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• The no-slip boundary condition and the moving contact line 
blproblem

• The generalized Navier boundary condition (GNBC) fromThe generalized Navier boundary condition (GNBC) from 
molecular dynamics (MD) simulations

I l t ti f th li b d diti i• Implementation of the new slip boundary condition in a 
continuum hydrodynamic model (phase-field formulation)

• Comparison of continuum and MD results

A i ti l d i ti f th ti d l f b th• A variational derivation of the continuum model, for both 
the bulk equations and the boundary conditions, from 
Onsager’s principle of least energy dissipation (entropy 

d ti )production)



Wetting phenomena:Wetting phenomena: 
All the real world complexities we can have!

Moving contact line: 
All the simplifications we can make andAll the simplifications we can make and 
all the simulations, molecular and continuum,
we can carry out!we can carry out!
Numerical experiments

Offer a minimal model with solution to this classical 
fluid mechanical problem, under a general principle 
h h d i i iblthat governs thermodynamic irreversible processes



Continuum picture Molecular pictureContinuum picture Molecular picture
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No Slip Boundary Condition A Paradigm
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No-Slip Boundary Condition, A Paradigm

0=slipv 0=pvτ



James Clerk Maxwell

Many of the great names in mathematics and physics

Claude-Louis Navier

y g p y
have expressed an opinion on the subject, including 
Bernoulli, Euler, Coulomb, Navier, Helmholtz, Poisson, 
Poiseuille, Stokes, Couette, Maxwell, Prandtl, and Taylor.



from Navier Boundary Condition (1823)
to No-Slip Boundary Condition

γτ ⋅= s
slip lv

γ : shear rate at solid surface
:  slip length, from nano- to micrometer

Practically no slip in macroscopic flows
sl

Practically, no slip in macroscopic flows

0// →≈ RlUvslip→≈ RU /γ 0// →≈ RlUv s→≈ RU /γ



Hydrodynamic boundary condition 

fluid velocity

fluid

solid

From no slip to perfect slip (for simple fluids)
Interpretation of the (Maxwell-Navier) slip length

Ch. 15 in Handbook of Experimental Fluid Dynamics
Editors J. Foss, C. Tropea and A. Yarin, Springer, New-York (2005).



Wetting: Statics and Dynamicsg y



Static wetting phenomena

Partial wetting Complete wetting



Dynamics of wettingDynamics of wetting

What happens near the moving contact line

Moving Contact Line

What happens near the moving contact line  
had been an unsolved problems for decades.



fluid 2fluid 1 γ fluid 2fluid 1

θs
contact line θs γ2γ1

contact line
21

solid wall

12cos γγθγ =+sYoung’s equation (1805):
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The Huh-Scriven model

for 2D flow

(linearized Navier-Stokes equation)

Sh t d

8 coefficients in A and B, determined by 8 boundary conditions

Shear stress and pressure vary as 



Dussan and Davis, J. Fluid Mech. 65, 71-95 (1974):
1. Incompressible Newtonian fluid
2. Smooth rigid solid walls
3 Impenetrable fluid fluid interface3. Impenetrable fluid-fluid interface
4. No-slip boundary condition

St i l it th t ti l f t d b th fl idStress singularity: the tangential force exerted by the fluid 
on the solid surface is infinite.

Not even Herakles could sink a solid !   by Huh and Scriven (1971).

a) To construct a continuum hydrodynamic modela) To construct a continuum hydrodynamic model
by removing condition (3) and/or (4).

b) To make comparison with molecular dynamics simulationsb) To make comparison with molecular dynamics simulations



Numerical experiments done for 

• Koplik Banavar and Willemsen PRL (1988)

this classic fluid mechanical problem

• Koplik, Banavar and Willemsen, PRL (1988)
• Thompson and Robbins, PRL (1989)
• Slip observed in the vicinity of the MCL
• Boundary condition ???y
• Continuum deduction of molecular dynamics !



Immiscible two-phaseImmiscible two-phase 
Poiseuille flow

The walls are moving to the left 
in this reference frame, and away 
from the contact line the fluid velocity 
near the wall coincides with the wall 
velocity. Near the contact lines 
the no-slip condition appears to fail, 
hhowever.



Slip profile
no slip

The discrepancy between

complete slip

The discrepancy between
the microscopic stress and

suggests a breakdown of 
zVx ∂∂ /

gg
local hydrodynamics.



A E i h

Two classes of models proposed to describe the contact line motion:

An Eyring approach:
Molecular adsorption/desorption processes at the contact line 
(three-phase zone);(three-phase zone);
Molecular dissipation at the tip is dominant.
T. D. Blake and J. M. Haynes, Kinetics of liquid/liquid displacement, 
J Colloid Interf Sci 30 421 (1969)J. Colloid Interf. Sci. 30, 421 (1969).

A hydrodynamic approach:
Dissipation dominated by viscous shear flow inside the wedge;
For wedges of small (apparent) contact angle, a lubrication
approximation used to simplify the calculations;approximation used to simplify the calculations;
A (molecular scale) cutoff introduced to remove the logarithmic 
singularity in viscous dissipation.
F Brochard Wyart and P G De Gennes Dynamics of partial wettingF. Brochard-Wyart and P. G. De Gennes, Dynamics of partial wetting, 
Advances in Colloid and Interface Science 39, 1 (1992).



The kinetic model by Blake and Haynes: The role of interfacial tension
A fluctuating three phase zoneA fluctuating three phase zone.

Adsorbed molecules of one fluid interchange with those of the other fluid. 

In equilibrium the net rate of exchange will be zero.q g

For a three-phase zone moving relative to the solid wall, the net displacement, 
is due to a nonzero net rate of exchange, driven by the unbalanced Young stress 

0cos 12 ≠−+ γγθγ d 0cos 12 ≠+ γγθγ d
The energy shift due to 
the unbalanced Young stress
leads to two different rates



U

F. Brochard-Wyart and P. G. De Gennes, 
Dynamics of partial wetting, 
Adv. in Colloid and Interface Sci. 39, 1 (1992).U , ( )

To summarize: a complete discussion of the dynamics 
would in principle require both terms in Eq. (21).
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A t Vi l ti f th i / li i t t li

No-slip boundary condition ?
Apparent Violation seen from the moving/slipping contact line
Infinite Energy Dissipation (unphysical singularity)

G I Taylor; K Moffatt; Hua & Scriven;G. I. Taylor;  K. Moffatt;  Hua & Scriven; 
E.B. Dussan & S.H. Davis;  L.M. Hocking;  P.G. de Gennes;
Koplik, Banavar, Willemsen;  Thompson & Robbins;  etc

No-slip boundary condition breaks down !
• Nature of the true B.C. ?              

(microscopic slipping mechanism)
Qi W & Sh Ph R E 68 016306 (2003)

• If slip occurs within a length scale S in  the vicinity
of the contact line, then what is the magnitude of S ?

Qian, Wang & Sheng, Phys. Rev. E 68, 016306 (2003)

g
Qian, Wang & Sheng, Phys. Rev. Lett. 93, 094501 (2004)



Molecular dynamics simulations
f h C flfor two-phase Couette flow

• Fluid-fluid molecular interactions • System size
• Fluid-solid molecular interactions
• Densities (liquid)

y
• Speed of the moving walls

• Solid wall structure (fcc)
• Temperature



Two identical fluids: same density and viscosity,
but in general different fluid-solid interactions

Smooth solid wall: 
solid atoms put on a crystalline structure

No contact angle hysteresis!g y

A phenomenon commonly observed at rough surfaces



Modified Lennard Jones Potentials

612

Modified Lennard-Jones Potentials

])/()/[(4 612 rrU ffff σδσε −=

])/()/[(4 612 rrU wfwfwfwfwf σδσε −=

for like molecules1=ffδ ff

for molecules of different species1−=ffδ
δ wfδ for wetting properties of the fluids
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fluid-1 fluid-2 fluid-1

x

yV
xdynamic configuration

f 1 f 2 f 1 f-1 f-2 f-1

symmetric asymmetric

f-1 f-2 f-1 f-1 f-2 f-1

static configurations
symmetric asymmetric



tangential momentum transportboundary 
layer

Stress from the rate of St ess f om the ate of
tangential momentum 
transport per unit area



schematic illustration of the boundary layer

=)(xG f

fluid force measured according to

)(xGx

normalized distribution of wall force



The Generalized Navier boundary condition

slip
x
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Th t i th i i ibl t h fl id

Y∂∂ ][
viscous part non-viscous part

The stress in the immiscible two-phase fluid:
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+===GNBC from 
continuum deduction

static Young component subtracted
>>>  uncompensated Young stress
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Y
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the deviation from Young’s equation



ds
Y

zxds dx ,
int

,0
, cosθγσ =≡Σ ∫

obtained by subtracting the Newtonian viscous componentYσ
solid circle: static symmetric
solid square: static asymmetric

empty circle: dynamic symmetric
empty square: dynamic asymmetric

:0
zxσ :Y

zxσ

obtained by subtracting the Newtonian viscous componentzxσ
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Y
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Y
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viscous part←

Slip driven by uncompensated Young stress + shear viscous stress



Uncompensated Young StressUncompensated Young Stress
missed in the Navier B. C.

• Net force due to hydrodynamic deviation
from static force balance (Young’s equation)

0coscoscos~d 12
int

≠−+=−=∫ γγθγθγθγσ dsd
Y
zxx

• NBC not capable of describing the motion  of 
contact linecontact line

• Away from the CL, the GNBC implies NBC
for single phase flowsfor single phase flows.



Continuum Hydrodynamic Model:y y
• Cahn-Hilliard (Landau) free energy functional

N i St k ti• Navier-Stokes equation 
• Generalized Navier Boudary Condition (B.C.)
• Advection-diffusion equation
• First-order equation for relaxation of (B.C.)φFirst order equation for relaxation of       (B.C.)φ
supplemented with

incompressibilityincompressibility

impermeability B.C.

0=∂∝ μnnJ impermeability B.C.



Phase field modeling for a two-component system

=L n: outward pointing surface normal



with

Two equilibrium phases: where

Continuity equation Diffusive current



Consider a flat interface parallel to the xy planeConsider a flat interface parallel to the xy plane

Constant chemical potential:
(b d di i )(boundary conditions)

Interfacial profileInterfacial profile

Interfacial thickness

First integral:



supplemented with
0=∂∝ μnnJ

supplemented with



GNBC: 
an equation of tangential force balancean equation of tangential force balance
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Dussan and Davis, JFM 65, 71-95 (1974):
1. Incompressible Newtonian fluid
2. Smooth rigid solid walls
3 Impenetrable fluid fluid interface3. Impenetrable fluid-fluid interface
4. No-slip boundary condition
Stress singularity: the tangential force exerted by the fluid

C diti (3) >>> Diff i th fl id fl id i t f

Stress singularity: the tangential force exerted by the fluid 
on the solid surface is infinite.

Condition (3)  >>>  Diffusion across the fluid-fluid interface
[Seppecher, Jacqmin, Chen---Jasnow---Vinals, Pismen---Pomeau,
Briant---Yeomans]

Stress singularity, i.e., infinite tangential force exerted by
Condition (4)  >>>  GNBC

Stress singularity, i.e., infinite tangential force exerted by 
the fluid on the solid surface, is removed.



Comparison of MD and Continuum Results

• Most parameters determined from MD directly
• M and       optimized in fitting the MD results for 

fi i
Γ

one configuration
• All subsequent comparisons are without adjustable 

tparameters.

ΓM and should not be regarded as fitting parametersΓM and        should not be regarded as fitting parameters, 
Since they are used to realize the interface impenetrability
condition, in accordance with the MD simulations.



molecular positions projected onto the xz plane

SymmetricSymmetric 
Couette flow

 

Asymmetric 
Couette flow

Diffusion versus Slip in MD 



near complete slip← near-complete slip
at moving CL

←

Symmetric
Couette flowno slip

V=0.25 
H=13 6

1/ −→Vv x

↓ H=13.6↓



i

profiles at different z levels)(xvx

symmetric
Couette flow
V=0 25V 0.25
H=13.6

asymmetricC
Couette flowCouette flow
V=0.20 
H=13 6H=13.6



symmetric
Couette 
V=0.25 
H=10.2

symmetric
Couette 
V=0.275 
H 13 6H=13.6











asymmetric 
Poiseuille flowPoiseuille flow
gext=0.05 
H=13 6H 13.6



Power-law decay of partial slip away from the MCL
from complete slip at the MCL to no slip far away,from complete slip at the MCL to no slip far away, 
governed by the NBC and the asymptotic 1/r stress 



The continuum hydrodynamic model 
for the moving contact line

A Cahn Hilliard Navier Stokes system supplementedA Cahn-Hilliard Navier-Stokes system supplemented
with the Generalized Navier boundary condition,
first uncovered from molecular dynamics simulationsy
Continuum predictions in agreement with MD results.

Now derived from
the principle of minimum energy dissipation,
f i ibl h d ifor irreversible thermodynamic processes 
(dissipative linear response, Onsager 1931).

Qian, Wang, Sheng, J. Fluid Mech. 564, 333-360 (2006).



Onsager’s principle for one-variable irreversible processes

Langevin equation:

Fokker-Plank equation for probability density

Transition probability

The most probable course derived from minimizing

Euler-Lagrange equation:



Action−~eyProbabilit Onsager-Machlup 1953
Onsager 1931

y Onsager Machlup 1953
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The principle of minimum energy dissipation (Onsager 1931)

Balance of the viscous force and the “elastic” force from
a variational principlea variational principle

dissipation-function, positive definite 
and quadratic in the rates half the rateand quadratic in the rates, half the rate 
of energy dissipation

rate of change of the free energy



Minimum dissipation theorem for
incompressible single-phase flows
(Helmholtz 1868)

Stokes equation:
Consider a flow confined by solid surfaces.

q

derived as the Euler-Lagrange equation by g g q y
minimizing the functional

for the rate of viscous dissipation in the bulk.

The values of the velocity fixed at the solid surfaces!



Taking into account the dissipation due to 
the fluid slipping at the fluid-solid interface

Total rate of dissipation due to viscosity in the bulk 
d slipping t th lid fand slipping at the solid surface

One more Euler-Lagrange equation at the solid surface
with boundary values of the velocity subject to variationwith boundary values of the velocity subject to variation
Navier boundary condition:



From velocity differential to velocity difference
slipv→∇v

Transport coefficient: from viscosity to slip coefficientη βTransport coefficient: from viscosity       to slip coefficient

FtFdt )0()(11η ∫
∞

G K b f l

η β

eq
FtFdt

TkV
)0()(

0
B

ττη ∫= Green-Kubo formula

11
∫
∞

eq
FtFdt

TkS
)0()(11

0
B

ττβ ∫
∞

=

J.-L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).J. L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).

Auto-correlation of the tangential force over atomistically 
h f M l l t ti l hrough surface: Molecular potential roughness



Generalization to immiscible two-phase flows
A Landau free energy functional to stabilize 
the interface separating the two immiscible fluids

I t f i l f it

double-well structure
for  

Interfacial free energy per unit area 
at the fluid-solid interface

Variation of the total free energy gy

for defining      and L.μ



and L :μ
chemical potentialchemical potential 
in the bulk:

at the fluid-solid interface

Deviations from the equilibrium measured by         in the bulk 
and L at the fluid-solid interface

μ∇
at the fluid-solid interface

Minimizing the total free energy subject to the conservation of 
leads to the equilibrium conditions:

and L at the fluid solid interface.

φ

.Const=μ
leads to the equilibrium conditions:

0=L (Young’s equation)

For small perturbations away from the two-phase equilibrium, 
the additional rate of dissipation (due to the coexistence of 
the two phases) arises from system responses (rates) that are e wo p ses) ses o sys e espo ses ( es) e
linearly proportional to the respective perturbations/deviations.



Dissipation function  (half the total rate of energy dissipation)

Rate of change of the free energy
kinematic transport of 

continuity equation for 

impermeability B.C.



Minimizing 

with respect to the rates yields  

Stokes equation

GNBC
Y
zxσ~

advection-diffusion equation

1st order relaxational equation




