表面・界面ダイナミクスの数理III 2012年5月18日

半導体微細構造の表面拡散による形態変化 - 実験とシミュレーション

大阪大学産業科学研究所

表面拡散による高アスペクト 比微細構造の形態変化 シェンテンのな形態変化

- 微細構造形成技術への応用
- 複雑な時間発展の物理的理解
 - ➡ Mullins理論に基づく現象の理解

Si(001)基板上に形成した高アスペクト比微細構造

1次元トレンチ

柱状ホール

コーナー・ラウンディング

H. Kuribayashi, R. Hiruta, R. Shimizu, K. Sudoh, and H. Iwasaki, Jpn. J. Appl. Phys. 43, L468 (2004).

1次元格子プロファイルの減衰

シリコン1次元グレーティング1100℃で加熱した時の変形の様子

J. Nakamura, K. Sudoh, and H. Iwasaki, Jpn. J. Appl. Phys. 46, 7194 (2007).

2次元ホール配列の形態変化

K. Sudoh, H. Iwasaki, H. Kuribayashi, R. Hiruta, R. Shimizu, J. Appl. Phys. 105, 083536 (2009)

表面拡散による空洞の形態変化

at 1100 °C in 60 Torr H₂ gas

•{001},{011},{111},{113}ファセットで覆われた多面体

•体積一定

形態変化の駆動力

Gibbs-Thomson化学ポテンシャル

$$\mu(K)=\gamma\Omega K$$
 γ :表面張力 Ω :原子1個が占める体積

Mullins方程式

W. W. Mullins: J. Appl. Phys.28, 333 (1957).

法線方向の速度

$$v_n = \frac{D_s \gamma \Omega C_0}{kT} \Delta_s K = B \Delta_s K$$

孤立した1次元トレンチの変形

数値計算

K. Sudoh, H. Iwasaki, H. Kuribayashi, R. Hiruta, R. Shimizu, Jpn. J. Appl. Phys. 43, 5937 (2004).

1次元トレンチ列の変形

<u>1 μm</u>

Simulation

4%H₂/Ar 760Torr 1150 ºC, 5min

K. Sudoh, H. Iwasaki, R. Hiruta, H. Kuribayashi, R. Shimizu, Jpn. J. Appl. Phys. 43, 5937 (2004).

回転体の形態変化

F. A. Nichols and W. W. Mullins, J. Appl. Phys. 36, 1826 (1965).

Rayleigh不安定性

Lord Rayleigh, Roc. London Math. Soc. 10, 4 (1878).

 $\lambda > \lambda_c = \sqrt{2\pi D}$

シミュレーション結果:アスペクト比=3.8

シミュレーション結果:アスペクト比=2.5

開口半径の時間変化

開口の閉塞過程(SEM像)

異方性があるときのMullins方程式

化学ポテンシャル
$$\mu(K) = \beta(\theta)\Omega K$$

表面スティフネス
$$\beta(\theta) = \gamma(\theta) + \frac{\partial^2 \gamma(\theta)}{\partial \theta^2}$$

$$-\bigoplus \quad v_n = B\Delta_s \beta(\theta) K$$

回転体
$$v_n = \frac{B}{r} \frac{\partial}{\partial s} \left(r \frac{\partial \beta(\theta) K}{\partial s} \right)$$

表面エネルギーの異方性の与え方

H. P. Bonzel, E. Preuss, Surf. Sci. 336 (1995) 209.

異方性を考慮したシミュレーション: アスペクト比=3.8

異方性を考慮したシミュレーション: アスペクト比=2.5

プロファイルの比較

まとめ

Si(001)基板上に形成した1次元トレンチと柱状ホールの表 面拡散による変形の様子を観察し、連続体モデルによるシ ミュレーションと比較した。

1次元トレンチの変形は、Mullins方程式を用いたシミュレー ションで良く再現される。

柱状ホールの変形を再現するには、表面エネルギーの異 方性を考慮することが必要。