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1 Introduction

This is an announcement of a recent joint work of Tetsushi Ito and the author
on the `-adic cohomology of the Rapoport-Zink tower for GSp4. The Rapoport-
Zink tower for GSp4 is a p-adic local counterpart of the Siegel threefold. Its `-adic
cohomology H i

RZ is naturally equipped with actions of three groups; the Weil group
of Qp, GSp4(Qp) and a non-trivial inner form J(Qp) of GSp4(Qp). These actions
are expected to be strongly related with the local Langlands correspondence, but
they are not fully understood yet. In this work, we focus on a certain class of
non-tempered local A-packets of J(Qp), called the local Saito-Kurokawa A-packets.
We determine how these A-packets and the associated L-packets contribute to the
GSp4(Qp)-supercuspidal part of H i

RZ. See Theorem 3.1 for the precise statement.
The outline of this article is as follows. In Section 2, we give a brief review of

the local Langlands correspondence. We also recall the Lubin-Tate tower, which
is essential to prove the local Langlands correspondence for GLn. In Section 3, we
introduce the Rapoport-Zink tower for GSp4, which is a GSp4-version of the Lubin-
Tate tower. After that, we state our main theorem and explain the ideas of the
proof.

2 Local Langlands correspondence

Throughout this article, we fix a prime number p. In this section, we briefly recall
the local Langlands correspondence. Let G be a connected reductive group over
Qp. We assume that G is an inner form of a split group for simplicity. We write
Π(G) for the set of the isomorphism classes of irreducible smooth representations

(over C) of G(Qp), and Φ(G) for the set of the Ĝ-conjugacy classes of L-parameters

WQp × SL2(C) → Ĝ. Here WQp denotes the Weil group of Qp, and Ĝ denotes the
dual group of G over C. The local Langlands correspondence for G is a conjectural
map LLC: Π(G)→ Φ(G) with finite fibers. The fiber ΠG

φ of φ ∈ Φ(G) is called the
L-packet of φ. The map LLC is expected to be surjective when G is split.

If G = GLn, then Ĝ equals GLn(C), and an L-parameter WQp × SL2(C)→ Ĝ is
identified with an n-dimensional semisimple representation of WQp × SL2(C). The
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local Langlands correspondence for GLn has been proved by Harris-Taylor [HT01]
(see also [Hen00] and [Sch13]). In this case, every L-packet is a singleton; in other
words, the map LLC: Π(GLn) → Φ(GLn) is bijective. Let us briefly recall the
construction of LLC(π) for a supercuspidal π ∈ Π(GLn). It is given by using the
Lubin-Tate tower {MK}K⊂GLn(Zp), which is a projective system of rigid spaces over

Q̂ur
p indexed by compact open subgroups of GLn(Zp). Here are basic geometric

properties of the Lubin-Tate tower:

– MGLn(Zp) =
∐

Z((n− 1)-dimensional open unit disk over Q̂ur
p ).

– MK/MGLn(Zp) is a finite étale covering. In particular, each MK is an (n −
1)-dimensional smooth rigid space over Q̂ur

p . If K is an open normal sub-
group of GLn(Zp), then MK/MGLn(Zp) is a Galois covering with Galois group
GLn(Zp)/K.

The group GLn(Qp) acts on the projective system {MK}K⊂GLn(Zp); it is a local
analogue of the Hecke action. The group D× also acts on the tower, where D
is the central division algebra over Qp with invariant 1/n. Now we fix a prime
number ` and an isomorphism Q`

∼= C. We put H i
LT = lim−→K

H i
c(MK ⊗Q̂ur

p
Cp,Q`).

It is equipped with an action of GLn(Qp) × D× × WQp . Roughly speaking, the
L-parameter LLC(π) for a supercuspidal π ∈ Π(GLn) is constructed by using the
irreducible decomposition of Hn−1

LT .

Theorem 2.1 ([Car86], [HT01], [Boy09]) Let π be an irreducible supercuspi-
dal representation of GLn(Qp). We put ρ = JL(π), where JL denotes the Jacquet-
Langlands correspondence between GLn(Qp) and D×. Then LLC(π) is a unique
irreducible n-dimensional representation of WQp (which is regarded as a representa-
tion of WQp × SL2(C) by the first projection) satisfying the following:

HomD×(Hn−1
LT , ρ)sm ∼= π � LLC(π)

(n− 1

2

)
.

Here (−)sm denotes the smooth part with respect to the GLn(Qp)-action, and (n−1
2

)
denotes the Tate twist.

Remark 2.2 If i 6= n− 1, we have HomD×(H i
LT, ρ)sm = 0. See [Boy09].

The key of the proof of Theorem 2.1 is to relate {MK}K⊂GLn(Zp) to a certain
Shimura variety. Let us explain it in the case n = 2. In the following we write
A for the ring of adeles of Q. For a compact open subgroup K ′ ⊂ GL2(A∞), let
ShK′ denote the modular curve over Q with level K ′. We write Shan

K′,Q̂ur
p

for the rigid

space over Q̂ur
p associated with ShK′,Q̂ur

p
= ShK′ ⊗QQ̂ur

p . We fix a sufficiently small

compact open subgroup Kp of GL2(A∞,p). We write ShGL2(Zp)Kp,Ẑur
p

for the integral

modular curve over Ẑur
p with level GL2(Zp)Kp. The supersingular locus of its mod

p fiber ShGL2(Zp)Kp,Fp
is denoted by Shss

GL2(Zp)Kp,Fp
. We have the specialization map

sp: Shan
GL2(Zp)Kp,Q̂ur

p
→ ShGL2(Zp)Kp,Fp

. Let Shss-red
GL2(Zp)Kp,Q̂ur

p
be the rigid analytic open
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subset of Shan
GL2(Zp)Kp,Q̂ur

p
obtained as the inverse image of Shss

GL2(Zp)Kp,Fp
(strictly

speaking, we are in fact working in the framework of adic spaces, so we need to
take the interior of the inverse image). The open subset Shss-red

GL2(Zp)Kp,Q̂ur
p

is called

the supersingular reduction locus, since its classical point corresponds to an elliptic
curve with good supersingular reduction. Finally, for a compact open subgroup K
of GL2(Zp), let Shss-red

KKp,Q̂ur
p

be the inverse image of Shss-red
GL2(Zp)Kp,Q̂ur

p
in Shan

KKp,Q̂ur
p

. Then

the following holds:

Proposition 2.3 (p-adic uniformization) We have an isomorphism

Shss-red
KKp,Q̂ur

p

∼= D̃×\(MK ×GL2(A∞,p)/Kp),

where D̃ is the quaternion division algebra over Q which ramifies exactly at ∞ and
p.

In this work, we use the local Langlands correspondence for G = GSp4 and its

non-trivial inner form J . Both of the dual groups Ĝ and Ĵ are equal to GSp4(C).
The local Langlands correspondence for G and J are due to Gan-Takeda [GT11] and
Gan-Tantono [GT14], respectively. Unlike the GLn-case, no geometry is needed in
the proofs of them. They used the local theta lifting to reduce the local Langlands
correspondence for G and J to that for GL2 and GL4. However, the author is still
interested in how the local Langlands correspondence for these groups interacts with
geometry.

Let φ : WQp × SL2(C) → GSp4(C) be an element of Φ(G) = Φ(J). The corre-
sponding L-packets ΠG

φ and ΠJ
φ are not necessarily singletons. We are particularly

interested in the case where ΠG
φ contains a supercuspidal representation. Such L-

parameters are classified as follows:

Proposition 2.4 Let r : GSp4(C) ↪→ GL4(C) denote the natural embedding. If
ΠG
φ contains a supercuspidal representation, then one of the following holds:

(i) There exists a 4-dimensional irreducible representation φ0 of WQp such that
r ◦ φ = φ0 � 1, where 1 denotes the trivial representation of SL2(C). In this
case, each of ΠG

φ and ΠJ
φ consists of one supercuspidal representation.

(ii) There exist distinct 2-dimensional irreducible representations φ0 and φ1 of WQp

such that r ◦ φ = (φ0 � 1)⊕ (φ1 � 1). In this case, each of ΠG
φ and ΠJ

φ consists
of two supercuspidal representations.

(iii) There exist a 2-dimensional irreducible representation φ0 ofWQp and a character
χ of WQp such that r ◦ φ = (φ0 � 1) ⊕ (χ � Std), where Std denotes the
standard representation of SL2(C). In this case, each of ΠG

φ and ΠJ
φ consists

of one supercuspidal representation and one non-supercuspidal discrete series
representation.

(iv) There exist distinct characters χ0, χ1 of WQp such that r ◦ φ = (χ0 � Std) ⊕
(χ1 � Std). In this case, ΠG

φ consists of one supercuspidal representation and
one non-supercuspidal discrete series representation, and ΠJ

φ consists of two
non-supercuspidal discrete series representations.
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In this article we focus on the case (iii). We write πsc (resp. πdisc) for the su-
percuspidal (resp. non-supercuspidal) representation belonging to ΠG

φ . Similarly, we
write ρsc (resp. ρdisc) for the supercuspidal (resp. non-supercuspidal) representation
belonging to ΠJ

φ.
We also need to consider the A-parameter ψ obtained as the composite of

WQp × SL2(C)× SL2(C)
swap SL2 factors−−−−−−−−−→ WQp × SL2(C)× SL2(C)

φ�1−−→ GSp4(C).

Let ΠG
ψ (resp. ΠJ

ψ) be the local A-packet attached to ψ. We should clarify what ΠG
ψ

and ΠJ
ψ mean, since local A-packets for J has not been fully constructed yet (see

[GT19] for the construction of local A-packets for G). Recall that our φ satisfies
r ◦ φ = (φ0 � 1) ⊕ (χ � Std). This implies that detφ0 = χ2. Therefore, the A-

parameter ψ′ = ψ ⊗ χ−1 factors through Sp4(C) ⊂ GSp4(C). Since Sp4(C) = ŜO5,
ψ′ can be regarded as an A-parameter for both Gad = SO5(Qp) and Jad. Local
A-packets for SO5(Qp) was fully constructed by Arthur [Art13]. In particular we
have the local A-packet ΠSO5

ψ′ , which can be regarded as a subset of Π(G). We put

ΠG
ψ = {π′ ⊗ (χ ◦ sim) | π′ ∈ ΠSO5

ψ′ }, where sim: G(Qp)→ Q×p denotes the similitude
character and χ is regarded as a character Q×p → C× by the local class field theory

W ab
Qp
∼= Q×p . As for Jad, the local A-packet ΠJad

ψ′ for the particular A-parameter ψ′

was constructed in [Gan08]. Therefore we get the local A-packet ΠJ
ψ in the same

way as above.
We call ΠG

ψ and ΠJ
ψ the local Saito-Kurokawa A-packets. The structure of them

are as follows:

– ΠG
ψ consists of πsc and a non-tempered representation πnt.

– ΠJ
ψ consists of a supercuspidal representation ρ′sc and a non-tempered represen-

tation ρnt. As a consequence of our main theorem, ρ′sc turns out to be equal to
ρsc (see Remark 3.2 (ii)).

3 Main Theorem

We continue to write G for GSp4 and J for its unique non-trivial inner form over
Qp. To state our main theorem, we introduce the (basic) Rapoport-Zink tower for
GSp4, which is the GSp4-version of the Lubin-Tate tower. It is a projective system

of rigid spaces over Q̂ur
p indexed by compact open subgroups of G(Zp). Here are

basic geometric properties of the Rapoport-Zink tower for GSp4:

– MG(Zp) is a 3-dimensional smooth rigid space over Q̂ur
p (unlike the Lubin-Tate

case, we do not have an elementary expression of it).

– MK/MG(Zp) is a finite étale covering. In particular, each MK is a 3-dimensional

smooth rigid space over Q̂ur
p . If K is an open normal subgroup of G(Zp), then

MK/MG(Zp) is a Galois covering with Galois group G(Zp)/K.

As in the Lubin-Tate case, the tower {MK}K⊂G(Zp) is equipped with an action of

G(Qp)×J(Qp). We put H i
RZ = lim−→K

H i
c(MK⊗Q̂ur

p
Cp,Q`), which is a representation of
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G(Qp)×J(Qp)×WQp . For an irreducible smooth representation ρ of J(Qp), we put

H i,j
RZ[ρ] := (ExtjJ(Qp)

(H i
RZ, ρ)Dc-sm)sc, where (−)sc denotes the G(Qp)-supercuspidal

part. For the definition of (−)Dc-sm, see [Mie14, Notation]. Note that H i,j
RZ[ρ] is a

representation of G(Qp) ×WQp . Since the split semisimple rank of J is 1, we have

H i,j
RZ[ρ] = 0 for j ≥ 2.

Let φ ∈ Φ(G) be an L-parameter satisfying Proposition 2.4 (iii); namely, there
exist a 2-dimensional irreducible representation φ0 of WQp and a character χ of WQp

such that r ◦φ = (φ0�1)⊕ (χ�Std). We use the same notation as in the previous
section. We are interested in how ΠG

φ , ΠJ
φ, ΠG

ψ and ΠJ
ψ contribute to H i

RZ. Now we
can state our main theorem:

Theorem 3.1 (joint work with Tetsushi Ito) We have the following:

(i) H i,0
RZ[ρsc] ∼=

{
πsc � φ0(

3
2
) i = 3,

0 i 6= 3,
H i,1

RZ[ρsc] = 0,

H i,0
RZ[ρ′sc]

∼=

{
πsc � φ0(

3
2
) i = 3,

0 i 6= 3,
H i,1

RZ[ρ′sc] = 0.

(ii) H i,0
RZ[ρdisc] ∼=

{
πsc � χ(1) i = 3,

0 i 6= 3,
H i,1

RZ[ρdisc] ∼=

{
πsc � χ(2) i = 4,

0 i 6= 4.

(iii) H i,0
RZ[ρnt] ∼=

{
πsc � χ(2) i = 4,

0 i 6= 4,
H i,1

RZ[ρnt] ∼=

{
πsc � χ(1) i = 3,

0 i 6= 3.

Here are very rough summary of the main theorem:

– A piece of the local Langlands correspondence for G and J appears in H3
RZ.

This is similar to the Kottwitz conjecture (see [Rap95]).

– The non-tempered local A-packet ΠJ
ψ contributes to H4

RZ.

– There exists a supercuspidal representation of G(Qp) appearing outside the
middle degree. In fact, it happens only when its L-parameter has non-trivial
SL2(C)-part (see Remark 3.2 (iv)).

Remark 3.2 (i) By working in a suitable derived category, we may also consider
the derived version H∗RZ[ρ] := (Ext∗J(Qp)(RΓRZ, ρ)Dc-sm)sc of H i,j

RZ[ρ]. We can
recover φ and ψ from the WQp-action and the Lefschetz operator on H∗RZ[ρdisc]
and H∗RZ[ρnt], respectively (cf. [Dat12] in the GLn case).

(ii) By using Theorem 3.1, we can prove that the semisimple L-parameters attached
to πsc, ρsc and ρ′sc by Fargues-Scholze [FS] are equal to φ|WQp

. This implies that
ρsc ∼= ρ′sc.

(iii) By using recent results of Fargues-Scholze [FS], we can improve the theorem
above. We will explain it elsewhere.

(iv) For the L-packets of type (i) and (ii) in Proposition 2.4, we can obtain similar
results as Theorem 3.1 (i). On the other hand, up to now we cannot treat the
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L-packets of type (iv) in Proposition 2.4. The reason is that the theory of local
A-packets for J (or Jad) is not available in this case.

The proof of Theorem 3.1 is given by combination of local and global methods.
First we recall some results obtained from local geometry.

Theorem 3.3 ([IM]) Unless 2 ≤ i ≤ 4, H i
RZ,sc = 0.

Here 2 (resp. 4) appears in the statement since it is equal to dimMG(Zp)−dimMred

(resp. dimMG(Zp) + dimMred), where M is the natural formal model of MG(Zp).
The equality dimMred = 1 is related to the fact that the supersingular locus of the
Siegel threefold is 1-dimensional. The method of the proof of Theorem 3.3 is similar
to the author’s proof of H i

LT,sc = 0 for i 6= n− 1 (see [Mie10]), but it is much more
complicated, mainly because connected components of M are not affine (even not
quasi-compact).

Theorem 3.4 The representationH2
RZ,sc of J(Qp) does not contain non-supercuspidal

subquotient.

This is a consequence of Theorem 3.3 and the fact that H2
RZ,G(Qp)-sc,J(Qp)-non-sc

and

H5
RZ,G(Qp)-sc,J(Qp)-non-sc

are related by the Zelevinsky involution (see [Mie]).

Theorem 3.5 ([Mie20]) Assume that the central character of πsc is trivial on
pZ ⊂ GSp4(Qp) (we can always twist πsc by a character so that it satisfies this
condition). Then, the representation (lim−→K

H i
c((MK/p

Z)⊗Q̂ur
p
Cp,Q`))[π

∨
sc] of J(Qp)

has finite length.

This was proved by using the duality isomorphism between the Rapoport-Zink tower
for G and that for J due to [KW] and [CFS].

Next we discuss the global aspect. As in the Lubin-Tate case, we use the relation
between the Rapoport-Zink tower {MK}K⊂G(Zp) and the Siegel threefold. For a
compact open subgroup K ′ ⊂ G(A∞), let ShK′ denote the Siegel threefold over Q
with level K ′. We put H i

c(Sh) = lim−→K′
H i
c(ShK′ ⊗QQ,Q`), which is a representation

of G(A∞)×Gal(Q/Q). This representation is rather understood by using the global
Langlands correspondence for GSp4 (see [Tay93] and [Wei09]).

Let us fix a sufficiently small compact open subgroup Kp ⊂ G(A∞,p). As in
Section 2, for a compact open subgroup K ⊂ G(Qp) we can define a rigid analytic
open subset Shss-red

KKp,Q̂ur
p

of Shan
KKp,Q̂ur

p
, which is called the supersingular reduction locus.

The following is an analogue of Proposition 2.3:

Proposition 3.6 (p-adic uniformization, [RZ96]) We have an isomorphism

Shss-red
KKp,Q̂ur

p

∼= J̃(Q)\(MK ×G(A∞,p)/Kp),

where J̃ is a suitable inner form of GSp4 over Q such that J̃ ⊗Q R is anisotropic

modulo center, J̃ ⊗Q A∞,p ∼= G⊗Q A∞,p and J̃ ⊗Q Qp
∼= J .
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We put H i(Shss-red
Q̂ur

p
) = lim−→K,Kp

H i(Shss-red
KKp,Q̂ur

p
⊗Q̂ur

p
Cp,Q`), which is a representa-

tion of G(Qp) × WQp . By Proposition 3.6, we have the Hochschild-Serre spectral
sequence

Er,s
2 = ExtrJ(Qp)(H

6−s
RZ (3),A(J̃)1)sc ⇒ Hr+s(Shss-red

Q̂ur
p

)sc,

which is due to [Far04]. Here A(J̃)1 is the space of automorphic forms on J̃(A)

which are trivial on J̃(R). By Boyer’s trick and a result in [IM20] or [LS18], we have
Hr+s(Shss-red

Q̂ur
p

)sc ∼= Hr+s
c (Sh)sc. Therefore we obtain:

Proposition 3.7 We have a spectral sequence

Er,s
2 = ExtrJ(Qp)(H

6−s
RZ (3),A(J̃)1)sc ⇒ Hr+s

c (Sh)sc.

Now we are ready to sketch the proof of Theorem 3.1. The point is that we begin
with H i,j

RZ[ρnt]. By using Gan’s result [Gan08], we can choose

– a cuspidal automorphic representation Π of G(A)

– and a cuspidal automorphic representation Σ of J̃(A)

such that

– Πp
∼= πsc and Π∞ contributes to H2

c (Sh) and H4
c (Sh).

– if Π′ is an automorphic representation of G(A) such that Π′v
∼= Πv for all places

v 6= p,∞ and Π′p is supercuspidal, then Π = Π′. It is a kind of the strong
multiplicity one theorem.

– Σp
∼= ρnt and Σ∞ ∼= 1.

– if Σ′ is an automorphic representation of J̃(A) such that Σ′v
∼= Σv for all places

v 6= p, then Σ = Σ′. It is a kind of the strong multiplicity one theorem.

– Π∞,p = Σ∞,p; recall that we have G(A∞,p) = J̃(A∞,p).
By taking the Π∞,p-isotypic part of the spectral sequence in Proposition 3.7, we get
a short exact sequence

0→ H i+1,1
RZ [ρnt]→ πsc �H6−i

c (Sh)[Π∞](3)→ H i,0
RZ[ρnt]→ 0.

By assumption, H6−i
c (Sh)[Π∞](3) 6= 0 only if i = 2, 4. On the other hand, by

Theorems 3.3 and 3.4, we have H5,1
RZ[ρnt] = H2,0

RZ[ρnt] = 0. Hence we conclude

H4,0
RZ[ρnt] ∼= πsc �H2

c (Sh)[Π∞](3), H3,1
RZ[ρnt] ∼= πsc �H4

c (Sh)[Π∞](3).

Next we investigate H i,j
RZ[ρdisc]. We choose Π and Σ similarly as above, but so

that Π∞ contributes to H3
c (Sh). Then we get a short exact sequence

0→ H4,1
RZ[ρdisc]→ πsc �H3

c (Sh)[Π∞](3)→ H3,0
RZ[ρdisc]→ 0.

Since H3
c (Sh)[Π∞](3) is 2-dimensional indecomposable as a WQp-representation, it

suffices to determine dimH i,j
RZ[ρdisc][πsc]. This is done by using the following facts:
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– [ρnt] + [ρdisc] = [induced] in the Grothendieck group of finite length representa-
tions of J(Qp).

–
∑∞

i=0(−1)i dim ExtiJ(Qp)/pZ
(V, induced) = 0 for every J(Qp)/p

Z-representation
V of finite length ([SS97]).

To apply the second fact, we need the finiteness result in Theorem 3.5.
We can treat H i,j

RZ[ρsc] and H i,j
RZ[ρ′sc] in the same way. These cases are the simplest

because H i,1
RZ[ρsc] = H i,1

RZ[ρ′sc] = 0.
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199, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de
Langlands locales.

[FS] L. Fargues and P. Scholze, Geometrization of the local Langlands correspon-
dence, arXiv:2102.13459.

[Gan08] W. T. Gan, The Saito-Kurokawa space of PGSp4 and its transfer to in-
ner forms, Eisenstein series and applications, Progr. Math., vol. 258,
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