ファセット結晶形状の不安定性と 非強圧的ハミルトン・ヤコビ方程式

三竹 大寿 (MITAKE Hiroyoshi) (福岡大学 応用数学科)

Joint work with

儀我 美一 (東京大学), Q. Liu (U. Pittsburgh)

Oct/5/2012

in 東京大学,表面・界面ダイナミクスの数理 IV

§0 Introduction (Physical Background)

Morphological stability (形状安定性) in crystal growth: Burton, Cabrera, Frank '51 (Micro Level), Chernov '74, E, Yip '01 (Macro Level).

$$V = \sigma(x)m(p),$$
 $m(p) = \frac{p}{p_s} \tanh(\frac{p_s}{p}),$
 $p_s = \frac{d}{2x_s} \approx \varepsilon.$

V: growth speed in the direction normal to a crystal surface Γ_t .

m: anisotropy of the kinetic energy.

 σ : supersaturation (過飽和度).

d: step height, x_s : surface diffusion distance of a molecule.

p: local slope of the crystal surface.

雪の結晶の初期段階とファセット結晶形状の不安定性

北海道大学 低温科学研究所 古川研究室撮影

We consider

$$V = \sigma(x)m(|p|/\varepsilon) - f(x) \quad \text{on } \Gamma_t. \tag{1}$$

Graph Representation. Introduce the function z^{ε} which satisfies

$$\Gamma_t = \{(x, z^{\varepsilon}(x, t)) \mid x \in \mathbb{R}^N \}.$$

Then we have

$$p = Dz^{\varepsilon}(x)$$
 and $V = \frac{z_t^{\varepsilon}}{\sqrt{1 + |Dz^{\varepsilon}|^2}}$.

Thus, the above surface evolution equation can be written by

$$z_t^{\varepsilon} - \sigma(x)m(\frac{|Dz^{\varepsilon}|}{\varepsilon})\sqrt{1 + |Dz^{\varepsilon}|^2} = f(x)\sqrt{1 + |Dz^{\varepsilon}|^2}$$
 (2)

References:

- 1. 儀我、「動く曲面を追いかけて」、 日本評論社
- 2. 儀我,「曲面の発展方程式における等高面の方法」,「非等方的曲率による界面 運動方程式」,石井,「非線形偏微分方程式の粘性解について」 (雑誌 数学)
- 3. Giga, Surface Evolution Equations, Springer.

Yokoyama-Giga-Rybka '08

Investigate the behavior of u^{ε} in the ε -time scale, i.e.,

$$\tilde{u}^{\varepsilon}(x,\tau) = -z^{\varepsilon}(x,\varepsilon\tau)/\varepsilon$$
 (microscopic height)

and a new independent variable $\tau=t/\varepsilon$ (microscopic time). Then \tilde{u}^ε satisfies

$$\tilde{u}_{\tau}^{\varepsilon} + \sigma(x)m(|D\tilde{u}^{\varepsilon}|)\sqrt{1 + \varepsilon|D\tilde{u}^{\varepsilon}|^{2}} = f(x)\sqrt{1 + \varepsilon|D\tilde{u}^{\varepsilon}|^{2}}$$

Thus, (at least formally) \tilde{u}^{ε} converges to a solution of

$$\tilde{u}_{\tau} + \sigma(x)m(|D\tilde{u}|) = f(x) \text{ in } \mathbb{R}^N \times (0, \infty).$$

A typical example is

$$\sigma(x) := \overline{\sigma}(1 - |x|^2)_+,$$
 $m(r) := r \tanh(1/r) \ (r \gg 1) \ \text{and},$
 $f : \text{nucleation } ($ 核生成 $) \ \text{density}.$

§1 Main Result

We consider HJ equations of the form

$$u_t + \sigma(x)m(|Du|) = f(x). \tag{3}$$

(A1) $m:[0,\infty)\to [0,1)$ is strictly increasing, Lipschitz continuous with $m(0)=:m_0\in [0,1)$ and $m(r)\to 1$ as $r\to \infty$.

(A2) $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and satisfies

$$\mathcal{A} := \{x \in \mathbb{R}^n : f(x) = \min f, \sigma(x) = \overline{\sigma}\} \neq \emptyset, (Revisit)$$

where $\overline{\sigma} := \max \sigma$.

(A3) u_0 is Lipschitz continuous in \mathbb{R}^n .

(A4) Set $c := \overline{\sigma}m_0 - \min f$. $\Omega_e := \{\sigma(\cdot) - f(\cdot) > c\}$ is bounded and $\sigma \in C^1(\mathbb{R}^N)$ satisfies $D\sigma(x) \neq 0$ on $\partial\Omega_e$.

Remark. Ω_e is called a *maximal stable region*.

Theorem 1 (Giga-Liu-M., JDE 2012, Trans. AMS to appear). Assume that (A1)–(A4). Let u be a solution of (3) with $u(\cdot,0) = 0$

 $u_0 \in W^{1,\infty}(\mathbb{R}^N)$. Then,

 $u(\cdot,t)+ct \to \phi_{\infty}$ loc. uniformly on Ω_e , $u(\cdot,t)+ct \to +\infty$ loc. uniformly on $\mathbb{R}^n \setminus \overline{\Omega}_e$

as $t \to +\infty$, where ϕ_{∞} is a solution of

(S)
$$\begin{cases} |Dv| = m^{-1} \left(\frac{f(x) + c}{\sigma(x)} \right) =: h(x) & \text{in } \Omega_e, \\ \frac{\partial v}{\partial n} = +\infty & \text{on } \partial \Omega_e, \\ \sup_{\Omega_e} |v(x)| < +\infty. \end{cases}$$

Interpretation:

Theorem 1 now gives a clear view of z^{ε} on the effective domain Ω_e . We have

$$z^{\varepsilon}(x,t) = -\varepsilon \tilde{u}^{\varepsilon}(x,\frac{t}{\varepsilon})$$

$$= -\varepsilon \tilde{u}(x,\frac{t}{\varepsilon}) + o(\varepsilon)$$

$$= -\varepsilon (\phi_{\infty}(x) - \frac{ct}{\varepsilon} + m(\frac{\varepsilon}{t})) + o(\varepsilon)$$

$$= -\varepsilon \phi_{\infty}(x) + ct + o(\varepsilon).$$

Therefore, roughly speaking, the growing facet moving according to (1) is flat up to order ε with speed c on the effective domain Ω_e .

Remember $c = \overline{\sigma}m_0 - \min f$.

Crystal Growth

$$\Gamma_t = \left\{ (x, Z^{\epsilon}(x, t)) \mid x \in \mathbb{R}^N \right\}$$

Result.

$$Z^{\epsilon}(x,t) = -\epsilon \widetilde{\Omega}(x, \frac{t}{\epsilon}) + O(\epsilon)$$

$$\approx -\epsilon \phi_{\mu}(x) + ct + o(\epsilon).$$

Facet instability

Interpretection.

- 1. Asymptotically, the facet is flat up to order & with speed c on Qe.
- 2. Outside of Ωe , growth speed is much slower.

Asymptotic Profile on the Effective Domain Ω_e .

We define the functions $\phi_-,\phi_\infty\in C(\overline{\Omega}_e)$ by

$$\phi_{-}(x) := \inf_{t \ge 0} (u(x, t) + ct),$$

obtain

$$\phi_{\infty}(x) := \min\{d(x,y) + \phi_{-}(y) \mid y \in \mathcal{A}\},\$$

$$d(x,y) := \inf \{ \int_0^t h(\gamma(s)) \, ds \mid t > 0, \gamma(t) = x, \gamma(0) = y, |\dot{\gamma}(s)| \le 1 \}.$$

Theorem 2 (Asymptotic Profile). We have

$$\phi_{\infty}(x) = \lim_{t \to \infty} (u(x,t) + ct)$$
 for all $x \in \Omega_e$.

Example. Let n = 1, $u_0 = f \equiv 0$, $\sigma(x) = \overline{\sigma}(1 - x^2)_+$. Then we have $c = \overline{\sigma}m_0$, $\Omega_e = (-\sqrt{1 - m_0}, \sqrt{1 - m_0})$, $A = \{0\}$. Moreover, $\phi_{\infty}(x) = \min_{y \in \mathcal{A}} \{d(x, y) + \phi_{-}(y)\} = d(x, 0)$. Thus we

$$\phi_{\infty}(x) = \int_0^x m^{-1} \left(\frac{m_0}{(1-s^2)_+}\right) ds \text{ for all } x \in \overline{\Omega}_e.$$

Discussion 1 (Morphological Stability).

In the theory of crystal growth, it is known that as long as the non-uniformity in supersaturation on the facet is not too large, the faceted crystal can grow in a stable manner.

Question. How much of non-uniformity implies a stable morphology?

Answer.

$$\frac{f(x) + c}{\sigma(x)} < 1 \ \forall x \in \mathbb{R}^n \iff$$
$$f(x) - \min f + \overline{\sigma}m_0 < \sigma(x) \le \overline{\sigma} \ \forall x \in \mathbb{R}^n.$$

In this case, we can expect we have the large-time asymptotic

$$u(x,t) + ct \rightarrow v(x)$$
 uniformly for $x \in \mathbb{R}^N$

as $t \to \infty$

Discussion 2 (Step Source).

Revisit Assumption (A2):

$$\mathcal{A} := \{x \in \mathbb{R}^n : f(x) = \min f, \sigma(x) = \overline{\sigma}\} \neq \emptyset.$$

First Case: $f \equiv 0$.

The set \mathcal{A} is considered as a step source in the theory of crystal growth.

Mathematically, we can see that u + ct is non-increasing as $t \to \infty$.

The function f gives a nucleation density of crystal. Our assumption (A2) says that there is a step source in the place where no nucleation occurs.

Question. If this is not the case?

Reconsider $c := \max_x (\sigma(x)m_0 - f(x))$, $\mathcal{A} := \{x \mid \sigma(x)m_0 - f(x) = c\}$.

We don't know the uniform continuity of u on A yet.

Discussion 3 (Mean Curvature effect).

Effect of tension. Consider

$$V_{\varepsilon} = (\sigma(x) - \operatorname{div}(n(x)))m(\frac{|p|}{\varepsilon}) - f(x)$$
 on Γ_t .

If we use the microscopic time and height, i.e.,

$$\tilde{u}^{\varepsilon}(x,\tau) = -z^{\varepsilon}(x,\varepsilon\tau)/\varepsilon$$

then we cannot see the difference, since

$$\tilde{u}_t^{\varepsilon} + \ldots - m(|D\tilde{u}^{\varepsilon}|) \operatorname{div} \Big(\frac{\varepsilon D\tilde{u}^{\varepsilon}}{\sqrt{\varepsilon |D\tilde{u}|^2 + 1}} \Big) \sqrt{\varepsilon |D\tilde{u}|^2 + 1} = 0.$$

Thank you for your kind attention!