Electrorheological Fluids:

Mechanism and its Theoretical Description

Ping Sheng

Department of Physics The Hong Kong University of Science and Technology Hong Kong

Workshop on Introduction to Complex Fluids

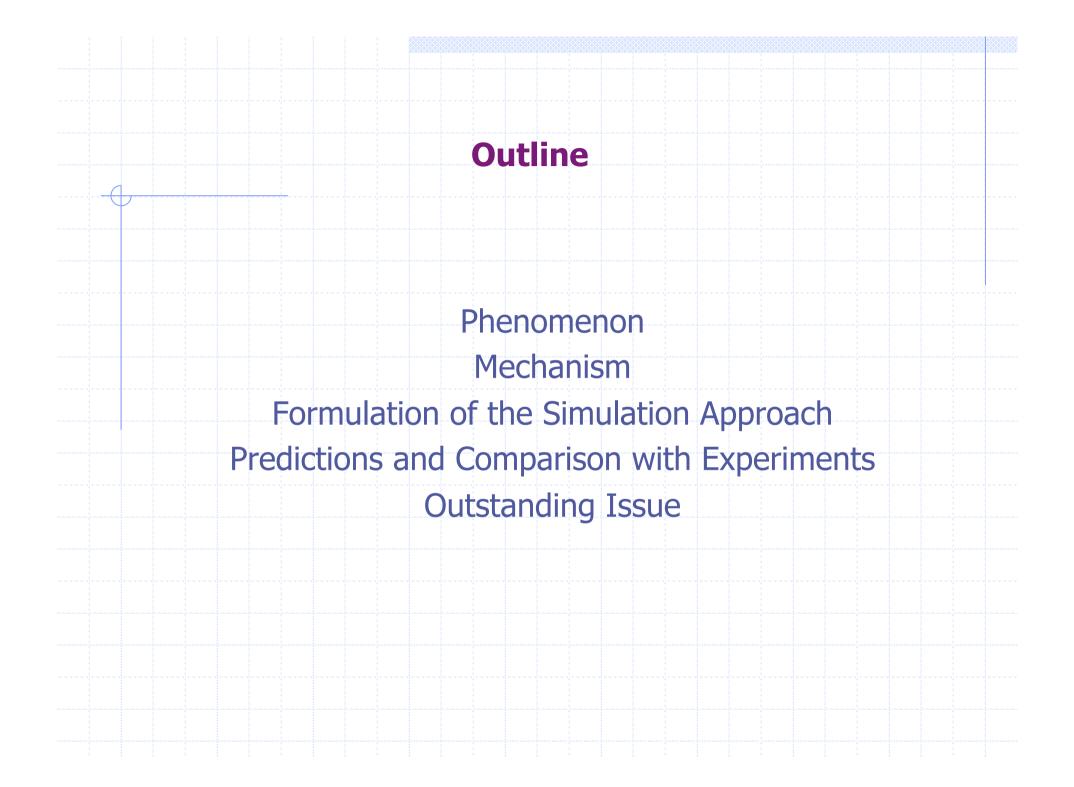
January 17, 2012

Collaborators

Hongru Ma

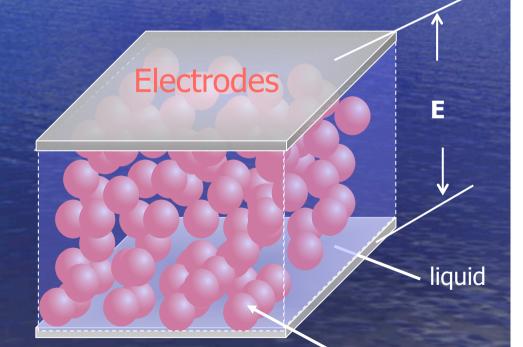
Wing Yim Tam

Ning Wang



Interaction of Nano/micro Particles with Electric Field

Electrorheology means changing the rheological characteristics through an electric field. It can occur in colloids consisting of dielectric particles suspended in a nonconducting liquid.

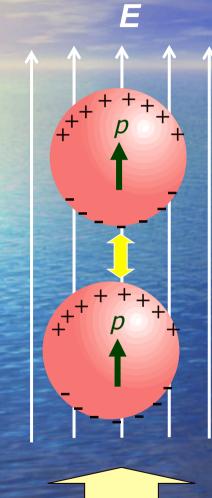


Dielectric particles

The Heuristic Dipole Interaction Model

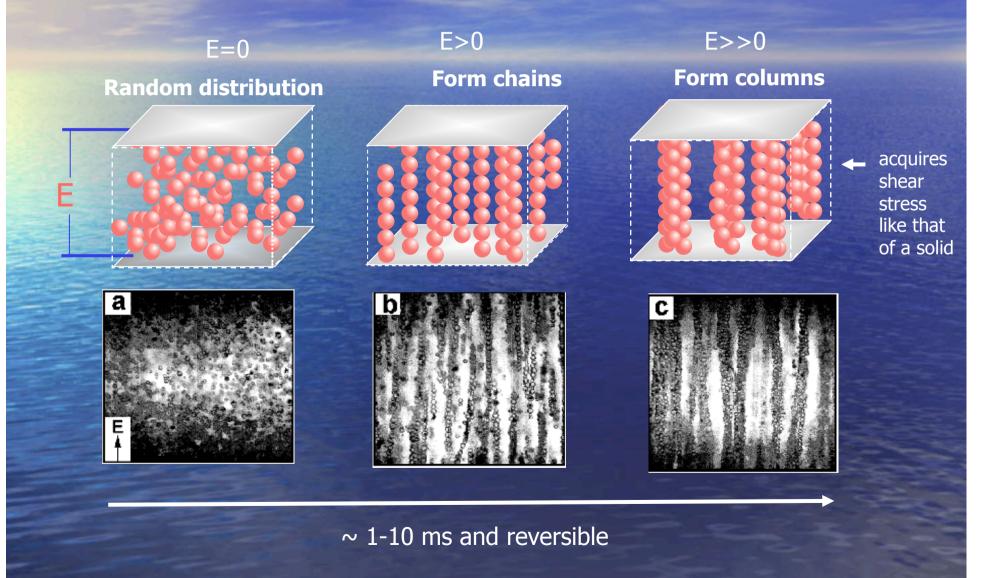
 $\vec{p} = \frac{\varepsilon_s - \varepsilon_\ell}{\varepsilon_s + 2\varepsilon_\ell} a^3 \vec{E} = \beta a^3 \vec{E}$

Chain formation



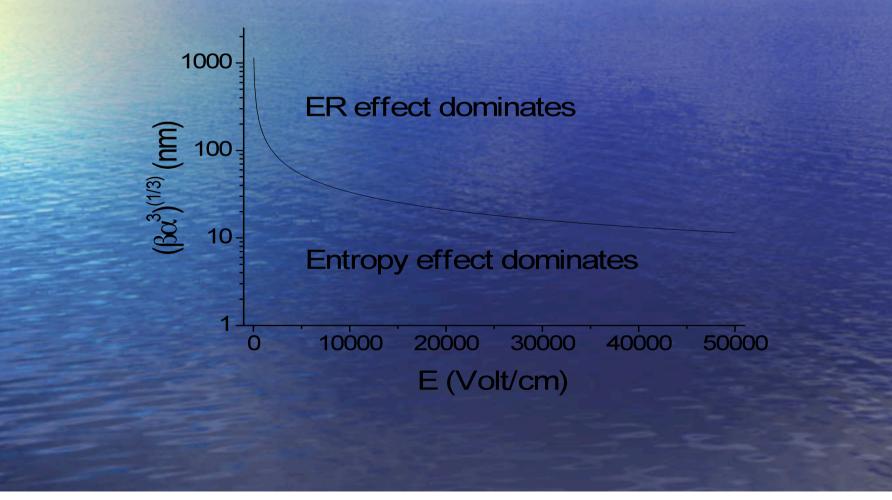
Polarization induced by E-field

How does the ER fluid work?



Dependence on Particle Size

Competition between entropy and ER effect: $\vec{p} \cdot \vec{E} / k_B T = \beta a^3 E / k_B T$



Study of the ER Mechanism

- A structural transition always accompanies the rheological transformation.
 - The dipole interaction model can qualitatively explain the structural transition.
- Problems to be addressed
 - Multipole interactions are very important since the particles can be in close contact.
 - Local field effects have to be taken into account self-consistently.
 - What is the role of the conductivity (imaginary part of the dielectric constant)?
 - What is the particles' configuration in the high-field state?
 - How to calculate the shear modulus and the yield stress of the high-field state?
 - What are the upper bounds of the yield stress and the shear modulus?

Variational Formulation

The applied electric field is always nearly DC.

Response of the colloidal mixture is always captured by the effective dielectric constant tensor.

$$\overline{\varepsilon}_{xx}\overline{\varepsilon}_{xy}\overline{\varepsilon}_{xz}$$

$$\overline{\varepsilon}_{yx}\overline{\varepsilon}_{yy}\overline{\varepsilon}_{yz}$$

$$\overline{\varepsilon}_{zx}\overline{\varepsilon}_{zy}\overline{\varepsilon}_{zz}$$

Matrix elements of the effective dielectric constant tensor depend on the (a) volume fraction, (b) the relative ratio of the dielectric constants of the components, and (c)the *microstructure* (at high solid particle volume fractions).

Variational Formulation (continued)

The overall electrostatic free energy is given by

electrostatic free energy + T*(configuration entropy)

In the ER regime the first term dominates, given by

$$-\frac{1}{8\pi}Re\left\{\vec{E}\cdot\vec{\varepsilon}\cdot\vec{E}\right\}=Re\left\{-\frac{\vec{\varepsilon}_{zz}}{8\pi}E^{2}\right\}$$

÷.

The high field ground state structure can be determined by maximizing $\overline{\varepsilon}_{zz}$ with respect to particle positions.

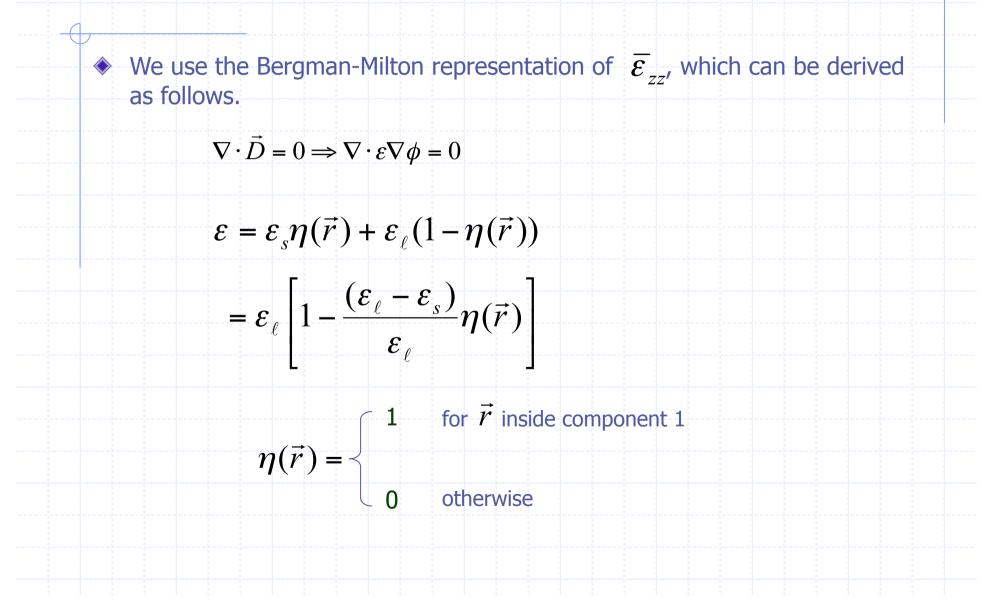
Calculation of $\overline{\varepsilon}_{zz}$

Effective medium theories are the most common approach

• Can not distinguish fine differences in the microstructure.

Need a first-principles approach.

Calculation of $\overline{\varepsilon}_{zz}$ (continued)



Calculation of $\overline{\mathcal{E}}_{zz}$ (continued)

$$\nabla \cdot \left[1 - \frac{1}{s} \eta(\vec{r}) \right] \nabla \phi = 0, \qquad \Rightarrow \qquad \nabla^2 \phi = \frac{1}{s} \nabla \cdot \eta(\vec{r}) \nabla \phi$$

where
$$s = \varepsilon_{\ell} / (\varepsilon_{\ell} - \varepsilon_s)$$
. $s \le 0$ or $s > 1$

$$\phi = z - \frac{1}{s} \int d\vec{r}' G(\vec{r}, \vec{r}') \nabla' \cdot (\eta(\vec{r}') \nabla' \phi(\vec{r}')) = \phi_0 + \frac{1}{s} \Gamma \phi$$

$$\Gamma = \frac{1}{V} \int d\vec{r}' \eta(\vec{r}') \nabla' G_0(\vec{r} - \vec{r}') \cdot \nabla'$$

Note: Γ contains <u>only</u> geometric information

 $G_0(\vec{r} - \vec{r}') = 1/4\pi |\vec{r} - \vec{r}'|$ denotes the Green's function for the Laplace equation, and V the sample volume.

 \overline{Z}

Calculation of $\overline{\mathcal{E}}_{zz}$ (continued)

The formal solution to $\varphi = z + s^{-1}\Gamma\varphi$, given the condition of $\Delta V / \ell = E = -1 = -\partial \phi / \partial z$ in the *z* direction, is

$$\phi = \left[(1 - \frac{1}{s} \Gamma)^{-1} \right]_{Z} = s \frac{z}{s - \Gamma},$$

it becomes possible to write the effective dielectric constant as

$$\bar{\varepsilon}_{zz} = \frac{1}{V} \int d\vec{r} \Big[\varepsilon_2 (1 - \eta(\vec{r})) + \varepsilon_1 \eta(\vec{r}) \Big] \frac{\partial \phi(\vec{r})}{\partial z} = \varepsilon_2 \Big(1 - \frac{1}{V} \int d\vec{r} \frac{1}{s} \eta(\vec{r}) \frac{\partial \phi(\vec{r})}{\partial z} \Big)$$

By defining the inner product operation as $\langle \phi | \psi \rangle = \int d\vec{r}' \eta(\vec{r}') \nabla' \phi^* \cdot \nabla' \psi,$

$$\overline{\varepsilon}_{zz} = \varepsilon_2 \left[1 - \frac{1}{s} \langle z | \varphi \rangle \frac{1}{V} \right] = \varepsilon_2 \left[1 - \frac{1}{V} \langle z | (s - \Gamma)^{-1} | z \rangle \right]$$

Calculation of $\overline{\mathcal{E}}_{zz}$ (continued)

From Eqs. (2) and (3), it follows that the effective dielectric constant is given by the Bergman-Milton representation:

$$\frac{\overline{\varepsilon}_{zz}}{\varepsilon_2} = 1 - \frac{1}{V} \sum_{n,m} \langle z | \varphi_n \rangle \langle \varphi_n | \frac{1}{s - \Gamma} | \varphi_m \rangle \langle \varphi_m | z \rangle$$

$$=1-\frac{1}{V}\sum_{n}\frac{\left|\left\langle z\left|\varphi_{n}\right\rangle\right|^{2}}{s-s_{n}}=1-\sum_{n}\frac{f_{n}^{z}}{s-s_{n}}$$

• f_n^z, s_n are real numbers

 S_n is in the range of [0,1]

$$\Gamma \phi_n = s_n \phi_n$$

• The formalism is similar for coated particles.

Calculation of $\overline{\varepsilon}_{zz}$ (continued)

Under an electric field, the ER fluid is always a two-phase composite: a columnar phase and a liquid phase.

$$\overline{\varepsilon}_{zz} = \frac{p}{p_{col}} \overline{\varepsilon}_{col}^{zz} + \left(1 - \frac{p}{p_{col}}\right) \varepsilon_{\ell}.$$

Hence

The computational task is mainly focused on the calculation of $\overline{arepsilon}_{col}^{zz}$.

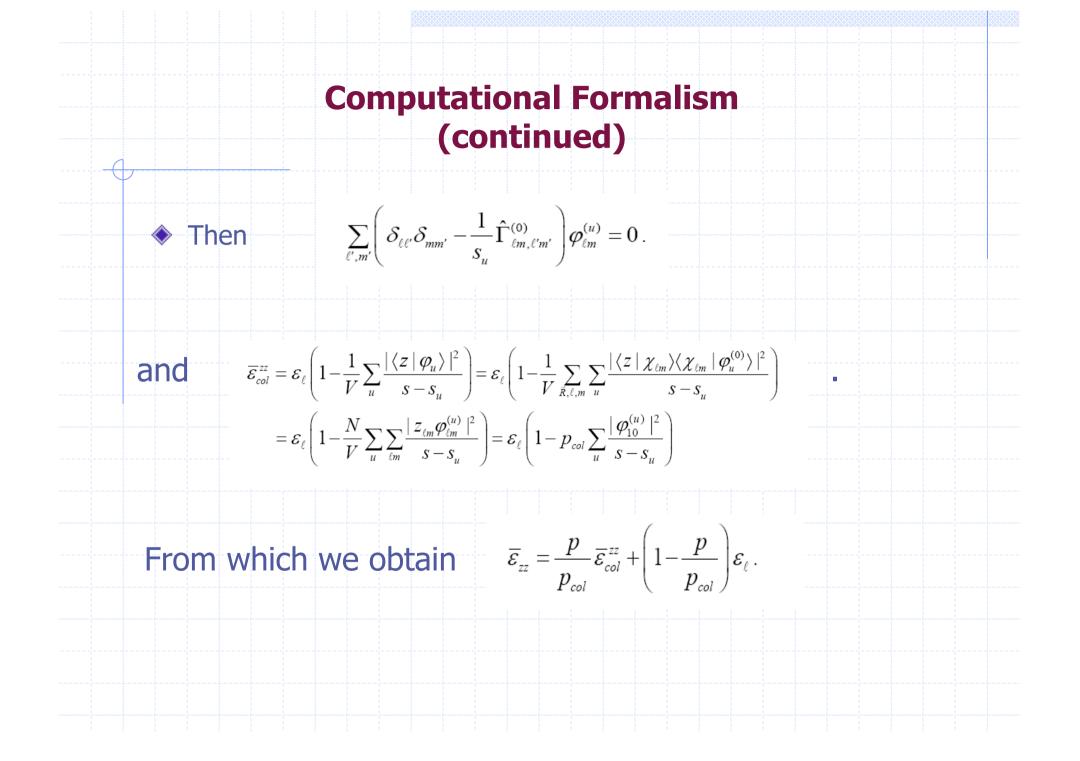
Computational Formalism

♦ Use local basis functions $\chi_{\ell m}(\vec{r} - \vec{R}) = f_{\ell}(|\vec{r} - \vec{R}|)Y_{\ell m}(\theta, \phi)$ which are the local eigenfuctions of the Γ operator. These eigenfunctions can be obtained analytically.

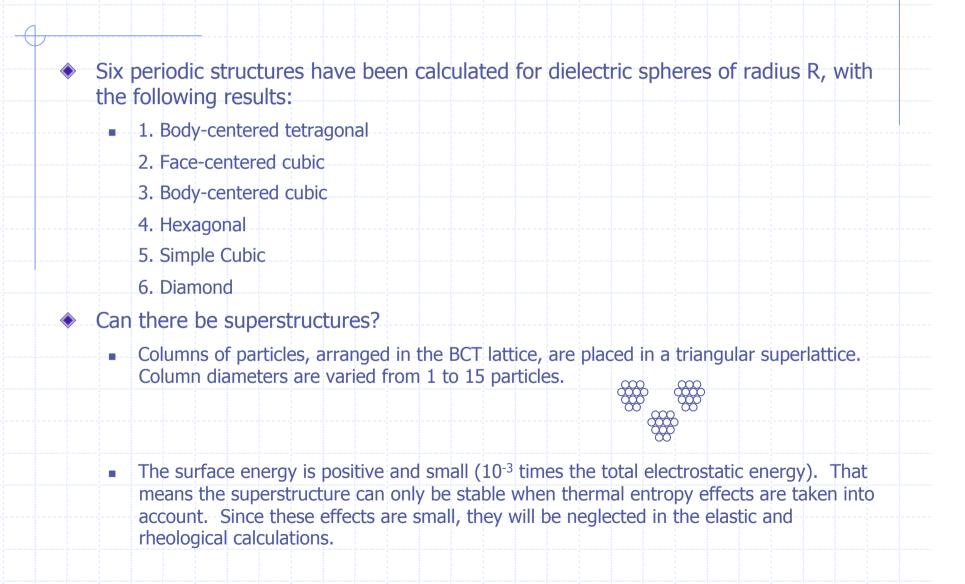
• Obtain the matrix elements $\hat{\Gamma}_{\ell'm',\ell_m}(\vec{R}-\vec{R}') = \langle \chi_{\ell'm'}(\vec{r}-\vec{R}') | \hat{\Gamma} | \chi_{\ell_m}(\vec{r}-\vec{R}) \rangle$

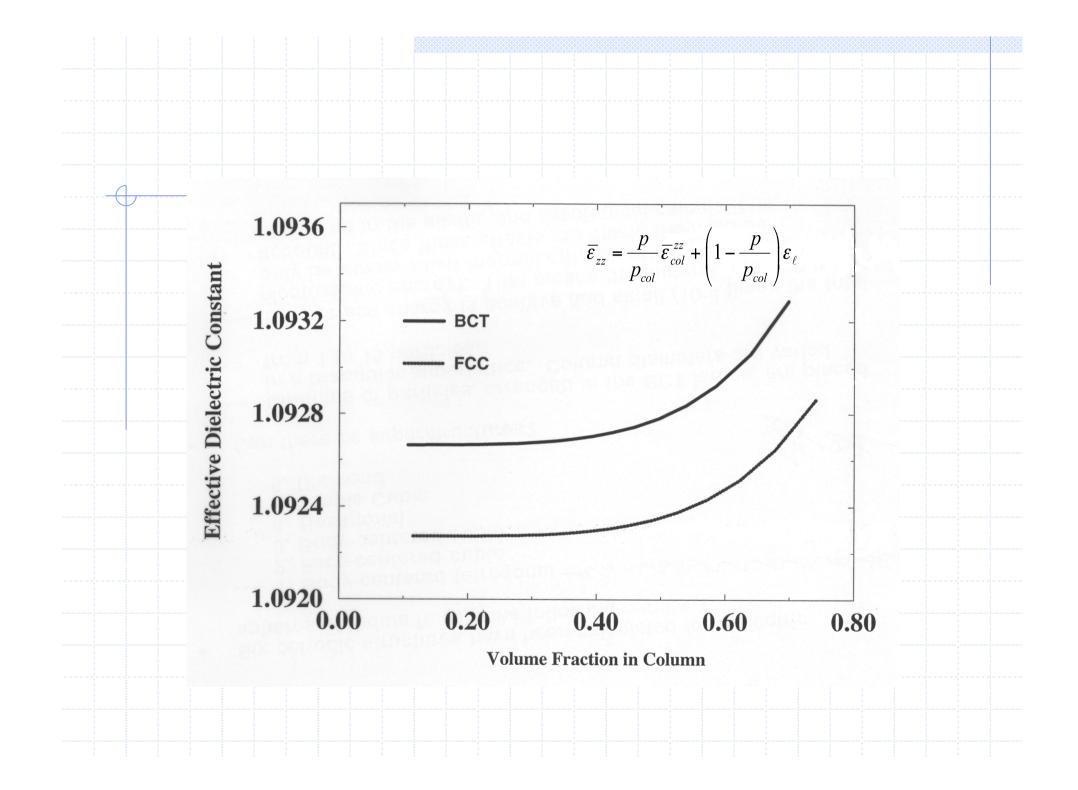
• Define the operator $\hat{\Gamma}_{\ell m,\ell'm'}^{(0)} = \sum_{\vec{R}} \hat{\Gamma}_{\ell m,\ell'm'}(\vec{R})$ (microgeometry of the spheres' arrangement enters here). Then the (global) eigenfunction of the $\hat{\Gamma}^{(0)}$ operator is expressible as

$$arphi_u^{(0)} = \sum_{u} arphi_{\ell m}^{(u)} \chi_{\ell m}$$



The Search for the Maximum $\overline{arepsilon}_{zz}$

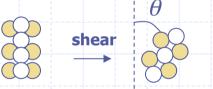




Shear Modulus Calculation

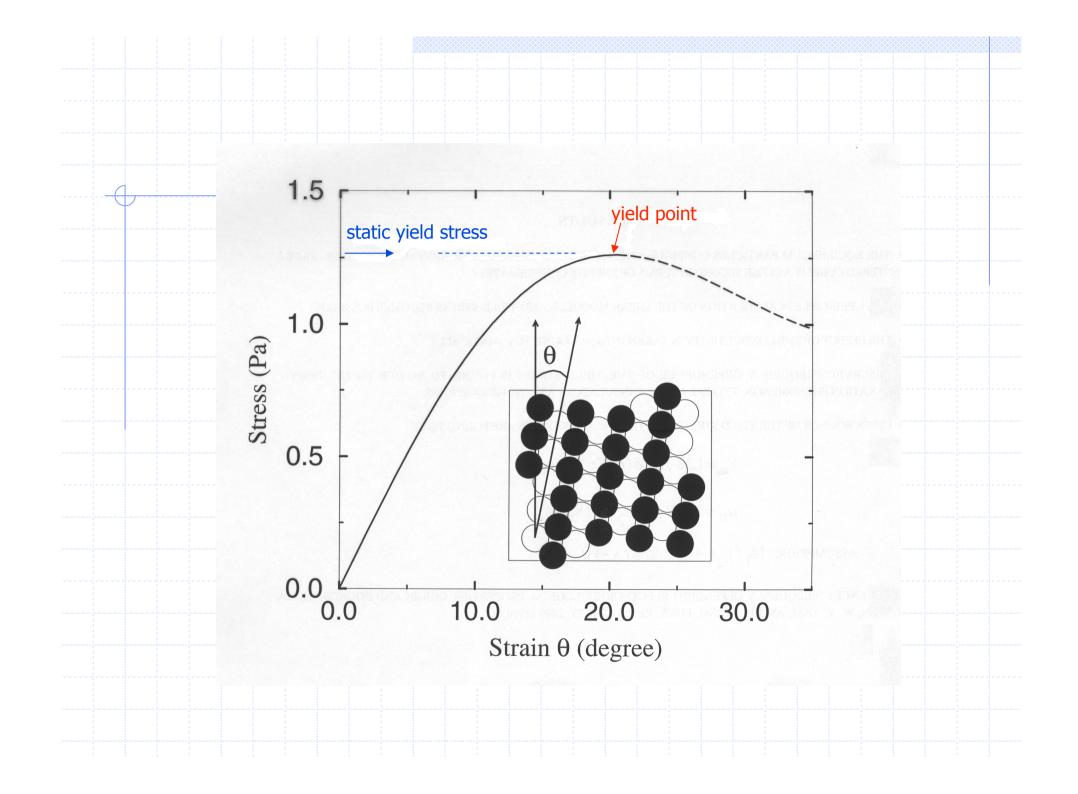
- To calculate elastic and rheological properties, it is necessary to perturb away from the electrostatic ground state.
 - Shearing not only tilt the *c*-axis away from the electric field direction by an angle θ, but also distort the lattice constants *c* and *a* by

$$c/R = 2/\cos\theta, \quad a/R = [8 - (c^2/2R^2)]^{1/2}$$

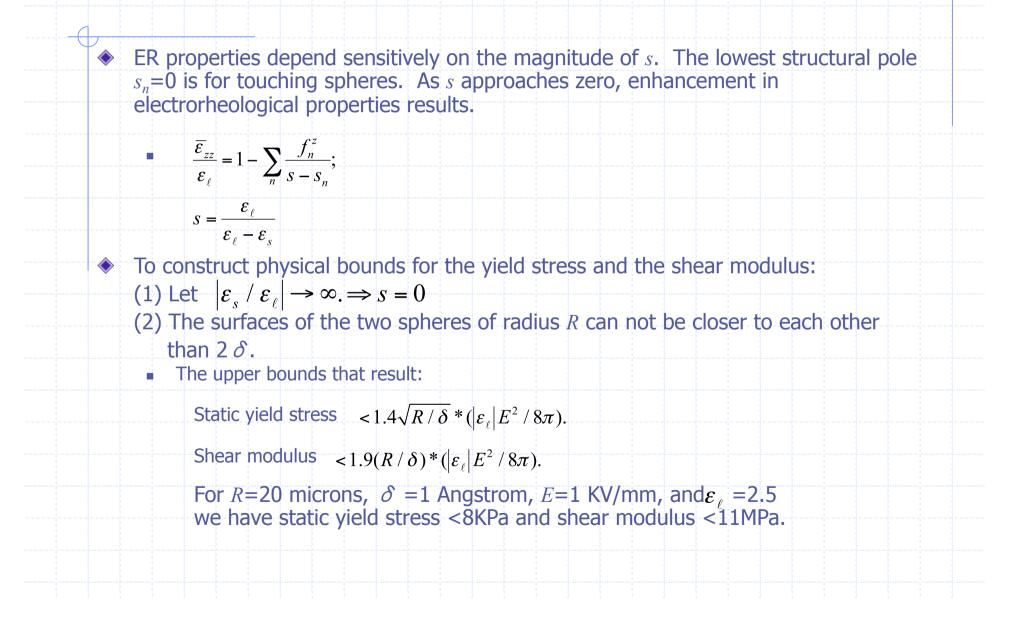


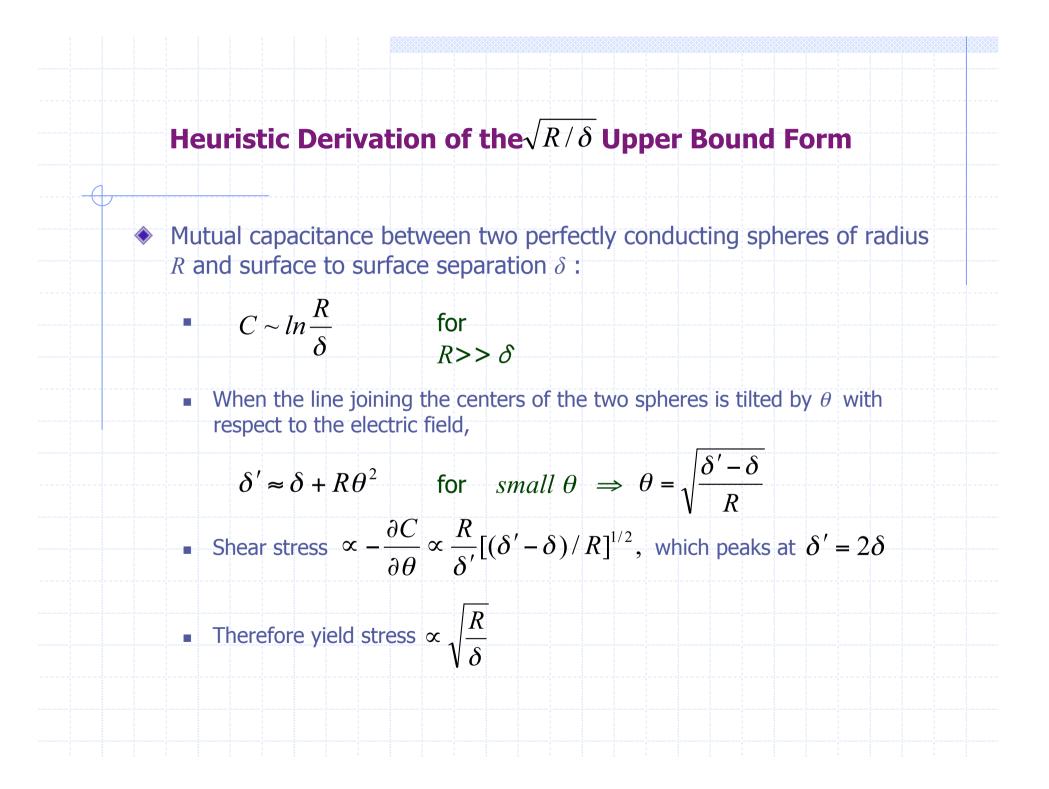
For θ small, $\overline{\varepsilon}(\theta)$ may be expanded about its optimal value as

$$\frac{\overline{\varepsilon}(\theta)}{\varepsilon_2} = \frac{\overline{\varepsilon}(0)}{\varepsilon_2} - \frac{1}{2}\mu\theta^2 + - -$$



Bounds on Electrorheological Properties





Idea of Surface Coating

Directly derived from theoretical upper bound

Electroless plating Sol-gel coatin

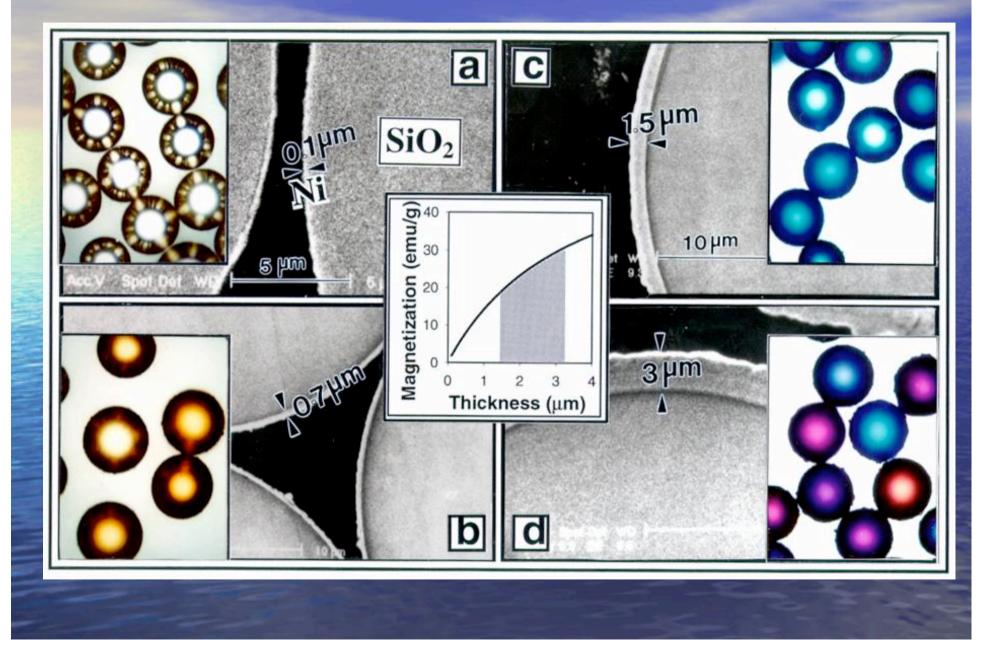
Glass microsphere

Glass microsphere + nickel

$Glass+nickel+TiO_2$

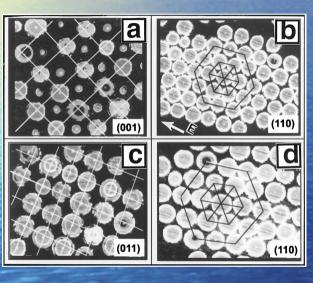
Use coated spheres to verify the ground state structure as well as the upper bound predictions

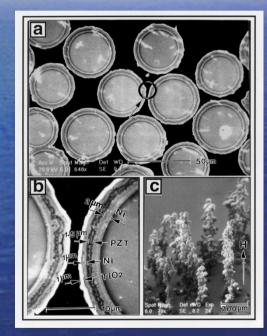
Coated Microspheres Fabrication

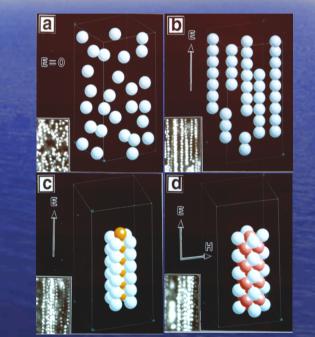


Structures of ER Suspensions Using Coated Microspheres

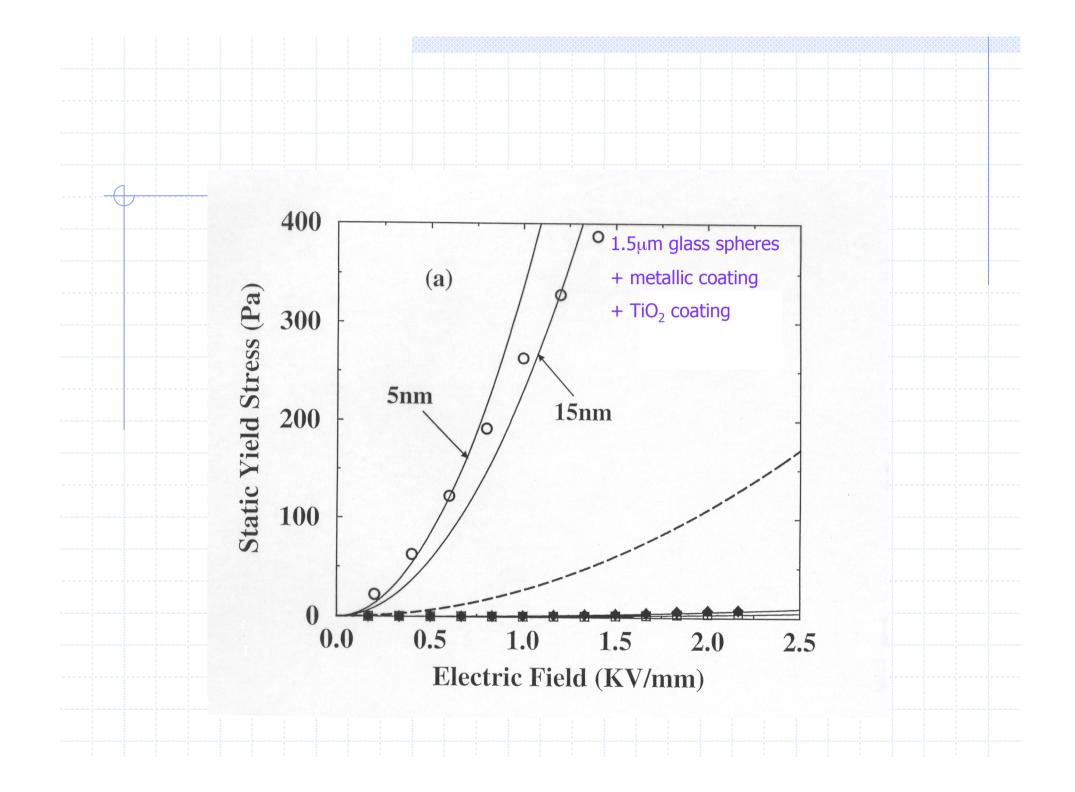
SEM cross-sectional images

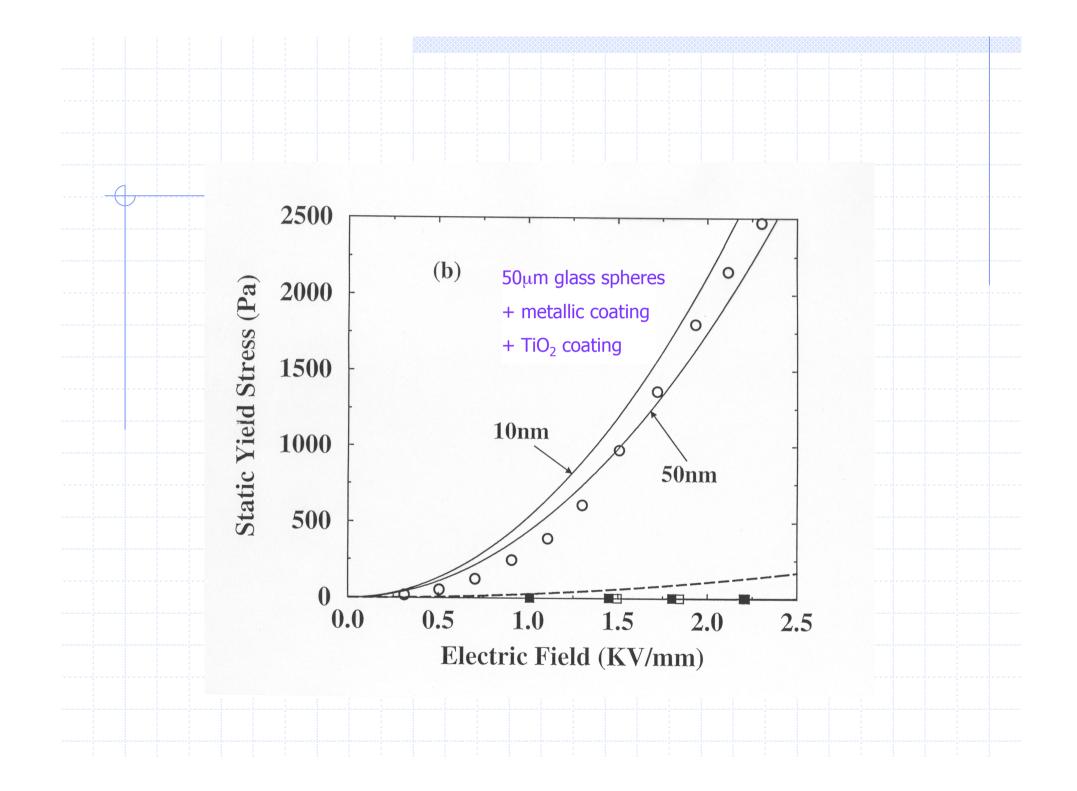


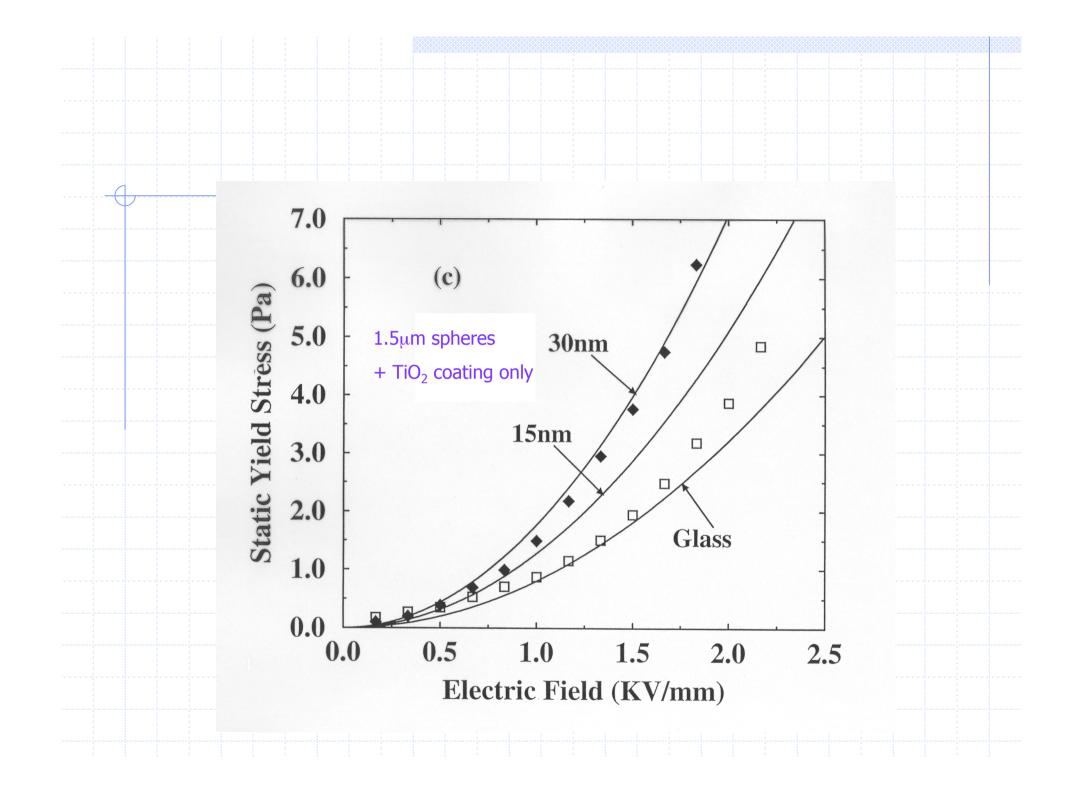




BCT-FCC transition



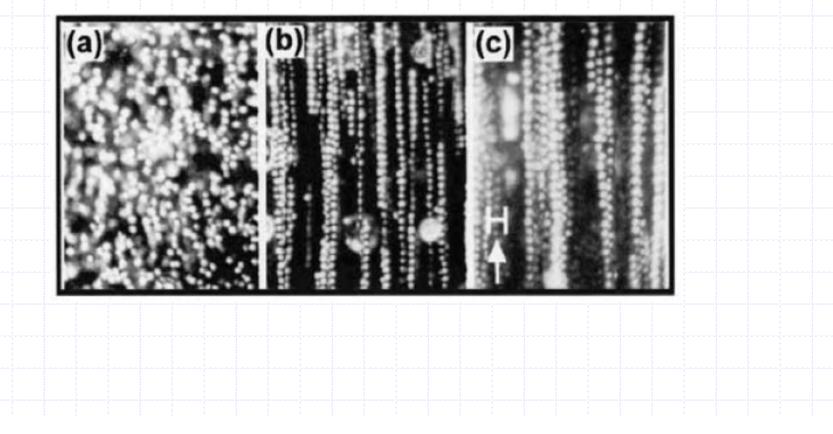


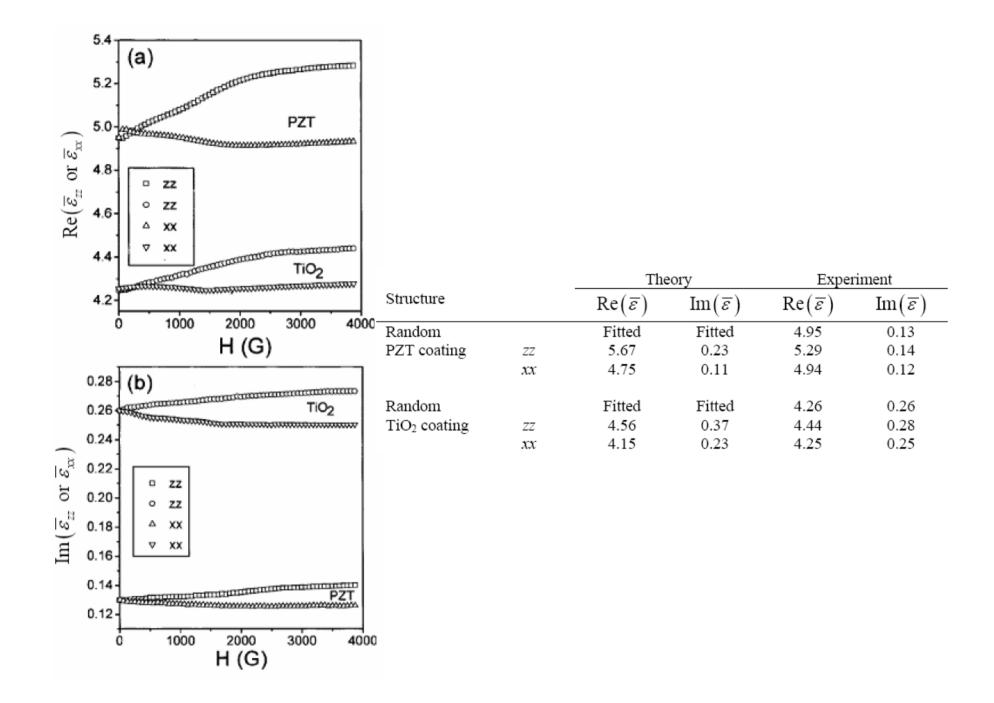


To Verify the Nonlinearity of the Electrical Response

(Dielectric constant $\overline{\varepsilon}_{zz}$ increases with column formation)

To facilitate the electrical measurement, magnetic field was used to induce the column formation.





Issue Still Remaining to be Resolved

- Question: Why is there a threshold field?
 - Basic idea: Energy landscape is not smooth. Many metastable states.
 - The variance of the energy landscape fluctuations is electric field dependent.

Work ongoing, in collaboration with

Ken Golden and Ben Murphy

