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Abstract. In this paper, we give a purely geometric proof
of the local Jacquet-Langlands correspondence for GL(n) over
a p-adic field, under the assumption that n is prime and the
invariant of the division algebra is 1/n. We use the ℓ-adic étale
cohomology of the Lubin-Tate tower to construct the corre-
spondence. We need neither a global automorphic technique
nor detailed classification of supercuspidal representations of
GL(n).

1 Introduction

Let F be a p-adic field, i.e., a finite extension of Qp. Let n ≥ 1 be an integer
and D a central division algebra over F such that dimF D = n2. The famous local
Jacquet-Langlands correspondence gives a natural bijective correspondence between
irreducible discrete series representations of GLn(F ) and irreducible smooth repre-
sentations of D×. Let us recall its precise statement. Write Irr(D×) for the set
of isomorphism classes of irreducible smooth representations of D×. We denote by
Disc(GLn(F )) the set of isomorphism classes of irreducible discrete series represen-
tations of GLn(F ). For ρ ∈ Irr(D×) (resp. π ∈ Disc(GLn(F ))), we denote the
character of ρ (resp. π) by θρ (resp. θπ). Here θρ is a locally constant function on
D×, and θπ is a locally integrable function on GLn(F ) which is locally constant on
GLn(F )reg, the set of regular elements of GLn(F ). The precise statement of the local
Jacquet-Langlands correspondence is the following:

Theorem 1.1 (the local Jacquet-Langlands correspondence) There exists a
unique bijection

JL : Irr(D×)
∼=−−→ Disc

(
GLn(F )

)
satisfying the following character relation: for every regular element h of D×,
θρ(h) = (−1)n−1θJL(ρ)(gh), where gh is an arbitrary element of GLn(F ) whose mini-
mal polynomial is the same as that of h.
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The original proof of this theorem, due to Deligne-Kazhdan-Vigneras [DKV84]
and Rogawski [Rog83], was accomplished by using a global automorphic method.
In some cases, we can find more explicit studies in [Hen93], [BH00], [BH05], which
are based on the theory of types. However, apart from the case of GL(2), a purely
local proof of Theorem 1.1 seems not to be known yet (cf. [Hen06, p. 1173]).

In this article, under the assumption that n is prime and the invariant of D is
1/n, we will give a simple geometric proof of the local Jacquet-Langlands correspon-
dence. In particular, the local Jacquet-Langlands correspondence for GL2(F ) and
GL3(F ) are fully recovered. The geometric object we use is the Lubin-Tate tower
for GLn(F ). It is a tower of universal deformation spaces of formal O-modules of
height n with Drinfeld level structures, where O denotes the ring of integers of F (for
a precise definition, see Section 3). Thanks to Carayol [Car86] and Harris-Taylor
[HT01], it is now well-known that the local Jacquet-Langlands correspondence is
realized in the ℓ-adic cohomology of the Lubin-Tate tower. Their proofs are again
global and automorphic. However, recent works by Strauch [Str08] and the author
[Mie11] enable us to study the cohomology in a purely local manner. They used
the Lefschetz trace formula to observe that the character relation in Theorem 1.1
appears naturally. In this work, we use both of the two results to obtain a bijection
between Irr(D×) and Disc(GLn(F )).

We sketch the outline of this paper. In Section 2, we give some preliminaries on
representation theory. In Section 3, we recall the definition of the Lubin-Tate tower
and main results of [Str08] and [Mie11] which play important roles in the proof. In
Section 4, we construct the Jacquet-Langlands correspondence for GLn(F ) by using
the ℓ-adic cohomology of the Lubin-Tate tower, and prove its expected properties.

Acknowledgment The author would like to thank Matthias Strauch for very
helpful discussions. He also thanks Tetsushi Ito for his comments.

Notation As in the introduction above, let F be a p-adic field and O its ring of
integers. We denote the normalized valuation of F by vF and the cardinality of the
residue field of O by q. Fix a uniformizer ϖ of O. Denote the completion of the
maximal unramified extension of O by Ŏ and the fraction field of Ŏ by F̆ .

Throughout this paper, we fix an integer n ≥ 1. In Section 4, it will be assumed
to be a prime. Let D be the central division algebra over F with invariant 1/n.

For simplicity, put G = GLn(F ). We denote by Greg (resp. Gell) the set of regular
(resp. regular elliptic) elements of G. Write ZG for the center of G. We apply these
notations to other groups. For example, we write (D×)reg for the set of regular
elements of D×. As in Theorem 1.1, for h ∈ (D×)reg, let gh be an element of Gell

whose minimal polynomial is the same as that of h. Such an element always exists,
and is unique up to conjugacy. Moreover, it induces a bijection between conjugacy
classes in (D×)reg and those in Gell.

For a field k, we denote its algebraic closure by k. Let ℓ be a prime which
is invertible in O. We fix an isomorphism Qℓ

∼= C and identify them. Every
representation is considered over C.
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2 Preliminaries on representation theory

Here we collect preliminary lemmas on representation theory which seem to be well-
known.

Lemma 2.1 The map JL : Irr(D×) −→ Disc(G) satisfying the character relation
θρ(h) = (−1)n−1θJL(ρ)(gh) in Theorem 1.1 is unique, injective and preserves central
characters.

Proof. The injectivity is clear, since ρ ∈ Irr(D×) can be determined from θρ|(D×)reg .
Let us prove that JL preserves central characters. For ρ ∈ Irr(D×), let ωρ (resp.
ωJL(ρ)) be the central character of ρ (resp. JL(ρ)). Then, for h ∈ (D×)reg and
z ∈ F× = ZG = ZD× , we have

ωρ(z)θρ(h) = θρ(zh) = (−1)n−1θJL(ρ)(zgh) = (−1)n−1ωJL(ρ)(z)θJL(ρ)(gh)

= ωJL(ρ)(z)θρ(h).

Since (D×)reg is dense in D×, there exists h ∈ (D×)reg such that θρ(h) ̸= 0. Thus
we conclude that ωρ = ωJL(ρ).

Now the uniqueness of JL is a direct consequence of the orthogonality relation
of characters ([Rog83, Lemma 5.3], see also [SS97, Theorem III.4.21]).

Let Irrϖ(D×) be the subset of Irr(D×) consisting of isomorphism classes of
representations on which ϖ ∈ F× = ZD× acts trivially. Define Discϖ(G) similarly.

Lemma 2.2 To construct JL, it suffices to construct a surjection

JL : Irrϖ(D×) −→ Discϖ(G)

satisfying the character relation θρ(h) = (−1)n−1θJL(ρ)(gh) for h ∈ (D×)reg.

Proof. For ρ ∈ Irr(D×), let ωρ be its central character. Take c ∈ C× such that
cn = ωρ(ϖ), and consider the character χc : z 7−→ cvF (z) of F×. Then ρ⊗(χ−1

c ◦Nrd) ∈
Irrϖ(D×). Extend JL to Irr(D×) by

JL(ρ) = JL
(
ρ ⊗ (χ−1

c ◦ Nrd)
)
⊗ (χc ◦ det).

It is easy to see that this satisfies the character relation. In particular it is indepen-
dent of the choice of c and injective (cf. Lemma 2.1). Similar argument shows that

the extended JL is surjective.

Let B ⊂ G be the Borel subgroup consisting of upper triangular matrices. Re-
call that the Steinberg representation St is the unique irreducible quotient of the
unnormalized induction IndG

B 1 from the trivial character 1 on B. For a character χ
of F×, put Stχ = St⊗ (χ◦det). A representation of the form Stχ is called a twisted
Steinberg representation. It is a discrete series representation of G. The following
lemma is very well-known:
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Lemma 2.3 The map χ ◦ Nrd 7−→ Stχ gives a bijection between characters in
Irrϖ(D×) and twisted Steinberg representations in Discϖ(G). It satisfies the char-
acter relation θχ◦Nrd(h) = (−1)n−1θStχ(gh) for h ∈ (D×)reg.

Proof. Only the character relation is non-trivial. In the Grothendieck group of finite
length smooth representations of G, [Stχ] − (−1)n−1[χ ◦ det] is the alternating sum
of parabolically induced representations (cf. [Dat07, Remarque 2.1.14]). As the
character of a parabolically induced representation vanishes on Gell, we have

θStχ(gh) = (−1)n−1θχ◦det(gh) = (−1)n−1χ(det gh) = (−1)n−1χ(Nrd h)

= (−1)n−1θχ◦Nrd(h),

as desired.

Let us denote by Irr0
ϖ(D×) the subset of Irrϖ(D×) consisting of representations

which are not one-dimensional, and by Cuspϖ(G) the subset of Discϖ(G) consisting
of supercuspidal representations. If n is a prime, a discrete series representation
of G is supercuspidal if and only if it is not a twisted Steinberg representation (cf.
classification of discrete series representations [Zel80, Theorem 9.3]). Thus, the local
Jacquet-Langlands correspondence for a prime n can be reduced to the following
theorem:

Theorem 2.4 Assume that n is a prime number. Then we can construct purely
geometrically a surjection

JL : Irr0
ϖ(D×) −→ Cuspϖ(G)

satisfying the character relation θρ(h) = (−1)n−1θJL(ρ)(gh) for h ∈ (D×)reg.

Before going on, we shall recall the orthogonality relation of characters for repre-
sentations in Discϖ(G). For locally constant class functions φ1, φ2 on Gell satisfying
φi(ϖg) = φi(g), put

⟨φ1, φ2⟩ell =
∑

T

1

#WT

∫
ϖZ\T

D(t)φ1(t)φ2(t) dt,

where T runs through conjugacy classes of elliptic maximal tori of G, WT denotes
the rational Weyl group of T and D(t) denotes the Weyl denominator (cf. [Rog83,
p. 185]). The measure dt on ϖZ\T is normalized so that the volume of ϖZ\T is one.

Lemma 2.5 For π1, π2 ∈ Discϖ(G), we have

⟨θπ1 , θπ2⟩ell =

{
1 π1

∼= π2,

0 otherwise.
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Proof. Let ω1, ω2 be the central characters of π1, π2, respectively. Then they are
unitary, since F×/ϖZ is compact. If ω1 = ω2, then the lemma follows immediately
from [Rog83, Lemma 5.3]. Otherwise,∫

ϖZ\T
D(t)θπ1(t)θπ2(t) dt =

∫
ZG\T

(∫
ϖZ\ZG

D(zt)θπ1(zt)θπ2(zt) dz
)
dt

=

∫
ZG\T

(∫
ϖZ\ZG

ω1(z)ω2(z) dz
)
D(t)θπ1(t)θπ2(t) dt = 0,

as desired.

For locally constant functions ϕ1, ϕ2 on D× satisfying ϕi(ϖh) = ϕi(h), put

⟨ϕ1, ϕ2⟩ =

∫
ϖZ\D×

ϕ1(h)ϕ2(h) dh,

where the measure dh is normalized so that the volume of the compact group ϖZ\D×

is one.

Lemma 2.6 Let φ1, φ2 be locally constant class functions on Gell satisfying φi(ϖg) =
φi(g), and ϕ1, ϕ2 locally constant class functions on D× satisfying ϕi(ϖh) = ϕi(h).
Assume that φi(gh) = ϕi(h) for every h ∈ (D×)reg. Then, we have

⟨φ1, φ2⟩ell = ⟨ϕ1, ϕ2⟩.

Proof. Clear from Weyl’s integral formula for D×.

3 Lubin-Tate tower

Let us recall briefly the definition of the Lubin-Tate tower. See [Str08, §2.1] for more
detail. Let X be a formal O-module over Fq with O-height n (such X is unique up

to isomorphism). For integers m ≥ 0 and j, let M(j)
m denotes the following functor

from the category of complete noetherian local Ŏ-algebras with residue field Fq to

the category of sets; M(j)
m (A) consists of isomorphism classes of triples (X, ρ, η),

where X is a formal O-module over A, ρ is an O-quasi-isogeny of O-height j from X
to X⊗AA/mA and η is a Drinfeld m-level structure of X. This functor is represented

by a complete noetherian local ring R
(j)
m . We denote Spf R

(j)
m by M(j)

m again, and put
Mm =

⨿
j∈ZM

(j)
m . Now we get the projective system of formal schemes {Mm}m≥0,

which is called the Lubin-Tate tower.
We can define a natural action of D× on each Mm, because D× is isomorphic to

the group of self O-quasi-isogenies of X. On the other hand, G = GLn(F ) naturally
acts on the tower {Mm}m≥0 as a pro-object (the Hecke action).

Denote the rigid generic fiber of Mm by Mm. It is the generic fiber of the adic
space t(Mm) associated to Mm. Since we are interested in representations of G
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and D× on which ϖZ acts trivially, we take the quotient of Mm by ϖZ ⊂ D× and
consider the ℓ-adic cohomology

H i
LT = lim−→

m

H i
c

(
(Mm/ϖZ) ⊗F̆ F̆ , Qℓ

)
.

It is a smooth representation of (G/ϖZ)× (D×/ϖZ). In fact, we may also define the
action of the Weil group of F on H i

LT, but in this article we do not consider it.
For ρ ∈ Irrϖ(D×), put H i

LT[ρ] = HomD×(H i
LT, ρ)sm, where (−)sm denotes the

subset of G-smooth vectors. It is easy to see that H i
LT[ρ] is an admissible represen-

tation of G which is trivial on ϖZ ⊂ G (cf. [Mie11, Lemma 5.2]).
We summarize fundamental properties of the representation H i

LT in the following
proposition:

Proposition 3.1 i) Unless n − 1 ≤ i ≤ 2n, H i
LT = 0.

ii) Unless i = n − 1, no supercuspidal representation of G appears in H i
LT as a

subquotient.

iii) For every ρ ∈ Irrϖ(D×), the G-representation H i
LT[ρ] has finite length.

Proof. i) is well-known. ii) is proved in [Mie10]. For iii), see [Mie11, Theorem 5.1].

By iii) of the proposition above, we can consider the character θHi
LT[ρ] of H i

LT[ρ].

Put θHLT[ρ] =
∑

i(−1)iθHi
LT[ρ]. The following is a consequence of [Mie11], whose proof

does not require the local Jacquet-Langlands correspondence:

Theorem 3.2 For ρ ∈ Irrϖ(D×), we have the following character relation:

θHLT[ρ](gh) = nθρ(h) (h ∈ (D×)reg).

Moreover, if ρ ∈ Irr0
ϖ(D×) then we have ⟨θHLT[ρ], θStχ⟩ell = 0.

Proof. The character relation is clear from [Mie11, Theorem 4.3]. For the latter, by

Lemma 2.3 and Lemma 2.6, we have ⟨θHLT[ρ], θStχ⟩ell = (−1)n−1n⟨θρ, θχ◦Nrd⟩ = 0.

Finally we recall the main result of [Str08].

Theorem 3.3 For π ∈ Cuspϖ(G), HomG(Hn−1
LT , π) is a finite-dimensional smooth

representation of D×. For this representation, we have

θHomG(Hn−1
LT ,π)(h) = (−1)n−1nθπ(gh) (h ∈ (D×)reg).

Proof. It follows from the proof of [Str08, Theorem 4.1.3] and Proposition 3.1 ii).
We will give some remarks on it. First, although the statement of [Str08, Theorem
4.1.3] involves the local Jacquet-Langlands correspondence, the only one place we
need it is the last equality in the proof. Therefore Strauch’s result above is free from
the local Jacquet-Langlands correspondence.
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Next, to construct the function fπ in the proof, Strauch uses the fact that π can
be written as the compact induction from a compact-mod-center subgroup, which is
a part of detailed classification of supercuspidal representations of G. However, we
can simply use a matrix coefficient ϕπ of π satisfying ϕπ(1) = d(π) as a substitute
of f∗

π , where d(π) is the formal degree of π (under the fixed measure on G). In
[DKV84, §A.3.e, §A.3.g], the following are proved:

(a) Tr(ϕπ; π) = 1 and Tr(ϕπ; π′) = 0 for any irreducible admissible representation
π′ of G/ϖZ with π′ � π.

(b) The orbital integrals of ϕπ over regular non-elliptic conjugacy classes vanish.

(c) For every g ∈ Gell,
∫

G/ϖZ
ϕπ(x−1gx)dx = θπ(g) = θπ(g−1) (note that π is unitary,

as its central character is unitary).

Kazhdan’s theorem [Kaz86, Theorem A], which requires a global argument, can be
replaced by (b). Moreover, we can substitute Harish-Chandra’s character formula
stated in [Str08, 4.1.1] by (c).

Finally, thanks to Proposition 3.1 iii), for every compact open subgroup K ′ of
D×, (H i

LT)K′
is a G-representation of finite length. Therefore, to compute the trace

Tr(fπ · f ; Hom(Hn−1
LT , π)) for an element f of the Hecke algebra of D×, we do not

need to take W i in [Str08, p. 927]. This simplifies Strauch’s proof considerably.

4 Proof of the main theorem

Now we assume that n is a prime, and prove Theorem 2.4. First construct a map
JL : Irr0

ϖ(D×) −→ Cuspϖ(G).

Proposition 4.1 For ρ ∈ Irr0
ϖ(D×), there exists a unique representation π ∈

Cuspϖ(G) which appears in Hn−1
LT [ρ]. It satisfies the character relation θρ(h) =

(−1)n−1θπ(gh) for every h ∈ (D×)reg.

Proof. First note that π ∈ Cuspϖ(G) is projective and injective in the category of
smooth representations of G/ϖZ, and thus the following are equivalent:

– π is a subrepresentation of a smooth representation V of G/ϖZ,

– π is a quotient representation of V , and

– π is a subquotient of V .

Consider the Grothendieck group R(G/ϖZ) of finite length smooth representations
of G/ϖZ and take the alternating sum HLT[ρ] =

∑
i(−1)i[H i

LT[ρ]] in R(G/ϖZ).
Write

HLT[ρ] =
∑

π∈Cuspϖ(G)

aπ[π] +
∑
π′

bπ′ [π′] +
∑
π′′

cπ′′ [π′′],

where π′ runs through non-supercuspidal elliptic irreducible representations of G
which are trivial on ϖZ (cf. [Dat07, Lemme 2.1.6]), and π′′ runs through non-elliptic
irreducible representations of G which are trivial on ϖZ. By Proposition 3.1 ii), we
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know that (−1)n−1aπ ∈ Z≥0 for every π ∈ Cuspϖ(G). Taking characters of both
sides and restricting them to Gell, we have

θHLT[ρ] =
∑

π∈Cuspϖ(G)

aπθπ +
∑

χ

b′χθStχ

for some b′χ ∈ Z, where χ runs through characters of F× which are trivial on ϖZ;
indeed, by [Dat07, Lemme 2.1.6], every non-supercuspidal elliptic representation π′

has the same cuspidal support as that of Stχ for some χ, and θπ′ = ±θStχ on Gell.

By Lemma 2.5 and Theorem 3.2, we have 0 = ⟨θHLT[ρ], θStχ⟩ell = b′χ. Hence we
have an equality of functions over Gell:

θHLT[ρ] =
∑

π∈Cuspϖ(G)

aπθπ.

Since θHLT[ρ](gh) = nθρ(h) by Theorem 3.2, the left hand side is not zero. Therefore
aπ ̸= 0 for at least one π ∈ Cuspϖ(G). By definition, such π appears in Hn−1

LT [ρ].
Next we prove the uniqueness of such π. In the proof of [Mie11, Lemma 5.2], the

author constructed an injection of G-representations Hn−1
LT [ρ] ↪−→ HomD×(ρ,Hn−1

LT )∨,
where (−)∨ denotes the contragredient (in fact, we can prove that it is an isomor-
phism). Therefore, if π appears in Hn−1

LT [ρ], then π∨ appears in HomD×(ρ,Hn−1
LT ),

and thus π∨ ⊗ ρ appears in Hn−1
LT . Now assume that π, π′ ∈ Cuspϖ(G) appear

in Hn−1
LT [ρ]. Then two representations HomG(Hn−1

LT , π∨), HomG(Hn−1
LT , π′∨) of D×

share the same quotient ρ∨. Hence we have ⟨θHomG(Hn−1
LT ,π∨), θHomG(Hn−1

LT ,π′∨)⟩ > 0. By
Lemma 2.6 and Theorem 3.3, we obtain

⟨θπ∨ , θπ′∨⟩ell =
1

n2
⟨θHomG(Hn−1

LT ,π∨), θHomG(Hn−1
LT ,π′∨)⟩ > 0.

Therefore, from Lemma 2.5 we conclude that π∨ ∼= π′∨ and π ∼= π′.

Now we have found a unique representation π ∈ Cuspϖ(G) such that aπ ̸= 0.
It satisfies θHLT[ρ](gh) = aπθπ(gh) for every h ∈ (D×)reg. Again by Theorem 3.2, we
have aπθπ(gh) = nθρ(h). Lemma 2.6 tells us that a2

π⟨θπ, θπ⟩ell = n2⟨θρ, θρ⟩ = n2.
Since (−1)n−1aπ ≥ 0, we conclude that aπ = (−1)n−1n and θρ(h) = (−1)n−1θπ(gh),

as desired.

Definition 4.2 For ρ ∈ Irr0
ϖ(D×), define JL(ρ) as the representation π ∈ Cuspϖ(G)

in Proposition 4.1. We have the character relation θρ(h) = (−1)n−1θJL(ρ)(gh) for
h ∈ (D×)reg.

To show Theorem 2.4, it suffices to prove the surjectivity of JL.

Proposition 4.3 The map JL : Irr0
ϖ(D×) −→ Cuspϖ(G) constructed above is

surjective.
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Proof. Take π ∈ Cuspϖ(G). Theorem 3.3 tells us that HomG(Hn−1
LT , π∨) ̸= 0, since

θπ∨ |Gell ̸= 0 by Lemma 2.5. Let ρ be an irreducible representation of D× appearing
in HomG(Hn−1

LT , π∨). Then ρ ∈ Irr0
ϖ(D×). Indeed, if ρ = χ ◦ Nrd for a character χ

of F×/ϖZ, by Lemma 2.3, Lemma 2.5, Lemma 2.6 and Theorem 3.3, we have

⟨θHomG(Hn−1
LT ,π∨), θχ◦Nrd⟩ = n⟨θπ∨ , θStχ⟩ell = 0.

By the same argument as in the proof of Proposition 4.1, we can conclude that π
appears in Hn−1

LT [ρ∨]. Namely, π = JL(ρ∨).

This completes our proof of the local Jacquet-Langlands correspondence for
GLn(F ) and D×.

References

[BH00] C. J. Bushnell and G. Henniart, Correspondance de Jacquet-Langlands ex-
plicite. II. Le cas de degré égal à la caractéristique résiduelle, Manuscripta
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tiques, Invent. Math. 169 (2007), no. 1, 75–152.

[DKV84] P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres
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