The constrained TV-flow

> S. Moll
> Based on joint works with
L. Giacomelli (U. Roma I),
M. Łasica (U. Roma I) and
J. Mazón (U. Valencia)

Tokyo, 17th October 2018

Denoising problem (simplified).

Let $u_{0}: \Omega \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$be a given noisy (observed) image. Suppose that the observed image differs from the real image $u: \Omega \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{+}$by a gaussian noise n with known variance; i.e.

$$
u_{0}=u+n, \quad \int_{\Omega} n d x=0 \quad \int_{\Omega} n^{2} d x=\sigma^{2} \quad \Rightarrow u ?
$$

The use of total variation in image processing.

Let $\mathbf{u}: \Omega \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{N}$,
$E[\mathbf{u}]=\int_{\Omega} d|D \mathbf{u}|:=\sup \left\{\int_{\Omega} u^{\ell} \operatorname{div} \varphi^{\ell} \mathrm{d} x: \varphi \in\left[C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)\right]^{m},\|\varphi\|_{\infty} \leq 1\right\}$.

The use of total variation in image processing.

Let $\mathbf{u}: \Omega \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{N}$,
$E[\mathbf{u}]=\int_{\Omega} d|D \mathbf{u}|:=\sup \left\{\int_{\Omega} u^{\ell} \operatorname{div} \varphi^{\ell} \mathrm{d} x: \varphi \in\left[C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)\right]^{m},\|\varphi\|_{\infty} \leq 1\right\}$.
Some features:

- It allows discontinuities (minimizers can be discontinuous).
- It is a convex functional.
- Applied to indicator functions, it gives the perimeter.

L. Rudin, S. Osher, E. Fatemi (1990)

$\min \left\{\int_{\Omega} d|D u|: u \in B V(\Omega), \quad \int_{\Omega} u=\int_{\Omega} u_{0}, \quad \int_{\Omega}\left(u-u_{0}\right)^{2}=\sigma^{2}\right\}$

Noisy input Image

Need for $T V$ into manifolds

Color images: B.Tang, G. Sappiro, V. Caselles '00.

- Given $I: \Omega \subset \mathbb{R}^{N} \rightarrow \mathbb{R}^{3}$ a noisy image, separate it into its brightness $M: \Omega \rightarrow \mathbb{R}^{+}$

$$
M(x)=\sqrt{\sum_{i=1}^{3} I_{i}(x)^{2}}
$$

and chromaticity $\mathbf{u}: \Omega \rightarrow\left(S^{2}\right)^{+}$,

$$
\mathbf{u}(x):=\frac{I(x)}{M(x)} .
$$

- Denoise the brightness by scalar TV-flow.
- Denoise the chromaticity by the constrained TV-flow $\left(\left(S^{2}\right)^{+}\right.$-valued).
- Recover the denoised image.

Example of denoising.

- Optical flow: u: $\Omega \subset \mathbb{R}^{2} \rightarrow S^{2}$.
- LCh-color space: $\mathbf{u}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R} \times S^{1}$.
- Camera trajectories: u : $[0, T] \rightarrow S E(3)$

- Brain images: $\mathbf{u}: \Omega \rightarrow \mathbb{P}(3)^{+}$

p-harmonic functions and p-harmonic flows

Let $\Omega \subset \mathbb{R}^{m}$ and $\mathbf{u}: \Omega \rightarrow \mathcal{N}$, where (\mathcal{N}, g) is a smooth manifold. We embed isometrically \mathcal{N} in \mathbb{R}^{N} and denote again $\mathbf{u}:=\iota \circ \mathbf{u}$ and consider

$$
|\nabla \mathbf{u}|^{2}:=u_{x_{j}}^{i}{ }^{2}
$$

Definition

The p-energy of \mathbf{u} is defined as $E_{p}(\mathbf{u}):=\frac{1}{p} \int_{\Omega}|\nabla \mathbf{u}|^{p} d x$

Definition

The p-harmonic functions are the regular critical points of E_{p} :

$$
0=\frac{\delta E_{p}}{\delta \mathbf{u}}=-\pi_{\mathbf{u}}\left(-\operatorname{div}\left(|\nabla \mathbf{u}|^{p-2} \nabla \mathbf{u}\right)\right), \quad \mathbf{u}(\Omega) \subseteq \mathcal{N}
$$

The p-harmonic flow is the formal gradient descent flow in L^{2} of E_{p} :

$$
\frac{\partial \mathbf{u}}{\partial t}=-\frac{\delta E_{p}}{\delta \mathbf{u}}, \quad \mathbf{u}(\Omega) \subseteq \mathcal{N} \quad(t, x) \in(0, T) \times \Omega
$$

Some known results.

- Non-positive sectional curvature:
- $p=2$ [Eels-Sampson, '64]. Existence of global solutions to the flow and convergence of a subsequence to a harmonic map. The heat flow solved the homotopy problem.
- $p>1$ [Fardoun-Regbaoui '02]. Existence and uniqueness, regularity and convergence to a p-harmonic map.
- $\mathcal{N}=S^{N-1}$
- $p=2$, [Chen-Struwe '89] Existence of a weak solution possibly singular in a finite number of points of $D^{2} \times[0,+\infty($. Blow up in finite time [Chan-Ding-Ye '92]
- $p>2$: [Chen-Hong-Hungerbuehler '94].
- $1<p<2$: [Liu '97], [Misawa '02].
- Blow-up in finite time, $p \notin\{1,2\}$ [lagar-M, '14]
- Uniqueness? NOT in general [Bertsch-Dal Passo, van der Hout '02].

The case $p=1$

- Regular solutions
- Smooth and small data (periodic) [Giga \& coll. '03-]
- Lipschitz data M. Łasica, L. Giacomelli, S.M. '17.
- $B V$-solutions in the case of $\mathcal{N}=S^{N-1}$.
- Piecewise constant evolution [Giga \& coll. '05-]
- Rotational symmetry, blow-up (Dirichlet) [DalPasso-Giacomelli-M., '08-'10]
- S^{1}. Existence and uniqueness [Giacomelli, Mazón, S. M. '13]
- Existence in the case $\left(S^{N-1}\right)^{+}$. [Giacomelli, Mazón, M. '14]
- $B V$-solutions in the case \mathcal{N} is a smooth curve in the plane. [DiCastroGiacomelli '16]
- $B V$-solutions for 1-D domain. Giacomelli, Łasica, M. '18

The regular case

$\mathbf{u}_{t}=\pi_{\mathbf{u}} \operatorname{div}\left(\frac{\nabla \mathbf{u}}{|\nabla \mathbf{u}|}\right)$ (TVF)

The meaning of $\frac{\nabla \mathbf{u}}{|\nabla \mathbf{u}|}$ as a multivalued function:

$$
\frac{\nabla \mathbf{u}}{|\nabla \mathbf{u}|}:(t, \mathbf{x}) \mapsto \begin{cases}\frac{\nabla \mathbf{u}(t, \mathbf{x})}{|\nabla \mathbf{u}(t, \mathbf{x})|} \subset \mathbb{R}^{m} \times T_{\mathbf{u}(t, \mathbf{x})} \mathcal{N} & \text { if } \nabla \mathbf{u}(t, \mathbf{x}) \neq \mathbf{0} \\ B(0,1) \subset \mathbf{R}^{(t, \mathbf{x})=\mathbf{0}}\end{cases}
$$

Definition

Let $T \in] 0, \infty]$. We say that $\mathbf{u} \in W^{1,2}(] 0, T[\times \Omega, \mathcal{N})$ with
$\nabla \mathbf{u} \in L_{\text {loc }}^{\infty}\left(\left[0, T\left[\times \bar{\Omega}, \mathbb{R}^{m \cdot N}\right)\right.\right.$ is a (regular) solution to (TVF) if there exists $\mathbf{Z} \in L^{\infty}(] 0, T\left[\times \Omega, \mathbb{R}^{m} \times \mathbb{R}^{N}\right)$ with $\operatorname{div} \mathbf{Z} \in L_{l o c}^{2}\left(\left[0, T\left[\times \bar{\Omega}, \mathbb{R}^{N}\right)\right.\right.$ satisfying $\mathcal{L}^{1+m}-$ a.e. in $] 0, T[\times \Omega$.

$$
\begin{gathered}
\mathbf{Z} \in \frac{\nabla \mathbf{u}}{|\nabla \mathbf{u}|} \\
\mathbf{u}_{t}=\pi_{\mathbf{u}} \operatorname{div} \mathbf{Z}
\end{gathered}
$$

Homogeneous Neumann boundary condition:

$$
\left.\nu^{\Omega} \cdot \mathbf{Z}=\mathbf{0}, \quad \mathcal{L}^{1} \otimes \mathcal{H}^{m-1}-\text { a.e. in }\right] 0, T[\times \partial \Omega
$$

Existence and regularity

$$
\mathcal{K}_{\mathcal{N}}=\sup _{\mathbf{p} \in \mathcal{N}} \max _{\mathbf{v}, \mathbf{w} \in T_{\mathbf{p}} \mathcal{N} \backslash\{0\}} \frac{\mathbf{v} \cdot \mathcal{R}_{\mathbf{p}}^{\mathcal{N}}(\mathbf{v}, \mathbf{w}) \mathbf{w}}{|\mathbf{v}|^{2}|\mathbf{w}|^{2}-(\mathbf{v} \cdot \mathbf{w})^{2}}
$$

Theorem
Suppose that Ω is convex, the embedding is closed and $\sup \mathcal{K}_{\mathcal{N}}<\infty$.
Given $\mathbf{u}_{0} \in W^{1, \infty}(\Omega, \mathcal{N})$, there exists $T=T\left(\mathcal{N},\left\|\nabla \mathbf{u}_{0}\right\|_{L^{\infty}}\right)$ and a regular solution $\mathbf{u} \in L^{\infty}(] 0, T\left[, W^{1, \infty}(\Omega, \mathcal{N})\right)$ satisfying

$$
\operatorname{esssup}_{t \in[0, T]} \int_{\Omega}|\nabla \mathbf{u}(t, \cdot)|+\int_{0}^{T} \int_{\Omega} \mathbf{u}_{t}^{2} \leq \int_{\Omega}\left|\nabla \mathbf{u}_{0}\right|,
$$

and

$$
\mathbf{u}(0, \cdot)=\mathbf{u}_{0}
$$

The approximate system

$$
\left\{\begin{array}{cc}
\mathbf{u}_{t}^{\varepsilon}=\pi_{\mathbf{u}^{\varepsilon}} \operatorname{div}\left(\frac{\nabla \mathbf{u}^{\varepsilon}}{\sqrt{\varepsilon^{2}+\left|\nabla \mathbf{u}^{\varepsilon}\right|^{2}}}\right) & \text { in }] 0, T[\times \Omega \\
\nu^{\Omega} \cdot \nabla \mathbf{u}^{\varepsilon}=0 & \text { in }] 0, T[\times \partial \Omega \\
\mathbf{u}^{\varepsilon}(0, \cdot)=\mathbf{u}_{0} &
\end{array}\right.
$$

Theorem

Suppose that Ω is smooth and convex, that $\sup \mathcal{K}_{\mathcal{N}}<\infty$. Let
$\mathbf{u}_{0} \in C^{3+\alpha}(\Omega, \mathcal{N})$ satisfy Neumann b.c. . + a compatibility condition. Then,
There exist $T_{\dagger}=T_{\dagger}\left(\left\|\nabla \mathbf{u}_{0}^{\varepsilon}\right\|_{L^{\infty}}, \mathcal{K}_{\mathcal{N}}\right)>0$, and unique solution

$$
\mathbf{u}^{\varepsilon} \in C_{l o c}^{\frac{3+\alpha}{2}, 3+\alpha}\left(\bar{\Omega}_{\left[0, T_{\uparrow}[\right.}, \mathcal{N}\right)
$$

to the system with initial datum \mathbf{u}_{0}.

Sketch of proof.

- Step 1. Uniform bounds: Let $\mathbf{u}^{\varepsilon} \in C^{\frac{3+\alpha}{2}, 3+\alpha}\left(\bar{\Omega}_{[0, T[}, \mathcal{N}\right)$ be a solution. Then,
(i) Energy estimate:

$$
\sup _{t \in[0, T[} \int_{\Omega} \sqrt{\varepsilon^{2}+\left|\nabla \mathbf{u}^{\varepsilon}\right|^{2}}+\int_{0}^{T} \int_{\Omega} \mathbf{u}_{t}^{2} \leq \int_{\Omega} \sqrt{\varepsilon^{2}+\left|\nabla \mathbf{u}_{0}^{\varepsilon}\right|^{2}} .
$$

(ii) Parabolic Bochner formula:

$$
\frac{1}{2} \frac{d}{d t}|\nabla \mathbf{u}|^{2}=\operatorname{div}(\nabla \mathbf{u} \cdot \nabla Z)-\left(\pi_{\mathbf{u}} \nabla^{2} \mathbf{u}\right): \nabla Z+Z_{i} \cdot \mathcal{R}_{\mathbf{u}}^{\mathcal{N}}\left(\mathbf{u}_{x^{i}}, \mathbf{u}_{x^{j}}\right) \mathbf{u}_{x^{j}} .
$$

(iii) Lipschitz bound:

$$
\left\|\sqrt{\varepsilon^{2}+\left|\nabla \mathbf{u}^{\varepsilon}(t \cdot)\right|^{2}}\right\|_{L^{\infty}} \leq \frac{\sqrt{\varepsilon^{2}+\left|\nabla \mathbf{u}_{0}\right|^{2}}}{1-t \mathcal{K}_{N} \sqrt{\varepsilon^{2}+\left|\nabla \mathbf{u}_{0}\right|^{2}}}
$$

- Step 2. Unconstraining the problem:
(i) Construct a totally geodesic embedding ι of (\mathcal{N}, g) into a Riemannian manifold ($\left.\mathbb{R}^{N}, h\right)$. Then,

$$
u_{t}^{i}=\operatorname{div} \frac{\nabla u^{i}}{\sqrt{\varepsilon^{2}+|\nabla \mathbf{u}|_{h}^{2}}}+\frac{1}{\sqrt{\varepsilon^{2}+|\nabla \mathbf{u}|_{h}^{2}}} \Gamma_{j k}^{i}(\mathbf{u}) u_{x_{l}}^{j} u_{x_{l}}^{k}, \quad i=1, \ldots, N
$$

(ii) Local existence and uniqueness of solution
$\mathbf{u}^{\varepsilon} \in C^{1+\frac{\alpha}{2}}\left(\left[0, T_{0}\right], L^{p}\left(\Omega, \mathbb{R}^{N}\right)\right) \cap C^{\frac{\alpha}{2}}\left(\left[0, T_{0}\right], W^{2, p}\left(\Omega, \mathbb{R}^{N}\right)\right)$ with a $T_{0}>0$ for $\mathbf{u}_{0} \in C^{2+\alpha}(\bar{\Omega}, \mathcal{N})$ satisfying Neumann b. c. (Acquistapace and Terreni)
(iii) Hölder regularity+maximal time of existence by classical results.

- Step 3. The solution stays into \mathcal{N} by uniqueness.

Sketch of passing with $\varepsilon \rightarrow 0$

- Case $u_{0} \in C^{3+\alpha}(\Omega ; \mathcal{N})+$ compatibility conditions. Since the bounds do not depend on ε, there exists a subsequence \mathbf{u}_{k} from (\mathbf{u}^{ε}) such that

$$
\left\{\begin{array}{lc}
\mathbf{u}_{k} \rightarrow \overline{\mathbf{u}} & \text { in } C(] 0, T[\times \bar{\Omega}) \\
\nabla \mathbf{u}_{k} \rightharpoonup \nabla \overline{\mathbf{u}} & \text { weakly in } L^{2}(] 0, T[\times \Omega)
\end{array} .\right.
$$

Then, one can pass to the limit in the weak formulation in extrinsic coordinates:

$$
\mathbf{u}_{t}^{\varepsilon}=\operatorname{div} \frac{\nabla \mathbf{u}^{\varepsilon}}{\left|\nabla \mathbf{u}^{\varepsilon}\right|}+A\left(\mathbf{u}^{\varepsilon}\right)\left(\mathbf{Z}^{\varepsilon}, \nabla \mathbf{u}^{\varepsilon}\right),
$$

- General case: By approximation with $C^{\infty}(\bar{\Omega} ; \mathcal{N})$ functions.
- A general convex domain.

Theorem
Suppose that $\mathbf{u}_{1}, \mathbf{u}_{2} \in L^{\infty}(] 0, T\left[, W^{1, \infty}(\Omega, \mathcal{N})\right)$ are two regular solutions to (TVF) such that $\mathbf{u}_{1}(0, \cdot)=\mathbf{u}_{2}(0, \cdot)=\mathbf{u}_{0}$. Then $\mathbf{u}_{1} \equiv \mathbf{u}_{2}$.
Theorem
Given $\mathbf{p}_{0} \in \mathcal{N}$ and $\mathbf{u}_{0} \in W^{1, \infty}(\Omega)$ such that $\mathbf{u}_{0}(\Omega) \subset \overline{B_{g}\left(\mathbf{p}_{0}, R\right)}, R>0$.
Then, there exist:

- A constant $R_{*}\left(\mathbf{p}_{0}\right)$ such that if $R<R_{*}$, then $\mathbf{u}(t, \Omega) \subset \overline{B_{g}\left(\mathbf{p}_{0}, R\right)}$, for all $t>0$.
- constants $0<\tilde{R}_{*}\left(\mathbf{p}_{0}\right)<R_{*}, C\left(\mathbf{p}_{0}\right)$ and $u_{*} \in \mathcal{N}$ such that, if $R<\min \left\{\tilde{R}, \frac{T}{C}\right\}$, then $u(t, \cdot) \equiv u_{*}$ for $\left.t \in\right] C R, T[$.

Finite extinction time. Sketch of proof.

Consider the barycenter

$$
m(t):=\operatorname{argmin}_{w \in \mathcal{N}} \int_{\Omega} d(u(x), w)^{2} d x
$$

Then, consider geodesic polar coordinates centered at $m(t)$ and estimate

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega} d(\mathbf{u}(x, t), m(t))^{2} d x=\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u^{r}\right)^{2} d x
$$

using the equation in this coordinates, , integration by parts and Poincaré-Sobolev inequality, obtaining
$\frac{1}{2} \frac{d}{d t} \int_{\Omega} d(\mathbf{u}(x, t), m(t))^{2} d x \leq-C R^{\frac{2}{m}-1}\left(\overline{2} \int_{\Omega} d(\mathbf{u}(x, t), m(t))^{2} d x\right)^{1-\frac{1}{m}}$.

Theorem

Suppose that Ω is convex and $\mathcal{K}_{\mathcal{N}} \leq 0$ (or suppose that $m=1$). Let $\mathbf{u}_{0} \in W^{1,2}(\Omega, \mathcal{N}) \cap L^{\infty}(\Omega, \mathcal{N})$. There exists a global regular solution. Furthermore, if $\mathbf{u}_{0} \in W^{1, p}(\Omega, \mathcal{N}), 2 \leq p \leq \infty$, then $\mathbf{u} \in L^{\infty}(] 0, \infty\left[, W^{1, p}(\Omega, \mathcal{N})\right.$ with

$$
\operatorname{ess} \sup _{t>0}\|\nabla \mathbf{u}(t, \cdot)\|_{L^{p}(\Omega)} \leq\left\|\nabla \mathbf{u}_{0}\right\|_{L^{p}(\Omega)}
$$

The homotopy problem

Given (\mathcal{M}, γ) and (\mathcal{N}, g) two Riemannian manifolds and $\mathbf{u}_{0}: \mathcal{M} \rightarrow \mathcal{N}$, is there a weak 1 -harmonic map \mathbf{u}_{*} homotopic to \mathbf{u}_{0} ?

$$
\begin{gathered}
T V_{\mathcal{M}}^{\mathcal{M}}[\mathbf{u}]:=\int_{\mathcal{M}}|d \mathbf{u}|_{\gamma} d \mu_{\gamma} \\
(T V F): \mathbf{u}_{t}=\pi_{\mathbf{u}}\left(\operatorname{div}_{\gamma} \frac{d \mathbf{u}}{|d \mathbf{u}|}\right) \\
\frac{\mathrm{du}}{|\mathrm{~d} \mathbf{u}|_{\gamma}}:(t, \mathbf{x}) \mapsto \begin{cases}\frac{\mathrm{du}(t, \mathbf{x})}{|\operatorname{du}(t, \mathbf{x})|_{\gamma}} \\
B_{\gamma}(0,1) \subset T_{\mathbf{x}}^{*} \mathcal{M} \times T_{\mathbf{u}(t, \mathbf{x})} \mathcal{N} & \text { if } \mathrm{d} \mathbf{u}(t, \mathbf{x}) \neq 0 \\
\mathrm{~d}(t, \mathbf{x})=0 .\end{cases}
\end{gathered}
$$

Definition

Let $T \in] 0, \infty]$. We say that

$$
\mathbf{u} \in W_{l o c}^{1,2}\left(\left[0 , T [\times \mathcal { M } , \mathcal { N }) \text { with } \mathrm { d } \mathbf { u } \in L _ { l o c } ^ { \infty } \left(\left[0, T\left[\times T^{*} \mathcal{M} \times \mathbb{R}^{N}\right)\right.\right.\right.\right.
$$

is a solution if there exists $\mathbf{Z} \in L^{\infty}(] 0, T\left[\times T^{*} \mathcal{M} \times \mathbb{R}^{N}\right)$ with $\operatorname{div}_{\gamma} \mathbf{Z} \in L_{\text {loc }}^{2}\left(\left[0, T\left[\times \mathcal{M}, \mathbb{R}^{N}\right)\right.\right.$ satisfying

$$
\begin{gathered}
\mathbf{Z} \in \frac{\mathrm{d} \mathbf{u}}{|\mathrm{~d} \mathbf{u}|_{\gamma}}, \\
\mathbf{u}_{t}=\pi_{\mathbf{u}}\left(\operatorname{div}_{\gamma} \mathbf{Z}\right)
\end{gathered}
$$

$\mathcal{L}^{1+m}-$ a.e. in $] 0, T[\times \mathcal{M}$.

$$
\operatorname{Ric}_{\mathcal{M}}=\min _{\mathbf{p} \in \mathcal{M}} \min _{\mathbf{v}, \mathbf{w} \in T_{p} \mathcal{M} \backslash\{\overrightarrow{0}\}} \frac{\mathcal{R} i c_{\mathbf{p}}^{\mathcal{M}}(\mathbf{v}, \mathbf{w})}{|\mathbf{v}|_{\gamma}|\mathbf{w}|_{\gamma}}
$$

Theorem

Let (\mathcal{M}, γ) be a compact, orientable and let (\mathcal{N}, g) be a compact submanifold in \mathbb{R}^{N}. Given $\mathbf{u}_{0} \in W^{1, \infty}(\mathcal{M}, \mathcal{N})$, there exists $\left.\left.T \in\right] 0, \infty\right]$ and a unique regular solution in $[0, T[$.

If $K_{\mathcal{N}} \leq 0$, the solution exists in $[0, \infty[$.
If Ric $\mathcal{M}_{\mathcal{M}} \geq 0$, there exists $\left.\left(t_{k}\right) \subset\right] 0, \infty\left[, t_{k} \rightarrow \infty, \mathbf{u}_{*} \in W^{1, \infty}(\mathcal{M}, \mathcal{N})\right.$ and $\mathbf{Z}_{*} \in L^{\infty}\left(T^{*} \mathcal{M} \times \mathbb{R}^{N}\right)$ with $\operatorname{div}_{\gamma} \mathbf{Z}_{*} \in L^{\infty}\left(\mathcal{M}, \mathbb{R}^{N}\right)$ such that

$$
\left.\begin{array}{c}
\pi_{\mathbf{u}_{*}}\left(\operatorname{div}_{\gamma} \mathbf{Z}_{*}\right)=\overrightarrow{0}, \quad \mathbf{Z}_{*} \in \frac{\mathrm{~d} \mathbf{u}_{*}}{\left|\mathrm{~d} \mathbf{u}_{*}\right|_{\gamma}} \\
\mathbf{u}\left(t_{k}, \cdot\right)
\end{array}\right) \mathbf{u}_{*} \text { in } C(\mathcal{M}, \mathcal{N}) .
$$

BV-solutions

BV-solution

Proper interpretation of

$$
\mathbf{u}_{t}=\operatorname{div}\left(\frac{D \mathbf{u}}{|D \mathbf{u}|}\right)+A(\mathbf{u})\left(\frac{D \mathbf{u}}{|D \mathbf{u}|}, D \mathbf{u}\right)
$$

for $\mathbf{u} \in B V(\Omega ; \mathcal{N}), ?$

$$
\mathbf{u}_{t}=\operatorname{div}(\mathbf{Z})+\boldsymbol{\mu}
$$

- Special cases:
$-\mathcal{N}=\mathbb{S}_{+}^{n-1}: \quad \boldsymbol{\mu}=\mathbf{u}|\tilde{D} \mathbf{u}|+\frac{\mathbf{u}^{*}}{\left|\mathbf{u}^{*}\right|}\left|D^{j} \mathbf{u}\right|, \quad(\mathbf{Z}, D \mathbf{u})=\left|\mathbf{u}^{*}\right||D \mathbf{u}|$
$-\mathcal{N} \subset \mathbb{R}^{2}: \quad \boldsymbol{\mu}=-\kappa(\mathbf{u}) N(\mathbf{u})|\tilde{D} \mathbf{u}|+\left(T\left(\mathbf{u}_{-}\right)-T\left(\mathbf{u}_{+}\right)\right) \mathcal{H}^{m-1}\left\llcorner J_{\mathbf{u}}\right.$
$\underline{\text { The equation for } \mathcal{N}=S^{N-1}}$

$$
\mathbf{u}_{t}=\operatorname{div}\left(\frac{D \mathbf{u}}{|D \mathbf{u}|}\right)+\mathbf{u}|D \mathbf{u}|
$$

Approximation. Parabolic regularization.

Lemma (Barrett-Feng-Prohl '08)
Let $\varepsilon>0, T>0$ and $\alpha>0$. If $\mathbf{u}_{0}^{\varepsilon} \in W^{1,2}\left(\Omega ; \mathbb{S}^{N-1}\right)$, then there exists $\mathbf{u}^{\varepsilon} \in L^{\infty}\left(0, T ; W^{1,2}\left(\Omega ; \mathbb{R}^{N}\right)\right) \cap W^{1,2}\left(0, T ; L^{2}\left(\Omega ; \mathbb{R}^{N}\right)\right)$ such that $\mathbf{u}^{\varepsilon}(0, \cdot)=\mathbf{u}_{0}^{\varepsilon},\left|\mathbf{u}^{\varepsilon}\right|=1$ a.e. in Q_{T}, and \mathbf{u}^{ε} is a weak solution to

$$
\left\{\begin{array}{cl}
\mathbf{u}_{t}^{\varepsilon}=\pi_{\mathbf{u}^{\varepsilon}} \operatorname{div}\left(\mathbf{Z}^{\varepsilon}\right) & \text { in } Q_{T} \\
{\left[\mathbf{Z}^{\varepsilon}, \nu\right]=0} & \text { in } S_{T}
\end{array}\right.
$$

where $\mathbf{Z}^{\varepsilon}:=\varepsilon^{\alpha} \nabla \mathbf{u}^{\varepsilon}+\frac{\nabla \mathbf{u}^{\varepsilon}}{\sqrt{\left|\nabla \mathbf{u}^{\varepsilon}\right|^{2}+\varepsilon^{2}}}$.
We let

$$
\boldsymbol{\mu}^{\varepsilon}:=\varepsilon^{\alpha} \mathbf{u}^{\varepsilon}\left|\nabla \mathbf{u}^{\varepsilon}\right|^{2}+\mathbf{u}^{\varepsilon} \frac{\left|\nabla \mathbf{u}^{\varepsilon}\right|^{2}}{\sqrt{\left|\nabla \mathbf{u}^{\varepsilon}\right|^{2}+\varepsilon^{2}}}
$$

With good a-priori estimates and approximation of the initial datum, one can pass to the limit,

$$
\begin{array}{rc}
\mathbf{u}_{t}-\operatorname{div} \mathbf{Z}=\boldsymbol{\mu} & \text { in }\left[L^{2}\left(0, T ; C_{0}\left(\Omega ; \mathbb{R}^{N}\right)\right)\right]^{\prime}, \\
\mathbf{Z}^{T} \mathbf{u}=0 & \text { a.e. in } Q_{T}, \\
\mathbf{u}_{t} \cdot \mathbf{u}=0 & \text { a.e. in } Q_{T},
\end{array}
$$

$$
\mathbf{u}_{t}(t) \wedge \mathbf{u}(t)=\operatorname{div}(\mathbf{Z}(t) \wedge \mathbf{u}(t)) \quad \text { in } L^{2}\left(\Omega ; \Lambda_{2}\left(\mathbb{R}^{N}\right)\right) \text { for a.e. } t \in[0, T] .
$$

Then,

$$
\boldsymbol{\mu}(t)=((\mathbf{Z}(t) \wedge \mathbf{u}(t)) \wedge D \mathbf{u}(t)) \Longrightarrow|\boldsymbol{\mu}(t)| \ll|D \mathbf{u}(t)|
$$

Therefore,
$\boldsymbol{\mu}(t)=\frac{\boldsymbol{\mu}(t)}{|D \mathbf{u}(t)|}\left(|\nabla \mathbf{u}(t)| \mathcal{L}^{m}+\left|D^{c}(\mathbf{u}(t))\right|\right)+\frac{\boldsymbol{\mu}(t)}{|D \mathbf{u}(t)|}\left|\mathbf{u}(t)_{+}-\mathbf{u}(t)_{-}\right| \mathcal{H}^{m-1}\left\llcorner J_{\mathbf{u}(t)}\right.$
If we show that

$$
\frac{\boldsymbol{\mu}(t)}{|D \mathbf{u}(t)|} \cdot \frac{\mathbf{u}(t)^{*}}{\left|\mathbf{u}(t)^{*}\right|} \geq 1 \quad|D \mathbf{u}(t)|-a . e,
$$

then

$$
\boldsymbol{\mu}(t)=\frac{\mathbf{u}(t)^{*}}{\left|\mathbf{u}(t)^{*}\right|}|D \mathbf{u}(t)|
$$

- For the diffuse part one can rely on I.s.c. results about linear growth functionals in S^{N-1} by Alicandro-Corbo-Esposito and Leone '07.
- For the jump part, one can obtain \mathcal{H}^{m-1}-a.e $x \in J_{\mathbf{u}(t)}$,

$$
\frac{\mathbf{u}^{*}}{\left|\mathbf{u}^{*}\right|} \cdot \tilde{\boldsymbol{\mu}} \geq \inf \left\{\int_{0}^{1} \frac{\mathbf{u}^{*}}{\left|\mathbf{u}^{*}\right|} \cdot \gamma(\tau)|\dot{\gamma}(\tau)| d \tau: \boldsymbol{\gamma} \in W^{1,1}\left(I ; \mathbb{S}_{+}^{N-1}\right), \gamma(0)=\mathbf{u}_{-}, \gamma(1)=\mathbf{u}_{+}\right\}
$$

Therefore, showing that the above infimum is equal to $\left|\mathbf{u}_{+}-\mathbf{u}_{-}\right|$finishes the proof. In fact, a standard geodesic in the sphere joining \mathbf{u}_{+}and \mathbf{u}_{-}yields the optimal bound. Unfortunately, the problem is genuinely non-convex.

(a)

(b)

(c)

The case of a 1-D domain

$\Omega:=I=] 0,1[$

Definition

Let $\mathbf{u} \in W^{1,2}\left(0, T ; L^{2}(I, \mathcal{N})\right) \cap L^{\infty}(0, T ; B V(I, \mathcal{N}))$ be such that $\operatorname{dist}_{g}\left(\mathbf{u}_{-}, \mathbf{u}_{+}\right)<\operatorname{inj} \mathcal{N}$ on $J_{\mathbf{u}}$. \mathbf{u} is a solution to the 1-harmonic flow if there exists $\mathbf{Z} \in L^{\infty}(] 0, T[\times I)^{n}$ such that a.e. $\left.t \in\right] 0, T[$,

$$
\begin{gathered}
\mathbf{u}_{t}=\pi_{\mathcal{N}}(\mathbf{u}) \mathbf{Z}_{x}^{a} \\
\mathbf{Z} \in T_{\mathbf{u}} \mathcal{N}, \quad|\mathbf{Z}| \leq 1 \\
Z=\frac{\mathbf{u}_{x}}{\left|\mathbf{u}_{x}\right|}, \quad\left|\tilde{\mathbf{u}}_{x}\right|-\text { a.e. } \\
\mathbf{Z}^{ \pm}=T\left(\mathbf{u}^{ \pm}\right) \quad \text { on } J_{\mathbf{u}} \\
\mathbf{Z}=0 \text { on }\{0,1\}
\end{gathered}
$$

Theorem

Let $\mathbf{u}_{0} \in B V(I, \mathcal{N})$ satisfy $\operatorname{dist}_{g}\left(\left(\mathbf{u}_{0}\right)_{-},\left(\mathbf{u}_{0}\right)_{+}\right)<R_{*}(\mathcal{N})$ on $J_{\mathbf{u}}$. Then, for any $T>0$, there exists a solution to the 1 -harmonic flow starting at \mathbf{u}_{0}.

In case that $\mathcal{K}_{\mathcal{N}} \leq 0$, then the functional is convex. Then, there is a unique abstract solution in the sense of gradient flow given by Ambrosio-Gigli-Savare's theory. Our solution coincides with this one and it is therefore unique.

Relaxed total variation

Given $\mathbf{u} \in B V(I, \mathcal{N})$,

$$
T V_{g}(\mathbf{u})=\inf \left\{\liminf \int_{I}\left|\mathbf{u}_{x}^{k}\right|: \mathbf{u}^{k} \in W^{1, \infty}(I, \mathcal{N}), \mathbf{u}^{k} \stackrel{*}{*} \mathbf{u}\right\}
$$

Then (Giacquinta-Mucci '06),

$$
T V_{g}(\mathbf{u})=\int_{I}\left|\mathbf{u}_{x}\right|_{g}
$$

with

$$
\left|\mathbf{u}_{x}\right|_{g}=\left|\tilde{\mathbf{u}}_{x}\right|\left\llcorner I \backslash J_{\mathbf{u}}+\operatorname{dist}_{g}\left(\mathbf{u}_{-}, \mathbf{u}_{+}\right) \mathcal{H}^{0}\left(J_{\mathbf{u}}\right)\right.
$$

Sketch of proof.

- Smooth the initial data and obtain a global regular solution u_{ε}.
- Use the completely local estimate (Giacomelli-Łasica '18):

$$
\left|\mathbf{u}_{x}(t, \cdot)\right|_{g} \leq\left|\left(\mathbf{u}_{0}\right)_{x}\right|_{g}
$$

to obtain uniform bounds and to compute

$$
\frac{\mathbf{u}_{x}}{\left|\left(\mathbf{u}_{0}\right)_{x}\right|}, \quad \frac{\left|\mathbf{u}_{x}\right|}{\left|\left(\mathbf{u}_{0}\right)_{x}\right|}
$$

outside $J_{\mathbf{u}_{0}}$.

- Use chain rule to compute $\frac{\mathbf{u}_{x}}{\left|\mathbf{u}_{x}\right|}$.

Jump part+uniqueness

- Choose special coordinates on the jump (Fermi coordinates)
- Use lower semicontinuity of the energy
- Show that the energy converges;

$$
T V_{g}\left(u_{\varepsilon}\right) \rightarrow T V_{g}(u)
$$

- For uniqueness, show that \mathbf{u} satisifes

$$
\frac{1}{2} \frac{d}{d t} d_{g}^{2}(\mathbf{u}(t), \mathbf{v})+T V_{g}(\mathbf{u}(t)) \leq T V_{g}(\mathbf{v})
$$

for any $\mathbf{v} \in B V(I, \mathcal{N})$.

Future directions

- Uniqueness in case $\mathcal{N}=S_{+}^{N-1}$
- $B V$-solutions for smooth manifolds with unique geodesics.
- Non-smooth curves (Wulff shape of a 2-D crystalline norm).
- Non-smooth manifolds.

どうもありがとう

