side is disjoint).

(iii) The composite J! — J — Of¢? 1w, xWg is surjective.

Proof. Let I be the open subgroup of W consisting of o such that Art;' () € 1+pg.
If 0 € I, then g, belongs to Iw, and n, = 0. Therefore, we can easily check that
J! contains J' N (Iw, x (1 4+ IIOp) x I). Hence J! is open in J'.

We prove (ii). Take (g,d,0) € J'. If we put ¢’ = gg,;! and d’ = dlI", then
(g9,d,0) € (¢',d',1)J}. Since det ¢’ = Nrdd', there exists an integer m such that
"¢ € Oplwy and II"d" € OF(1 4+ IIOp). Write ¢™¢' = ag” and 1I"d" = d'd”,
where a,d’ € j;—1(Or), ¢" € Iw; and d” € 1 +11O0p. Since det(¢™g’) = Nrd(I1"d’)
and det ¢",Nrdd” € 1+ pg, we have a” = @ and det ¢” = Nrdd”. Put { = d'/a,
which is an element of u. Now we have

(g"d" 1) = (1,¢,1)(a, a, 1)(p, 11, 1)"™(g",d", 1) € CJ;

43



Yoichi Mieda

and (g,d, o) € (J!. This concludes (ii). As u is contained in the center of J!, J! is
normal in J', hence (i).

Finally consider (iii). Take an element (g 0) of O Tw, xWhp. As g9, €
OFp%Tw,, there exist a € Op, m € Z and ¢’ € Iw, such that gg;!' = ap™g.
Since Nrd: 1 4+ IIOp — 1 + pp is surjective (see [Rie70, Lemma 5]), we can take
d € 14+ 11Op such that Nrdd = det ¢’. Then, the element

(a,a,1)(, I, 1)"(¢,d,1)(gs, 1T, 0) € J}
is mapped to (g,0) under J! < J — OF¢p?Iw, xWpg. |

Now we use results in [IT16]. We may assume that ¢p; in [IT16, §2.1] is equal to
IT. Let U C M(O) be the affinoid and X’ the formal model of U constructed in [IT16,
§2] (in [IT16], U and X are denoted by X; and X, respectively). By construction,
U is a rational subset of t(/\/l(o)oc).

Proposition 6.8 (i) The action of J} C G on M (0 )C stabilizes U and extends to
X.

(ii) The formal scheme X is flat over k° and its reduction X, is isomorphic to the
perfection of I'T,,.
(iii) The induced action of J! on X, comes from an action on 1Ty, which is described
as follows:
— (g,d,1) for g = (g;;) € Iwy and d =1+11d" € 1 +I1Op with det g = Nrdd
acts on 1T, as the element

1 _ o -
v Trp, /5w (Top, o /m, (&) — (G2 + -+ Gntn + @ 'gn1)) € Fpm,

— (a,a,1) for a € Of acts on 1Ty, trivially,
— (¢,I0,1) acts on ITy, as in [IT16, (3.2)], and
— (95,117, 0) for 0 € Wg acts on ITy, as mentioned in Theorem 6.4 (iii).
(iv) For ¢ € u\ {1}, we have U(NU = @.
(v) We have J' =[], ¢Ji and J} N (OpIT*(1 +110p)/w”) = (1 +11O0p)", where
(1+T1Op)* denotes the subgroup of 1+110p, consisting of elements with reduced
norm 1.

Proof. The assertion (i) is obtained in [IT16, §3]. Consider (ii). The reduction Xj
is computed in [IT16, Theorem 2.5|. In particular, dim X; = dimIT,, = n — 1. By
Corollary A.6 and the presentation of X in [IT16, §2], we conclude that X is flat
over k°. The claim (iii) is also included in [IT16, §3].

We prove (iv). We use the notation in [IT16]. Recall that U is defined by the
inequalities [IT16, (2.5)]:

Yo~

(mz - 1)

1
) )2 - for1 <i<n-—2,
2ng*
1

- forn—1<i<n.
ng"(p +1)
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By [IT16, (1.7)], ¢ acts by x; — ¢ 'x;. Since n/ is prime to p and ¢ # 1, we have
("' —1 € OF. Therefore, if v(x, — 1) > 0, we have v(z,) = 0 and

v, — 1) =v(( =Dz, + 2, — 1) = 0.

Hence we have U N U( = <, as desired.

Finally we prove (v). By (i) and (iv), we have u N J! = {1}. Hence the cosets
{¢J1} e, are disjoint to each other. Together with Lemma 6.7 (ii), we obtain J* =
HCE NS J!. On the other hand, clearly we have

(1+T0p)' c JEN(OT%(1 + 1Op) /=)
C J'N(OFI*(1 +T10p) /") = u(1 +TOp)*.

Since p N J2 = {1}, we conclude that (1 + IIOp)* = JI N (OF1%(1 + 1IOp) /w?) A

Corollary 6.9 The subspace H* (T, Q,)y of H* *(ITy,, Q,) in Theorem 6.4 (iii)
is J!-stable. Moreover, we have an isomorphism

Hom i ox 1m0 /w2 (A s He ™ (T, Qo)) = AT B (T @ 1y @ ) (57)

of representations of O3¢% Iw, xWg. Note that Lemma 6.7 (iii) enables us to define
an action of O3¢?Iw, xWg on the left hand side as in Lemma 4.8 (i).

Proof. Since the action of Fym on H"}(IT,,,Q,) commutes with the action of JZ,
the subspace H?'(ITy, Q) C H7'(IT\,, Q) is J)-stable.

Recall that in Proposition 6.8 (v) we proved that J! N (OxI1%(1+11Op)/w?) =
(1+IOp)'. For 1 +1Id € (1 +HOp)", we have AP(1 + I1d) = ¢(Trg,, x,(d)).
On the other hand, by Proposition 6.8 (iii), 1 + IId acts on H?'(IT,,,Q,)y by

Y (0~ Trp, 5, (d) = ¥(Trp,, 5, (d)). Therefore, as a vector space we have

Hom i o xz(14m0p) w2 (A s He 7 (T, Q)yr) = HE T (ITw, Qp)yr. (%)

Under this identification, the action of Ofyp”Iw, xWg on the left hand side is
described as follows:

(a) (a,1) for a € O acts by the scalar x(a)™' = A '(a),
(b) (¢, 1) acts trivially,

(¢) (g,1) for g € Twy acts by the scalar ¢(g)~" = A '(g) and

(d) (go,0) for o0 € Wg acts on HP (1T, Q,)y as (—1)" Vo5 on H* (I Ty, Q)
These are consequences of Proposition 6.8 (iii). For (b), note that (p,II) acts on
H"'(ITy,Q,) by the scalar (—1)""! (see [IT16, Proposition 3.2.2, Corollary 4.5]
and [IT15a, Proposition 4.2.3]).

For o € Wg, put u, = wg" Art;' (o) and take b, € tq—1(OF) such that b = ,.
Recall that g, = b,diag(l,...,1,¢,) for some ¢, € 1+ pp (see [IT16, (3.14)]).
Therefore, by (a) and (c), (g,,1) acts by the scalar x(b,)™' = v, (Arty' (o))~
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Hence the action of (1,0) on the left hand side of (x) is v, (Art;' (0))d(Art,' (0))o.
Now we conclude that

Hom 1 ox 121410, /o2 (Ai)’ H M (ITy, Qo) 2 AR (101 ®¢0)(5). m

Proposition 6.10 Let L, denote the rank 1 sheaf over Ay = SpecF,[t] defined

by the Fym-torsor 2P — z =t and the additive character ¢': Fym — C*, and Ef;w
the pull-back of L under

e ¢ 1
A o AL Wynu) 2T =2 T
1<i<j<n—2
Then, dim Hg_l(A%_l, E;JT,W) = p® and the map
HI AR L) — H AR L)
is an isomorphism. B
In particular, dim H? *(ITy, Q) = p°¢ and the composite
Hg_l(ITW7@€)W — Hg_l(ITVW@E) - Hn_l(ITwa@Z)

is injective.
Proof. We denote by Ly, (resp. £;,) the pull-back of L, under AL — AL; y
yP T (resp. A%_Q = AL (Y1, Un2) = T Y i o Yi;). Then we have

ITw _ o1
/Cw/ — /C,d)/ & ;C,i/.

We use results in Appendix B. By Remark B.1 and Lemma B.2, we have

— dim Hj(A%q,E%D,) = p°,

— Hé(A%q,ﬁ}b,) = Hl(A%q,E}p,) =0 for ¢ # 1, and

— HM(AL ,Ly,) — H'(AL , L) is an isomorphism.
By Remark B.1, Lemma B.3 and Example B.4, we have

— dim HS_Q(A%’z,EZ,) =1 and

— HP2(AR2,L3)) — H" (A2, L3,) is an isomorphism.
Hence we conclude the proposition by the Kiinneth formula. |
Corollary 6.11 We have a J'-equivariant injection Indﬁ HY Y(ITy, Qp)y — Hirp.

Proof. By Proposition 6.8 (i), (ii), the pair (U, X) satisfies the condition in Propo-
sition 4.5 (we may take Ky = J! N SL,(OF)). It is easy to see that IT,, is purely
n — l-dimensional and smooth. By Proposition 6.8 (i), (iv) and (v), for g € J' \ J!
we have U N Ug = @. Hence, by Corollary 4.6 (iii) and Proposition 6.10, we have
J'-equivariant homomorphisms

Ind7y H " (ITy, @)y < Indjy H* (1T, Q) — Hiy,

whose composite is injective. |
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Proof of Theorem 6.4. By Corollary 6.11, we have an injection

R —
Homjlﬂ(OXHZ(1+HOD)/wZ (AD IHdJ H 1(ITW, QE)TIJ’)

— Hom ;1 ox 1121 110,) /%) (AD Hir),

Y

which is OF % Iw, x Wg-equivariant. Taking the Ox¢? Iw, x Wg-smooth part (—)™
we obtain an O;¢” Iw, x Wg-equivariant injection

HomJlm(o NZ(14110p) /w?) (AD Ind Hn_l(ITw»@e)w’)sm
— Hom jinox1z(1110,) /%) (AD Hip)™.
By Lemma 4.8 (iii), the left hand side is identified with
Hom j1nox iz (1410,)/27) (AZ, H 7 (ITy, Q)yr) ™"
On the other hand, in the same way as in the proof of Theorem 5.3, we have
HomJlm(o;nZ(HnoD)/wZ)(Afa Hip)™ = Homoxnl(unop)/wZ(AD IndJ1 Hiyr)
= Homy)x XTZ(14T10 ) /wZ(AD Ind HﬁT)
- Homo;HZ(HHoD)/wZ(AX 5 IndGl Hiy)
- H0m0;n2(1+nop)/wZ(A§7 Hyr).
Therefore, by Corollary 6.9 we have an O;¢? Iw, X Wg-equivariant injection
This induces a non-zero J-equivariant map
ATRAY R (1 ® vy © ¢)(152) — Hir,
which corresponds to a non-zero G-equivariant map
Y X py K Indy” (1 @ vy ® ¢)(352) — Hir

by the Frobenius reciprocity. Since 7T;</ is supercuspidal and its central character is

trivial on w?, Theorem 4.2 tells us that there exists a non-zero map p, X Ind“ﬁvvg (T®
v, ®@¢) = JL(my )Rrecp(m, ). As p, and JL(m,) are irreducible, we have p, = JL(WX).
As recp(my) is irreducible and dim Indy” TRy ®¢) =ndimr = n'p® =n =
dimrecp(my) (see Proposition 6.10), we conclude that recy(m,) = Indyy, "(Tere) R

Remark 6.12 In the proof above, we do not need any information about the rep-

resentation 7 except its dimension. The irreducibility of Ind%Z (T ® vy, ® ¢) is also
a consequence of the proof.
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A Some ring theory over k°

Let k be a complete non-archimedean field. As in Section 2, k° denotes the valuation

ring of k£, m the maximal ideal of £°, and k the residue field of £°. Choose a non-zero

element @ € m. In this appendix, we collect some useful facts on algebras over k°.
For a k°-algebra A, we consider the following three properties:

(a) A is w-torsion free (in other words, flat over £°).
(b) A/mA is an integral domain.

(¢) For every non-zero element f € A, there exist ¢y € k° and f* € A\ mA such
that f =cpf’.

Proposition A.1 Assume that A satisfies the properties (a), (b) and (c). Then
the following hold.

(i) The ring A is an integral domain.

(ii) For f € A\mA, A/(f) is flat over k°.

Proof. We prove (i). First, by the property (b), we have A # 0. Let f and g be non-
zero elements in A. Take decompositions f = c¢ff’ and g = ¢,¢" as in the property
(c). Clearly cjey # 0 in k°. By (b), we have f'¢’ € A\ mA, and then f'¢’ # 0.
Hence, by (a) we conclude that fg = (creg)(f'g") # 0, as desired.

Next consider (ii). Take a € A such that wa € (f) and prove a € (f). Write
wa = fg with g € A. We may assume that a # 0, which implies that g # 0 by (a).
Take a decomposition g = ¢,¢’ as in (c¢). Since ¢, # 0, we have either ¢,/w € k° or
w/c, € m. If the latter holds, then f¢' = (w/c,)a lies in mA. As f,¢' € A\ mA,
this contradicts the property (b). Therefore ¢,/w lies in k°, and a = (¢;/w) f¢' lies

in (f). [

Corollary A.2 Assume that A satisfies the properties (a), (b) and (c). Fix an
integer ¢ > 1. Let (fy)m>1 and (gm)m>1 be sequences of elements in A satisfying
the following:

7(711+1:fm7 ggn-f—l:gma fl_gleA\mA‘

Then the k°-algebra A/(fm — gm | m > 1) is flat over k°.

Proof. Put I = (fou — gm | m > 1) and I, = (f;u — gm). Since fo, — gm =

= —1
it — I = (fnst = Gma1) (fon + -+ gi1) € Imgr, we have Ity C I, C - -

and I = J,,5; I;m- Therefore A/I = lim A/, and it suffices to prove that A/I,,
is flat over k° for each m.

If f,, — gm belongs to mA, I, is contained in mA, and then f; — g; € I, lies in
mA. Hence the assumption f; — g; € A\ mA implies that f,, — g, € A\ mA. Now
Proposition A.1 (ii) tells us that A/I,, is flat over k°. [

Proposition A.3 Let A= @m A/w™A denote the w-adic completion of A. If A
satisfies the property (a) (resp. (b), resp. (c)), so does A
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Proof. Assume that A satisfies the property (a). Then, for every integer m > 1, the
map A/w™A =2 A/w™ A is an injection. By taking projective limit, we obtain
the injectivity of A =% A. Hence A satisfies (a).

Next assume that A satisfies (b). By [FK13, Chapter 0, Lemma 7.2.8, Corol-
lary 7.2.9, Proposition 7.2. 15] we have A/wA A/wA. By taking base change
(—) Qo jene k° /m we have A/mA A/mA. Therefore A/mA is also an integral
domain, and A satisfies the property (b).

Finally assume that A satisfies (c). We write ¢ for the natural homomorphism
A — A. Take an arbitrary non-zero element a € A. By [FK13, Chapter 0, Proposi-
tion 7.2.15], Ais w-adically complete, hence w-adically separated. Thus there exists
an integer m > 0 such that a ¢ @w™A. Since A/w™A >~ A/w™A, we can find f € A
such that a — i(f) € @w™A. Since a ¢ @™A, we have i(f) ¢ @™A. In particular
f # 0, therefore, by the property (c) for A, we have a decomposition f = c¢;f" with
cp€k®and ff€ A\mA. Asi(f) ¢ ™A, ¢y does not lie in @w™k°. Hence we have
w™/cp € m.

If we write a — i(f) = @™a; with a; € A, then

a=1i(f)+@"ar = c; (i f) + (@™ /er)ar).

Since A/mA = zzl\/mzzl\, we have i(f") € ;1\ mA. Together with (@w™/cr)ar € mA,
we obtain i(f") + (w™/cf)a; € A\ mA. Therefore a = c;(i(f') + (w™/c)ar) gives
the desired decomposition. |

Corollary A.4 Assume that A is w-adically complete and satisfies the properties
(a), (b) and (c). Fix an integer ¢ > 1 and let (f,)m>1 and (gm)m>1 be as in Corollary
A.2. We denote by I the closure in A of the ideal I = (f,, — gm | m > 1). Then,
A/T is flat over k°.

Proof. By Corollary A.2, A/I is w-torsion free. By [FK13, Chapter 0, Proposition
7.4.5], the w-adic completion of A/l equals A/I. Hence Proposition A.3 tells us
that A/I is also w-torsion free, that is, flat over k°. |

Example A.5 Let n > 0 be an integer.

(i) The polynomial ring k°[Ty,...,T,] obviously satisfies the properties (a), (b),
().

(ii) Suppose that the characteristic of kK = k°/m is p > 0. Let ¢ be a power of p and
put k°[T{ ", T = iy, KO[Ty, T Then, RO[TY . T
satisfies the properties (a), (b), (C)l Indeed, (a) and (b) follow from (i), since
these are preserved by filtered inductive limits. The property (c) follows from
that on k°[T1,...,T,] and the fact that x[T1,...,T,] = &[Th,...,T,]; T; — T2
is an injection.
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oo

(iii) Under the same assumption as in (ii), let k°(TY ..., T ~) denote the w-
adic completion of /{:O[Tf_oo, ...,T9™]. Then, Proposition A.3 tells us that

o)

k(T ..., T9™) satisfies the properties (a), (b), (c).

oo

Corollary A.6 Let A= k°(T{ ..., T9 ~) be as in Example A.5 (iii), and (f,n)m>1,
(gm)m>1 sequences of elements in A satistying f., = fm and g}, 1 = gm. We de-
note by I the closure in A of the ideal I = (fy, — gm | m > 1). Assume that
dim(A/I @0 ) < n. Then, A/I is flat over k°.

Proof. Since A/T is the w-adic completion of A/I, as in the proof of Proposition

oo

A3 we have A/ Qo k= A/T @po k = &[T} ..., TT "1/ (fn — Gm | m > 1), where
Fon and G,y denote the images of f,, and g,, in &[T ..., T4 ], respectively. Since
K[TT ™., T9 ] is n-dimensional, the condition dim(A/T @ k) < n implies that
fm — Gm # 0 for some m > 1. Since [T ,...,T9 7] is an integral domain, we
have fi — g1 = (fm - )" £ 0, in other words, f; — g1 ¢ mA. Hence Corollary
A4 tells us that A/I is flat over k°, as desired. |

B Cohomology of Artin-Schreier sheaves

Let k£ be an algebraically closed field of characteristic p > 0. Fix a non-trivial
additive character ¢ : F, — C*. We write L, for the rank 1 sheaf defined by ¢ and
the F,-torsor a? — a = t over A' = Spec k[t].

Remark B.1 For m > 1, let ¢, be the additive character ¢ o Trg ,, 5, of Fym.
Then, L, is the rank 1 sheaf defined by 1, and the F,m-torsor a?” —a = t over Al.

Lemma B.2 Let d > 1 be an integer prime to p, and ¢ denote the morphism
A' — A': t — t?. Then the following hold.

(i) We have dim H}(A',¢*L,) = d — 1 and H:(A',¢*Ly) = H (A, ¢*Ly) = 0 for
i # 1.
(ii) The canonical map H}(A', ¢*L,) — H'(A', ¢*L,) is an isomorphism.
Proof. In [Del74, (8.11)], (i) and the following is proved:
(i) the cup product pairing

Hy(AY, ¢"Ly) x Hy (A, ¢"Ly-1) = HI(AL, Q) = Q1)

is perfect.

The assertion (ii) follows from (ii’) and the Poincaré duality. |

Lemma B.3 Fix an integer n > 0 and consider a non-degenerate quadratic form
with n variables Q: A™ — A'. If p = 2, we assume that n is even. Then, we have
dim H(A",Q*Ly) = 1 and the canonical map H! (A", Q*L,) — H"(A", Q*Ly) is
bijective.
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Proof. First assume that p # 2. Then, @ is diagonalizable, hence the claim follows
from Lemma B.2 and the Kiinneth formula.

Next consider the case p = 2. We may assume that n > 0. Let X C A"*! be the
affine variety defined by y? —y = Q(z1,...,z,). We have

H (X, Q) = HAA", Q) © HY(A", Q"Ly) = HMNA™, Q°L,),
H'(X, Q) = H'(A", Q) ® H" (A", Q"Ly) = H" (A", Q"Ly).

Therefore, it suffices to show that dim H?(X,Q,) = 1 and the map H*(X,Q,) —
H™(X,Q,) is a bijection. Consider the quadric X in P"*! defined by the homoge-
neous equation y?> — yz = Q(zy,...,,), which includes X as the complement of
the hyperplane section z = 0. We will show that X is smooth over k. Since Q
is non-degenerate and n is even, it is ordinary in the sense of [SGAT7, Exposé XII].
Therefore, by changing variables, we may assume that Q(z1,...,2,) = D 10| TiTitm,
where we put m = n/2 (see [SGAT7, Exposé XII, Proposition 1.2]). In this case, the
quadratic form y(y — z) — D", ;i1 is obviously ordinary; in other words, the
quadric X is smooth over k. Now [SGA7, Exposé XII, §3.6 and Table 3.7] tells
us that dim H*(X,Q,) = 1 and H*(X,Q,) — H"(X,Q,) is an isomorphism. This
concludes the proof. |

Example B.4 For an integer n > 0 and a € k>, the quadratic form

is non-degenerate if p # 2 or n is even.

Proof. 1f p # 2, this is proved in [IT15a, Lemma 4.1]. Assume that p = 2 and n is
even. For z = (z1,...,2,) and y = (y1,...,Yn), we have

O(z,y) =vix+y) —v(z)—v(y) = aZa:iyj.
i#]
This satisfies ®(e;,e;) = 0 and ®(e;,e;) = a for i # j, where ey,...,e, denote
the standard basis. It suffices to show that & is non-degenerate. Take a non-zero
clement © = > " | a;e; with a; € k. Put s = ay; + -+ +a,. If s —a; = 0 for every
1<i<n,wehave 0 =) " (s—a)=ns—s=s,a =s=0and z =0. Hence
there exists 1 < j < n such that s —a; # 0. This j satisfies ®(z,e;) = a(s—a;) # 0,
which concludes that ® is non-degenerate. |
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