On large-time behavior for birth-spread type nonlinear PDEs

Hiroyoshi Mitake(Univ. Tokyo)
Joint work with
Y. Giga (Univ. of Tokyo), T. Ohtsuka (Gunma Univ.),
H. V. Tran (Univ. of Wisconsin-Madison)

October/17/2018 in Tokyo
Mathematical Aspects of Surface and Interface Dynamics 16

§1 Introduction:
Birth and Spread type Partial Differential Equations (PDEs)
$=$ Continuum limit of Birth and Spread model.
Let $f \in \operatorname{Lip}\left(\mathbb{R}^{2}\right): f \geq 0$ and $\{f>0\}$ is bounded. Consider

$$
\text { (N) } \begin{cases}v_{t}=f(x) & \text { in } \mathbb{R}^{2} \times(0, \infty) \\ v(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{2}\end{cases}
$$

Define $S_{1}(t): L^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{2}\right)$ by

$$
S_{1}(t)\left[u_{0}\right]:=v(\cdot, t)=u_{0}+f(x) t .
$$

Then,

$$
(P) \quad V=g(\kappa, x) \quad \text { for every level sets. }
$$

$\Longleftrightarrow\left(\right.$ Level set eq) $\begin{cases}w_{t}=g\left(\operatorname{div}\left(\frac{D w}{|D w|}\right), x\right)|D w| & \text { in } \mathbb{R}^{2} \times(0, \infty) . \\ w(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{2} .\end{cases}$
Define $S_{2}(t): \operatorname{Lip}\left(\mathbb{R}^{2}\right) \rightarrow \operatorname{Lip}\left(\mathbb{R}^{2}\right)$ by

$$
S_{2}(t)\left[u_{0}\right]:=w(\cdot, t)
$$

For $x \in \mathbb{R}^{n}, \tau>0$ (small), $i \in \mathbb{N}$, set

$$
U^{\tau}(x, i \tau):=S_{1}(\tau)\left(S_{2}(\tau) S_{1}(\tau)\right)^{i}\left[u_{0}\right]
$$

Image picture

Remark.
Two-dimensional nucleation growth theory,
Physics literature: Hillig (1966), Ohara-Reid (1973).

Theorem 1. Under general assumptions for g, we have

$$
U(x, i \tau) \rightarrow u(x, t) \quad \text { as } i \rightarrow \infty \text { with } i \tau=t
$$

for a fixed $t>0$ and locally uniformly for $x \in \mathbb{R}^{2}$. Moreover, u satisfies

$$
\text { (C) } \begin{cases}u_{t}-g\left(\operatorname{div}\left(\frac{D u}{|D u|}\right), x\right)|D u|=f(x) & \text { in } \mathbb{R}^{2} \times(0, \infty) \\ u(x, 0)=u_{0}(x) & \text { on } \mathbb{R}^{2}\end{cases}
$$

Remark.

- Example of $g: g=\kappa+1$, or $1 / \chi(\kappa)$.
- Viscosity solution.
- A continuum limit of Birth and Spread model.
- A general framework by Barles-Souganidis (1991).

Goal: Asymptotic analysis on (C) from PDE point of view.

1. Existence of the asymptotic speed of u, that is,

$$
\lim _{t \rightarrow \infty} \frac{u(x, t)}{t}\left(=: c_{f}\right) \in \mathbb{R} \text { as } t \rightarrow \infty \text { in } C\left(\mathbb{R}^{2}\right)
$$

2. Qualitative analysis of c_{f}.
3. Large time behavior: $u(x, t)-c_{f} t \rightarrow v(x)$.
§2 Main theorems.

Theorem 2. Under general assumptions for g, there exists the asymptotic speed.

Proposition 3. We have several qualitative results on the asymptotic speed (Analytical/Numerical).

Theorem 4. Convergence of solution (itself) under some condition.

Qualitative results on the asymptotic speed.
Example 1: $V=\kappa+1, f_{r}(x)=\max \{r-|x|, 0\}$.

Example 2:

$V=\kappa+1$,
$f_{r}(x)=\max \left\{R_{0}-|x-(r, 0)|, 0\right\}+\max \left\{R_{0}-|x+(r, 0)|, 0\right\}$, $R_{0}=0.2 \in(0,1)$.

Example 3:
$V=1 / \chi(\kappa), \chi(r):=\min \{\max \{r, \lambda\}, \wedge\}$ for $0 \leq \lambda<\Lambda$, $f(x)=1_{B\left(0, R_{0}\right)}$.

Solution

Difference

Thank you for

 your kind attention!