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Tutorial Lecture  
 

The variational principle formulated by Onsager (1931) 
 

Reciprocal relations for irreversible processes: Heat transport 
 
The heat flux J  induced by temperature gradient T∇  is given by the constitutive 
equations  

3

1
   ( 1, 2,3)i ij j

j
J T iλ

=

= − ∇ =∑ . 

The ijλ  are coefficients of heat conductivity. The heat conductivity tensor is symmetric 
even in crystals of low symmetry (Stokes 1851). 
 
Onsager’s reciprocal relations derived from microscopic reversibility 
 
For a closed system, consider the fluctuations of a set of (macroscopic) variables 

 ( 1,..., )i i nα =  with respect to their most probable (equilibrium) values. The entropy of 
the system S  has a maximum eS  at equilibrium so that eS S SΔ = −  can be written in the 
quadratic form 

1
, 1

1( ,..., )
2

n

n ij i j
i j

S α α β α α
=

Δ = − ∑ , 

where β  is symmetric and positive definite. The probability density at  ( 1,..., )i i nα =  is 
given by  

/
1( ,..., ) (0,...,0) BS k

nf f eα α Δ=  
where Bk  is the Boltzmann constant. The forces conjugate to ( 1,..., )i i nα =  are defined 
by 

1

n

i ij j
ji

SX β α
α =

∂Δ
= = −
∂ ∑  

which are linear combinations of ( 1,..., )i i nα =  not far from equilibrium. 
 
Following the above definition of the forces, the equilibrium average (over the 
distribution function 1( ,..., )nf α α ) of i jXα  is given by 

i j B ijX kα δ= − . 
Microscopic reversibility leads to the equality 

( ) ( ) ( ) ( )i j j it t t tα α τ α α τ+ = +  
for time correlation functions. In a certain domain not far from equilibrium, the 
macroscopic variables  ( 1,..., )i i nα =  satisfy the linear equations 
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( ) ( ) ( )

n n

i ik k ij j
k j

d t M t L X t
dt
α α

= =

= − =∑ ∑ .  
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Here the Onsager coefficient matrix L  is related to the (rate) coefficient matrix M  via 
the relation 1L M β −= .  
 
Onsager’s hypothesis is that fluctuations evolve in the mean according to the same 
macroscopic laws. Therefore, in evaluating the correlation function ( ) ( )i jt tα α τ+  for a 
short time interval τ  (a hydrodynamic time scale which is macroscopically short but 
microscopically long), ( )j tα τ+  is given by 

1
( ) ( ) ( ) ( ) ( )

n

j j j j jk k
k

dt t t t L X t
dt

α τ α τ α α τ
=

+ = + = + ∑ . 

It is worth pointing out that τ  is macroscopically short for the linear expansion but 
microscopically long for the applicability of the macroscopic laws. It follows that 

( ) ( )i jt tα α τ+  is given by 

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

n

i j i j jk i k i j B ji
k

t t t t L t X t t t k Lα α τ α α τ α α α τ
=

+ = + = −∑ . 

Similarly, ( ) ( )j it tα α τ+  is given by 

( ) ( ) ( ) ( )j i j i B ijt t t t k Lα α τ α α τ+ = − . 
Comparing the above two time correlation functions, we obtain the reciprocal relations  

ji ijL L=  

from microscopic reversibility. Note that ( ) ( ) ( ) ( )i j j it t t tα α α α=  by definition. 
 
Onsager’s variational principle governing irreversible processes 
 
Consider the heat transport in a crystal. The “forces” and “rates” (“velocities”) are related 
by the constitutive equations 

3

1

1
i i ij j

j
T X R J

T =

− ∇ = =∑ , 

where  ( 1,2,3)iX i =  are the forces and the components of the heat flux  ( 1,2,3)jJ j =  
are the rates. Here the matrix R  is the inverse of the Onsager coefficient matrix L , 
which is also symmetric. The dissipation function ( , )φ J J  is introduced in the form of 

3

, 1

1( , )
2 ij i j

i j
R J J

T
φ

=

≡ ∑J J . 

It is worth emphasizing that φ  can be defined in this quadratic form because of the 
symmetry in the matrices R  and L . It is observed that substituting the constitutive 
equations into the quadratic expression for φ  yields  

3 3 3

, 1 1 1

1 1 12 ( , ) ij i j i i i i
i j i i

R J J J X J
T T T

φ
= = =

⎛ ⎞≡ = = ∇ ⎜ ⎟
⎝ ⎠

∑ ∑ ∑J J , 

which equals the rate of entropy production per unit volume due to heat transport. 
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Let s  denote the local entropy density in the system. Then, under the assumption of local 
equilibrium, the rate of change of s  is given by  

( )1ds
dt T

= −∇⋅J , 

where −∇ ⋅J  is the rate of local accumulation of heat. The rate of change of the total 
entropy S  is the volume integral 

1dsS dV dV
dt T

⎛ ⎞= = − ∇ ⋅⎜ ⎟
⎝ ⎠∫ ∫ J .  

The rate of the entropy given off to the surrounding environment is given by the surface 
integral 

* nJS dA
T

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , 

where nJ  is the outward normal component of the heat flux at the boundary. It follows 
that  

1 1 1* nJS S dV dA dV dV dV
T T T T T

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − ∇⋅ + = − ∇⋅ + ∇ ⋅ = ⋅∇⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠∫ ∫ ∫ ∫ ∫

JJ J J . 

 
It can be shown that the constitutive equations for heat transport can be derived from the 
variational principle 

( , ) ( ) *( ) minimumnS S J⎡ ⎤Φ − + =⎣ ⎦J J J , 
where the temperature distribution is prescribed, and the rates, i.e., the heat flux J , are 
varied. Here ( , )Φ J J  is defined by 

3

, 1

1( , ) ( , )
2 ij i j

i j
dV R J J dV

T
φ

=

⎛ ⎞
Φ ≡ ≡ ⎜ ⎟

⎝ ⎠
∑∫ ∫J J J J , 

( )S J  is defined by  
1( )S dV
T

⎛ ⎞≡ − ∇ ⋅⎜ ⎟
⎝ ⎠∫J J , 

and *( )nS J  is defined by 

*( ) n
n

JS J dA
T

⎛ ⎞≡ ⎜ ⎟
⎝ ⎠∫ , 

with  
1( ) *( )nS S J dV
T
⎛ ⎞+ ≡ ⋅∇⎜ ⎟
⎝ ⎠∫J J . 

The variation of ( , ) ( ) *( )nS S J⎡ ⎤Φ − +⎣ ⎦J J J  is given by 

{ } 1( , ) ( ) *( ) ( , )n k k
k k

S S J J dV
J T

δ φ δ
⎡ ⎤∂ ⎛ ⎞⎡ ⎤Φ − + = −∇⎢ ⎥⎜ ⎟⎣ ⎦ ∂ ⎝ ⎠⎣ ⎦

∑∫J J J J J , 

from which we have  
1( , ) k

kJ T
φ∂ ⎛ ⎞= ∇ ⎜ ⎟∂ ⎝ ⎠

J J  
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according to the variational principle. We note that these are exactly the constitutive 
equations 
1 1 k

kj j k
j

XR J
T T T

⎛ ⎞=∇ =⎜ ⎟
⎝ ⎠

∑ . 

As shown already, inserting the constitutive equations into the quadratic expression for φ  
yields the equality 

12 ( , ) ( , )k k k
k kk

J J
J T

φ φ∂ ⎛ ⎞= = ∇ ⎜ ⎟∂ ⎝ ⎠
∑ ∑J J J J , 

and hence the integral form 
2 ( , ) ( ) *( )nS S JΦ = +J J J . 
Note that ( ) *( )nS S J+J  is the rate of change of the entropy in the system and the 
surrounding environment. Therefore, the rate of entropy production 2 ( , )Φ J J  is equal to 
the rate of change of the entropy ( ) *( )nS S J+J  in an irreversible process governed by 
the constitutive equations.  
 
If the system is isothermal and in thermal equilibrium with the environment, then  

1 1*( ) n
n

JS J dA Q U
T T T

⎛ ⎞≡ = − = −⎜ ⎟
⎝ ⎠∫ , 

where nQ J dA= −∫  is the rate of heat transfer from the environment into the system, U  

is the rate of change of the energy of the system, and Q U=  according to the first law of 
thermodynamics. Note that the temperature distribution is uniform here. It follows that 
the variational principle becomes  

1( , ) ( ) *( ) ( , ) ( ) ( ) minimumnS S J U TS
T

⎡ ⎤ ⎡ ⎤Φ − + = Φ + − =⎣ ⎦ ⎣ ⎦J J J J J J J , 

where ( ) *( )nU TS J= −J  has been used for the rate of change of the energy. As 
( ) ( )U TS−J J  is the rate of change of the Helmholtz free energy F U TS≡ − , the 

variational principle becomes  
1( , ) ( ) minimumF
T

Φ + =J J J , 

where ( )F J  is the rate of change of the Helmholtz free energy. Note that ( , )Φ J J  is 
positive definite and quadratic in the rates while ( )F J  is linear in the rates. Minimizing 

( , ) ( ) /F TΦ +J J J  with respect to the rates yields the equality 
2 ( , ) ( )T FΦ = −J J J , 
which shows that 2 ( , )TΦ J J  is the rate of free energy dissipation in an irreversible 
process governed by the variational principle. 
 


