表面·界面ダイナミクスの数理IV 2012 年10月3日(水)~2012年10月5日(金)@東京大学

1

低次元物質の結晶成長: グラフェンを中心に

NTT物性科学基礎研究所 日比野浩樹

1. グラフェンとは 2. グラフェン評価法 3. グラフェン成長法 3-1 化学気相成長法 3-2 析出法 3-3 SiC熱分解法

炭素の同素体

炭素:単体・化合物において極めて多様な形状、生物の構成材料(重量比~18%)

グラフェンの実験的な発見

22 OCTOBER 2004 VOL 306 SCIENCE

Electric Field Effect in Atomically Thin Carbon Films

K. S. Novoselov,¹ A. K. Geim,^{1*} S. V. Morozov,² D. Jiang,¹ Y. Zhang,¹ S. V. Dubonos,² I. V. Grigorieva,¹ A. A. Firsov²

We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10¹³ per square centimeter and with room-temperature mobilities of ~10,000 square centimeters per volt-second can be induced by applying gate voltage.

¹Department of Physics, University of Manchester, Manchester M13 9PL, UK. ²Institute for Microelectronics Technology, 142432 Chernogolovka, Russia.

D.I.Y. グラフェン

How to Make One-Atom-Thick Carbon Layers With Sticky Tape http://www.sciam.com/article.cfm?id=diy-graphene-how-to-make-carbon-layers-with-sticky-tape

K. S. Novoselov et al., Nature 438, 197 (2005).

グラフェン研究の爆発的進展

✓簡単な作製方法 ✓特異な物性(理論的蓄積1947~) ✓幅広い応用分野

基礎から応用まで 爆発的に研究が進展

産業応用?

2010ノーベル物理学賞

Andre Geim

Konstantin Novoselov

For groundbreaking experiments regarding the two-dimensional material graphene ... Playfulness is one of their hallmarks.

http://nobelprize.org/nobel_prizes/physics/laureates/2010/ http://nobelprize.org/nobel_prizes/physics/laureates/2010/press.html 6

グラフェンの電子構造

A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007). 7

グラフェンの電子構造

2層グラフェンのバンド構造

$$H^{K} = \begin{pmatrix} 0 & v(p_{x} - ip_{y}) & 0 & 0 \\ v(p_{x} + ip_{y}) & 0 & \gamma_{1} & 0 \\ 0 & \gamma_{1} & 0 & v(p_{x} - ip_{y}) \\ 0 & 0 & v(p_{x} + ip_{y}) & 0 \end{pmatrix}$$
$$\varepsilon_{\mu,s}(p) = s \left(\frac{\mu\gamma_{1}}{2} + \sqrt{\frac{\gamma_{1}^{2}}{4}} + (vp)^{2}\right) \quad \mu = \pm 1, s = \pm 1$$

T. Ohta et al., Science 313, 951 (2006).

シリセン

グラフェン模倣構造

K. K. Gomes et al., Nature 483, 306 (2012).

グラフェンの特異な性質

http://physicsbuzz.physicscentral.com/2010/10/2010-physics-nobel-prize-for-invisible.html

Nair RR, et al., Science 320, 1308 (2008).13

グラフェンの特異な性質

グラフェンの潜在的応用

グラフェンエレクトロニクス

✓電気抵抗標準

A. Tzalenchuk et al., Nat. Nanotech. 5, 186 (2010); T.J.B.M. Janssen et al., Metrologia 49 (2012) 294. 1

グラフェンフォトニクス

グラフェンデバイスの例

C. Chen et al., Nature Nanotechnol. 4, 861 (2009). 18

フレキシブル透明電極

1. グラフェンとは 2. グラフェン評価法 3. グラフェン成長法 3-1 化学気相成長法 3-2 析出法 3-3 SiC熱分解法

Graphene flakes on SiO₂/Si

P. Blake et al., Appl. Phys. Lett. 91, 063124 (2007).

Suspended graphene flakes

ラマン分光

歪: G,2Dバンド位置

エッジ構造: 偏光依存性

走査プローブ顕微鏡

グラフェンの透過電子顕微鏡像

P. Y. Huang et al., Nature 469, 389 (2011).

Cu上グラフェンの走査電子顕微鏡

X. Li et al., Science 324, 1312 (2009).

BNの走査型透過電子顕微鏡像

O. L. Krivanek et al., Nature 464, 571 (2010).

低エネルギー電子顕微鏡(LEEM)

Low-energy electron microscopy (LEEM) Photoelectron emission microscopy (PEEM) Thermionic electron emission microscopy (TEEM)

Elmitec LEEM III @ NTT

グラフェン成長の動的観察

10 times faster than real

電子線の干渉を使い、LEEMによって、グラフェン層数を~10 nmの 空間分解能でデジタルに決定できる。

H. Hibino et al., Phys. Rev. B 77, 075413 (2008); e-J. Surf. Sci. Nanotechnol. 6, 107 (2008).

電子反射率の量子的振動

28

C面上グラフェン

H. Hibino *et al.*, J. Phys. D: Appl. Phys. 45, 154008 (2012). 29

SiC上2層グラフェンの積層ドメイン

STV=5 V 500 nm

STV=44.5 V

2層グラフェンの積層ドメイン

31

✓機械的剥離✓化学的剥離(含む、酸化グラフェン)

✓化学気相成長(CVD) ✓直接成長(MBE, CVDなど) ✓析出(金属、金属カーバイドなど) ✓SiC熱分解 ✓分子カップリング

酸化グラフェン

4.0

1 µm

3.0

表面アシスト分子カップリング

グラフェンCVD成長

SiC熱分解法

 \bigcirc

グラフェン成長の特殊性

結晶構造の非類似性(二次元物質、蜂の巣状、van der Waals力)

CVD法:触媒反応

H. Ago et al., J. Phys. Chem. Lett. 3, 2228 (2012).

E. Longinova et al., New J. Phys. 10, 093026 (2008).

SiC熱分解法:基板からの原子供給、基板のエッチング

グラフェン成長における課題

- 1. 結晶性 (グレイン、層数、段差、シワ)
- 2. 面積
- 3. コスト
- 4. 基板

5. 物性制御 (バンドギャップ、ドーピング)

グレイン境界の影響

Q. Yu et al., Nature Mater. 10, 443 (2011). 42

P. Y. Huang et al., Nature 469, 389 (2011).

S.-H. Ji et al., Nature Mater. 11, 114 (2012).

0

-300

-200

-100

Distance (nm)

0

T. Low et al., PRL 108, 096601 (2012).

シワ形成

スピンコートしたポリマーからのグラフェン成長

S. Suzuki et al., Appl. Phys. Exp. 4, 065102 (2011); Jpn. J. Appl. Phys. 51, 06FD01 (2012).

✓Cu上グラフェン転写

X. Li et al., Nano Lett. 9, 4359 (2009).

PMMA/graphene float PMMA/graphene on ferric nitrate solution transferred to a 6" wafer http://www.nanoadvancement.org/nanotechnologypresentations/ANI short version.pdf

✓Pt上グラフェンのバブリング転写

 $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$

サファイア上でのグラフェン直接成長

バンドギャップ形成:2層グラフェンへの電界印加

J. B. Oostinga et al., Mature Mater. 7, 151 (2008). 48

バンドギャップ形成:ナノリボン

1. グラフェンとは 2. グラフェン評価法 3. グラフェン成長法 3-1 化学気相成長法 3-2 析出法 3-3 SiC熱分解法

金属基板上グラフェン成長

Surface	Method of	Main experimental technique		
	preparation			
Co(0001)	Segregation	AES		
Ni(111)	Segregation	AES		
	Decomposition	ELS		
	Decomposition	UPS		
	Decomposition	HREELS		
	Decomposition	ARUPS		
	Decomposition	STM		
	Decomposition	LEED		
	Decomposition	ICISS		
Ni(100)	Segregation	LEED		
	Decomposition	ARUPS		
Ru(0001)	Segregation	LEED		
	Segregation	STM		
	Segregation	LEEM		
	Decomposition	ARUPS		
	Decomposition	XPS		
	Decomposition	STM		
	Decomposition	SXRD		
Rh(111)	Segregation	LEED		
Rh(100)	Decomposition	LEED		
Pd(111)	Segregation	AES		
Pd(100)	Segregation	AES		
Ir(111)	Decomposition	LEED		
	Decomposition	STM		
	Decomposition	ARUPS		
Pt(111)	Segregation	LEED		
	Decomposition	LEED		
	Decomposition	HREELS		
	Decomposition	STM		
Pt(100)	Segregation	LEED		
	Decomposition	LEED		
Pt(110)	Segregation	LEED		

		Lattice constants	:		
Substrates	Conditions Gases, temperatures, e	✓ Graphite=0.246 nm			
TiC(111) TaC(100) TaC(111) HfC(100) HfC(111) WC(0001) LaB ₆ (100) Ni(100)	C ₂ H ₄ , 1400 K, 200 L C ₂ H ₄ , 1400 K, 2000 I C ₂ H ₄ , 1100–1500 K, 2 C ₂ H ₄ , 1100–1800 K, 1 C ₂ H ₄ , 1400 K, 500 L Hydrocarbon, 1800–20 Segregation CO, C ₂ H ₄	 ✓ Ni(111)=0.249 nm ✓ Rh(111)=0.269 nm ✓ Ru(0001)=0.271 nm ✓ Ir(111)=0.272 nm ✓ Pt(111)=0.277 nm 			
Ni(111)	C ₂ H ₄ Segregation	LEED, AES	[25] (26, 27]		
Pt(111)	C ₃ H ₆ , 1150 K, 13 L C ₆ H ₆ 1100 K, 25 L Segregation	LEED, AES	[28, 29]		
Ir(100)	C ₆ H ₆ , 1600 K, 150 L	AES, TDS	[30]		
Ir(111)	C ₆ H ₆ , 1600 K, 150 L	AES, TDS	[30]		
Pd(100)	Segregation	LEED, AES	[28]		
Pd(111)	Segregation	LEED, AES	[28]		
Re(1010)	C ₆ H ₆ , 1500-1800 K	AES, TDS	[31]		
Ru(001)	Segregation	UPS	[32]		

C. Oshima and A. Nagashima: J. Phys.: Condens. Matter 9 (1997) 1.

J. Wintterlin, M.-L. Bocquet/Surface Science 603 (2009) 1841-1852

	Gr	Ni	Co	Pd	Al	Ag	Cu	Au	Pt
d_{eq} (Å)		2.05	2.05	2.30	3.41	3.33	3.26	3.31	3.30
ΔE (eV)		0.125	0.160	0.084	0.027	0.043	0.033	0.030	0.038
$W_{\rm M}$ (eV)		5.47	5.44	5.67	4.22	4.92	5.22	5.54	6.13
W (eV)	4.48	3.66	3.78	4.03	4.04	4.24	4.40	4.74	4.87
W_{expt} (eV)	4.6 ^a	3.9 ^a		4.3 ^a					4.8 ^a

G. Giovannetti et al., PRL 101, 026803 (2008).

グラフェンCVD成長

CVD成長の基板依存性

CVD成長の基板依存性

✓Ni上の偏析/析出

✓Cu上の二次元核形成/成長

K. S. Kim et al., Nature 457, 706 (2009).

X. Li et al., Science 324, 1312 (2009). 56

グラフェン成長様式

多結晶グラフェン

✓多結晶Cu箔上の多結晶グラフェン

Q. Yu et al., Nature Mater. 10, 443 (2011).

Q. Yu et al., Nature Mater. 10, 443 (2011).

0.5 nm

P. Y. Huang et al., Nature 469, 389 (2011).

グラフェン成長形

Q. Yu et al., Nature Mater. 10, 443 (2011).

グラフェン成長形:水素の影響

Thus we have shown that hydrogen plays a dual role in the process of graphene growth by CVD on copper

I. Vlassiouk et al., ACS Nano. 5, 6069 (2011). 6()

単結晶グラフェンCVD成長

✓多結晶Cu箔上の核形成制御

X. Li et al., J. Am. Chem. Soc. 131, 2816 (2011).

基板クリーニング+低CH₄圧成長

Q. Yu et al., Nature Mater. 10, 443 (2011).

単結晶グラフェンCVD成長

✓成長中断による単結晶化

lr(111)

t =4564 s

t =7865 s

R. van Gastel et al., APL 95, 121901 (2009).

多結晶Ni箔上の単結晶グラフェンのカーペット状成長

LEEDを用いたグラフェンの結晶方位評価

Single-domain graphene grows continuously in a carpet like manner, not only over steps on the substrate, but also over its grain boundaries.

G. Odahara et al., Appl. Phys. Exp. 5, 035501 (2012).

Ni上カーボンナノファイバ成長

Ni上カーボンナノファイバ成長:第一原理計算

Structure	E _{ads} (eV) Structure		$E_{ads}(eV)$	形成エネルギー			
Surface		Step 2					
The state				位地府房			
Ni(111) hep site with $A_{\alpha} = \frac{1}{2}MI$	0.55		-0.45				
Step				Diffusion Step	E _{diff} (eV)		
3		4		Clean surface (1) \rightarrow clean surface (1)	0.50		
				Interface (4) \rightarrow interface (4)	0.50		
		Lice State		Step edge $(3) \rightarrow$ clean surface (1)	0.55		
	0.00			Clean surface $(1) \rightarrow$ subsurface (7)	1.00		
Ni(211) stop edge site with $\theta^{st} = 1$	0.00	Interface here site on Ni(111) with $h_{-} = {}^{1}MI$	0.92	Hcp step edge (1) \rightarrow step edge (3)	0.75		
Graphene		Interface hep site on $W(111)$ with $\theta_C = \frac{1}{4}$ ML.		Step edge $(3) \rightarrow$ subsurface (7)	0.75		
5				Subsurface $(7) \rightarrow$ subsurface (7)	0.80		
		e9. (Subsurface (7)→interface (4)	1.34		
				Bulk (8) \rightarrow bulk (8)	1.80		
COCCE Manage							
Refer and	-0.75	Con Store	0.20				
Infinite graphene layer.	Ļ	Interface site at step-edge with $\theta_C^{st} = \frac{1}{2}$.					
Subsurface		Bulk					
	0.21	8 Carbon	0.53				
Subsurface (octahedral site) with $\theta_C^{slab} = \frac{1}{27}$.		Bulk (octahedral site) with $\theta_C^{bulk} = \frac{1}{27}$.		F Abild-Pederson et al PRR 73	115410(2006) CC		

Ni上カーボンナノファイバ成長:第一原理計算

F. Abild-Pedersen et al., PRB 73, 115419(2006).

Ni上カーボンナノファイバ成長:第一原理計算

Front growth

-0.5

Base growth

Base growth by atom exchange

C1 Initial state: 0.86 eV

C2 Transition state: 1.40 eV

C3 Final state: 0.97 eV

F. Abild-Pedersen et al., PRB 73, 115419(2006). 68

グラフェン成長中のRu基板エッチング

E. Starodub et al., PRB 80, 235422 (2009).

グラフェンCVD成長

E. Longinova et al., New J. Phys. 10, 093026 (2008). 7()

グラフェンCVD成長

グラフェンCVD成長

73

K. F. McCarty et al., Carbon 47, 1806 (2009). 76

単結晶グラフェン析出

K. F. McCarty et al., Carbon 47, 1806 (2009). 78

金属上2層グラフェン成長

X. Liu et al., J. Phys. Chem. C 115, 11976 (2011).

多結晶Cu薄膜上のグラフェンナノリボン成長

K. Hayashi et al., J. Am. Chem. Soc. 134, 12492 (2012).

多結晶Cu薄膜上のグラフェンナノリボン成長

Table 1. Adsorption Energy (eV)

	carbon monomer	carbon dimer	C_2H_2
Cu (111)	-6.67	-5.84	-1.39
Cu (001)	-7.42	-5.93	-1.53

Table 2. Diffusion Barrier (eV)

	carbon monomer	carbon dimer	C_2H_2
Cu (111)	0.94	0.48	0.37
Cu (001)	1.79	0.86	0.76

molecules on the surface normalized by c_{001} : #1: $E_{\text{diff}, 001} = 0.86$, $E_{\text{diff}, 111} = 0.48 \text{ eV}$ (E_{diff} values for carbon dimers were used), $E_{\text{ads}, 001} = -1.8$, and $E_{\text{ads}, 111} = -1.0 \text{ eV}$; #2: $E_{\text{diff}, 001} = 1.79$, $E_{\text{diff}, 111} = 0.94 \text{ eV}$ (E_{diff} values for carbon monomers were used), $E_{\text{ads}, 001} = -1.8$, and $E_{\text{ads}, 111} = -1.0 \text{ eV}$; #2: $E_{\text{diff}, 001} = 1.79$, $E_{\text{diff}, 111} = 0.94 \text{ eV}$ ($E_{\text{diff}} = -1.8$, and $E_{\text{ads}, 111} = -1.0 \text{ eV}$; #2: $E_{\text{diff}, 001} = -1.8$, and $E_{\text{ads}, 111} = -1.8 \text{ eV}$ ($E_{\text{diff}} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8$, and $E_{\text{ads}, 111} = -1.8 \text{ eV}$ ($E_{\text{diff}} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8 \text{ eV}$ ($E_{\text{diff}} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8 \text{ eV}$ ($E_{\text{diff}} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8 \text{ eV}$ ($E_{\text{diff}} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8 \text{ eV}$ ($E_{\text{diff}} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8 \text{ eV}$), $E_{\text{ads}, 001} = -1.8 \text{ eV}$

K. Hayashi et al., J. Am. Chem. Soc. 134, 12492 (2012).

1. グラフェンとは 2. グラフェン評価法 3. グラフェン成長法 3-1 化学気相成長法 3-2 析出法 3-3 SiC熱分解法

SiC結晶

SiC-6√3×6√3 = 3.1936 nm Graphene-13×13 = 3.1993 nm

Graphene on bulk-truncated SiC(0001)

K. V. Emtsev et al., Phys. Rev. B 77, 155303 (2008).

M. Nagase et al., Nanotechnology 20, 445704 (2009).

Si面、C面上グラフェン成長

 $\mu \approx$ 4,000 cm²/V·s

μ = 250,000 cm²/V·s

C面上グラフェン:層内の回転

H. Hibino *et al.*, J. Phys. D: Appl. Phys. 45, 154008 (2012). 86

C面上グラフェン:層間の回転

C面上グラフェン成長過程

グラフェン成長過程:圧力効果

with $p_0=48\pm9$ mbar. We assign this value to "effective pressure" of Si vapor interacting with graphene layers and/or graphene-SiC interface. It could be understand that Si atoms

グラフェン成長中の表面形状

G. F. Sun et al., Phys. Rev. B 84, 195455 (2011).

超高真空中でのグラフェン成長過程の模式図

グラフェン成長中のC原子輸送

Y. Murata et al., Thin Solid Films 520, 5289 (2012).

グラフェン成長過程:ステップの役割

グラフェン成長過程:ステップの役割

W. Norimatsu and M. Kusunoki, Physica E 42, 691 (2010). 94

グラフェン成長過程の理論的考察

H. Kageshima *et al.*, Appl. Phys. Exp. 2, 065502 (2009). 95

グラフェン成長過程

W. Norimatsu and M. Kusunoki, Chem. Phys. Lett. 468, 52 (2009).96

バッファー層形成過程

Si面上グラフェン成長モデル

F. Ming and A. Zangwill, J. Phys. D: Appl. Phys. 45, 154007 (2012).

M. Hupalo et al., Phys. Rev. B 80, 041401 (2009). 100

グラフェン成長中のステップ不安定化

T. Ohta et al., Phys. Rev. B 81, 121411(R) (2010).

指状構造の形成機構

グラフェン成長中のステップ不安定化

$$\frac{\partial y}{\partial t} = \frac{f(x)}{\cos(\alpha)} = f(x) \left[1 + \left(\frac{\partial y}{\partial x}\right)^2 \right]$$

Looking for steady-state translating solutions of the form y(x,t) = z(x+vt)If $f(x) = \exp(-x/a)$ Then the solution $z(x) = 2a \ln \cos(x/2a)$

グラフェン成長中のステップ不安定化

104

グラフェン安定成長

T. Ohta et al., Phys. Rev. B 81, 121411(R) (2010).

グラフェンのSiに対する非透過性

グラフェン成長過程:成長速度

C面上グラフェン

A. Drabińska et al., PRB 81, 245410 (2010).

W. Norimatsu et al., PRB 84, 035424 (2011).

グラフェンのSiに対する非透過性

Deal-Grove model B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

Si外部拡散

グラフェン成長の熱力学

R. M. Tromp and J. B. Hannon, PRL 102, 106104 (2009).

W/O Si pressure

Si pressure of 2×10⁻⁵ Torr

1-4 layers

1300°C 1-2 layers

Ar中でのグラフェン成長

C. Virojanadara et al., Phys. Rev. B 78, 245403 (2008). 111

高均一グラフェン成長

SiC上2層グラフェンの積層ドメイン

STV=5 V 500 nm

STV=44.5 V

(A) グラフェン間の面積差

AB or AC積層がランダムに選択され、 固定される

擬似フリースタンディンググラフェン

√擬似フリースタンディング2層グラフェン

J. A. Robinson et al., Nano Lett. 11, 3875 (2011).

Structured エピタキシャルグラフェン

グラフェン成長速度の面方位依存性を利用して、パターン SiC基板上にグラフェンナノリボンを位置選択成長

まとめ

金属上グラフェンCVD成長: 大面積、低コスト、転写可転写プロセス、多層化 炭素固溶度により異なる成長機構 単結晶グラフェンを目指した成長制御

2. 金属上グラフェン析出: 大面積、低コスト、転写可転写プロセス、単層化 炭素アドアトムを介した成長 基板平坦処理による単一ドメイン化

3. SiC上グラフェン成長機構: 大面積、層数制御、転写レス 高コスト、転写難 面方位に依存した成長 加熱環境による層数制御 グラフェンのSi原子に対する非透過性