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Hydrodynamic equations 
for liquid-gas flows in the bulk region
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+ 

Boundary conditions at fluid-solid interface
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Helmholtz free energy density:
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Internal energy density, entropy per molecule, and pressure 

Gradient contributions to the internal energy density and 
entropy density
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Free energy minimization leads to the equilibrium structure 
of a diffuse liquid-gas interface. van der Waals
Elasticity in one-component liquid-gas systems, manifested through 
a reversible stress tensor       , which is anisotropic. −Π



Balance equations for particle number, momentum, and energy 
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― the continuity equation 

― the momentum equation 

≡ − +M Π σ is the total stress tensor.
reversible irreversible (viscous)
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― the balance equation for the density of entropy
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Use of standard thermodynamic relations
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The rate of entropy production in the bulk region
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can be ensured by the constitutive relations

The positive definiteness of 2
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― viscous stress

― heat flux

The density inhomogeneity does not contribute to entropy production.  
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― the reversible stress
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A schematic illustration of the fluxes into the surface region 
bounded by the closed curve

. 

• No adsorption at the fluid-solid interface.
• The area densities of surface energy and surface entropy are 

flunctions of n, the boundary value of fluid density.
• Surface stress tensor and surface heat flux are present, but no 

surface viscosity.
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The general boundary (jump) condition in differential form
(a special case of the extended Kotchine’s theorem) 
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Here the prime denotes the surface quantities whose dimensions are 
different from the corresponding bulk quantities. 

Surface entropy and surface energy
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fs sfγ ′= ― the fluid-solid interfacial tension

Surface stress tensor is tangential and symmetric: s fs sfγ′ ′≡ =M τ τ
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Balance equations at the fluid-solid interface
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Three forces by the interface, fluid, and wall

Energy balance
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― tangential slip velocityslip
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First law of thermodynamics applied at the fluid-solid interface
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Entropy balance
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― entropy fluxes

is equal to zero in equilibrium.

― entropy production

Interfacial constitutive relations
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Balance equations 
(conservation laws)

Constitutive relations
} Hydrodynamic equations

From the bulk region to the interface

Balance equations 

Constitutive relations
} Hydrodynamic

boundary conditions

A continuum hydrodynamic model formed by 
differential equations and boundary conditions.



Hydrodynamic Boundary Conditions
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A limiting case Xu and Qian, J. Chem. Phys. 133, 204704 (2010)

0κ→ and fast relaxation toward thermal equilibrium in the solid

No cross coupling: 0χ →

const.wT T= =Constant temperatures at the fluid-solid interface: 

constwT T= =Dirichlet temperature condition
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