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We consider a constrained gradient system of total variation flow. Our system is often used in color image
processing to remove a noise from picture. In this paper, using abstract convergence theory of convex functions,
we show the global existence of solutions to our problem with piecewise constant initial data.
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1. Introduction

This is a preliminary report on 1-harmonic map flow. We consider a constrained gradient system of total variation
flow for u : ½0;TÞ �� ! Sn�1 � R

n with Neumann boundary condition as follows:

u0 ¼ ��u � div
ru
jruj

� �� �
in ð0;TÞ ��;

@u

@�
¼ 0 on ð0;TÞ � @�;

uð0; �Þ ¼ u0 in �;

8>>>><
>>>>:

ð1:1Þ

where u0ðtÞ :¼ d
dt
uðtÞ, � is a bounded domain in R2 with boundary @� and � is the outer normal unit vector. Let Sn�1 be

the unit sphere in R
n (n � 1), i.e.

Sn�1 :¼ fw 2 R
n; jwj ¼ 1g:

For each element u 2 Sn�1, let �u : R
n ! TuS

n�1 be an orthogonal projection from R
n ¼ TuR

n to tangent space TuS
n�1

of Sn�1 at u. The given initial data u0 is a map from � to Sn�1.
The problem (1.1) is proposed by B. Tang, G. Sapiro and V. Caselles [TSC] in order to remove a noise from the

chromaticity of the initial image u0ðx; yÞ preseving the brightness of uðt; x; yÞ for all t 2 ð0;TÞ and ðx; yÞ 2 R
2.

In 2003, Giga and Kobayashi [GK] considered the problem (1.1) in the one-dimensional case. Then, they showed
that for each piecewise constant initial data u0 on �, there is an unique global solution u on ½0;1Þ such that uðtÞ is a
piecewise constant on �. Moreover, They studied the stationary problem in the case when the manifold is the unit circle
S1 in R

2.
In 2004, Giga, Kashima and Yamazaki [GKY] studied the general n-dimensional case. In [GKY], they assumed that

the initial data u0 is (sufficiently) small in some sense, and they showed the local solution to (1.1) in the torus domain
� :¼ T

n ¼
Qn

i¼1ðR=!iZÞ for given !i > 0 (i ¼ 1; 2; . . . ; n), by applying the theory of p-harmonic map flow equation
with p > 1

u0 ¼ ��uð� divðjrujp�2ruÞÞ in ð0;TÞ � T
n: ð1:2Þ

In this paper we consider a solvability of a discretized problem to (1.1) by using the same argument in [GK]. Namely,
the problem (1.1) is to find the piecewise constant solution on �. Then, the problem is reduced to a system of ordinary
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differential equations unless two different values merges. Of course, merging may occur, so, it is very difficult to study
the detailed dynamics in 2-dimensional case. Different from one dimensional problem, discretized version may not
corresponed to a solution of an original problem with a piecewise constant initial data. Such a difficulty is also observed
in the unconstrained problem of crystalline flow [BNP] and [GGK], for instance.

In image processing the Gaussian filter is often used for a grey-level function. In other words for a given initial grey-
level function u0, we solve the heat equation

u0 ��u ¼ 0 in ð0;TÞ ��;
@u

@�
¼ 0 on ð0;TÞ � @�;

uð0; �Þ ¼ u0 in �

8>><
>>:

to get a denoised grey-level function uðt; �Þ at scale t. However, this way has a drawback since all characteristic function
is mollified and a sharp contrast become ambiguous. If one use a (unconstrained) gradient system of total variation flow

u0 � div
ru
jruj

� �
¼ 0 in ð0;TÞ ��;

then a Heaviside type function

uðt; x; yÞ ¼
1 x > 0;

0 x � 0;

�

is a stationary solution so such a grey-level function is not mollified. When we try to remove the noise from
chromaticity, as proposed by [TSC] (2-)harmonic map flow is a typical way and it corresponds to the way using the heat
equation for a grey-level function. So this has a similar drawback. A constrained system of total variation flows
corresponds to the gradient system of total variation and it preserves a Heaviside like map.

The main object of this paper is to show the global existence of solution to the discretized problem of (1.1). In
Section 2, we present the discretized problem and subdifferential formulation of our problem (1.1). Moreover we
mention main result (Theorem 2.1) in this paper, which is concerned with the global existence of solution. In Section 3,
we consider the approximating problem in order to prove Theorem 2.1. In Section 4, we recall the abstract convergence
theorem established in [GKY]. Then we shall give the proof of Theorem 2.1.

2. Discretized Problem

To solve global-in-time solvability for (1.1) we introduce a discretized equation approximating (1.1).

2.1 Subdifferential formulation

In this subsection we reformulate the problem (1.1) to the nonlinear evolution equation in a real Hilbert space. To do
so, we use the concept of subdifferential of convex function. Here, we recall the definition of subdifferential of convex
function.

Let H be a real Hilbert space with the inner product h�; �i, and ’ : H ! ð�1;þ1� be a proper (i.e., not identically
equal to infinity), l.s.c. (lower semi-continuous) and convex function on H. Then, the subdifferential of ’ is defined by
this set

@’ðuÞ ¼ f f 2 H j ’ðuþ hÞ � ’ðuÞ � h f ; hi for any h 2 Hg:

If ’ is differentiable, then the subdifferential of ’ coincides with its classical derivative. Therefore the subdifferential is
an extension of differential. For basic properties of subdifferential, we refer to the monograph by Brézis [B].

To reformulate the problem (1.1), we use the following notations.
For the space L2ð�;RnÞ of Rn-valued square integrable functions, let L2ð�; Sn�1Þ be the closed subset of L2ð�;RnÞ of

the form

L2ð�; Sn�1Þ :¼ fv 2 L2ð�;RnÞ ; vðxÞ 2 Sn�1 a.e. x 2 �g:

For the bounded domain � in R2, let C be a rectangular decomposition of R2. In other words C is a disjoint family of
open rectangles Rj ¼ ðaj; bjÞ � ðcj; djÞ which covers R2 expect a Lebesgue measure zero set, i.e. C ¼ fRjg j2�. Let� be
a decomposition of � associated with C defined by� ¼ f�igi2I with �i ¼ Ri \�, I ¼ fi 2 � ; �i 6¼ ;g. Note that I is a
finite index set, since � is a bounded domain. In this paper, we fix the family �. Here, we set ci j ¼ H1ð@�i \ @� jÞ,
where H1 is the Haussdorff measure, more precisely ci j implies a length of @�i \ @� j.

For the fixed family � ¼ f�igi2I , let H� be the set of all step functions on
S

i2I �i, i.e.

H� ¼
X
i2I

ai��i
; ai 2 R

n

( )
;
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where ��i
is the characteristic function on �i. We easily see that H� is the subset of L2ð�;RnÞ. Moreover we observe

that if u 2 H�, then the total variation of u is like this formZ
�

jruj ¼
X
i< j

ci jjai � ajj:

For their precise definitions and basic properties of total variation, see monographs by Evans and Gariepy [EG] or
Giusti [G], for instance.

Now, let us define two functions on real Hilbert spaces. For the fixed family � ¼ f�igi2I , we put

’�ðuÞ ¼

Z
�

jruj if u 2 H�;

þ1 otherwise:

8<
: ð2:1Þ

Then we easily see that ’� is the proper, l.s.c. and convex function on L2ð�;RnÞ (See [EG] or [G], for instance). We
also define the function �T

� by this form

�T
�ðuÞ ¼

Z T

0

’�ðuðtÞÞ dt for all u 2 L2ð0; T; L2ð�;RnÞÞ: ð2:2Þ

Then, by the slight modification of [GKY, Proposition 2.1] we observe that �T
� is also the proper, l.s.c. and convex

function on L2ð0;T ; L2ð�;RnÞÞ.
For any g 2 L2ð0;T ;L2ð�; Sn�1ÞÞ we define a map Pgð�Þ : L2ð0; T; L2ð�;RnÞÞ �! L2ð0;T ;L2ð�;RnÞÞ by

Pgð f Þðx; tÞ ¼ �gðx;tÞð f ðx; tÞÞ for a.e. ðx; tÞ 2 �� ½0;T� ð2:3Þ

for any f 2 L2ð0; T; L2ð�;RnÞÞ.
By these notations as above, we easily see that the problem (1.1) can be reformulated as in the following form:

u0 2 �Puð@�T
�ðuÞÞ in L2ð0;T ; L2ð�;RnÞÞ;

ujt¼0 ¼ u0 in L2ð�; Sn�1Þ;

(
ð2:4Þ

where u0 2 L2ð�; Sn�1Þ is a given initial data.
The main object of this paper is to show the global existence of a solution to (2.4), since the initial boundary value

problem (1.1) can be regarded as a mathematical formulation of (2.4).
Now, let us give the definition of a solution to (1.1).

Definition 2.1. A function u : �� ½0;T� ! R
n is a solution of (1.1), if u belongs to L2ð0; T; L2ð�; Sn�1ÞÞ \ Cð½0;T�;

L2ð�;RnÞÞ and satisfies (2.4).

2.2 Main result

In this subsection, let us mention our main result in this paper as follows.

Theorem 2.1. Suppose the initial data u0 2 H� with u0 2 L2ð�; Sn�1Þ. Then for any time T > 0, there exists at least
one solution u on ½0; T� to the problem (1.1).

It is very difficult to analyze our problem (1.1) directly. We cannot apply the general theory established by Brézis
[B] and Kōmura [Ko], because of the projection �u. So, by using the approximating problem of (1.1), we shall prove
Theorem 2.1 in Section 4.

Fig. 1. Rectangular decomposition �.
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3. Approximating Problem

In this section we consider the approximating problem of (1.1). At first we shall define the approximating energy
function to (2.1)

3.1 Approximating energy

For each " > 0, let us define the function ’"� by this form

’"�ðuÞ ¼

X
j<k

cjk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj � akj2 þ "2

q
if u 2 H�;

þ1 otherwise:

8><
>: ð3:1Þ

Clearly, we see that ’"� is the proper, l.s.c. and convex function on L2ð�;RnÞ. Moreover, ’"� is the approximating
functional of our energy ’� defined by (2.1).

Note that the function ’"� has no singularity, because of " > 0. Therefore, by the standard calculation, we can verify
that @’"�ð�Þ is single-valued and

@’"�ðuÞ ¼
X
i; j

ci j

j�ij
ai � ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jai � ajj2 þ "2
q ��i

8><
>:

9>=
>; ð3:2Þ

for all u ¼
P
i2I

ai��i
2 H�, where j�ij is the volume of �i.

3.2 Solvability of approximating problem

In this subsection, let us discuss the solvability of the approximating problem to (2.4). In Subsection 3.1, we define
the approximating functional ’"� on L2ð�;RnÞ of ’�. Hence, we see that the approximating problem to (2.4) is of the
form

u0" ¼ �Pu" ð@’
"
�ðu"ÞÞ in L2ð�;RnÞ; a.e. t 2 ð0;TÞ;

u"jt¼0 ¼ u0 in L2ð�; Sn�1Þ:

(
ð3:3Þ

By taking account of (2.3) and (3.2), we easily get the existence-uniqueness of solution to the approximating problem
(3.3) as follows.

Proposition 3.1. For any time T > 0 and the initial data u0 2 H� with u0 2 L2ð�; Sn�1Þ, there exists at most one
solution u" on ½0;T� to the approximating problem (3.3).

Proof. By the similar argument in [GK, Subsection 4.3], we can get the conclusion of this Proposition. By u0 2 H�,
(2.3) and (3.2), we easily observe that the approximating problem (3.3) implies the ODE system for aiðtÞ, which is the
problem to find a unique solution u"ðtÞ ¼

P
i2I

aiðtÞ��i
. Thus we have only to consider the ODE system for aiðtÞ.

By the classical method, we can show that there is a unique solution u"ðtÞ :¼
P
i2I

aiðtÞ��i
on ½0;1Þ such that aiðtÞ is

Lipschitz continuous from ½0;1Þ to Sn�1, and aiðtÞ satisfies

daiðtÞ
dt

¼ ��aiðtÞ
X
j

ci j

j�ij
aiðtÞ � ajðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jaiðtÞ � ajðtÞj2 þ "2
q

0
B@

1
CA on �i ð3:4Þ

for each i 2 I. In fact, by taking account of aiðtÞ 2 Sn�1 and the projection �aiðtÞ : R
n ! TaiðtÞS

n�1, we can show that the
right hand side of (3.4) is bounded independent of t. Hence, by the theory of ordinary differential equations (e.g. [M]),
we can get the unique global solution to the ODE system (3.4). Thus, we can obtain the unique global solution u" of our
approximating problem (3.3). �

4. Proof of Theorem 2.1

In this section, we shall prove our main Theorem 2.1 by applying the abstract convergence theory established in
[GKY].

4.1 Abstract convergence theory

In this subsection, let us recall the abstract convergence theory established in [GKY].
Now, let H be a real Hilbert space and G be a non-empty closed subset of H. Let L2ð0;T ;GÞ denote the closed subset

of L2ð0; T;HÞ of the form
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L2ð0;T;GÞ :¼ fu 2 L2ð0; T;HÞ ; uðtÞ 2 G a.e. t 2 ½0;T�g:

Let BR denote a closed ball of L2ð0;T;HÞ defined by

BR :¼ fu 2 L2ð0; T;HÞ ; kukL2ð0;T;HÞ � Rg for each R > 0:

Here, let us recall the notion of Graph-convergence for multi-valued operators on a real Hilbert space.

Definition 4.1 (e.g. [A]). For (multi-valued) operators Am (m ¼ 1; 2; . . .) and A on a real Hilbert space H, we say that
Am converges to A in the sense of Graph as m ! þ1, if for any ðu; vÞ 2 GraphðAÞ there exists ðum; vmÞ 2 GraphðAmÞ
such that um ! u and vm ! v strongly in H as m ! þ1.

Next, let us introduce the class LðKÞ of the operator Bð�Þð�Þ : L2ð0;T ;GÞ � L2ð0;T ;HÞ ! L2ð0;T ;HÞ.

Definition 4.2 (cf. [GKY, Section 3]). We denote by B 2 LðKÞ the set of all operator Bð�Þð�Þ : L2ð0;T ;GÞ � L2ð0;
T;HÞ ! L2ð0; T;HÞ satisfying the following three conditions:
(i) For any u 2 L2ð0;T ;GÞ, BðuÞð�Þ is a bounded linear operator from L2ð0;T;HÞ to L2ð0; T;HÞ.
(ii) There exists a constant K > 0 such that supu2L2ð0;T ;GÞ kBðuÞð�ÞkL � K.
(iii) If a sequence fukgþ1

k¼1 � L2ð0;T ;GÞ strongly converges to some u in L2ð0;T ;GÞ, then there exists a subsequence
fukðlÞgþ1

l¼1 � fukgþ1
k¼1 such that

BðukðlÞÞ�ðvÞ �! BðuÞ�ðvÞ strongly in L2ð0; T;HÞ

for any v 2 L2ð0; T;HÞ, where BðuÞ�ð�Þ denotes the adjoint operator of BðuÞð�Þ.

Now, let us recall the abstract convergence theory established in [GKY].

Proposition 4.1 (Abstract theorem) (cf. [GKY,Theorem 3.1]). Let �m (m ¼ 1; 2; . . .) and � be proper, convex,
l.s.c. functionals on L2ð0;T ;HÞ. Let B 2 LðKÞ. Assume that @�m converges to @� in the sense of Graph. Assume
that um 2 L2ð0; T;HÞ (m ¼ 1; 2; . . .) satisfies following conditions;

u0m 2 �BðumÞð@�mðumÞ \ BRÞ in L2ð0;T ;HÞ;
um 2 L2ð0; T;GÞ;
umjt¼0 ¼ u0;m 2 G:

8><
>:

In addition, assume that

um ! u in Cð½0;T�;HÞ;
u0;m ! u0 strongly in H:

Then, u satisfies that

u0 2 �BðuÞð@�ðuÞÞ in L2ð0; T;HÞ;
u 2 L2ð0;T ;GÞ;
ujt¼0 ¼ u0 2 G:

8><
>:

4.2 Proof of main theorem

In this subsection, let us prove Theorem 2.1 by applying Proposition 4.1. In order to show Theorem 2.1, we use a
notion of convergence for convex functions.

Definition 4.3 (cf. [Mo]). Let  ,  n (n 2 N) be proper, l.s.c. and convex functions on H. Then we say that  n

converges to  on H as n ! þ1 in the sense of Mosco [Mo], if the following two conditions are satisfied:
(i) For any subsequence f nkg � f ng, if zk ! z weakly in H as k ! þ1, then

lim inf
k!þ1

 nk ðzkÞ �  ðzÞ:

(ii) For any z 2 Dð Þ, there is a sequence fzng in H such that

zn ! z in H as n ! þ1; lim
n!þ1

 nðznÞ ¼  ðzÞ:

To apply Proposition 4.1, we prepare the following key lemma.

Lemma 4.1. Let ’� (resp. ’"�) be the proper, l.s.c. and convex function defined in (2.1) (resp. (3.1)). Then, we have:
(i) The function ’"� converges to ’� on L2ð�;RnÞ in the sense of Mosco as "! 0.
(ii) The function �T ;"

� converges to �T
� on L2ð0;T ; L2ð�;RnÞÞ in the sense of Mosco as "! 0, where �T ;"

� is the
proper, l.s.c. and convex function on L2ð0;T; L2ð�;RnÞÞ defined by

An Existence Result for a Discretized Constrained Gradient System of Total Variation Flow in Color Image Processing 203



�T ;"
� ðuÞ ¼

Z T

0

’"�ðuðtÞÞ dt for all u 2 L2ð0; T; L2ð�;RnÞÞ:

(iii) @�T ;"
� converges to @�T

� on L2ð0;T ; L2ð�;RnÞÞ in the sense of Graph as "! 0.

Proof. Taking account of the lower semicontinuity of the total variation, we can easily show (i). Moreover, by the
general theory of convex analysis, the assertions (ii) and (iii) can be verified, so we omit the proof. For the detailed
proof, see [A], or [GKY,Appendix]. �

Proof of Theorem 2.1. By applying the abstract convergence theory [Proposition 4.1], we shall prove Theorem 2.1,
namely, we can show that the function u" of (3.3) converges to the solution of our problem (2.4) as "! 0.

To do so, we choose L2ð�;RnÞ as a real Hilbert space H, and take L2ð�; Sn�1Þ as a non-empty closed subset.
By the definition of the projection (2.3) and Lemma 4.1, we observe that P 2 LðKÞ, and that @�T ;"

� converges to @�T
�

on L2ð0;T ; L2ð�;RnÞÞ in the sense of Graph as "! 0.
Now, let us show the boundedness of subdifferential @�T ;"

� in L2ð0;T ; L2ð�;RnÞÞ. Note that the subdifferential @’"�ðuÞ
is bounded in L2ð�;RnÞ uniformly in ", because @’"�ðuÞ has the form (3.2). Hence we see that @�T ;"

� ðuÞ is also bounded
in L2ð0;T ;L2ð�;RnÞÞ uniformly in " for each T > 0, namely, there is a closed ball BR of L2ð0; T; L2ð�;RnÞÞ such that

@�T ;"
� ðu"Þ � BR for any " > 0;

for each T > 0.
Moreover, by the same argument in [GKY, Proposition 5.4] we have the following energy equation:Z t

0

Z
�

ju0"ð�; xÞj
2dxd� þ ’"�ðu"ðtÞÞ ¼ ’"�ðu0Þ for any t 2 ½0;T�: ð4:1Þ

By the above equality (4.1), Lemma 4.1 (i), the compactness theory (cf. [G, Theorem 1.19]), it is easy to see that fu"ðtÞg
is relatively compact in L2ð�;RnÞ for any t 2 ½0;T�. Thus, it follows from Ascoli-Arzela’s theorem that there exists a
subsequence fu"mgþ1

m¼1 � fu"g where "m goes to zero as m tends to infinity, and u 2 Cð½0;T�;L2ð�;RnÞÞ such that

u"m �! u strongly in Cð½0; T�; L2ð�;RnÞÞ as m ! 1:

We observe that all assumptions of the abstract convergence theory [Proposition 4.1] are fulfilled. Thus, by applying
Proposition 4.1, we can prove Theorem 2.1, namely, we get the solution u on ½0;T� of our problem (1.1) for each
T > 0. �

Remark 4.1. It seems that we can treat more general initial data by tending the size of decomposition � in H� to
zero. But it is impossible, and is the delicate problem. In the proof of our main Theorem 2.1, we need the uniform
boundedness in " of the subdifferential @�T ;"

� ðu"Þ � BR, where the radius R is independent of ". However, the radius R
depends on the decomposition �. So, if the size of decomposition � tends to zero, then R goes to infinity. Hence we
can not apply the same convergence argument to the general problem with initial data u0 2 L2ð�; Sn�1Þ, for instance.
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